EP4306889A2 - Behandlungsanlage und verfahren zum behandeln von werkstücken - Google Patents

Behandlungsanlage und verfahren zum behandeln von werkstücken Download PDF

Info

Publication number
EP4306889A2
EP4306889A2 EP23212266.3A EP23212266A EP4306889A2 EP 4306889 A2 EP4306889 A2 EP 4306889A2 EP 23212266 A EP23212266 A EP 23212266A EP 4306889 A2 EP4306889 A2 EP 4306889A2
Authority
EP
European Patent Office
Prior art keywords
gas
treatment room
treatment
heating
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23212266.3A
Other languages
English (en)
French (fr)
Other versions
EP4306889A3 (de
Inventor
Oliver Iglauer
Kevin Woll
Dietmar Wieland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Publication of EP4306889A2 publication Critical patent/EP4306889A2/de
Publication of EP4306889A3 publication Critical patent/EP4306889A3/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • F26B15/14Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined the objects or batches of materials being carried by trays or racks or receptacles, which may be connected to endless chains or belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • F24H3/087Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/10Heating arrangements using tubes or passages containing heated fluids, e.g. acting as radiative elements; Closed-loop systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/12Vehicle bodies, e.g. after being painted

Definitions

  • the present invention relates to a treatment system and a method for treating workpieces.
  • a treatment system is used to dry coated vehicle bodies.
  • the method for treating workpieces is therefore in particular a method for drying coated vehicle bodies.
  • Treatment systems and treatment processes are particularly from EP 1 998 129 B1 , the US 2006/0068094 A1 , the EP 1 302 737 A2 and the WO 02/073109 A1 known.
  • the present invention is based on the object of providing a treatment system which has a simple structure and enables energy-efficient workpiece treatment.
  • the treatment system according to the invention comprises a heating system with a self-contained heating gas duct, which is coupled to the circulating air modules, the gas to be supplied to the treatment room sections can be heated easily and efficiently.
  • the treatment system can thereby preferably be operated in a particularly energy-efficient manner.
  • the heating gas guide is preferably designed to be closed in a ring shape, so that at least a partial gas flow of a heating gas flow guided in the heating gas guide flows through the heating gas guide several times.
  • the heating gas is preferably raw gas and/or clean gas, which is suitable and/or intended for use in the treatment room, that is to say for flow through the treatment room.
  • the heating gas preferably has an increased temperature compared to the gas flow in the circulating air modules and/or treatment room sections, at least immediately upstream of the treatment room sections.
  • the heating gas is preferably not an exhaust gas from a heating device of the heating system, in particular not a combustion exhaust gas.
  • a “self-contained heating gas duct” is to be understood in particular as a heating gas duct in which at least part of a heating gas stream is conducted in a circuit. Regardless of this, a continuous or phased supply of fresh gas to the heating gas stream and/or removal of heating gas from the heating gas stream can preferably be provided even with a self-contained heating gas supply.
  • a supply of fresh gas and a discharge of heating gas are preferably dimensioned so that in a single pass of the heating gas stream through the heating gas guide at least 40%, preferably at least approximately 50%, in particular at least approximately 80%, for example at least approximately 90%, of the heating gas stream flowing past a specific point in the heating gas guide reaches this point again after the complete run.
  • the supply of fresh gas and/or the removal of heating gas from the heating gas stream preferably takes place exclusively in the treatment room sections and/or the circulating air modules of the treatment system.
  • the heating system is assigned a fresh gas supply and/or an exhaust gas outlet, by means of which fresh gas can be supplied outside the treatment room sections and/or outside the circulating air modules or heating gas can be removed from the heating gas stream.
  • the circulating air modules and/or the treatment room sections are preferably part of the heating gas supply.
  • the heating gas can preferably be passed at least partially through the treatment room sections several times before it (again) flows through the part of the heating gas guide located outside the circulating air modules and/or outside the treatment room sections.
  • the heating gas duct comprises a recirculation air duct, which is formed in sections by several recirculation air modules and/or treatment room sections arranged in parallel.
  • a gas stream can preferably be conducted in a circulating air circuit, to which heating gas can be supplied from the heating gas guide.
  • a partial gas flow of the circulating gas flow of each recirculating air module and/or treatment room section can be removed from the recirculating air module and/or the treatment room section, can be conducted in a closed circuit by means of the heating gas guide and can finally be fed again as part of the heating gas flow to one or more recirculating air modules and/or treatment room sections .
  • the treatment system preferably comprises a conveyor device, by means of which the workpieces can be fed to the treatment room, removed from the treatment room and/or conveyed through the treatment room in a conveying direction of the conveyor device.
  • the treatment room sections and/or the circulating air modules are preferably arranged one after the other in the conveying direction.
  • the recirculating air modules are independent recirculating air modules.
  • Each circulating air module, together with the associated treatment room section, preferably forms a, in particular complete, section of the treatment system.
  • circulating air is not necessarily defined as the gas “air”. Rather, the term “circulating air” preferably refers to a gas that is conducted in a circuit (circulating air circuit), which is in particular processed and/or reused several times.
  • supply air supply air
  • supply air flow exhaust air
  • exhaust air flow exhaust air flow
  • the heating system comprises a heating device and a heat exchanger, by means of which heat generated in the heating device can be transferred to a heating gas guided in the heating gas guide.
  • the heat exchanger is arranged in particular in an exhaust gas line of the heating device in order to be able to use heat contained in the exhaust gas of the heating device to heat the heating gas.
  • the treatment system includes a fresh gas supply that is different and/or independent of the heating system, by means of which fresh gas can be supplied to the treatment room.
  • the fresh gas can preferably be supplied independently of a heating gas flow to the gas flow conducted in the circulating air modules and/or treatment room sections and thus to the treatment room.
  • the fresh gas stream is at least partially used as a lock gas stream and is fed to the treatment room in this way.
  • the treatment system includes a fresh gas supply, by means of which fresh gas can be supplied to a heating gas stream guided in the heating gas duct.
  • the fresh gas supply is preferably coupled to the exhaust gas line of the heating device with a heat exchanger, in particular in order to transfer heat from the exhaust gas of the heating device to the fresh gas to be supplied by means of the fresh gas supply.
  • the heat exchanger for heating the fresh gas is preferably a heat exchanger that is different from the heat exchanger for heating the heating gas.
  • sections of a common heat exchanger that are different from each other serve, on the one hand, to heat the fresh gas and, on the other hand, to heat the heating gas.
  • the fresh gas supply and the heating gas supply then in particular have a common heat exchanger.
  • a cold side of the heat exchanger is then preferably divided into several segments.
  • a plurality of segments that can flow through independently of one another and are separated from one another in a fluid-effective manner can be provided.
  • the treatment system preferably comprises one or more locks, which are designed in particular as fresh gas locks and through which fresh gas flows or can flow.
  • the treatment system comprises one or more circulating air locks, through which circulating air, that is to say a gas stream conducted in a circuit, flows through or can flow through.
  • each circulating air lock is assigned to a circulating air module.
  • the treatment system includes circulating air locks, it can be provided that a fresh gas stream is mixed directly into the heating gas stream or can be mixed in. This means that a separate fresh gas line for supplying fresh gas to the treatment room can be unnecessary.
  • the heating gas duct comprises a central heating gas line in which heating gas is guided or can be guided and by means of which heating gas can be supplied from the heating gas duct to the plurality of recirculating air modules and / or treatment room sections, the heating gas being delivered directly or indirectly via the recirculating air modules to the respective treatment room sections can be initiated.
  • the heating gas duct thus preferably forms a supply air duct for supplying supply air to the circulating air circuits in the treatment room sections.
  • the heating gas guide comprises a central heating gas line in which heating gas is guided or can be guided and by means of which gas can be removed from the circulating air modules and/or from the treatment room sections.
  • the heating gas duct thus preferably forms an exhaust air duct for removing exhaust air from the gas streams circulated in the circulating air modules.
  • the heating gas guide comprises a central heating gas line, by means of which a heating gas can be guided in a ring from a heat exchanger for heating the heating gas to the several circulating air modules and/or treatment room sections and back again to the heat exchanger.
  • the heating gas duct comprises a central heating gas line, by means of which gas, which in particular serves as heating gas, from one or more circulating air modules and/or treatment room sections can be removed and fed to a heat exchanger for heating the same and can then be led back to the one or more circulating air modules and / or treatment room sections.
  • the heating gas guided in the heating gas guide can preferably be driven by means of exactly one blower or by means of several blowers.
  • the hot gas duct comprises several branches or branches for distributing a hot gas stream guided in the hot gas duct to the circulating air modules and/or treatment room sections.
  • the heating gas guide comprises a main supply line extending along the circulating air modules and/or treatment room sections, from which parts of the heating gas flow can be branched off and fed to the respective circulating air modules and/or treatment room sections.
  • the heating gas stream can preferably be divided in order to ultimately obtain several supply air streams for supplying the heating gas to the circulating air modules and/or treatment room sections.
  • the heating gas guide has a main branch, by means of which a total heating gas flow can be divided into a first heating gas partial flow and a second heating gas partial flow, the first heating gas partial flow being a first recirculating air module or a first to nth recirculating air module with respect to a conveying direction of a conveying device of the treatment system and/or or first treatment room section or first to nth treatment room section can be supplied and wherein the second heating gas partial flow can preferably be divided into all further circulating air modules and / or treatment room sections.
  • the first recirculation module is preferably a recirculation module assigned to a treatment room section. However, it can also be provided that this first recirculating air module is a recirculating air module assigned to a recirculating air lock.
  • the heating gas guide comprises several merging points for merging several gas streams discharged from the circulating air modules and/or treatment room sections.
  • exhaust air streams from the circulating air modules and/or treatment room sections can preferably be brought together and reheated as a total heating gas flow and finally fed again to the circulating air modules and/or treatment room sections.
  • the heating gas guide has a main merging, by means of which an exhaust gas flow from a first recirculating air module or first to nth recirculating air module and / or first treatment room section or first to nth treatment room section with respect to a conveying direction of the conveying device of the treatment system with an already merged exhaust gas stream all other circulating air modules and/or treatment room sections can be brought together.
  • a main branch and/or a main junction can serve in particular to reduce channel cross sections of a main supply line and/or a main discharge line of the heating gas line, in particular in order not to have to pass the entire heating gas stream in a single flow direction through the main supply line and/or the main discharge line.
  • each recirculation air module and/or each treatment room section comprises an inlet valve and/or an outlet valve, by means of which a volume flow of a heating gas flow to be supplied to the recirculation air module and/or the treatment room section and/or a volume flow of one from the recirculation air module and/or from the Treatment room section of the discharged gas flow can be controlled and / or regulated.
  • a supply air flow and/or an exhaust air flow of the circulating air flow conducted in the respective circulating air module and/or treatment room section can be controlled and/or regulated.
  • the treatment system preferably comprises a control device, by means of which the volume flow of the heating gas flow to be supplied to the recirculation air module and/or treatment room section and/or the volume flow of the gas flow discharged from the recirculation air module and/or from the treatment room section can be controlled and/or regulated.
  • control device by means of the control device, by controlling the volume flows, so much heating gas can always be supplied to the respective recirculation air module and/or treatment room section that a desired temperature of the recirculation air flow conducted in the respective recirculation air module and/or treatment room section is essentially constant.
  • control device is preferably designed and set up in such a way that the functions described can be carried out and/or that the parameters described are maintained, in particular kept at least approximately constant.
  • the treatment system includes a control device by means of which an at least approximately constant volume flow of the heating gas flow guided in the heating gas duct can be maintained.
  • a fan of the heating gas guide that drives the heating gas flow is controlled and/or regulated, for example by varying a drive power.
  • the blower (or also called fan) for driving the heating gas flow preferably comprises a frequency converter, via which the control and/or regulation can take place.
  • Fluctuations in the total energy requirement of the treatment system, in particular fluctuations in the heating requirement, can preferably be compensated for by controlling and/or regulating the fan of the heating gas supply.
  • a setpoint and/or an actual value for a temperature of the heating gas flow can be adjusted, in particular if a low volume flow of the heating gas flow has already been set when the heating requirement is low, for example the volume flow has been reduced to a minimum.
  • the temperature of the heating gas stream is initially reduced.
  • a predetermined lower limit value of the temperature of the heating gas flow it can then be further provided that the volume flow is reduced by suitable control and / or regulation of the fan.
  • the treatment system comprises a control device by means of which an at least approximately constant temperature of the heating gas flow guided in the heating gas guide can be maintained.
  • a bypass volume flow guided past a heat exchanger for heating the heating gas flow is influenced, in particular varied in a targeted manner. For example, a ratio of the volume flow carried out by the heat exchanger for heating the heating gas flow to the bypass volume flow can be varied in order to achieve the desired temperature of the heating gas flow guided in the heating gas guide.
  • the heating gas guide comprises one or more bypass lines to bypass all circulating air modules and/or treatment room sections.
  • a reserve of the heating gas flow can be provided, in particular to prevent undesirable undersupply of individual circulating air modules and/or treatment room sections.
  • an excess supply of heating gas can be maintained in the main supply line of the heating gas supply.
  • the main feed line opens into the bypass line at a downstream end thereof and/or at a rear end thereof with respect to the conveying direction.
  • the bypass line preferably opens into the main discharge line at an upstream end of the main discharge line and/or at a rear end thereof with respect to the conveying direction.
  • a bypass line is arranged, for example, upstream of several, in particular all, branches and / or branches of the heating gas line for supplying heating gas to the circulating air modules.
  • a bypass line is arranged downstream of several, in particular all, mergings of the heating gas duct for merging gas flows from the recirculating air modules.
  • a bypass line is arranged downstream of several, in particular all, branches and/or branches of the heating gas duct for supplying heating gas to the circulating air modules.
  • a bypass line is arranged upstream of several, in particular all, mergings of the heating gas duct for merging gas streams from the circulating air modules.
  • hot gas can preferably be introduced directly into a discharge section of the heating gas line, in particular in order to always keep a temperature of the gas stream guided in the discharge section above a condensation temperature.
  • the bypass line preferably branches off from the feed section of the heating gas line at a front end of a feed section of the heating gas line with respect to the conveying direction.
  • the bypass line preferably opens into the discharge section of the heating gas line at a downstream end of the main discharge line and/or at a front end thereof with respect to the conveying direction.
  • a volume flow of the heating gas flow guided past the recirculating air ducts via the bypass line can preferably be controlled and/or regulated by means of a bypass valve.
  • the present invention further relates to a method for treating workpieces.
  • the invention is based on the object of providing a method by means of which workpieces can be treated easily and energy-efficiently.
  • This object is achieved according to the invention by a method which comprises the following: Flowing through several treatment room sections of a treatment room of a treatment system with several gas streams conducted in separate circuits; Heating the gas streams by means of a heating gas stream, which is guided in a self-contained heating gas duct of a heating system of the treatment system.
  • the method according to the invention preferably has one or more of the features and/or advantages described in connection with the treatment system.
  • the treatment system preferably has one or more features and/or advantages which are described in connection with the method.
  • a partial stream of each of these gas streams is removed from the respective gas stream and replaced by a partial stream of the heating gas stream.
  • a “valve” is understood to mean, in particular, any type of closure element or opening element for influencing a flow rate in a line.
  • a valve can be a flap.
  • the recirculating air modules each include or form a recirculating air duct.
  • a recirculating air module is only a part of a recirculating air duct, namely the part which serves to drive the gas flow guided in the recirculating air duct. The further part is then in particular the associated treatment room section.
  • Each circulating air module preferably comprises at least one blower and an intake space arranged immediately upstream of the blower.
  • a feed channel preferably opens into the suction chamber, via which hot gas can be fed from a hot gas line of the hot gas guide, in particular a main feed line, to the circulating air module.
  • the heating gas can preferably be sucked in from the heating gas line by means of the at least one fan of the circulating air module.
  • a main supply line for distributing the heating gas to the circulating air modules preferably extends parallel to a conveying direction of a conveying device of the treatment system and/or over at least approximately an entire length of the treatment room.
  • the main supply line is preferably arranged outside a housing, the interior of which forms the treatment room.
  • the heating system comprises a main discharge line which extends parallel to the conveying direction of a conveying device of the treatment system and/or over at least approximately an entire length of the treatment room.
  • the main discharge line preferably serves to discharge gas streams discharged from the circulating air modules and/or treatment room sections.
  • the main discharge line is preferably arranged within a housing surrounding the treatment room, in particular by compartmentalizing or separating part of the interior of the housing.
  • At least one outlet valve of each recirculation air module or each treatment room section for discharging a gas stream from the gas stream conducted in the recirculation air module and / or the treatment room section is arranged in a partition wall, which divides an interior of the housing into the treatment room and the main discharge line.
  • transverse conveying of the workpieces, in particular the vehicle bodies is preferably provided.
  • a vehicle longitudinal axis of the vehicle bodies is preferably aligned horizontally and perpendicular to the conveying direction of the conveying device.
  • a main flow direction of the gas stream guided through a treatment room section is at least approximately parallel to a vehicle longitudinal axis of the vehicle body conveyed through.
  • the main flow direction is aligned essentially parallel to the vehicle's longitudinal axis in such a way that the gas flow flows around the vehicle body from front to back.
  • the main flow direction is aligned such that the gas flow flows around the vehicle body from back to front.
  • a longitudinal conveying system is provided in the treatment system, in which the longitudinal axis of the vehicle is aligned parallel to the conveying direction of the conveying device.
  • the treatment system includes a main treatment system and a pre-treatment system.
  • the main treatment system and the pretreatment system each include a separate heating gas duct.
  • a treatment system which includes both a main treatment system and a pretreatment system, comprises two independent, self-contained heating gas ducts, which are thermally coupled in particular to a common heating device.
  • the main treatment system preferably comprises a heat exchanger for thermally coupling the main treatment system with an exhaust gas discharge of the heating device.
  • the pretreatment system preferably comprises a heat exchanger for thermally coupling the pretreatment system with the exhaust gas discharge of the heating device.
  • the fresh gas supply for supplying fresh gas to a treatment room of the main treatment system and/or to a treatment room of the pretreatment system comprises a heat exchanger, by means of which the fresh gas supply is thermally coupled to the exhaust gas discharge of the heating device.
  • the one or more heat exchangers are preferably arranged on or in the exhaust gas outlet.
  • the heat exchanger of the fresh gas supply is preferably arranged downstream or upstream of a heat exchanger of the main treatment system and/or upstream or downstream of a heat exchanger of the pretreatment system with respect to a flow direction of the exhaust gas in the exhaust gas discharge line.
  • a heat exchanger of the main treatment system is arranged upstream or downstream of a heat exchanger of the pretreatment system with respect to a flow direction of the exhaust gas in the exhaust gas discharge.
  • the heat exchangers are coupled to the exhaust gas discharge of the heating device in such a way that the exhaust gas removed from the heating device is first supplied or can be supplied to the heat exchanger of the main treatment system, then to the heat exchanger of the pretreatment system and then to the heat exchanger of the fresh gas supply.
  • An exhaust gas from the pretreatment system and an exhaust gas from the main treatment system can preferably be combined and fed to the heating device as a common exhaust gas stream.
  • FIG. 1 Schematically illustrated first embodiment of a treatment system designated as a whole by 100 is used to treat workpieces 102.
  • the treatment system 100 is, for example, a drying system 104 for drying workpieces 102.
  • the workpieces 102 are, for example, vehicle bodies 106.
  • the treatment system 100 is preferably used to dry previously painted or otherwise treated vehicle bodies 106.
  • the workpieces 102 can be conveyed along a conveying direction 110 through a treatment room 112 of the treatment system 100 by means of a conveyor device 108 of the treatment system 100.
  • the treatment room 112 comprises several, for example at least four, in particular at least six, preferably exactly seven,
  • Treatment room sections 114 or is formed by these treatment room sections 114.
  • Each treatment room section 114 is preferably assigned a separate circulating air module 116.
  • a gas stream can preferably be guided in a circuit, in particular a circulating air duct 118, and can be passed through the respective treatment room section 114.
  • a circulating air module 116 and one treatment room section 114 each form a circulating air duct 118.
  • Each circulating air module 116 preferably includes one or more fans 120 for driving the circulating gas stream.
  • Each circulating air module 116 and/or each treatment room section 114 preferably further comprises an inlet valve 122 and an outlet valve 124.
  • a gas stream serving as a supply air stream can preferably be added to the gas stream guided in the recirculation air duct 118.
  • part of the gas flow guided in the recirculation air duct 118 can preferably be removed.
  • an exchange of the gas flow guided in the recirculation air duct 118 can thus be carried out.
  • This exchange of the gas flow guided in the recirculation air duct 118 serves in particular to control and/or regulate certain parameters of the gas flow guided in the recirculation air duct 118.
  • a temperature of the gas stream guided in the circulating air duct 118 can preferably be controlled and/or regulated in this way.
  • the gas stream guided in the circulating air duct 118 can be heated by supplying heating gas.
  • This heat input then serves to heat the workpiece 102 to be treated, in particular to dry a workpiece 102 designed as a vehicle body 106.
  • the gas to be supplied to each circulating air duct 118 is preferably a heating gas, which can be provided by means of a heating system 126 of the treatment system 100.
  • the heating system 126 preferably includes a heating device 128, which is designed, for example, as a thermal exhaust gas cleaning device 130.
  • a hot exhaust gas can preferably be generated, which can be removed from the heating device 128 via an exhaust gas discharge line 132.
  • the heating system 126 further comprises at least one heat exchanger 134, which is thermally coupled to the exhaust line 132 in order to use the heat of the exhaust gas to heat another medium.
  • This further medium is, for example, a heating gas, which is guided or can be guided in a closed heating gas guide 136.
  • the heating gas duct 136 is in particular a recirculating air duct in which at least a large part of the heating gas guided therein is guided or can be conducted in a circuit.
  • the heating gas guide 136 preferably includes a heating gas line 138 and one or more fans 120 for driving the heating gas guided in the heating gas line 138.
  • the exhaust gas discharge line 132 of the heating device 128 is preferably thermally coupled to the heating gas line 138.
  • the heating gas line 138 preferably includes a supply section 140, which connects the heat exchanger 134 with the circulating air modules 116 and/or the treatment room sections 114.
