DE102022113071A1 - Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage - Google Patents

Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage Download PDF

Info

Publication number
DE102022113071A1
DE102022113071A1 DE102022113071.1A DE102022113071A DE102022113071A1 DE 102022113071 A1 DE102022113071 A1 DE 102022113071A1 DE 102022113071 A DE102022113071 A DE 102022113071A DE 102022113071 A1 DE102022113071 A1 DE 102022113071A1
Authority
DE
Germany
Prior art keywords
global
air flow
air
circulating air
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102022113071.1A
Other languages
English (en)
Inventor
Oliver Iglauer-Angrik
Kevin Woll
Heiko Dieter
Dietmar Wieland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