  • heated heating gas can be supplied to the circulating air ducts 118 and thus to the treatment room sections 114 via the supply section 140 of the heating gas line 138.
  • the heating gas line 138 further comprises a discharge section 142, via which gas discharged from the circulating air ducts 118 can be discharged and fed to the heat exchanger 134 for reheating the same.
  • the supply section 140 of the heating gas line 138 preferably comprises a plurality of branches 144 or branches 146 in order to distribute a total heating gas flow to the individual circulating air modules 116 and/or treatment room sections 114.
  • the discharge section 142 preferably comprises a plurality of junctions 148 in order to be able to bring together the individual (partial) gas streams discharged from the circulating air ducts 118 and to be able to supply them again to the heat exchanger 134 as a common gas stream.
  • the heating gas guide 136 preferably further comprises a bypass line 150, by means of which a partial gas flow of the total heating gas flow supplied to the recirculation air ducts 118 via the feed section 140 of the heating gas line 138 can be guided past all of the recirculation modules 116 and/or treatment room sections 114 and fed directly to the discharge section 142.
  • an excess supply of heating gas can preferably be provided in front of the recirculating air ducts 118 in order to always have a sufficient amount of heating gas available in the recirculating air ducts 118, even if the heating gas requirement fluctuates.
  • a volume flow of the heating gas flow guided past the circulating air ducts 118 via the bypass line 150 can preferably be controlled and/or regulated by means of a bypass valve 152.
  • the heating gas guide 136 preferably includes one or more control devices 154 for controlling and/or regulating the fans 120 and/or the inlet valves 122 and/or the outlet valves 124 and/or the bypass valve 152 of the bypass line 150.
  • a distribution of the heating gas flow to the circulating air ducts 118 can be controlled and/or regulated.
  • a total volume flow and/or a temperature of the heating gas flow can be controlled and/or regulated by means of the one or more control devices 154.
  • the heating gas guide 136 can also include a bypass line 150 in the area of the heat exchanger 134.
  • This bypass line 150 and a bypass valve 152 assigned to this bypass line 150 can preferably be controlled and/or controllable, which partial volume flow of the total heating gas flow is passed through or past the heat exchanger 134 for heating the same. In particular, this allows a constant temperature of the heating gas flow to be controlled and/or regulated downstream of the heat exchanger 134 and the bypass line 150 and/or upstream of the circulating air ducts 118.
  • the heating gas line 138 in particular the supply section 140 of the heating gas line 138, comprises a main supply line 156.
  • This main supply line 156 preferably runs outside the treatment room 112 parallel to the conveying direction 110.
  • the main supply line 156 preferably extends at least approximately over an entire length of the treatment room 112 in order to be able to supply all of the circulating air ducts 118 with heating gas.
  • the heating gas line 138 in particular the discharge section 142 of the heating gas line 138, preferably comprises a main discharge line 158.
  • the main discharge line 158 is preferably arranged outside the treatment room 112 or integrated into it.
  • the main discharge line 158 extends parallel to the conveying direction 110 and/or at least approximately over an entire length of the treatment room 112. As a result, all (partial) gas streams removed from the circulating air ducts 118 can preferably be removed.
  • the bypass line 150 for bypassing all circulating air ducts 118 is preferably arranged at a rear end of the main supply line 156 and/or the main discharge line 158 with respect to the conveying direction 110 of the conveying device 108.
  • the treatment system 100 further includes a fresh gas supply 160 for supplying fresh gas to the treatment room 112.
  • the fresh gas supply 160 preferably includes a fresh gas line 162 and a blower 120 for driving a fresh gas flow in the fresh gas line 162.
  • the fresh gas supply 160 preferably comprises a heat exchanger 134, by means of which the fresh gas line 162 and the exhaust gas discharge line 132 of the heating device 128 are thermally coupled to one another. In particular, this allows the fresh gas supplied via the fresh gas supply 160 to be heated before it is supplied to the treatment room 112.
  • the fresh gas line 162 preferably opens into the treatment room 112 in the area of an inlet section 164, in which the workpieces 102 are guided into the treatment room 112, and/or in the area of an outlet section 166, in which the workpieces 102 are removed from the treatment room 112.
  • an inlet lock 168 is provided in the area of the entry section 164 and/or an outlet lock 170 is provided in the area of the exit section 166. Furthermore, one or more intermediate locks can be provided.
  • the fresh gas supplied via the fresh gas supply 160 serves in particular as a lock gas, with which it is possible to avoid gas guided in the recirculating air ducts 118 being released outwards through the inlet section 164 and/or the outlet section 166 to an environment of the treatment system 100.
  • the volume flow of the fresh gas flow is preferably selected such that, starting from the inlet section 164 and/or the outlet section 166, a cross-flow flows along or against the conveying direction 110 and thus transversely to the gas streams guided in the recirculating air ducts 118.
  • this leads to an increase in the loading of the gas stream conducted in the treatment room 112 with impurities and/or other substances, for example solvent vapors, etc., towards the center of the treatment room 112.
  • An upstream end of an exhaust gas discharge 172 of the treatment system 100 is therefore preferably provided essentially centrally with respect to the conveying direction 110 on the treatment room 112.
  • an exhaust gas stream can be removed from the treatment room 112 via the exhaust gas discharge 172 and can preferably be fed directly to the heating device 128.
  • the heating device 128 can be used to clean the exhaust gas using energy contained in the exhaust gas and/or energy released during combustion.
  • the treatment system 100 described above works as follows: To heat and/or dry the workpieces 102, they are conveyed through the inlet lock 168 into the treatment room 112 by means of the conveying device 108. In the treatment room 112, the workpieces 102 pass through the treatment room sections 114 one after the other.
  • Treatment room sections 114 are flowed through with a gas stream conducted in a circuit, which has a temperature that is increased compared to the temperature of the workpiece 102, so that the workpiece 102 heats up due to the flow around and/or inflow with the gas stream or a predetermined temperature maintains.
  • the initially relatively cold workpiece 102 absorbs the largest amount of heat, particularly in a first treatment room section 114 with respect to the conveying direction 110, so that the circulating air module 116 and/or the circulating air duct 118 of this first treatment room section 114 must provide the greatest heating output.
  • the subsequent treatment room sections 114 preferably provide continuously lower heating outputs.
  • the respective heating output is provided by supplying heating gas from the heating system 126 to the respective circulating air module 116 and/or the respective treatment room section 114.
  • This heating gas has an increased temperature compared to the gas stream guided in the circulating air duct 118 in order to ultimately heat the entire gas stream guided in the circulating air duct 118 and thus also the workpiece 102.
  • the heating gas is provided by heating it by means of a heat exchanger 134 using hot exhaust gas from the heating device 128.
  • the heating gas is heated to a temperature of at least approximately 200 ° C, preferably at least approximately 250 ° C, for example approximately 270 ° C.
  • a corresponding partial gas volume flow of the gas flow guided in the recirculation air duct 118 is preferably removed from the recirculation air duct 118.
  • fresh gas is supplied to the treatment room 112 via the fresh gas supply 160 and gas loaded with the health-relevant substances is removed via the exhaust gas discharge 172.
  • the discharged exhaust gas is then cleaned in the heating device 128, in particular by burning the substances contained therein.
  • Exhaust gas from the heater 128 is then discharged via the exhaust gas discharge line 132.
  • the heat contained in this exhaust gas is used to heat the fresh gas supplied via the fresh gas supply 160 and/or the heating gas carried in the heating gas guide 136.
  • FIG. 2 The second embodiment of a treatment system 100 shown differs from that in Fig. 1 illustrated first embodiment essentially in that the heating gas line 138 comprises a main branch 180 and / or a main junction 182.
  • the main branch 180 preferably serves to distribute the heated total heating gas flow during the supply to the main supply line 156, on the one hand, to a first recirculating air duct 118 with respect to the conveying direction 110 and, on the other hand, to all other recirculating air ducts 118.
  • a flow cross section of the main supply line 156 can be minimized, since the entire heating gas flow for all circulating air ducts 118 does not have to be guided through the main supply line 156, for example along the conveying direction 110.
  • a heating gas partial volume flow for the first recirculating air duct 118 with respect to the conveying direction 110 which must provide the greatest heating output in comparison with the further recirculating air ducts 118, can be branched off and fed to this recirculating air duct 118 counter to the conveying direction 110.
  • the main merging 182 preferably serves to combine a partial gas stream removed from the first recirculating air duct 118 with respect to the conveying direction 110 with the partial gas streams which were removed from all other recirculating air ducts 118. As a result, a line cross section of the main discharge line 158 can preferably be minimized.
  • FIG. 2 Illustrated second embodiment of the treatment system 100 in terms of structure and function with that in Fig. 1 illustrated first embodiment, so that reference is made to the above description.
  • FIG. 3 The third embodiment of a treatment system 100 shown differs from that in Fig. 2 illustrated second embodiment essentially in that the fresh gas supply 160 opens directly into the heating gas guide 136.
  • the fresh gas to be supplied to the treatment room 112 is in Fig. 3 illustrated third embodiment of the treatment system 100 consequently via the heating gas line 138, in particular the feed section 140 of the heating gas line 138, can be fed to the circulating air ducts 118 and thus to the respective treatment room sections 114.
  • the inlet lock 168 and the outlet lock 170 can preferably be flowed through with circulating air.
  • separate circulating air modules 116 or the circulating air modules 116 of the respectively adjacent treatment room sections 114 are preferably assigned to the inlet lock 168 or the outlet lock 170.
  • a recirculating air duct 118 is an example of a recirculating air duct 118 of a treatment system 100 according to Fig. 1 , 2 , 3 or 11 .
  • the recirculation module 116 of the recirculation air duct 118 is assigned to a treatment room section 114 of the recirculation air duct 118, so that a gas stream guided in a recirculation air circuit can flow through this treatment room section 114.
  • the recirculation air module 116 is coupled to a main supply line 156 of a treatment system 100 in order to be able to supply the recirculation air module 116 and/or the recirculation air duct 118 formed by the recirculation air module 116 and/or the treatment room section 114 with heating gas.
  • the recirculation module 116 includes one or more fans 120 for driving the gas flow in the recirculation duct 118.
  • the circulating air duct 118 preferably includes the one or more blowers 120, a pressure chamber 190, the treatment chamber section 114, a return line 192 and/or a suction chamber 194.
  • the pressure chamber 190 is in particular arranged immediately downstream of the one or more blowers 120 and preferably serves to equalize a gas flow to be supplied to the treatment room section 114 and to distribute the gas flow to a plurality of feed openings 196 for supplying the gas flow to the treatment room section 114.
  • the gas stream introduced into the treatment chamber section 114 via the feed openings 196 can preferably be partially removed from the treatment chamber section 114 via one or more return openings 198 and fed to the suction chamber 194 via the return line 192.
  • a further part of the gas stream supplied to the treatment room section 114 via the feed openings 196 can preferably be removed from the circulating air duct 118 and from the treatment room section 114 via discharge openings 200 and fed to the main discharge line 158.
  • the supply openings 196, the return openings 198 and/or the discharge openings 200 are preferably arranged in such a way that preferably at least a large part of the gas stream guided through the treatment chamber section 114 is supplied or can be supplied to one side of the workpiece 102 and to a further side of the workpiece 102 opposite this side Workpiece 102 can be removed or is removed from the treatment room section 114. This preferably results in an optimized flow through the treatment room section 114 and an optimized heating of the workpiece 102.
  • Fig. 5 it can be provided that in addition to the feed openings 196, which are preferably arranged in a side wall of the treatment room section 114, further feed openings 196 are provided, which are arranged in a floor 202 which delimits the treatment room section 114 downwards.
  • the workpiece 102 can preferably be flowed into from below by means of these additional feed openings 196.
  • the gas flow is supplied to the feed openings 196 arranged in the base 202 from the pressure chamber 190 via one or more base channels 204 running below the base 202 or in the base 202.
  • two such bottom channels 204 are provided in order to supply the gas stream to the additional feed openings 196.
  • These two floor channels 204 are preferably arranged on both sides of the return line 192 (see in particular Fig. 7 ).
  • the suction chamber 194 is preferably arranged immediately upstream of the one or more fans 120, so that gas located in the suction chamber 194 can be sucked in via the one or more fans 120.
  • the return line 192 opens into the suction chamber 194. Provision can also be made for the suction chamber 194 to be formed by an end of the return line 192 arranged downstream.
  • the supply of heating gas from the main supply line 156 into the circulating air duct 118 preferably takes place via the suction chamber 194.
  • a feed channel 206 is provided, which fluidly connects the main feed line 156 to the suction chamber 194.
  • a valve in particular the inlet valve 122, is preferably arranged in the feed channel 206 or at one or both ends thereof (in the Fig. 4 to 10 not shown).
  • the amount (the volume flow) of the heating gas supplied to the circulating air duct 118 can preferably be controlled and/or regulated.
  • heating gas from the main supply line 156 can be easily and energy-efficiently mixed into the gas stream guided in the recirculation air duct 118 by means of the one or more blowers 120.
  • the subsequent flow through the one or more fans 120 and the pressure chamber 190 also preferably results in a Uniform mixing of the supplied heating gas and the remaining gas flow guided in the circulating air duct 118 is ensured.
  • the gas stream supplied to the treatment room section 114 is therefore preferably a homogeneous gas stream with a preferably constant temperature, despite the admixture of the heating gas.
  • heating gas can be fed from the main supply line 156 directly into a floor channel 204, in order ultimately to individual areas of the treatment room section 114 and/or by means of the additional supply openings 196. or the workpiece 102 to heat more than the other areas.
  • the main discharge line 158 is preferably integrated into a housing 208 surrounding the treatment room section 114.
  • the housing 208 is, for example, essentially cuboid-shaped.
  • the main discharge line 158 is formed, for example, by separating part of the cuboid interior of the housing 208. In particular, it can be provided that an upper corner region of the interior of the housing 208 is separated from the treatment room section 114 for producing the main discharge line 158.
  • the main supply line 156 is preferably arranged outside the housing 208. However, it can also be provided that the main supply line 156 is also formed by dividing a region of the interior of the housing 208.
  • the gas flow is introduced into the treatment room section 114 via feed openings 196, which can optionally be provided with valves.
  • At least one workpiece 102 is preferably arranged in this treatment room section 114, which absorbs heat from the gas stream by flowing around it with the gas stream and is thereby heated. In particular, the workpiece 102 is thereby dried.
  • the gas passed through the treatment chamber section 114 is removed via one or more return openings 198 and a return line 192 and fed to a suction chamber 194.
  • the gas located therein is finally sucked in again from this suction chamber 194 via the one or more blowers 120, so that a circuit is formed for the gas guided through the treatment chamber section 114.
  • the circulating gas cools down, in particular due to the heat transfer to the workpieces 102.
  • This heating gas is provided via the main supply line 156 and, if necessary, branched off via the supply channel 206 and supplied to the intake chamber 194. In particular, the heating gas is sucked in from the main supply line 156 if necessary by connecting the supply channel 206 to the suction chamber 194 by means of the one or more blowers 120.
  • a portion of the gas flow guided in the recirculation air duct 118 is removed from the recirculation air duct 118 via the discharge openings 200, which are formed in particular by valves, for example one or more outlet valves 124.
  • this allows a total volume flow of the gas flow guided in the circulating air duct 118 to be kept constant despite the supply of heating gas.
  • the discharged gas is discharged via the main discharge line 158.
  • a treatment system 100 for example according to one of Fig. 1 to 3 or 11 , several of the in the Fig. 4 to 10 Circulating air modules 116 shown and/or treatment room sections 114.
  • the recirculating air modules 116 and/or treatment room sections 114 can preferably be flowed through perpendicular to the conveying direction 110 with the gas stream guided in the respective recirculating air duct 118.
  • a cross flow between two or more circulating air modules 116 and/or circulating air ducts 118 is preferably minimal.
  • a cross flow with a component parallel to the conveying direction 110 results only due to fresh gas supplied to the treatment room 112 and/or due to the removal of exhaust gas from the treatment room 112 (see in particular the Fig. 1 and 2 ).
  • the described embodiments of the treatment system 100 and/or the recirculating air module 116 and/or the recirculating air duct 118 and/or the treatment room sections 114 are particularly suitable for use in a so-called transverse driving style, in which the workpieces 102, in particular the vehicle bodies 106, are transverse, in particular vertical, to the conveying direction 110 through the treatment room 112.
  • a vehicle longitudinal axis is aligned horizontally and essentially perpendicular to the conveying direction 110.
  • the embodiments described can also be used in a so-called longitudinal conveyance of the workpieces 102, in which the longitudinal direction of the vehicle is aligned parallel to the conveying direction 110.
  • FIG. 11 The fourth embodiment of a treatment system 100 shown differs from that in Fig. 1 illustrated first embodiment essentially in that the treatment system 100 comprises a main treatment system 220 and a pretreatment system 222.
  • the main treatment system 220 is, for example, a main dryer 224.
  • the pre-treatment system 222 is, for example, a pre-dryer 226.
  • the main treatment plant 220 is substantially identical to that in view Fig. 1 described first embodiment of a treatment system 100.
  • the pretreatment system 222 is therefore an optional addition for a treatment system 100 according to one of the described embodiments, in particular the first embodiment.
  • the pretreatment system 222 is preferably essentially also a treatment system 100 according to one of the described embodiments, in particular according to the first embodiment.
  • the pretreatment system 222 is dimensioned smaller than the main treatment system 220.
  • the pretreatment system 222 comprises a smaller treatment room 112 and/or preferably fewer treatment room sections 114 than the main treatment system 220.
  • a pretreatment system 222 only includes three or four treatment room sections 114.
  • the pretreatment system 222 preferably comprises a heating gas guide 136 that is different and/or independent of the heating gas guide 136 of the main treatment system 220.
  • heating gas can be supplied to the circulating air modules 116 and/or treatment room sections 114 of the pretreatment system 222 independently of the heating gas guide 136 of the main treatment system 220.
  • the heating gas guide 136 of the pretreatment system 222 is preferably thermally coupled to the exhaust gas discharge line 132 of the heating device 128 by means of a separate heat exchanger 134.
  • the heat exchanger 134 for the thermal coupling of the pretreatment system 222 with the exhaust gas discharge line 132 of the heating device 128 can be upstream or downstream of the heat exchanger 134 for the thermal coupling of the main treatment system 220 with the exhaust gas discharge line 132 of the heating device 128 with respect to the flow direction of the exhaust gas from the heating device 128 in the exhaust gas discharge line 132 be arranged.
  • the heat exchanger 134 of the pretreatment system 222 is preferably arranged downstream of the heat exchanger 134 of the main treatment system 220.
  • the heat exchanger 134 for coupling the fresh gas supply 160 with the exhaust gas discharge line 132 of the heating device 128 is preferably arranged downstream of the heat exchanger 134 of the main treatment system 220 and/or downstream of the heat exchanger 134 of the pretreatment system 222.
  • the use of the heat present in the exhaust gas of the heating device 128 can be optimized due to the mostly low fresh gas temperature (fresh air temperature).
  • the entire treatment system 100 preferably comprises a single heating device 128, by means of which the heat can be provided both for the heating gas duct 136 of the main treatment system 220 and for the heating gas duct 136 of the pretreatment system 222.
  • the treatment system 100 may include a common fresh gas supply 160 for supplying fresh gas to both the treatment room 112 of the main treatment system 220 and the treatment room 112 of the pre-treatment system 222.
  • the treatment system 100 includes two fresh gas feeds 160, with a fresh gas feed 160 being assigned to the main treatment system 220 and a further fresh gas feed 160 to the pre-treatment system 222 (not shown in the figures).
  • An exhaust gas from the pretreatment system 222 can preferably be fed to the exhaust gas exhaust 172 of the main treatment system 220 by means of an exhaust gas discharge 172 of the pretreatment system 222.
  • the exhaust gas from the pretreatment system 222 can therefore preferably be fed to the common heating device 128 together with the exhaust gas from the main treatment system 220.
  • the workpieces 102 to be treated can preferably be conveyed through the treatment room 112 of the pretreatment system 222 and then through the treatment room 112 of the main treatment system 220 by means of a conveyor device 108, in particular a single conveyor device 108.
  • Fig. 11 the pretreatment system 222 and the main treatment system 220 are shown at a distance from one another. This is preferably just to illustrate how it works. However, it can also be provided that the pretreatment system 222 and the main treatment system 220 are arranged directly one after the other.
  • a lock designed as an intermediate lock can fluidically separate the otherwise immediately adjacent treatment rooms 112 from one another. This intermediate lock then simultaneously forms an outlet lock 170 of the pretreatment system 222 and an inlet lock 168 of the main treatment system 220.
  • the pretreatment system 222 is provided in addition to the main treatment system 220 and includes a separate heating gas guide 136, a simple and efficient subdivision of the overall gas flow can be achieved, particularly in the event of heavy evaporation of the workpieces 102 to be treated or other severe contamination of the gas streams guided through the treatment room sections 114 Treatment room 112 belonging to treatment system 100 can be realized.
  • the treatment system 100 in particular both the main treatment system 220 and the pre-treatment system 222, each taken individually, corresponds to the structure and function in Fig. 1 illustrated first embodiment, so that reference is made to the above description.
  • the fifth embodiment of a treatment system 100 shown differs from that in Fig. 1 illustrated first embodiment essentially in that the heating gas guide 136 comprises an additional bypass line 150, by means of which a partial gas flow of the total heating gas flow to be supplied to the recirculation air ducts 118 via the feed section 140 of the heating gas line 138 can be guided past all of the recirculated air modules 116 and / or treatment room sections 114 and fed directly to the discharge section 142 is.
  • the additional bypass line 150 branches off from the supply section 140 of the heating gas line 138, in particular upstream of the main supply line 156, in particular upstream of all branches 144 and/or branches 146.
  • the additional bypass line 150 is preferably arranged at a front end of the main feed line 156 and/or the main discharge line 158 with respect to the conveying direction 110 of the conveying device 108, that is to say preferably in the area of an inlet section 164 of the treatment system 100.
  • a volume flow of the heating gas flow guided past the circulating air ducts 118 via the bypass line 150 can preferably be controlled and/or regulated by means of a bypass valve 152.
  • the additional bypass line 150 preferably opens into the discharge section 142, in particular downstream of the main discharge line 158, for example downstream of all junctions 148.
  • a partial gas flow from the supply section 140 can preferably be guided past the recirculation air modules 116 and/or recirculation air ducts 118, bypassing the main supply line 156 and the main discharge line 158.
  • relatively hot gas can be introduced directly into the discharge section 142 in order to heat the gas stream to be discharged overall by means of the discharge section 142.
  • the gas stream is heated in particular to a temperature which prevents undesirable condensation formation.
  • the bypass valve 152 of the bypass line 150 and thus the supply of hot gas to the discharge section 142 is preferably controlled in such a way that an actual temperature of the gas stream conducted in the discharge section 142 is always above the condensation temperature.
  • regulation is provided on the basis of a predetermined minimum temperature setpoint.
  • FIG. 12 Illustrated fifth embodiment of the treatment system 100 in terms of structure and function with that in Fig. 1 illustrated first embodiment, so that reference is made to the above description.
  • FIG. 13 The sixth embodiment of a treatment system 100 shown differs from that in Fig. 2 illustrated second embodiment essentially in that according to the in Fig. 12 illustrated fifth embodiment, an additional bypass line 150 is provided.
  • the sixth embodiment of a treatment system 100 therefore corresponds to that in. in terms of the basic structure and the basic function Fig. 2 illustrated second embodiment, so that reference is made to the above description.
  • the sixth embodiment of a treatment system 100 corresponds to that in Fig. 12 fifth embodiment shown, so that reference is made to the above description.
  • individual or multiple bypass lines 150 can be added or omitted if necessary.
  • the in Fig. 3 illustrated embodiment of a treatment system 100 if necessary with an additional bypass line 150 according to in Fig. 12 shown fifth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Drying Of Solid Materials (AREA)
  • Furnace Details (AREA)
  • Treating Waste Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Tunnel Furnaces (AREA)

Abstract

Um eine Behandlungsanlage bereitzustellen, welche einfach aufgebaut ist und eine energieeffiziente Werkstückbehandlung ermöglicht, wird vorgeschlagen, dass die Behandlungsanlage Folgendes umfasst:- einen Behandlungsraum, welcher mehrere Behandlungsraumabschnitte umfasst, die jeweils einem von mehreren separaten Umluftmodulen der Behandlungsanlage zugeordnet sind;- eine Heizanlage, welche eine in sich geschlossene Heizgasführung umfasst; und- eine Fördervorrichtung, mittels welcher die Werkstücke längs einer Förderrichtung durch den Behandlungsraum hindurchförderbar sind,wobei mehrere Umluftmodule mit der Heizgasführung gekoppelt sind, insbesondere zum Erhitzen des durch die Behandlungsraumabschnitte geführten Gases, wobei mittels eines jeden Umluftmoduls ein Gasstrom in einer Umluftführung führbar und durch den jeweiligen Behandlungsraumabschnitt hindurchführbar ist, und wobei jeweils ein Umluftmodul und jeweils ein Behandlungsraumabschnitt eine Umluftführung bilden.

Description

  • Die vorliegende Erfindung betrifft eine Behandlungsanlage und ein Verfahren zum Behandeln von Werkstücken. Insbesondere dient eine Behandlungsanlage dem Trocknen von beschichteten Fahrzeugkarosserien. Das Verfahren zum Behandeln von Werkstücken ist somit insbesondere ein Verfahren zum Trocknen von beschichteten Fahrzeugkarosserien.
  • Behandlungsanlagen und Behandlungsverfahren sind insbesondere aus der EP 1 998 129 B1 , der US 2006/0068094 A1 , der EP 1 302 737 A2 und der WO 02/073109 A1 bekannt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Behandlungsanlage bereitzustellen, welche einfach aufgebaut ist und eine energieeffiziente Werkstückbehandlung ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Behandlungsanlage zum Behandeln von Werkstücken Folgendes umfasst:
    • einen Behandlungsraum, welcher mehrere Behandlungsraumabschnitte umfasst, die jeweils einem von mehreren separaten Umluftmodulen der Behandlungsanlage zugeordnet sind;
    • eine Heizanlage, welche eine in sich geschlossene Heizgasführung umfasst, wobei mehrere Umluftmodule mit der Heizgasführung gekoppelt sind, insbesondere zum Erhitzen des durch die Behandlungsraumabschnitte geführten Gases.
  • Dadurch, dass die erfindungsgemäße Behandlungsanlage eine Heizanlage mit einer in sich geschlossenen Heizgasführung umfasst, welche mit den Umluftmodulen gekoppelt ist, ist das den Behandlungsraumabschnitten zuzuführende Gas einfach und effizient erhitzbar. Die Behandlungsanlage kann hierdurch vorzugsweise besonders energieeffizient betrieben werden.
  • Die Heizgasführung ist vorzugsweise ringförmig geschlossen ausgebildet, so dass zumindest ein Teilgasstrom eines in der Heizgasführung geführten Heizgasstroms mehrfach die Heizgasführung durchströmt.
  • Das Heizgas ist vorzugsweise Rohgas und/oder Reingas, welches zur Verwendung in dem Behandlungsraum, das heißt zum Durchströmen des Behandlungsraums, geeignet und/oder vorgesehen ist.
  • Das Heizgas weist vorzugsweise zumindest unmittelbar stromaufwärts der Behandlungsraumabschnitte eine gegenüber dem Gasstrom in den Umluftmodulen und/oder Behandlungsraumabschnitten erhöhte Temperatur auf.
  • Vorzugsweise ist das Heizgas kein Abgas einer Heizvorrichtung der Heizanlage, insbesondere kein Verbrennungsabgas.
  • Unter einer "in sich geschlossenen Heizgasführung" ist insbesondere eine Heizgasführung zu verstehen, in welcher zumindest ein Teil eines Heizgasstroms in einem Kreislauf geführt wird. Unabhängig davon kann vorzugsweise auch bei einer in sich geschlossenen Heizgasführung eine kontinuierliche oder phasenweise Zuführung von Frischgas zu dem Heizgasstrom und/oder Abführung von Heizgas aus dem Heizgasstrom vorgesehen sein.
  • Günstig kann es sein, wenn eine Zuführung von Frischgas und eine Abführung von Heizgas, das heißt ein Austausch von Heizgas, vorzugsweise so dimensioniert sind, dass bei einem einmaligen Durchlauf des Heizgasstroms durch die Heizgasführung mindestens 40%, vorzugsweise mindestens ungefähr 50%, insbesondere mindestens ungefähr 80%, beispielsweise mindestens ungefähr 90%, des an einer bestimmten Stelle der Heizgasführung vorbeiströmenden Heizgasstroms nach dem vollständigen Durchlauf erneut zu dieser Stelle gelangen.
  • Die Zuführung von Frischgas und/oder die Abführung von Heizgas aus dem Heizgasstrom erfolgt vorzugsweise ausschließlich in den Behandlungsraumabschnitten und/oder den Umluftmodulen der Behandlungsanlage.
  • Es kann jedoch auch vorgesehen sein, dass der Heizanlage eine Frischgaszuführung und/oder eine Abgasabführung zugeordnet ist, mittels welchen außerhalb der Behandlungsraumabschnitte und/oder außerhalb der Umluftmodule Frischgas zugeführt bzw. Heizgas aus dem Heizgasstrom abgeführt werden kann.
  • Die Umluftmodule und/oder die Behandlungsraumabschnitte sind vorzugsweise Bestandteil der Heizgasführung.
  • Insbesondere ist das Heizgas vorzugsweise zumindest teilweise mehrfach durch die Behandlungsraumabschnitte hindurchführbar, bevor es (erneut) den außerhalb der Umluftmodule und/oder außerhalb der Behandlungsraumabschnitte liegenden Teil der Heizgasführung durchströmt.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Heizgasführung eine Umluftführung umfasst, welche abschnittsweise durch mehrere parallel angeordnete Umluftmodule und/oder Behandlungsraumabschnitte gebildet ist.
  • In den Umluftmodulen und/oder Behandlungsraumabschnitten ist vorzugsweise ein Gasstrom in einem Umluftkreislauf führbar, welchem Heizgas aus der Heizgasführung zuführbar ist. Vorzugsweise ist ein Teilgasstrom des im Kreislauf geführten Gasstroms eines jeden Umluftmoduls und/oder Behandlungsraumabschnitts aus dem Umluftmodul und/oder dem Behandlungsraumabschnitt abführbar, mittels der Heizgasführung in einem geschlossenen Kreislauf führbar und schließlich als Teil des Heizgasstroms erneut einem oder mehreren Umluftmodulen und/oder Behandlungsraumabschnitten zuführbar.
  • Vorzugsweise umfasst die Behandlungsanlage eine Fördervorrichtung, mittels welcher die Werkstücke dem Behandlungsraum zuführbar, aus dem Behandlungsraum abführbar und/oder in einer Förderrichtung der Fördervorrichtung durch den Behandlungsraum hindurchförderbar sind.
  • Die Behandlungsraumabschnitte und/oder die Umluftmodule sind vorzugsweise in der Förderrichtung aufeinanderfolgend angeordnet.
  • Günstig kann es sein, wenn die Umluftmodule voneinander unabhängige Umluftmodule sind.
  • Ein Umluftmodul, insbesondere jedes Umluftmodul, umfasst vorzugsweise Folgendes: eine Gaszuführung zum Zuführen von Gas zu dem Behandlungsraumabschnitt; und/oder eine Gasabführung zum Abführen von Gas aus dem Behandlungsraumabschnitt; und/oder
    • eine Gebläsevorrichtung zum Antreiben eines (Umluft-)Gasstroms; und/oder eine Abscheidevorrichtung zum Abscheiden von Verunreinigungen aus dem (Umluft-)Gasstrom; und/oder
    • eine Verteilervorrichtung zum Verteilen des dem Behandlungsraumabschnitt zuzuführenden (Umluft-)Gasstroms auf mehrere Einlassöffnungen der Gaszuführung; und/oder
    • eine Sammelvorrichtung, mittels welcher der durch mehrere Auslassöffnungen (Rückführöffnungen) der Gasabführung aus dem Behandlungsraum abgeführte (Umluft-)Gasstrom zusammenführbar ist.
  • Jedes Umluftmodul bildet vorzugsweise zusammen mit dem zugehörigen Behandlungsraumabschnitt einen, insbesondere vollständigen, Abschnitt der Behandlungsanlage.
  • In dieser Beschreibung und den beigefügten Ansprüchen wird der Begriff "Umluft" nicht zwingend auf das Gas "Luft" festgelegt. Vielmehr bezeichnet der Begriff "Umluft" vorzugsweise ein in einem Kreislauf (Umluftkreislauf) geführtes Gas, welches insbesondere mehrfach aufbereitet und/oder wiederverwendet wird.
  • Ebenso sind die Begriffe "Zuluft", "Zuluftstrom", "Abluft" und "Abluftstrom" nicht zwingend auf das Gas "Luft" festgelegt, sondern bezeichnen vielmehr ganz allgemein ein dem Umluftkreislauf zugeführtes Gas (Zuluft, Zuluftstrom) bzw. ein aus dem Umluftkreislauf abgeführtes Gas (Abluft, Abluftstrom).
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Heizanlage eine Heizvorrichtung und einen Wärmeübertrager umfasst, mittels welchem in der Heizvorrichtung erzeugte Wärme auf ein in der Heizgasführung geführtes Heizgas übertragbar ist.
  • Der Wärmeübertrager ist insbesondere in einem Abgasstrang der Heizvorrichtung angeordnet, um im Abgas der Heizvorrichtung enthaltene Wärme zum Erhitzen des Heizgases nutzen zu können.
  • Vorteilhaft kann es sein, wenn die Behandlungsanlage eine von der Heizanlage verschiedene und/oder unabhängige Frischgaszuführung umfasst, mittels welcher Frischgas zu dem Behandlungsraum zuführbar ist.
  • Das Frischgas ist vorzugsweise unabhängig von einem Heizgasstrom zu dem in den Umluftmodulen und/oder Behandlungsraumabschnitten geführten Gasstrom und somit zu dem Behandlungsraum zuführbar.
  • Ferner kann vorgesehen sein, dass der Frischgasstrom zumindest teilweise als Schleusengasstrom genutzt und auf diese Weise dem Behandlungsraum zugeführt wird.
  • Vorteilhaft kann es sein, wenn die Behandlungsanlage eine Frischgaszuführung umfasst, mittels welcher Frischgas zu einem in der Heizgasführung geführten Heizgasstrom zuführbar ist.
  • Die Frischgaszuführung ist vorzugsweise mit einem Wärmeübertrager an den Abgasstrang der Heizvorrichtung gekoppelt, insbesondere um Wärme von dem Abgas der Heizvorrichtung auf das mittels der Frischgaszuführung zuzuführende Frischgas zu übertragen.
  • Der Wärmeübertrager zum Erhitzen des Frischgases ist vorzugsweise ein von dem Wärmeübertrager zum Erhitzen des Heizgases verschiedener Wärmeübertrager.
  • Alternativ hierzu kann vorgesehen sein, dass voneinander verschiedene Abschnitte eines gemeinsamen Wärmeübertragers einerseits zum Erhitzen des Frischgases und andererseits zum Erhitzen des Heizgases dienen. Die Frischgaszuführung und die Heizgasführung weisen dann insbesondere einen gemeinsamen Wärmeübertrager auf. Insbesondere ist dann vorzugsweise eine Kaltseite des Wärmeübertragers in mehrere Segmente unterteilt. Insbesondere können mehrere unabhängig voneinander durchströmbare und fluidwirksam voneinander getrennte Segmente vorgesehen sein.
  • Die Behandlungsanlage umfasst vorzugsweise eine oder mehrere Schleusen, welche insbesondere als Frischgasschleusen ausgebildet und mit Frischgas durchströmt oder durchströmbar sind.
  • Alternativ oder ergänzend hierzu kann vorgesehen sein, dass die Behandlungsanlage eine oder mehrere Umluftschleusen umfasst, welche mit Umluft, das heißt einem in einem Kreislauf geführten Gasstrom durchströmt werden oder durchströmbar sind. Hierzu kann insbesondere vorgesehen sein, dass jede Umluftschleuse einem Umluftmodul zugeordnet ist.
  • Insbesondere dann, wenn die Behandlungsanlage Umluftschleusen umfasst, kann vorgesehen sein, dass ein Frischgasstrom direkt dem Heizgasstrom zugemischt wird oder zumischbar ist. Hierdurch kann eine separate Frischgasleitung zur Zuführung von Frischgas zu dem Behandlungsraum entbehrlich sein.
  • Vorteilhaft kann es sein, wenn die Heizgasführung eine zentrale Heizgasleitung umfasst, in welcher Heizgas geführt oder führbar ist und mittels welcher den mehreren Umluftmodulen und/oder Behandlungsraumabschnitten Heizgas aus der Heizgasführung zuführbar ist, wobei das Heizgas unmittelbar oder mittelbar über die Umluftmodule in die jeweiligen Behandlungsraumabschnitte einleitbar ist.
  • Die Heizgasführung bildet somit vorzugsweise eine Zuluftführung zur Zuführung von Zuluft zu den Umluftkreisläufen in den Behandlungsraumabschnitten.
  • Ferner kann vorgesehen sein, dass die Heizgasführung eine zentrale Heizgasleitung umfasst, in welcher Heizgas geführt oder führbar ist und mittels welcher Gas aus den Umluftmodulen und/oder aus den Behandlungsraumabschnitten abführbar ist.
  • Die Heizgasführung bildet somit vorzugsweise eine Abluftführung zur Abführung von Abluft aus den in den Umlufmodulen im Kreislauf geführten Gasströmen.
  • Günstig kann es sein, wenn die Heizgasführung eine zentrale Heizgasleitung umfasst, mittels welcher ein Heizgas ringförmig von einem Wärmeübertrager zum Erhitzen des Heizgases zu den mehreren Umluftmodulen und/oder Behandlungsraumabschnitten und erneut zurück zu dem Wärmeübertrager führbar ist.
  • Alternativ oder ergänzend hierzu kann vorgesehen sein, dass die Heizgasführung eine zentrale Heizgasleitung umfasst, mittels welcher Gas, welches insbesondere als Heizgas dient, aus einem oder mehreren Umluftmodulen und/oder Behandlungsraumabschnitten abführbar und zum Erhitzen desselben einem Wärmeübertrager zuführbar sowie anschließend zurück zu dem einen oder den mehreren Umluftmodulen und/oder Behandlungsraumabschnitten führbar ist.
  • Das in der Heizgasführung geführte Heizgas ist vorzugsweise mittels genau eines Gebläses oder mittels mehrerer Gebläse antreibbar.
  • Es kann vorgesehen sein, dass die Heizgasführung mehrere Abzweigungen oder Verzweigungen zur Verteilung eines in der Heizgasführung geführten Heizgasstroms auf die Umluftmodule und/oder Behandlungsraumabschnitte umfasst.
  • Insbesondere kann vorgesehen sein, dass die Heizgasführung eine sich längs der Umluftmodule und/oder Behandlungsraumabschnitte erstreckende Hauptzuführleitung umfasst, aus welcher Teile des Heizgasstroms abzweigbar und den jeweiligen Umluftmodulen und/oder Behandlungsraumabschnitten zuführbar sind.
  • Mittels der Abzweigungen oder Verzweigungen ist der Heizgasstrom vorzugsweise aufteilbar, um letztlich mehrere Zuluftströme zur Zuführung des Heizgases zu den Umluftmodulen und/oder Behandlungsraumabschnitten zu erhalten.
  • Vorteilhaft kann es sein, wenn die Heizgasführung eine Hauptverzweigung aufweist, mittels welcher ein Heizgasgesamtstrom aufteilbar ist in einen ersten Heizgasteilstrom und einen zweiten Heizgasteilstrom, wobei der erste Heizgasteilstrom einem bezüglich einer Förderrichtung einer Fördervorrichtung der Behandlungsanlage ersten Umluftmodul oder ersten bis n-ten Umluftmodul und/oder ersten Behandlungsraumabschnitt oder ersten bis n-ten Behandlungsraumabschnitt zuführbar ist und wobei der zweite Heizgasteilstrom vorzugsweise auf sämtliche weiteren Umluftmodule und/oder Behandlungsraumabschnitte aufteilbar ist.
  • Das erste Umluftmodul ist vorzugsweise ein einem Behandlungsraumabschnitt zugeordnetes Umluftmodul. Es kann jedoch auch vorgesehen sein, dass dieses erste Umluftmodul ein einer Umluftschleuse zugeordnetes Umluftmodul ist.
  • Günstig kann es sein, wenn die Heizgasführung mehrere Zusammenführungen zur Zusammenführung mehrerer aus den Umluftmodulen und/oder Behandlungsraumabschnitten abgeführter Gasströme umfasst.
  • Insbesondere sind hierdurch vorzugsweise Abluftströme aus den Umluftmodulen und/oder Behandlungsraumabschnitten zusammenführbar und als Heizgasgesamtstrom erneut erhitzbar sowie schließlich erneut den Umluftmodulen und/oder Behandlungsraumabschnitten zuführbar.
  • Es kann vorgesehen sein, dass die Heizgasführung eine Hauptzusammenführung aufweist, mittels welcher ein Abgasstrom eines bezüglich einer Förderrichtung der Fördervorrichtung der Behandlungsanlage ersten Umluftmoduls oder ersten bis n-ten Umluftmoduls und/oder ersten Behandlungsraumabschnitts oder ersten bis n-ten Behandlungsraumabschnitts mit einem bereits zusammengeführten Abgasstrom sämtlicher weiterer Umluftmodule und/oder Behandlungsraumabschnitte zusammenführbar ist.
  • Die Verwendung einer Hauptverzweigung und/oder einer Hauptzusammenführung kann insbesondere zur Verringerung von Kanalquerschnitten einer Hauptzuführleitung und/oder einer Hauptabführleitung der Heizgasleitung dienen, insbesondere um nicht den gesamten Heizgasstrom in einer einzigen Strömungsrichtung durch die Hauptzuführleitung und/oder die Hauptabführleitung hindurchführen zu müssen.
  • Es kann vorgesehen sein, dass jedes Umluftmodul und/oder jeder Behandlungsraumabschnitt ein Einlassventil und/oder ein Auslassventil umfasst, mittels welchen ein Volumenstrom eines dem Umluftmodul und/oder dem Behandlungsraumabschnitt zuzuführenden Heizgasstroms und/oder ein Volumenstrom eines aus dem Umluftmodul und/oder aus dem Behandlungsraumabschnitt abgeführten Gasstroms steuerbar und/oder regelbar ist.
  • Vorzugsweise sind hierdurch ein Zuluftstrom und/oder ein Abluftstrom des in dem jeweiligen Umluftmodul und/oder Behandlungsraumabschnitt geführten Umluftstroms steuerbar und/oder regelbar.
  • Die Behandlungsanlage umfasst vorzugsweise eine Steuervorrichtung, mittels welcher der Volumenstrom des dem Umluftmodul und/oder Behandlungsraumabschnitt zuzuführenden Heizgasstroms und/oder der Volumenstrom des aus dem Umluftmodul und/oder aus dem Behandlungsraumabschnitt abgeführten Gasstroms steuerbar und/oder regelbar ist.
  • Vorzugsweise ist mittels der Steuervorrichtung durch Steuerung der Volumenströme stets so viel Heizgas zu dem jeweiligen Umluftmodul und/oder Behandlungsraumabschnitt zuführbar, dass eine gewünschte Temperatur des in dem jeweiligen Umluftmodul und/oder Behandlungsraumabschnitt geführten Umluftstroms im Wesentlichen konstant ist.
  • Die Steuervorrichtung ist vorzugsweise so ausgebildet und eingerichtet, dass die beschriebenen Funktionen durchführbar sind und/oder dass die beschriebenen Parameter eingehalten, insbesondere zumindest näherungsweise konstant gehalten, werden.
  • Günstig kann es sein, wenn die Behandlungsanlage eine Steuervorrichtung umfasst, mittels welcher ein zumindest näherungsweise konstanter Volumenstrom des in der Heizgasführung geführten Heizgasstroms aufrechterhaltbar ist. Insbesondere kann hierbei vorgesehen sein, dass ein den Heizgasstrom antreibendes Gebläse der Heizgasführung gesteuert und/oder geregelt wird, beispielsweise durch Variation einer Antriebsleistung.
  • Das Gebläse (oder auch Ventilator genannt) zum Antreiben des Heizgasstroms umfasst vorzugsweise einen Frequenzumrichter, über welchen die Steuerung und/oder Regelung erfolgen kann.
  • Vorzugsweise können durch Steuerung und/oder Regelung des Gebläses der Heizgasführung Schwankungen im Gesamtenergiebedarf der Behandlungsanlage, insbesondere Schwankungen im Heizbedarf, ausgeglichen werden.
  • Alternativ oder ergänzend hierzu kann ein Sollwert und/oder ein Istwert für eine Temperatur des Heizgasstroms angepasst werden, insbesondere dann, wenn bei geringem Heizbedarf bereits ein geringer Volumenstrom des Heizgasstroms eingestellt wurde, beispielsweise der Volumenstrom auf ein Minimum reduziert wurde.
  • Ferner kann vorgesehen sein, dass bei reduziertem Heizbedarf zunächst die Temperatur des Heizgasstroms reduziert wird. Bei Erreichen eines vorgegebenen unteren Grenzwerts der Temperatur des Heizgasstroms kann dann ferner vorgesehen sein, dass der Volumenstrom durch geeignete Steuerung und/oder Regelung des Gebläses reduziert wird.
  • Es kann vorgesehen sein, dass die Behandlungsanlage eine Steuervorrichtung umfasst, mittels welche eine zumindest näherungsweise konstante Temperatur des in der Heizgasführung geführten Heizgasstroms aufrechterhaltbar ist. Insbesondere kann hierbei vorgesehen sein, dass ein an einem Wärmeübertrager zum Erhitzen des Heizgasstroms vorbeigeführter Bypassvolumenstrom beeinflusst, insbesondere gezielt variiert, wird. Beispielsweise kann ein Verhältnis des durch den Wärmeübertrager zum Erhitzen des Heizgasstroms durchgeführten Volumenstroms zu dem Bypassvolumenstrom variiert werden, um die gewünschte Temperatur des in der Heizgasführung geführten Heizgasstroms zu erzielen.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Heizgasführung eine oder mehrere Bypassleitungen zur Umgehung sämtlicher Umluftmodule und/oder Behandlungsraumabschnitte umfasst. Auf diese Weise kann eine Reserve des Heizgasstroms bereitgestellt werden, insbesondere um eine unerwünschte Unterversorgung einzelner Umluftmodule und/oder Behandlungsraumabschnitte zu verhindern. Mittels der Bypassleitung kann insbesondere ein Überangebot an Heizgas in der Hauptzuführleitung der Heizgasführung aufrechterhalten werden.
  • Vorzugsweise mündet die Hauptzuführleitung an einem stromabwärtigen Ende derselben und/oder an einem bezüglich der Förderrichtung hinteren Ende derselben in die Bypassleitung.
  • Die Bypassleitung mündet vorzugsweise an einem stromaufwärtigen Ende der Hauptabführleitung und/oder an einem bezüglich der Förderrichtung hinteren Ende derselben in die Hauptabführleitung.
  • Eine Bypassleitung ist beispielsweise stromaufwärts mehrerer, insbesondere sämtlicher, Verzweigungen und/oder Abzweigungen der Heizgasführung zur Zuführung von Heizgas zu den Umluftmodulen angeordnet. Alternativ oder ergänzend hierzu kann vorgesehen sein, dass eine Bypassleitung stromabwärts mehrerer, insbesondere sämtlicher, Zusammenführungen der Heizgasführung zur Zusammenführung von Gasströmen aus den Umluftmodulen angeordnet ist.
  • Ferner kann es günstig sein, wenn eine Bypassleitung stromabwärts mehrerer, insbesondere sämtlicher, Verzweigungen und/oder Abzweigungen der Heizgasführung zur Zuführung von Heizgas zu den Umluftmodulen angeordnet ist. Alternativ oder ergänzend hierzu kann vorgesehen sein, dass eine Bypassleitung stromaufwärts mehrerer, insbesondere sämtlicher, Zusammenführungen der Heizgasführung zur Zusammenführung von Gasströmen aus den Umluftmodulen angeordnet ist.
  • Mittels einer Bypassleitung kann vorzugsweise heißes Gas direkt in einen Abführabschnitt der Heizgasleitung eingeleitet werden, insbesondere um eine Temperatur des im Abführabschnitt geführten Gasstroms stets über einer Kondensationstemperatur zu halten.
  • Vorzugsweise zweigt die Bypassleitung an einem bezüglich der Förderrichtung vorderen Ende eines Zuführabschnitts der Heizgasleitung aus dem Zuführabschnitt der Heizgasleitung ab.
  • Die Bypassleitung mündet vorzugsweise an einem stromabwärtigen Ende der Hauptabführleitung und/oder an einem bezüglich der Förderrichtung vorderen Ende derselben in den Abführabschnitt der Heizgasleitung.
  • Ein Volumenstrom des über die Bypassleitung an den Umluftführungen vorbeigeführten Heizgasstroms ist vorzugsweise mittels eines Bypass-Ventils steuerbar und/oder regelbar.
  • Die vorliegende Erfindung betrifft ferner ein Verfahren zum Behandeln von Werkstücken.
  • Der Erfindung liegt diesbezüglich die Aufgabe zugrunde, ein Verfahren bereitzustellen, mittels welchem Werkstücke einfach und energieeffizient behandelbar sind.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, welches Folgendes umfasst:
    Durchströmen von mehreren Behandlungsraumabschnitten eines Behandlungsraums einer Behandlungsanlage mit mehreren in separaten Kreisläufen geführten Gasströmen; Erhitzen der Gasströme mittels eines Heizgasstroms, welche in einer in sich geschlossenen Heizgasführung einer Heizanlage der Behandlungsanlage geführt ist.
  • Das erfindungsgemäße Verfahren weist vorzugsweise einzelne oder mehrere der im Zusammenhang mit der Behandlungsanlage beschriebenen Merkmale und/oder Vorteile auf.
  • Ferner weist die Behandlungsanlage vorzugsweise einzelne oder mehrere Merkmale und/oder Vorteile auf, welche im Zusammenhang mit dem Verfahren beschrieben sind.
  • Bei dem erfindungsgemäßen Verfahren kann vorzugsweise vorgesehen sein, dass zum Erhitzen der mehreren in den separaten Kreisläufen geführten Gasströme ein Teilstrom eines jeden dieser Gasströme aus dem jeweiligen Gasstrom abgeführt und durch einen Teilstrom des Heizgasstroms ersetzt wird.
  • Unter einem "Ventil" ist in dieser Beschreibung und den beigefügten Ansprüchen insbesondere jegliche Art von Verschlusselement oder Öffnungselement zum Beeinflussen einer Durchflussmenge in einer Leitung zu verstehen. Insbesondere kann ein Ventil eine Klappe sein.
  • Günstig kann es sein, wenn die Umluftmodule jeweils eine Umluftführung umfassen oder bilden. Es kann jedoch auch vorgesehen sein, dass ein Umluftmodul lediglich ein Teil einer Umluftführung ist, nämlich derjenige Teil, welcher zum Antreiben des in der Umluftführung geführten Gasstroms dient. Der weitere Teil ist dann insbesondere der zugehörige Behandlungsraumabschnitt.
  • Vorzugsweise umfasst jedes Umluftmodul mindestens ein Gebläse und einen unmittelbar stromaufwärts des Gebläses angeordneten Ansaugraum.
  • In den Ansaugraum mündet vorzugsweise ein Zuführkanal, über welchen Heizgas aus einer Heizgasleitung der Heizgasführung, insbesondere einer Hauptzuführleitung, zu dem Umluftmodul zuführbar ist. Auf diese Weise ist das Heizgas mittels des mindestens einen Gebläses des Umluftmoduls vorzugsweise aus der Heizgasleitung ansaugbar.
  • Eine Hauptzuführleitung zur Verteilung des Heizgases auf die Umluftmodule erstreckt sich vorzugsweise parallel zu einer Förderrichtung einer Fördervorrichtung der Behandlungsanlage und/oder über zumindest näherungsweise eine gesamte Länge des Behandlungsraums.
  • Die Hauptzuführleitung ist vorzugsweise außerhalb eines Gehäuses angeordnet, dessen Innenraum den Behandlungsraum bildet.
  • Ferner kann vorgesehen sein, dass die Heizanlage eine Hauptabführleitung umfasst, welche sich parallel zur Förderrichtung einer Fördervorrichtung der Behandlungsanlage und/oder über zumindest näherungsweise eine gesamte Länge des Behandlungsraums erstreckt.
  • Die Hauptabführleitung dient vorzugsweise der Abführung von aus den Umluftmodulen und/oder Behandlungsraumabschnitten abgeführten Gasströmen.
  • Die Hauptabführleitung ist vorzugsweise innerhalb eines den Behandlungsraum umgebenden Gehäuses angeordnet, insbesondere durch Abteilung oder Abtrennung eines Teils des Innenraums des Gehäuses.
  • Vorzugsweise ist mindestens ein Auslassventil eines jeden Umluftmoduls oder eines jeden Behandlungsraumabschnitts zum Abführen eines Gasstroms aus dem im Umluftmodul und/oder dem Behandlungsraumabschnitt geführten Gasstrom in einer Trennwand angeordnet, welche einen Innenraum des Gehäuses in den Behandlungsraum und die Hauptabführleitung unterteilt.
  • Vorzugsweise ist bei einer Ausgestaltung der Behandlungsanlage eine Querförderung der Werkstücke, insbesondere der Fahrzeugkarosserien, vorgesehen. Hierbei ist eine Fahrzeuglängsachse der Fahrzeugkarosserien vorzugsweise horizontal und senkrecht zur Förderrichtung der Fördervorrichtung ausgerichtet.
  • Günstig kann es sein, wenn eine Hauptströmungsrichtung des durch einen Behandlungsraumabschnitt geführten Gasstroms zumindest näherungsweise parallel zu einer Fahrzeuglängsachse der hindurchgeförderten Fahrzeugkarosserie ist. Insbesondere kann vorgesehen sein, dass die Hauptströmungsrichtung im Wesentlichen parallel zur Fahrzeuglängsachse derart ausgerichtet ist, dass die Fahrzeugkarosserie von vorne nach hinten mit dem Gasstrom umströmt wird. Es kann jedoch auch vorgesehen sein, dass die Hauptströmungsrichtung so ausgerichtet ist, dass die Fahrzeugkarosserie von hinten nach vorne mit dem Gasstrom umströmt wird.
  • Es kann ferner auch vorgesehen sein, dass bei der Behandlungsanlage eine Längsförderung vorgesehen ist, bei welcher die Fahrzeuglängsachse parallel zur Förderrichtung der Fördervorrichtung ausgerichtet ist.
  • Günstig kann es sein, wenn die Behandlungsanlage eine Hauptbehandlungsanlage und eine Vorbehandlungsanlage umfasst.
  • Vorzugsweise umfassen die Hauptbehandlungsanlage und die Vorbehandlungsanlage jeweils eine separate Heizgasführung.
  • Vorzugsweise umfasst eine Behandlungsanlage, welche sowohl eine Hauptbehandlungsanlage als auch eine Vorbehandlungsanlage umfasst, zwei voneinander unabhängige, in sich geschlossene Heizgasführungen, welche insbesondere mit einer gemeinsamen Heizvorrichtung thermisch gekoppelt sind.
  • Die Hauptbehandlungsanlage umfasst vorzugsweise einen Wärmeübertrager zur thermischen Kopplung der Hauptbehandlungsanlage mit einer Abgasableitung der Heizvorrichtung.
  • Ferner umfasst vorzugsweise die Vorbehandlungsanlage einen Wärmeübertrager zur thermischen Kopplung der Vorbehandlungsanlage mit der Abgasableitung der Heizvorrichtung.
  • Günstig kann es sein, wenn die Frischgaszuführung zur Zuführung von Frischgas zu einem Behandlungsraum der Hauptbehandlungsanlage und/oder zu einem Behandlungsraum der Vorbehandlungsanlage einen Wärmeübertrager umfasst, mittels welchem die Frischgaszuführung thermisch mit der Abgasableitung der Heizvorrichtung gekoppelt ist.
  • Der eine oder die mehreren Wärmeübertrager sind vorzugsweise an oder in der Abgasableitung angeordnet.
  • Der Wärmeübertrager der Frischgaszuführung ist vorzugsweise bezüglich einer Strömungsrichtung des Abgases in der Abgasableitung stromabwärts oder stromaufwärts eines Wärmeübertragers der Hauptbehandlungsanlage und/oder stromaufwärts oder stromabwärts eines Wärmeübertragers der Vorbehandlungsanlage angeordnet.
  • Vorzugsweise ist ein Wärmeübertrager der Hauptbehandlungsanlage bezüglich einer Strömungsrichtung des Abgases in der Abgasableitung stromaufwärts oder stromabwärts eines Wärmeübertragers der Vorbehandlungsanlage angeordnet.
  • Bei einer bevorzugten Ausführungsform ist vorgesehen, dass die Wärmeübertrager derart mit der Abgasableitung der Heizvorrichtung gekoppelt sind, dass das aus der Heizvorrichtung abgeführte Abgas zunächst dem Wärmeübertrager der Hauptbehandlungsanlage, anschließend dem Wärmeübertrager der Vorbehandlungsanlage und daran anschließend dem Wärmeübertrager der Frischgaszuführung zugeführt wird oder zuführbar ist.
  • Ein Abgas aus der Vorbehandlungsanlage und ein Abgas aus der Hauptbehandlungsanlage sind vorzugsweise zusammenführbar und als gemeinsamer Abgasstrom der Heizvorrichtung zuführbar.
  • Weitere bevorzugte Merkmale und/oder Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung und der zeichnerischen Darstellung von Ausführungsbeispielen.
  • In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische Darstellung einer ersten Ausführungsform einer Behandlungsanlage, bei welcher eine in sich geschlossene Heizgasführung und eine hiervon unabhängige Frischgaszuführung vorgesehen sind;
    Fig. 2
    eine der Fig. 1 entsprechende schematische Darstellung einer zweiten Ausführungsform einer Behandlungsanlage, bei welcher eine optimierte Strömungsführung der Heizgasführung vorgesehen ist;
    Fig. 3
    eine der Fig. 1 entsprechende schematische Darstellung einer dritten Ausführungsform einer Behandlungsanlage, bei welcher die Frischgaszuführung in die Heizgasführung mündet;
    Fig. 4
    eine schematische perspektivische Darstellung eines Umluftmoduls einer Behandlungsanlage samt eines Behandlungsraumabschnitts eines Behandlungsraums der Behandlungsanlage;
    Fig. 5
    eine schematische Seitenansicht des Behandlungsraumabschnitts aus Fig. 4;
    Fig. 6
    eine vergrößerte Darstellung eines Abschnitts des Umluftmoduls aus Fig. 4;
    Fig. 7
    einen schematischen horizontalen Schnitt durch einen Unterbodenaufbau des Umluftmoduls und des Behandlungsraumabschnitts aus Fig. 4;
    Fig. 8
    einen schematischen vertikalen Schnitt durch das Umluftmodul und den Behandlungsraumabschnitt aus Fig. 4 längs der Linie 8-8 in Fig. 7;
    Fig. 9
    einen schematischen vertikalen Schnitt durch das Umluftmodul und den Behandlungsraumabschnitt aus Fig. 4 längs der Linie 9-9 in Fig. 7;
    Fig. 10
    einen schematischen vertikalen Schnitt durch das Umluftmodul und den Behandlungsraumabschnitt aus Fig. 4 längs der Linie 10-10 in Fig. 7;
    Fig. 11
    eine der Fig. 1 entsprechende schematische Darstellung einer vierten Ausführungsform einer Behandlungsanlage, bei welcher eine Vorbehandlungsanlage vorgesehen ist;
    Fig. 12
    eine der Fig. 1 entsprechende schematische Darstellung einer fünften Ausführungsform einer Behandlungsanlage, bei welcher eine zusätzliche oder alternative Bypassleitung vorgesehen ist; und
    Fig. 13
    eine der Fig. 1 entsprechende schematische Darstellung einer sechsten Ausführungsform einer Behandlungsanlage, bei welcher eine zusätzliche oder alternative Bypassleitung vorgesehen ist.
  • Gleiche oder funktional äquivalente Elemente sind in sämtlichen Figuren mit denselben Bezugszeichen versehen.
  • Eine in Fig. 1 schematisch dargestellte erste Ausführungsform einer als Ganzes mit 100 bezeichneten Behandlungsanlage dient der Behandlung von Werkstücken 102.
  • Die Behandlungsanlage 100 ist beispielsweise eine Trocknungsanlage 104 zum Trocknen von Werkstücken 102.
  • Die Werkstücke 102 sind beispielsweise Fahrzeugkarosserien 106.
  • Die Behandlungsanlage 100 dient vorzugsweise der Trocknung von zuvor lackierten oder anderweitig behandelten Fahrzeugkarosserien 106.
  • Die Werkstücke 102 sind mittels einer Fördervorrichtung 108 der Behandlungsanlage 100 längs einer Förderrichtung 110 durch einen Behandlungsraum 112 der Behandlungsanlage 100 hindurchförderbar.
  • Der Behandlungsraum 112 umfasst mehrere, beispielsweise mindestens vier, insbesondere mindestens sechs, vorzugsweise genau sieben,
  • Behandlungsraumabschnitte 114 oder ist durch diese Behandlungsraumabschnitte 114 gebildet.
  • Jedem Behandlungsraumabschnitt 114 ist vorzugsweise ein separates Umluftmodul 116 zugeordnet.
  • Mittels eines jeden Umluftmoduls 116 ist vorzugsweise ein Gasstrom in einem Kreislauf, insbesondere einer Umluftführung 118, führbar und durch den jeweiligen Behandlungsraumabschnitt 114 hindurchführbar. Vorzugsweise bilden jeweils ein Umluftmodul 116 und jeweils ein Behandlungsraumabschnitt 114 eine Umluftführung 118.
  • Vorzugsweise umfasst jedes Umluftmodul 116 ein oder mehrere Gebläse 120 zum Antreiben des im Kreislauf geführten Gasstroms.
  • Jedes Umluftmodul 116 und/oder jeder Behandlungsraumabschnitt 114 umfasst ferner vorzugsweise ein Einlassventil 122 und ein Auslassventil 124.
  • Mittels des Einlassventils 122 kann vorzugsweise ein als Zuluftstrom dienender Gasstrom zu dem in der Umluftführung 118 geführten Gasstrom hinzugeführt werden.
  • Mittels des Auslassventils 124 kann vorzugsweise ein Teil des in der Umluftführung 118 geführten Gasstroms abgeführt werden.
  • Mittels des Einlassventils 122 und des Auslassventils 124 kann somit ein Austausch des in der Umluftführung 118 geführten Gasstroms durchgeführt werden. Dieser Austausch des in der Umluftführung 118 geführten Gasstroms dient insbesondere dazu, bestimmte Parameter des in der Umluftführung 118 geführten Gasstroms zu steuern und/oder zu regeln. Insbesondere kann vorzugsweise eine Temperatur des in der Umluftführung 118 geführten Gasstroms hierdurch gesteuert und/oder geregelt werden.
  • Insbesondere kann vorgesehen sein, dass der in der Umluftführung 118 geführte Gasstrom durch Zuführung von Heizgas erhitzbar ist. Dieser Wärmeeintrag dient dann wiederum dazu, das zu behandelnde Werkstück 102 zu erwärmen, insbesondere ein als Fahrzeugkarosserie 106 ausgebildetes Werkstück 102 zu trocknen.
  • Das einer jeden Umluftführung 118 zuzuführende Gas ist vorzugsweise ein Heizgas, welches mittels einer Heizanlage 126 der Behandlungsanlage 100 bereitstellbar ist.
  • Die Heizanlage 126 umfasst vorzugsweise eine Heizvorrichtung 128, welche beispielsweise als thermische Abgasreinigungsvorrichtung 130 ausgebildet ist.
  • Mittels der Heizvorrichtung 128 ist vorzugsweise ein heißes Abgas erzeugbar, welches über eine Abgasableitung 132 von der Heizvorrichtung 128 abführbar ist.
  • Vorzugsweise umfasst die Heizanlage 126 ferner mindestens einen Wärmeübertrager 134, welcher thermisch mit der Abgasleitung 132 gekoppelt ist, um die Wärme des Abgases zum Erhitzen eines weiteren Mediums zu nutzen.
  • Dieses weitere Medium ist beispielsweise ein Heizgas, welches in einer geschlossenen Heizgasführung 136 geführt oder führbar ist.
  • Die Heizgasführung 136 ist insbesondere eine Umluftführung, in welcher zumindest ein Großteil des darin geführten Heizgases in einem Kreislauf geführt oder führbar ist.
  • Die Heizgasführung 136 umfasst vorzugsweise eine Heizgasleitung 138 sowie ein oder mehrere Gebläse 120 zum Antreiben des in der Heizgasleitung 138 geführten Heizgases.
  • Mittels eines Wärmeübertragers 134 der Heizanlage 126 ist vorzugsweise die Abgasableitung 132 der Heizvorrichtung 128 thermisch mit der Heizgasleitung 138 gekoppelt.
  • Die Heizgasleitung 138 umfasst vorzugsweise einen Zuführabschnitt 140, welcher den Wärmeübertrager 134 mit den Umluftmodulen 116 und/oder den Behandlungsraumabschnitten 114 verbindet.
  • Über den Zuführabschnitt 140 der Heizgasleitung 138 ist insbesondere erhitztes Heizgas zu den Umluftführungen 118 und somit zu den Behandlungsraumabschnitten 114 zuführbar.
  • Die Heizgasleitung 138 umfasst ferner einen Abführabschnitt 142, über welchen aus den Umluftführungen 118 abgeführtes Gas abführbar und zum erneuten Erhitzen desselben dem Wärmeübertrager 134 zuführbar ist.
  • Der Zuführabschnitt 140 der Heizgasleitung 138 umfasst vorzugsweise mehrere Verzweigungen 144 oder Abzweigungen 146, um einen Heizgasgesamtstrom auf die einzelnen Umluftmodule 116 und/oder Behandlungsraumabschnitte 114 zu verteilen.
  • Der Abführabschnitt 142 umfasst vorzugsweise mehrere Zusammenführungen 148, um die einzelnen aus den Umluftführungen 118 abgeführten (Teil-)Gasströme zusammenführen und als gemeinsamen Gasstrom erneut dem Wärmeübertrager 134 zuführen zu können.
  • Die Heizgasführung 136 umfasst vorzugsweise ferner noch eine Bypassleitung 150, mittels welcher ein Teilgasstrom des über den Zuführabschnitt 140 der Heizgasleitung 138 den Umluftführungen 118 zugeführten Heizgasgesamtstroms an sämtlichen Umluftmodulen 116 und/oder Behandlungsraumabschnitten 114 vorbeiführbar und direkt dem Abführabschnitt 142 zuführbar ist.
  • Durch die Verwendung einer solchen Bypassleitung 150 kann vorzugsweise ein Überangebot an Heizgas vor den Umluftführungen 118 bereitgestellt werden, um auch bei schwankendem Heizgasbedarf in den Umluftführungen 118 stets eine ausreichende Menge von Heizgas zur Verfügung zu haben.
  • Ein Volumenstrom des über die Bypassleitung 150 an den Umluftführungen 118 vorbeigeführten Heizgasstroms ist vorzugsweise mittels eines Bypass-Ventils 152 steuerbar und/oder regelbar.
  • Die Heizgasführung 136 umfasst vorzugsweise eine oder mehrere Steuervorrichtungen 154 zum Steuern und/oder Regeln der Gebläse 120 und/oder der Einlassventile 122 und/oder der Auslassventile 124 und/oder des Bypass-Ventils 152 der Bypassleitung 150.
  • Mittels der einen oder der mehreren Steuervorrichtungen 154 ist somit insbesondere eine Verteilung des Heizgasstroms auf die Umluftführungen 118 steuerbar und/oder regelbar.
  • Ferner ist mittels der einen oder der mehreren Steuervorrichtungen 154 ein Gesamtvolumenstrom und/oder eine Temperatur des Heizgasstroms steuerbar und/oder regelbar.
  • Die Heizgasführung 136 kann ferner noch eine Bypassleitung 150 im Bereich des Wärmeübertragers 134 umfassen. Mittels dieser Bypassleitung 150 sowie mittels eines dieser Bypassleitung 150 zugeordneten Bypass-Ventils 152 ist vorzugsweise steuerbar und/oder regelbar, welcher Teilvolumenstrom des Heizgasgesamtstroms zum Erhitzen desselben durch den Wärmeübertrager 134 hindurchgeführt oder an diesem vorbeigeführt wird. Insbesondere kann hierdurch eine konstante Temperatur des Heizgasstroms stromabwärts des Wärmeübertragers 134 und der Bypassleitung 150 und/oder stromaufwärts der Umluftführungen 118 gesteuert und/oder geregelt werden.
  • Bei einer Ausgestaltung der Behandlungsanlage 100 kann vorgesehen sein, dass die Heizgasleitung 138, insbesondere der Zuführabschnitt 140 der Heizgasleitung 138, eine Hauptzuführleitung 156 umfasst.
  • Diese Hauptzuführleitung 156 verläuft vorzugsweise außerhalb des Behandlungsraums 112 parallel zur Förderrichtung 110. Vorzugsweise erstreckt sich die Hauptzuführleitung 156 zumindest näherungsweise über eine gesamte Länge des Behandlungsraums 112, um sämtliche Umluftführungen 118 mit Heizgas versorgen zu können.
  • Die Heizgasleitung 138, insbesondere der Abführabschnitt 142 der Heizgasleitung 138, umfasst vorzugsweise eine Hauptabführleitung 158.
  • Die Hauptabführleitung 158 ist vorzugsweise außerhalb des Behandlungsraums 112 angeordnet oder in diesen integriert.
  • Insbesondere kann vorgesehen sein, dass sich die Hauptabführleitung 158 parallel zur Förderrichtung 110 und/oder zumindest näherungsweise über eine gesamte Länge des Behandlungsraums 112 erstreckt. Hierdurch können vorzugsweise sämtliche aus den Umluftführungen 118 abgeführten (Teil-)Gasströme abgeführt werden.
  • Die Bypassleitung 150 zur Umgehung sämtlicher Umluftführungen 118 ist vorzugsweise an einem bezüglich der Förderrichtung 110 der Fördervorrichtung 108 hinteren Ende der Hauptzuführleitung 156 und/oder der Hauptabführleitung 158 angeordnet.
  • Die Behandlungsanlage 100 umfasst ferner eine Frischgaszuführung 160 zur Zuführung von Frischgas zu dem Behandlungsraum 112.
  • Die Frischgaszuführung 160 umfasst vorzugsweise eine Frischgasleitung 162 und ein Gebläse 120 zum Antreiben eines Frischgasstroms in der Frischgasleitung 162.
  • Ferner umfasst die Frischgaszuführung 160 vorzugsweise einen Wärmeübertrager 134, mittels welchem die Frischgasleitung 162 und die Abgasableitung 132 der Heizvorrichtung 128 thermisch miteinander gekoppelt sind. Insbesondere ist hierdurch das über die Frischgaszuführung 160 zugeführte Frischgas vor dessen Zuführung zu dem Behandlungsraum 112 erhitzbar.
  • Die Frischgasleitung 162 mündet vorzugsweise im Bereich eines Eintrittsabschnitts 164, in welchem die Werkstücke 102 in den Behandlungsraum 112 hineingeführt werden, und/oder im Bereich eines Austrittsabschnitts 166, in welchem die Werkstücke 102 aus dem Behandlungsraum 112 abgeführt werden, in den Behandlungsraum 112.
  • Insbesondere sind dabei im Bereich des Eintrittsabschnitts 164 eine Einlassschleuse 168 und/oder im Bereich des Austrittsabschnitts 166 eine Auslassschleuse 170 vorgesehen. Ferner können eine oder mehrere Zwischenschleusen vorgesehen sein.
  • Das über die Frischgaszuführung 160 zugeführte Frischgas dient insbesondere als Schleusengas, mit welchem vermeidbar ist, dass in den Umluftführungen 118 geführtes Gas durch den Eintrittsabschnitt 164 und/oder den Austrittsabschnitt 166 nach außen an eine Umgebung der Behandlungsanlage 100 abgegeben wird.
  • Der Volumenstrom des Frischgasstroms ist vorzugsweise so gewählt, dass sich ausgehend von dem Eintrittsabschnitt 164 und/oder dem Austrittsabschnitt 166 ein längs oder entgegen der Förderrichtung 110 und somit quer zu den in den Umluftführungen 118 geführten Gasströmen strömender Querstrom ergibt. Dies führt insbesondere dazu, dass eine Beladung des im Behandlungsraum 112 geführten Gasstroms mit Verunreinigungen und/oder sonstigen Stoffen, beispielsweise Lösemitteldämpfen, etc., zur Mitte des Behandlungsraums 112 hin erhöht.
  • Ein stromaufwärtiges Ende einer Abgasabführung 172 der Behandlungsanlage 100 ist daher vorzugsweise im Wesentlichen mittig bezüglich der Förderrichtung 110 am Behandlungsraum 112 vorgesehen.
  • Über die Abgasabführung 172 ist insbesondere ein Abgasstrom aus dem Behandlungsraum 112 abführbar und vorzugsweise direkt der Heizvorrichtung 128 zuführbar.
  • Insbesondere dann, wenn das aus dem Behandlungsraum 112 abgeführte Abgas lösemittelhaltig ist, kann mittels der Heizvorrichtung 128 eine Reinigung des Abgases unter Nutzung von im Abgas enthaltener und/oder bei einer Verbrennung frei werdender Energie erfolgen.
  • Die vorstehend beschriebene Behandlungsanlage 100 funktioniert wie folgt:
    Zum Erhitzen und/oder Trocknen der Werkstücke 102 werden diese mittels der Fördervorrichtung 108 durch die Einlassschleuse 168 in den Behandlungsraum 112 gefördert. In dem Behandlungsraum 112 durchlaufen die Werkstücke 102 nacheinander die Behandlungsraumabschnitte 114.
  • Einzelne, mehrere oder sämtliche Behandlungsraumabschnitte 114 werden mit einem in einem Kreislauf geführten Gasstrom durchströmt, welcher eine gegenüber der Temperatur des Werkstücks 102 erhöhte Temperatur aufweist, so dass sich das Werkstück 102 aufgrund des Umströmens und/oder Anströmens mit dem Gasstrom erhitzt oder eine vorgegebene Temperatur beibehält.
  • Das zunächst relativ kalte Werkstück 102 nimmt dabei insbesondere in einem bezüglich der Förderrichtung 110 ersten Behandlungsraumabschnitt 114 die größte Wärmemenge auf, so dass das Umluftmodul 116 und/oder die Umluftführung 118 dieses ersten Behandlungsraumabschnitts 114 die größte Heizleistung erbringen muss. Die darauf folgenden Behandlungsraumabschnitte 114 erbringen vorzugsweise kontinuierlich geringere Heizleistungen.
  • Die jeweilige Heizleistung wird dadurch erbracht, dass Heizgas aus der Heizanlage 126 zu dem jeweiligen Umluftmodul 116 und/oder dem jeweiligen Behandlungsraumabschnitt 114 zugeführt wird.
  • Dieses Heizgas weist gegenüber dem in der Umluftführung 118 geführten Gasstrom eine erhöhte Temperatur auf, um letztlich den gesamten in der Umluftführung 118 geführten Gasstrom und somit auch das Werkstück 102 zu erhitzen.
  • Das Heizgas wird dadurch bereitgestellt, dass dieses mittels eines Wärmeübertragers 134 unter Verwendung von heißem Abgas der Heizvorrichtung 128 erhitzt wird.
  • Beispielsweise kann hierbei vorgesehen sein, dass das Heizgas auf eine Temperatur von mindestens ungefähr 200°C, vorzugsweise mindestens ungefähr 250°C, beispielsweise ungefähr 270°C, erhitzt wird.
  • Zum Ausgleich des einer jeden Umluftführung 118 zugeführten Heizgasvolumenstroms wird vorzugsweise ein entsprechender Teilgasvolumenstrom des in der Umluftführung 118 geführten Gasstroms aus der Umluftführung 118 abgeführt.
  • Diese abgeführten Gasströme aus sämtlichen Umluftführungen 118 werden zusammengeführt und zur erneuten Erwärmung und somit zur Bereitstellung von erhitztem Heizgas dem Wärmeübertrager 134 zugeführt.
  • Insbesondere dann, wenn die Werkstücke 102 beim Trocknen derselben gesundheitsrelevante Stoffe abgeben, muss eine allzu hohe Aufkonzentration derselben sowie eine unerwünschte Abgabe an die Umgebung vermieden werden. Hierzu wird dem Behandlungsraum 112 über die Frischgaszuführung 160 Frischgas zugeführt und es wird mit den gesundheitsrelevanten Stoffen beladenes Gas über die Abgasabführung 172 abgeführt.
  • Das abgeführte Abgas wird dann in der Heizvorrichtung 128 gereinigt, insbesondere durch Verbrennen der darin enthaltenen Stoffe.
  • Abgas aus der Heizvorrichtung 128 wird dann über die Abgasableitung 132 abgeführt. Die in diesem Abgas enthaltene Wärme wird genutzt, um das über die Frischgaszuführung 160 zugeführte Frischgas und/oder das in der Heizgasführung 136 geführte Heizgas zu erhitzen.
  • Eine in Fig. 2 dargestellte zweite Ausführungsform einer Behandlungsanlage 100 unterscheidet sich von der in Fig. 1 dargestellten ersten Ausführungsform im Wesentlichen dadurch, dass die Heizgasleitung 138 eine Hauptverzweigung 180 und/oder eine Hauptzusammenführung 182 umfasst.
  • Die Hauptverzweigung 180 dient vorzugsweise dazu, den erhitzten Heizgasgesamtstrom bereits bei der Zuführung zu der Hauptzuführleitung 156 einerseits auf eine bezüglich der Förderrichtung 110 erste Umluftführung 118 und andererseits auf sämtliche übrigen Umluftführungen 118 zu verteilen. Hierdurch kann insbesondere ein Strömungsquerschnitt der Hauptzuführleitung 156 minimiert werden, da nicht der gesamte Heizgasstrom für sämtliche Umluftführungen 118 beispielsweise längs der Förderrichtung 110 durch die Hauptzuführleitung 156 geführt werden muss. Vielmehr kann ein Heizgasteilvolumenstrom für die bezüglich der Förderrichtung 110 erste Umluftführung 118, welche im Vergleich mit den weiteren Umluftführungen 118 die größte Heizleistung erbringen muss, abgezweigt und entgegen der Förderrichtung 110 zu dieser Umluftführung 118 zugeführt werden.
  • Die Hauptzusammenführung 182 dient vorzugsweise der Zusammenführung eines aus der bezüglich der Förderrichtung 110 ersten Umluftführung 118 abgeführten Teilgasstroms mit den Teilgasströmen, welche aus sämtlichen anderen Umluftführungen 118 abgeführt wurden. Hierdurch kann vorzugsweise ein Leitungsquerschnitt der Hauptabführleitung 158 minimiert werden.
  • Im Übrigen stimmt die in Fig. 2 dargestellte zweite Ausführungsform der Behandlungsanlage 100 hinsichtlich Aufbau und Funktion mit der in Fig. 1 dargestellten ersten Ausführungsform überein, so dass auf deren vorstehende Beschreibung insoweit Bezug genommen wird.
  • Eine in Fig. 3 dargestellte dritte Ausführungsform einer Behandlungsanlage 100 unterscheidet sich von der in Fig. 2 dargestellten zweiten Ausführungsform im Wesentlichen dadurch, dass die Frischgaszuführung 160 direkt in die Heizgasführung 136 mündet.
  • Das dem Behandlungsraum 112 zuzuführende Frischgas ist bei der in Fig. 3 dargestellten dritten Ausführungsform der Behandlungsanlage 100 folglich über die Heizgasleitung 138, insbesondere den Zuführabschnitt 140 der Heizgasleitung 138, zu den Umluftführungen 118 und somit zu den jeweiligen Behandlungsraumabschnitten 114 zuführbar.
  • Die Einlassschleuse 168 und die Auslassschleuse 170 sind dabei vorzugsweise mit Umluft durchströmbar. Hierzu sind vorzugsweise separate Umluftmodule 116 oder die Umluftmodule 116 der jeweils benachbarten Behandlungsraumabschnitte 114 der Einlassschleuse 168 bzw. der Auslassschleuse 170 zugeordnet.
  • Im Übrigen stimmt die in Fig. 3 dargestellte dritte Ausführungsform hinsichtlich Aufbau und Funktion mit der in Fig. 2 dargestellten zweiten Ausführungsform überein, so dass auf deren vorstehende Beschreibung insoweit Bezug genommen wird.
  • Bei sämtlichen beschriebenen Ausführungsformen kann zudem vorgesehen sein, dass im Eintrittsabschnitt 164 und/oder im Austrittsabschnitt 166 zusätzliche, insbesondere unkonditionierte, Frischluft oder sonstiges Frischgas zugeführt wird, wodurch vorzugsweise ein unerwünschtes Ausströmen von Gas aus dem Behandlungsraum 112 vermieden wird.
  • Eine in den Fig. 4 bis 10 dargestellte Ausführungsform einer Umluftführung 118 ist ein Beispiel für eine Umluftführung 118 einer Behandlungsanlage 100 gemäß den Fig. 1, 2, 3 oder 11.
  • Das Umluftmodul 116 der Umluftführung 118 ist dabei einem Behandlungsraumabschnitt 114 der Umluftführung 118 zugeordnet, so dass dieser Behandlungsraumabschnitt 114 mit einem in einem Umluftkreislauf geführten Gasstrom durchströmbar ist.
  • Wie insbesondere den Fig. 4, 6 und 8 bis 10 zu entnehmen ist, ist das Umluftmodul 116 an eine Hauptzuführleitung 156 einer Behandlungsanlage 100 gekoppelt, um das Umluftmodul 116 und/oder die durch das Umluftmodul 116 und/oder den Behandlungsraumabschnitt 114 gebildete Umluftführung 118 mit Heizgas versorgen zu können.
  • Das Umluftmodul 116 umfasst ein oder mehrere Gebläse 120 zum Antreiben des Gasstroms in der Umluftführung 118.
  • Die Umluftführung 118 umfasst vorzugsweise das eine oder die mehreren Gebläse 120, eine Druckkammer 190, den Behandlungsraumabschnitt 114, eine Rückführleitung 192 und/oder einen Ansaugraum 194.
  • Die Druckkammer 190 ist insbesondere unmittelbar stromabwärts des einen oder der mehreren Gebläse 120 angeordnet und dient vorzugsweise der Vergleichmäßigung eines dem Behandlungsraumabschnitt 114 zuzuführenden Gasstroms sowie der Verteilung des Gasstroms auf mehrere Zuführöffnungen 196 zur Zuführung des Gasstroms zu dem Behandlungsraumabschnitt 114.
  • Der über die Zuführöffnungen 196 in den Behandlungsraumabschnitt 114 eingeleitete Gasstrom ist vorzugsweise teilweise über eine oder mehrere Rückführöffnungen 198 aus dem Behandlungsraumabschnitt 114 abführbar und über die Rückführleitung 192 dem Ansaugraum 194 zuführbar.
  • Ein weiterer Teil des über die Zuführöffnungen 196 dem Behandlungsraumabschnitt 114 zugeführten Gasstroms ist vorzugsweise über Abführöffnungen 200 aus der Umluftführung 118 und aus dem Behandlungsraumabschnitt 114 abführbar sowie der Hauptabführleitung 158 zuführbar.
  • Die Zuführöffnungen 196, die Rückführöffnungen 198 und/oder die Abführöffnungen 200 sind vorzugsweise derart angeordnet, dass vorzugsweise zumindest ein Großteil des durch den Behandlungsraumabschnitt 114 geführten Gasstroms auf einer Seite des Werkstücks 102 zugeführt wird oder zuführbar ist und auf einer dieser Seite gegenüberliegenden weiteren Seite des Werkstücks 102 aus dem Behandlungsraumabschnitt 114 abführbar ist oder abgeführt wird. Hierdurch ergibt sich vorzugsweise eine optimierte Durchströmung des Behandlungsraumabschnitts 114 sowie eine optimierte Aufheizung des Werkstücks 102.
  • Wie insbesondere Fig. 5 zu entnehmen ist, kann es vorgesehen sein, dass zusätzlich zu den vorzugsweise in einer Seitenwandung des Behandlungsraumabschnitts 114 angeordneten Zuführöffnungen 196 weitere Zuführöffnungen 196 vorgesehen sind, welche in einem den Behandlungsraumabschnitt 114 nach unten begrenzenden Boden 202 angeordnet sind. Das Werkstück 102 ist mittels dieser zusätzlichen Zuführöffnungen 196 vorzugsweise von unten anströmbar. Wie insbesondere den Fig. 4, 7 und 8 zu entnehmen ist, erfolgt die Zuführung des Gasstroms zu den im Boden 202 angeordneten Zuführöffnungen 196 aus der Druckkammer 190 über einen oder mehrere unterhalb des Bodens 202 oder im Boden 202 verlaufende Bodenkanäle 204.
  • Beispielsweise sind zwei solcher Bodenkanäle 204 vorgesehen, um den Gasstrom den zusätzlichen Zuführöffnungen 196 zuzuführen.
  • Diese beiden Bodenkanäle 204 sind vorzugsweise zu beiden Seiten der Rückführleitung 192 angeordnet (siehe insbesondere Fig. 7).
  • Der Ansaugraum 194 ist vorzugsweise unmittelbar stromaufwärts des einen oder der mehreren Gebläse 120 angeordnet, so dass in dem Ansaugraum 194 befindliches Gas über das eine oder die mehreren Gebläse 120 angesaugt werden kann.
  • Die Rückführleitung 192 mündet in den Ansaugraum 194. Ferner kann vorgesehen sein, dass der Ansaugraum 194 durch ein stromabwärts angeordnetes Ende der Rückführleitung 192 gebildet ist.
  • Über den Ansaugraum 194 erfolgt vorzugsweise die Zuführung von Heizgas aus der Hauptzuführleitung 156 in die Umluftführung 118.
  • Hierzu ist ein Zuführkanal 206 vorgesehen, welcher die Hauptzuführleitung 156 mit dem Ansaugraum 194 fluidwirksam verbindet.
  • In dem Zuführkanal 206 oder an einem oder beiden Enden desselben ist vorzugsweise ein Ventil, insbesondere das Einlassventil 122, angeordnet (in den Fig. 4 bis 10 nicht dargestellt). Mittels des Ventils ist vorzugsweise die Menge (der Volumenstrom) des der Umluftführung 118 zugeführten Heizgases steuerbar und/oder regelbar.
  • Dadurch, dass der Zuführkanal 206 vorzugsweise in den Ansaugraum 194 mündet, kann mittels des einen oder der mehreren Gebläse 120 einfach und energieeffizient Heizgas aus der Hauptzuführleitung 156 zu dem in der Umluftführung 118 geführten Gasstrom zugemischt werden. Durch das anschließende Durchströmen des einen oder der mehreren Gebläse 120 sowie der Druckkammer 190 ist zudem vorzugsweise ein gleichmäßiges Vermischen des zugeführten Heizgases und des in der Umluftführung 118 geführten restlichen Gasstroms gewährleistet.
  • Der dem Behandlungsraumabschnitt 114 zugeführte Gasstrom ist somit vorzugsweise trotz der Zumischung des Heizgases ein homogener Gasstrom mit vorzugsweise konstanter Temperatur.
  • Bei einer (nicht dargestellten) weiteren Ausführungsform einer Behandlungsanlage 100 und/oder einer Umluftführung 118 kann ferner vorgesehen sein, dass Heizgas aus der Hauptzuführleitung 156 direkt in einen Bodenkanal 204 zuführbar ist, um letztlich mittels der zusätzlichen Zuführöffnungen 196 einzelne Bereiche des Behandlungsraumabschnitts 114 und/oder des Werkstücks 102 stärker zu erhitzen als die übrigen Bereiche.
  • Wie insbesondere Fig. 5 zu entnehmen ist, ist die Hauptabführleitung 158 vorzugsweise in ein den Behandlungsraumabschnitt 114 umgebendes Gehäuse 208 integriert.
  • Das Gehäuse 208 ist beispielsweise im Wesentlichen quaderförmig ausgebildet. Die Hauptabführleitung 158 ist beispielsweise durch Abtrennung eines Teils des quaderförmigen Innenraums des Gehäuses 208 gebildet. Insbesondere kann hierbei vorgesehen sein, dass ein oberer Eckbereich des Innenraums des Gehäuses 208 zur Herstellung der Hauptabführleitung 158 von dem Behandlungsraumabschnitt 114 abgeteilt ist.
  • Die Hauptzuführleitung 156 ist hingegen vorzugsweise außerhalb des Gehäuses 208 angeordnet. Es kann jedoch auch vorgesehen sein, dass die Hauptzuführleitung 156 ebenfalls durch Abteilung eines Bereichs des Innenraums des Gehäuses 208 gebildet ist. Das vorstehend beschriebene Umluftmodul 116 sowie die hierdurch realisierte Umluftführung 118 funktionieren vorzugsweise wie folgt:
    Mittels des Gebläses 120 wird ein Gasstrom angetrieben und zunächst der Druckkammer 190 zugeführt.
  • Über Zuführöffnungen 196, welche gegebenenfalls mit Ventilen versehen sein können, wird der Gasstrom in den Behandlungsraumabschnitt 114 eingeleitet.
  • In diesem Behandlungsraumabschnitt 114 ist vorzugsweise mindestens ein Werkstück 102 angeordnet, welches durch Umströmen desselben mit dem Gasstrom Wärme aus dem Gasstrom aufnimmt und hierdurch erhitzt wird. Insbesondere wird das Werkstück 102 hierdurch getrocknet.
  • Über eine oder mehrere Rückführöffnungen 198 sowie eine Rückführleitung 192 wird das durch den Behandlungsraumabschnitt 114 hindurchgeführte Gas abgeführt und einem Ansaugraum 194 zugeführt. Aus diesem Ansaugraum 194 wird das darin befindliche Gas schließlich erneut über das eine oder die mehreren Gebläse 120 angesaugt, so dass ein Kreislauf für das durch den Behandlungsraumabschnitt 114 geführte Gas gebildet ist.
  • Im Betrieb der Behandlungsanlage 100 kühlt sich das im Kreislauf geführte Gas ab, insbesondere aufgrund der Wärmeübertragung auf die Werkstücke 102.
  • Somit muss kontinuierlich oder regelmäßig Wärme zugeführt werden.
  • Dies erfolgt durch die Zuführung von gegenüber dem in der Umluftführung 118 geführten Gasstrom erhitztem Heizgas aus einer Heizanlage 126.
  • Dieses Heizgas wird über die Hauptzuführleitung 156 bereitgestellt und bedarfsweise über den Zuführkanal 206 abgezweigt und dem Ansaugraum 194 zugeführt. Insbesondere wird das Heizgas durch die Anbindung des Zuführkanals 206 an den Ansaugraum 194 mittels des einen oder der mehreren Gebläse 120 bedarfsweise aus der Hauptzuführleitung 156 angesaugt.
  • Vorzugsweise zeitgleich wird über die Abführöffnungen 200, welche insbesondere durch Ventile, beispielsweise ein oder mehrere Auslassventile 124 gebildet sind, ein Teil des in der Umluftführung 118 geführten Gasstroms aus der Umluftführung 118 abgeführt. Insbesondere kann hierdurch ein Gesamtvolumenstrom des in der Umluftführung 118 geführten Gasstroms trotz der Zuführung von Heizgas konstant gehalten werden.
  • Das abgeführte Gas wird über die Hauptabführleitung 158 abgeführt.
  • Vorzugsweise umfasst eine Behandlungsanlage 100, beispielsweise gemäß einer der Fig. 1 bis 3 oder 11, mehrere der in den Fig. 4 bis 10 dargestellten Umluftmodule 116 und/oder Behandlungsraumabschnitte 114. Die Umluftmodule 116 und/oder Behandlungsraumabschnitte 114 sind vorzugsweise senkrecht zur Förderrichtung 110 mit dem in der jeweiligen Umluftführung 118 geführten Gasstrom durchströmbar. Eine Querströmung zwischen zwei oder mehr Umluftmodulen 116 und/oder Umluftführungen 118 ist vorzugsweise minimal.
  • Vorzugsweise ergibt sich eine Querströmung mit einer Komponente parallel zur Förderrichtung 110 lediglich aufgrund von dem Behandlungsraum 112 zugeführtem Frischgas und/oder aufgrund der Abführung von Abgas aus dem Behandlungsraum 112 (siehe insbesondere die Fig. 1 und 2).
  • Die beschriebenen Ausführungsformen der Behandlungsanlage 100 und/oder des Umluftmoduls 116 und/oder der Umluftführung 118 und/oder der Behandlungsraumabschnitte 114 eignen sich insbesondere zur Verwendung bei einer sogenannten Querfahrweise, bei welcher die Werkstücke 102, insbesondere die Fahrzeugkarosserien 106, quer, insbesondere senkrecht, zur Förderrichtung 110 durch den Behandlungsraum 112 gefördert werden. Insbesondere ist dabei eine Fahrzeuglängsachse horizontal und im Wesentlichen senkrecht zur Förderrichtung 110 ausgerichtet.
  • Die beschriebenen Ausführungsformen können jedoch auch bei einer sogenannten Längsförderung der Werkstücke 102 Verwendung finden, bei welcher die Fahrzeuglängsrichtung parallel zur Förderrichtung 110 ausgerichtet ist.
  • Eine in Fig. 11 dargestellte vierte Ausführungsform einer Behandlungsanlage 100 unterscheidet sich von der in Fig. 1 dargestellten ersten Ausführungsform im Wesentlichen dadurch, dass die Behandlungsanlage 100 eine Hauptbehandlungsanlage 220 und eine Vorbehandlungsanlage 222 umfasst.
  • Die Hauptbehandlungsanlage 220 ist beispielsweise ein Haupttrockner 224. Die Vorbehandlungsanlage 222 ist beispielsweise ein Vortrockner 226.
  • Vorzugsweise ist die Hauptbehandlungsanlage 220 im Wesentlichen identisch mit der mit Hinblick auf Fig. 1 beschriebenen ersten Ausführungsform einer Behandlungsanlage 100 ausgebildet.
  • Die Vorbehandlungsanlage 222 ist somit ein optionaler Zusatz für eine Behandlungsanlage 100 gemäß einer der beschriebenen Ausführungsformen, insbesondere der ersten Ausführungsform.
  • Die Vorbehandlungsanlage 222 ist vorzugsweise im Wesentlichen ebenfalls eine Behandlungsanlage 100 gemäß einer der beschriebenen Ausführungsformen, insbesondere gemäß der ersten Ausführungsform.
  • Günstig kann es sein, wenn die Vorbehandlungsanlage 222 kleiner dimensioniert ist als die Hauptbehandlungsanlage 220. Beispielsweise kann vorgesehen sein, dass die Vorbehandlungsanlage 222 einen kleineren Behandlungsraum 112 und/oder vorzugsweise weniger Behandlungsraumabschnitte 114 umfasst als die Hauptbehandlungsanlage 220.
  • Beispielsweise kann vorgesehen sein, dass eine Vorbehandlungsanlage 222 lediglich drei oder vier Behandlungsraumabschnitte 114 umfasst.
  • Die Vorbehandlungsanlage 222 umfasst vorzugsweise eine von der Heizgasführung 136 der Hauptbehandlungsanlage 220 verschiedene und/oder unabhängige Heizgasführung 136.
  • Vorzugsweise ist den Umluftmodulen 116 und/oder Behandlungsraumabschnitten 114 der Vorbehandlungsanlage 222 unabhängig von der Heizgasführung 136 der Hauptbehandlungsanlage 220 Heizgas zuführbar.
  • Die Heizgasführung 136 der Vorbehandlungsanlage 222 ist vorzugsweise mittels eines separaten Wärmeübertragers 134 thermisch mit der Abgasableitung 132 der Heizvorrichtung 128 gekoppelt.
  • Der Wärmeübertrager 134 zur thermischen Kopplung der Vorbehandlungsanlage 222 mit der Abgasableitung 132 der Heizvorrichtung 128 kann bezüglich der Strömungsrichtung des Abgases der Heizvorrichtung 128 in der Abgasableitung 132 stromaufwärts oder stromabwärts des Wärmeübertragers 134 zur thermischen Kopplung der Hauptbehandlungsanlage 220 mit der Abgasableitung 132 der Heizvorrichtung 128 angeordnet sein. Vorzugsweise ist der Wärmeübertrager 134 der Vorbehandlungsanlage 222 stromabwärts des Wärmeübertragers 134 der Hauptbehandlungsanlage 220 angeordnet.
  • Der Wärmeübertrager 134 zur Kopplung der Frischgaszuführung 160 mit der Abgasableitung 132 der Heizvorrichtung 128 ist vorzugsweise stromabwärts des Wärmeübertragers 134 der Hauptbehandlungsanlage 220 und/oder stromabwärts des Wärmeübertragers 134 der Vorbehandlungsanlage 222 angeordnet. Hierdurch kann aufgrund der zumeist niedrigen Frischgastemperatur (Frischlufttemperatur) die Nutzung der im Abgas der Heizvorrichtung 128 vorhandenen Wärme optimiert werden.
  • Vorzugsweise umfasst die gesamte Behandlungsanlage 100 eine einzige Heizvorrichtung 128, mittels welcher die Wärme sowohl für die Heizgasführung 136 der Hauptbehandlungsanlage 220 als auch für die Heizgasführung 136 der Vorbehandlungsanlage 222 bereitgestellt werden kann.
  • Die Behandlungsanlage 100 kann eine gemeinsame Frischgaszuführung 160 zur Zuführung von Frischgas zu sowohl dem Behandlungsraum 112 der Hauptbehandlungsanlage 220 als auch dem Behandlungsraum 112 der Vorbehandlungsanlage 222 umfassen.
  • Alternativ hierzu kann jedoch auch vorgesehen sein, dass die Behandlungsanlage 100 zwei Frischgaszuführungen 160 umfasst, wobei eine Frischgaszuführung 160 der Hauptbehandlungsanlage 220 und eine weitere Frischgaszuführung 160 der Vorbehandlungsanlage 222 zugeordnet ist (in den Figuren nicht dargestellt).
  • Ein Abgas aus der Vorbehandlungsanlage 222 ist vorzugsweise mittels einer Abgasabführung 172 der Vorbehandlungsanlage 222 zu der Abgasabführung 172 der Hauptbehandlungsanlage 220 zuführbar.
  • Das Abgas aus der Vorbehandlungsanlage 222 ist somit vorzugsweise gemeinsam mit dem Abgas aus der Hauptbehandlungsanlage 220 zu der gemeinsamen Heizvorrichtung 128 zuführbar.
  • Die zu behandelnden Werkstücke 102 sind vorzugsweise mittels einer Fördervorrichtung 108, insbesondere einer einzigen Fördervorrichtung 108, zunächst durch den Behandlungsraum 112 der Vorbehandlungsanlage 222 und anschließend durch den Behandlungsraum 112 der Hauptbehandlungsanlage 220 hindurchförderbar.
  • In Fig. 11 sind die Vorbehandlungsanlage 222 und die Hauptbehandlungsanlage 220 beabstandet voneinander dargestellt. Dies dient vorzugsweise lediglich zur Illustration der Funktionsweise. Es kann jedoch auch vorgesehen sein, dass die Vorbehandlungsanlage 222 und die Hauptbehandlungsanlage 220 unmittelbar aufeinanderfolgend angeordnet sind. Beispielsweise kann eine als Zwischenschleuse ausgebildete Schleuse die ansonsten unmittelbar aneinander angrenzenden Behandlungsräume 112 strömungstechnisch voneinander trennen. Diese Zwischenschleuse bildet dann zugleich eine Auslassschleuse 170 der Vorbehandlungsanlage 222 und eine Einlassschleuse 168 der Hauptbehandlungsanlage 220.
  • Dadurch, dass die Vorbehandlungsanlage 222 zusätzlich zur Hauptbehandlungsanlage 220 vorgesehen ist und eine separate Heizgasführung 136 umfasst, kann insbesondere bei starker Abdunstung der zu behandelnden Werkstücke 102 oder bei sonstiger starker Verunreinigung der durch die Behandlungsraumabschnitte 114 geführten Gasströme eine einfache und effiziente Unterteilung des insgesamt zu der Behandlungsanlage 100 gehörenden Behandlungsraums 112 realisiert werden.
  • Im Übrigen stimmt die Behandlungsanlage 100, insbesondere sowohl die Hauptbehandlungsanlage 220 als auch die Vorbehandlungsanlage 222, jeweils für sich genommen, hinsichtlich Aufbau und Funktion mit der in Fig. 1 dargestellten ersten Ausführungsform überein, so dass auf deren vorstehende Beschreibung insoweit Bezug genommen wird.
  • Eine in Fig. 12 dargestellte fünfte Ausführungsform einer Behandlungsanlage 100 unterscheidet sich von der in Fig. 1 dargestellten ersten Ausführungsform im Wesentlichen dadurch, dass die Heizgasführung 136 eine zusätzliche Bypassleitung 150 umfasst, mittels welcher ein Teilgasstrom des über den Zuführabschnitt 140 der Heizgasleitung 138 den Umluftführungen 118 zuzuführenden Heizgasgesamtstroms an sämtlichen Umluftmodulen 116 und/oder Behandlungsraumabschnitten 114 vorbeiführbar und direkt dem Abführabschnitt 142 zuführbar ist.
  • Die zusätzliche Bypassleitung 150 zweigt insbesondere stromaufwärts der Hauptzuführleitung 156, insbesondere stromaufwärts sämtlicher Verzweigungen 144 und/oder Abzweigungen 146, aus dem Zuführabschnitt 140 der Heizgasleitung 138 ab.
  • Die zusätzliche Bypassleitung 150 ist vorzugsweise an einem bezüglich der Förderrichtung 110 der Fördervorrichtung 108 vorderen Ende der Hauptzuführleitung 156 und/oder der Hauptabführleitung 158, das heißt vorzugsweise im Bereich eines Eintrittsabschnitts 164 der Behandlungsanlage 100, angeordnet.
  • Ein Volumenstrom des über die Bypassleitung 150 an den Umluftführungen 118 vorbeigeführten Heizgasstroms ist vorzugsweise mittels eines Bypass-Ventils 152 steuerbar und/oder regelbar.
  • Vorzugsweise mündet die zusätzliche Bypassleitung 150 in den Abführabschnitt 142, insbesondere stromabwärts der Hauptabführleitung 158, beispielsweise stromabwärts sämtlicher Zusammenführungen 148.
  • Durch die Verwendung einer solchen zusätzlichen Bypassleitung 150 kann vorzugsweise ein Teilgasstrom aus dem Zuführabschnitt 140 unter Umgehung der Hauptzuführleitung 156 und der Hauptabführleitung 158 an den Umluftmodulen 116 und/oder Umluftführungen 118 vorbeigeführt werden. Hierdurch kann relativ heißes Gas direkt in den Abführabschnitt 142 eingeleitet werden, um den mittels des Abführabschnitts 142 insgesamt abzuführenden Gasstrom zu erhitzen.
  • Der Gasstrom wird dabei insbesondere auf eine Temperatur erhitzt, welche eine unerwünschte Kondensatbildung verhindert.
  • Mittels der Steuervorrichtung 154 wird das Bypass-Ventil 152 der Bypassleitung 150 und somit die Zuführung von heißem Gas zu dem Abführabschnitt 142 vorzugsweise derart gesteuert, dass eine tatsächliche Temperatur des in dem Abführabschnitt 142 geführten Gasstroms stets über der Kondensationstemperatur liegt. Insbesondere ist eine Regelung auf der Basis eines vorgegebenen minimalen Temperatursollwerts vorgesehen.
  • Im Übrigen stimmt die in Fig. 12 dargestellte fünfte Ausführungsform der Behandlungsanlage 100 hinsichtlich Aufbau und Funktion mit der in Fig. 1 dargestellten ersten Ausführungsform überein, so dass auf deren vorstehende Beschreibung insoweit Bezug genommen wird.
  • Eine in Fig. 13 dargestellte sechste Ausführungsform einer Behandlungsanlage 100 unterscheidet sich von der in Fig. 2 dargestellten zweiten Ausführungsform im Wesentlichen dadurch, dass entsprechend der in Fig. 12 dargestellten fünften Ausführungsform eine zusätzliche Bypassleitung 150 vorgesehen ist.
  • Die sechste Ausführungsform einer Behandlungsanlage 100 stimmt somit hinsichtlich des grundlegenden Aufbaus und der grundlegenden Funktion mit der in Fig. 2 dargestellten zweiten Ausführungsform überein, so dass auf deren vorstehende Beschreibung insoweit Bezug genommen wird. Hinsichtlich der zusätzlichen Bypassleitung 150 stimmt die sechste Ausführungsform einer Behandlungsanlage 100 mit der in Fig. 12 dargestellten fünften Ausführungsform überein, so dass auf deren vorstehende Beschreibung insoweit Bezug genommen wird.
  • Bei weiteren (nicht dargestellten) Ausführungsformen können bei Bedarf einzelne oder mehrere Bypassleitungen 150 ergänzt oder weggelassen werden. Beispielsweise kann auch die in Fig. 3 dargestellte Ausführungsform einer Behandlungsanlage 100 bei Bedarf mit einer zusätzlichen Bypassleitung 150 gemäß der in Fig. 12 dargestellten fünften Ausführungsform versehen sein.

Claims (17)

  1. Behandlungsanlage (100) zum Behandeln von Werkstücken, umfassend:
    - einen Behandlungsraum (112), welcher mehrere Behandlungsraumabschnitte (114) umfasst, die jeweils einem von mehreren separaten Umluftmodulen (116) der Behandlungsanlage (100) zugeordnet sind;
    - eine Heizanlage (126), welche eine in sich geschlossene Heizgasführung (136) umfasst; und
    - eine Fördervorrichtung (108), mittels welcher die Werkstücke (102) längs einer Förderrichtung (110) durch den Behandlungsraum (112) hindurchförderbar sind,
    wobei mehrere Umluftmodule (116) mit der Heizgasführung (136) gekoppelt sind, insbesondere zum Erhitzen des durch die Behandlungsraumabschnitte (114) geführten Gases, wobei mittels eines jeden Umluftmoduls (116) ein Gasstrom in einer Umluftführung (118) führbar und durch den jeweiligen Behandlungsraumabschnitt (114) hindurchführbar ist, und wobei jeweils ein Umluftmodul (116) und jeweils ein Behandlungsraumabschnitt (114) eine Umluftführung (118) bilden.
  2. Behandlungsanlage (100) nach Anspruch 1, dadurch gekennzeichnet, dass jedes Umluftmodul (116) ein oder mehrere Gebläse (120) zum Antreiben des in der Umluftführung (118) geführten Gasstroms umfasst.
  3. Behandlungsanlage (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizgasführung (136) eine zentrale Heizgasleitung (138) umfasst.
  4. Behandlungsanlage (100) nach Anspruch 3, dadurch gekennzeichnet, dass die Heizgasleitung (138) eine Hauptzuführleitung (156) zur Verteilung des Heizgases auf die Umluftmodule (116) und/oder eine Hauptabführleitung (158) Abführung von aus den Umluftmodulen (116) und/oder Behandlungsraumabschnitten (114) abgeführten Gasströmen umfasst.
  5. Behandlungsanlage (100) nach Anspruch 4, dadurch gekennzeichnet, dass die Hauptzuführleitung (156) und/oder die Hauptabführleitung (158) parallel zur Förderrichtung (110) verlaufen.
  6. Behandlungsanlage (100) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Hauptzuführleitung (156) außerhalb des Behandlungsraums (112) angeordnet ist.
  7. Behandlungsanlage (100) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Hauptabführleitung (158) außerhalb des Behandlungsraums (112) angeordnet oder in diesen integriert ist.
  8. Behandlungsanlage (100) nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass sich die Hauptzuführleitung (156) und/oder die Hauptabführleitung (158) zumindest näherungsweise über eine gesamte Länge des Behandlungsraums (112) erstreckt.
  9. Behandlungsanlage (100) nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die Umluftführung (118) den Behandlungsraumabschnitt (114), das eine oder die mehreren Gebläse (120), eine Druckkammer (190), eine Rückführleitung (192), einen Ansaugraum (194), mehrere Zuführöffnungen (196), eine oder mehrere Rückführöffnungen (198) und/oder Abführöffnungen (200) umfasst.
  10. Behandlungsanlage (100) nach Anspruch 9, dadurch gekennzeichnet, dass die Druckkammer (190) stromabwärts, insbesondere unmittelbar stromabwärts, des einen oder der mehreren Gebläse (120) angeordnet ist.
  11. Behandlungsanlage (100) nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass mittels der Druckkammer (190) ein dem Behandlungsraumabschnitt (114) zuzuführender Gasstrom vergleichmäßigbar und der Gasstrom zur Zuführung zu dem Behandlungsraumabschnitt (114) auf die mehreren Zuführöffnungen (196) verteilbar ist.
  12. Behandlungsanlage (100) nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der über die Zuführöffnungen (196) in den Behandlungsraumabschnitt (114) eingeleitete Gasstrom teilweise über die eine oder die mehreren Rückführöffnungen (198) aus dem Behandlungsraumabschnitt (114) abführbar und über die Rückführleitung (192) dem Ansaugraum (194) zuführbar ist.
  13. Behandlungsanlage (100) nach Anspruch 12, dadurch gekennzeichnet, dass ein weiterer Teil des über die Zuführöffnungen (196) dem Behandlungsraumabschnitt (114) zugeführten Gasstroms über die Abführöffnungen (200) aus der Umluftführung (118) und aus dem Behandlungsraumabschnitt (114) abführbar sowie der Hauptabführleitung (158) zuführbar ist.
  14. Behandlungsanlage (100) nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Zuführöffnungen (196), die Rückführöffnungen (198) und/oder die Abführöffnungen (200) derart angeordnet sind, dass zumindest ein Großteil des durch den Behandlungsraumabschnitt (114) geführten Gasstroms auf einer Seite des Werkstücks (102) zuführbar und auf einer dieser Seite gegenüberliegenden weiteren Seite des Werkstücks (102) aus dem Behandlungsraumabschnitt (114) abführbar ist.
  15. Behandlungsanlage (100) nach 9 bis 14, dadurch gekennzeichnet, dass Zuführöffnungen (196) in einer Seitenwandung des Behandlungsraumabschnitts (114) angeordnet sind und weitere Zuführöffnungen (196) vorgesehen sind, welche in einem den Behandlungsraumabschnitt (114) nach unten begrenzenden Boden (202) angeordnet sind und mittels welchen das Werkstück (102) von unten anströmbar ist.
  16. Behandlungsanlage (100) nach Anspruch 15, dadurch gekennzeichnet, dass der Gasstrom aus der Druckkammer (190) über eine oder mehrere unterhalb des Bodens (202) oder im Boden (202) verlaufende Bodenkanäle (204) zu den im Boden (202) angeordneten Zuführöffnungen (196) zuführbar ist.
  17. Behandlungsanlage (100) nach 16, dadurch gekennzeichnet, dass zwei Bodenkanäle (204) vorgesehen sind, welche zu beiden Seiten der Rückführleitung (192) angeordnet sind.
EP23212266.3A 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken Pending EP4306889A3 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102015224916.6A DE102015224916A1 (de) 2015-12-10 2015-12-10 Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
EP16784891.0A EP3387354B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20179796.6A EP3730886B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
PCT/EP2016/075206 WO2017097483A1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP16784891.0A Division EP3387354B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20179796.6A Division EP3730886B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken

Publications (2)

Publication Number Publication Date
EP4306889A2 true EP4306889A2 (de) 2024-01-17
EP4306889A3 EP4306889A3 (de) 2024-04-17

Family

ID=57184450

Family Applications (7)

Application Number Title Priority Date Filing Date
EP20179795.8A Active EP3730885B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP23212266.3A Pending EP4306889A3 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20179791.7A Active EP3730884B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20179796.6A Active EP3730886B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP16784891.0A Active EP3387354B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20182366.3A Pending EP3745066A3 (de) 2015-12-10 2016-12-12 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP16819831.5A Active EP3387355B1 (de) 2015-12-10 2016-12-12 Behandlungsanlage und verfahren zum behandeln von werkstücken

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20179795.8A Active EP3730885B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken

Family Applications After (5)

Application Number Title Priority Date Filing Date
EP20179791.7A Active EP3730884B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20179796.6A Active EP3730886B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP16784891.0A Active EP3387354B1 (de) 2015-12-10 2016-10-20 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP20182366.3A Pending EP3745066A3 (de) 2015-12-10 2016-12-12 Behandlungsanlage und verfahren zum behandeln von werkstücken
EP16819831.5A Active EP3387355B1 (de) 2015-12-10 2016-12-12 Behandlungsanlage und verfahren zum behandeln von werkstücken

Country Status (12)

Country Link
US (1) US20180356154A1 (de)
EP (7) EP3730885B1 (de)
JP (1) JP6959233B2 (de)
KR (1) KR20180091880A (de)
CN (6) CN108369066A (de)
DE (1) DE102015224916A1 (de)
ES (3) ES2965861T3 (de)
FI (3) FI3730886T3 (de)
HU (3) HUE055544T2 (de)
PL (4) PL3730884T3 (de)
PT (4) PT3730884T (de)
WO (2) WO2017097483A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214706A1 (de) 2015-07-31 2017-02-02 Dürr Systems Ag Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
DE102015214711A1 (de) 2015-07-31 2017-02-02 Dürr Systems Ag Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
DE102016125060B4 (de) * 2016-12-21 2023-02-16 Eisenmann Gmbh Vorrichtung zum Temperieren von Gegenständen
DE102018113685A1 (de) * 2018-06-08 2018-08-23 Eisenmann Se Anlage zum Trocknen von Fahrzeugkarosserien
JP6796874B2 (ja) * 2018-12-11 2020-12-09 株式会社桂精機製作所 乾燥装置
JP6765621B1 (ja) * 2020-01-29 2020-10-07 株式会社N‘studio 乾燥炉
DE102020213945A1 (de) * 2020-11-05 2022-05-05 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zum Trocknen eines Werkstücks mit kaskadierender Wärmezufuhr
CN114076513A (zh) * 2021-11-26 2022-02-22 南京佩尔哲汽车内饰系统有限公司 基于汽车复合内饰板料的双面加热装置
CN115111899A (zh) * 2021-12-01 2022-09-27 安徽唯甜生物科技开发有限公司 一种回转式甜叶菊叶片烘干箱
DE102022106284A1 (de) * 2022-03-17 2023-09-21 Dürr Systems Ag Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
DE102022113076A1 (de) 2022-05-24 2023-11-30 Dürr Systems Ag Behandlungsanlage zum Behandeln von Werkstücken und ein Verfahren zum Behandeln von Werkstücken
DE102022113071A1 (de) 2022-05-24 2023-11-30 Dürr Systems Ag Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage
DE102022113079A1 (de) 2022-05-24 2023-11-30 Dürr Systems Ag Umbausatz für eine Behandlungsanlage und Verfahren zum Umbau einer Behandlungsanlage
DE102022131532A1 (de) 2022-11-29 2024-05-29 Bayerische Motoren Werke Aktiengesellschaft Behandlungsanlage zum Behandeln von Werkstücken und Verfahren zum Behandeln von Werkstücken

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073109A1 (de) 2001-03-12 2002-09-19 Dürr Systems GmbH Heisslufttrockner für eine beschichtungsanlage
EP1302737A2 (de) 2001-10-12 2003-04-16 Dürr Systems GmbH Heisslufttrockner für eine Beschichtungsanlage
US20060068094A1 (en) 2004-09-29 2006-03-30 Cole David J Production paint shop design
EP1998129B1 (de) 2007-05-26 2015-01-14 Eisenmann AG Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970811A (en) * 1958-01-06 1961-02-07 Combustion Eng Self protecting air heater
US4140467A (en) * 1975-06-09 1979-02-20 Kenneth Ellison Convection oven and method of drying solvents
US4132007A (en) * 1977-08-17 1979-01-02 Voorheis James T Single burner heater and incinerator
DE3222700C1 (de) * 1982-06-16 1983-11-17 Otmar Dipl.-Ing. 8000 München Schäfer Anlage mit einem Trockner fuer organische Stoffe
JPS6150671A (ja) * 1984-08-20 1986-03-12 Mazda Motor Corp 塗装用乾燥炉
FR2644879B1 (fr) * 1989-03-24 1991-06-14 Knipiler Gaston Rechauffeur d'air tri etage a haute temperature
DE9109134U1 (de) * 1991-07-24 1991-10-02 Herrmann, Johannes, 8490 Cham, De
NL9101408A (nl) * 1991-08-20 1993-03-16 Stork Contiweb Brandereenheid.
DE4326877C1 (de) * 1993-08-11 1994-10-13 Babcock Bsh Ag Verfahren zum Trocknen von Platten und Trockner
US5456023A (en) * 1994-06-28 1995-10-10 Ransburg Corporation Advance cure paint spray booth
US5477846A (en) * 1994-08-17 1995-12-26 Cameron; Gordon M. Furnace-heat exchanger preheating system
JP3251157B2 (ja) * 1995-10-03 2002-01-28 株式会社大氣社 塗装乾燥炉
DE19644717A1 (de) * 1996-10-28 1998-04-30 Schlierbach Gmbh Verfahren zum Trocknen von dünnen Schichten sowie Vorrichtung zur Durchführung des Verfahrens
EP0849001A1 (de) * 1996-12-20 1998-06-24 Robert sen. Wälti Spritzkabine und Luftzirkulationssystem für einen Arbeitsraum
GB9702473D0 (en) * 1997-02-07 1997-03-26 Junair Spraybooths Ltd Spraybooth
US5868565A (en) * 1997-06-17 1999-02-09 Nowack; William C. Method of heat treating articles and oven therefor
DE19735322A1 (de) * 1997-08-14 1999-02-18 Bayerische Motoren Werke Ag Durchlauflufttrocknungsanlage
US6062850A (en) * 1997-11-21 2000-05-16 Honda Giken Kogyo Kabushiki Kaisha Paint curing oven
EP1076800B1 (de) * 1998-05-07 2004-09-29 Megtec Systems, Inc. Warenbahntrockner mit völlig integrierter regenerativer heizquelle
DE19941184A1 (de) * 1999-08-30 2001-03-01 Flaekt Ab Lacktrockner und Lacktrockneranlage
DE10125771C1 (de) * 2001-05-26 2002-11-21 Eisenmann Kg Maschbau Trockner
JP4964556B2 (ja) * 2006-10-12 2012-07-04 トリニティ工業株式会社 塗装設備
DE102008012792B4 (de) * 2008-03-05 2013-01-03 Eisenmann Ag Trockner für Lackieranlage
DE102009021004A1 (de) * 2009-04-24 2010-10-28 Dürr Systems GmbH Trocknungs- und/oder Härtungsanlage
DE102010001234A1 (de) * 2010-01-26 2011-07-28 Dürr Systems GmbH, 74321 Anlage zum Trocknen von Karossen mit Gasturbine
DE102011076469A1 (de) * 2011-01-26 2012-07-26 Dürr Systems GmbH Oberflächenbehandlungsvorrichtung und Verfahren zum Betrieb einer Oberflächenbehandlungsvorrichtung
DE202011104983U1 (de) * 2011-08-25 2012-11-26 Crone Wärmetechnik GmbH Trocknungssystem zur Lacktrocknung
DE102011119436B4 (de) * 2011-11-25 2020-08-06 Eisenmann Se Vorrichtung zum Temperieren von Gegenständen
DE102012007769A1 (de) * 2012-04-20 2013-10-24 Eisenmann Ag Anlage zum Behandeln von Gegenständen
DE102012207312A1 (de) * 2012-05-02 2013-11-07 Dürr Systems GmbH Prozesskammer mit Vorrichtung zum Einblasen von gasförmigem Fluid
DE102013203089A1 (de) * 2013-02-25 2014-08-28 Dürr Systems GmbH Verbrennungsanlage, Werkstückbehandlungsanlage und Verfahren zum Betreiben einer Verbrennungsanlage
DE102013004131B4 (de) * 2013-03-09 2022-07-28 Volkswagen Aktiengesellschaft Vorrichtung zum Behandeln einer Beschichtung einer Fahrzeugkarosserie
DE102013004136A1 (de) * 2013-03-09 2014-09-11 Volkswagen Aktiengesellschaft Vorrichtung zum Trocknen eines Werkstücks und Verfahren zum Betrieb einer derartigen Vorrichtung
CN103822510B (zh) * 2014-03-07 2016-04-13 中石化上海工程有限公司 多壳程列管式换热器
PL2924380T3 (pl) * 2014-03-28 2017-06-30 Sabine Schindler Palnik dodatkowy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073109A1 (de) 2001-03-12 2002-09-19 Dürr Systems GmbH Heisslufttrockner für eine beschichtungsanlage
EP1302737A2 (de) 2001-10-12 2003-04-16 Dürr Systems GmbH Heisslufttrockner für eine Beschichtungsanlage
US20060068094A1 (en) 2004-09-29 2006-03-30 Cole David J Production paint shop design
EP1998129B1 (de) 2007-05-26 2015-01-14 Eisenmann AG Vorrichtung zum Trocknen von Gegenständen, insbesondere von lackierten Fahrzeugkarosserien

Also Published As

Publication number Publication date
CN108369065A (zh) 2018-08-03
DE102015224916A1 (de) 2017-06-14
CN117804186A (zh) 2024-04-02
EP3730885B1 (de) 2023-09-27
PT3730884T (pt) 2023-11-27
EP3730884B1 (de) 2023-09-27
PL3730885T3 (pl) 2024-02-26
EP3387354B1 (de) 2021-07-07
EP3730886A1 (de) 2020-10-28
PT3730885T (pt) 2023-11-20
PT3387354T (pt) 2021-07-30
JP6959233B2 (ja) 2021-11-02
CN116809351A (zh) 2023-09-29
EP3730886B1 (de) 2023-11-29
EP3745066A2 (de) 2020-12-02
EP3387355A1 (de) 2018-10-17
PL3387354T3 (pl) 2022-03-21
JP2019505754A (ja) 2019-02-28
EP4306889A3 (de) 2024-04-17
EP3387355B1 (de) 2021-08-25
FI3730884T3 (en) 2023-12-14
EP3730885A1 (de) 2020-10-28
WO2017097483A1 (de) 2017-06-15
CN108369066A (zh) 2018-08-03
HUE064175T2 (hu) 2024-02-28
ES2966617T3 (es) 2024-04-23
EP3387354A1 (de) 2018-10-17
WO2017098056A1 (de) 2017-06-15
ES2965861T3 (es) 2024-04-17
ES2884305T3 (es) 2021-12-10
KR20180091880A (ko) 2018-08-16
US20180356154A1 (en) 2018-12-13
HUE055544T2 (hu) 2021-12-28
PL3730886T3 (pl) 2024-04-22
EP3745066A3 (de) 2021-02-24
EP3730884A1 (de) 2020-10-28
FI3730885T3 (fi) 2023-12-01
PT3730886T (pt) 2024-01-16
PL3730884T3 (pl) 2024-04-08
FI3730886T3 (fi) 2024-02-14
HUE064310T2 (hu) 2024-03-28
CN117804187A (zh) 2024-04-02
CN117824325A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
EP3730886B1 (de) Behandlungsanlage und verfahren zum behandeln von werkstücken
EP3540347A1 (de) Konditioniervorrichtung, behandlungsanlage mit einer konditioniervorrichtung und verfahren zu betreiben einer konditioniervorrichtung
WO2017055301A1 (de) Vorrichtung zur temperierung von gegenständen, insbesondere zum trocknen von beschichteten fahrzeugkarosserien
DE102015214711A1 (de) Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
EP2775241A2 (de) Vorrichtung zum Trocknen eines Werkstücks und Verfahren zum Betrieb einer derartigen Vorrichtung
DE102016125060B4 (de) Vorrichtung zum Temperieren von Gegenständen
EP2225044B1 (de) Kühlvorrichtung und verfahren zum kühlen von gegenständen aus einer beschichtungseinrichtung
EP3650199B1 (de) Folienreckanlage
EP4107457B1 (de) Temperieranlage
EP4006470A2 (de) Vorrichtung und verfahren zum trocknen eines werkstücks mit kaskadierender wärmezufuhr
EP4107455A2 (de) Temperieranlage
DE102016105835A1 (de) Fahrzeugtemperiersystem und Fahrzeug, umfassend ein Fahrzeugtemperiersystem
WO2022223075A1 (de) Werkstückbearbeitungsanlage und verfahren zum herstellen und betreiben einer solchen werkstückbearbeitungsanlage
DE102017117682A1 (de) Ventilatoreinrichtung, Konditioniervorrichtung und Behandlungsanlage mit einer solchen
WO2023227163A1 (de) Behandlungsanlage zum behandeln von werkstücken und ein verfahren zum behandeln von werkstücken
DE102022106284A1 (de) Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
DE102022113071A1 (de) Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage
WO2022228621A1 (de) Behandlungsanlage zur behandlung von werkstücken und behandlungsverfahren
DE102004018632A1 (de) Vorrichtung zum Trocknen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3387354

Country of ref document: EP

Kind code of ref document: P

Ref document number: 3730886

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: F26B0023020000

Ipc: F26B0021020000

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F26B 21/04 20060101ALI20240314BHEP

Ipc: F26B 15/14 20060101ALI20240314BHEP

Ipc: F28D 7/00 20060101ALI20240314BHEP

Ipc: F26B 23/02 20060101ALI20240314BHEP

Ipc: F24H 3/08 20220101ALI20240314BHEP

Ipc: F26B 15/12 20060101ALI20240314BHEP

Ipc: F26B 21/02 20060101AFI20240314BHEP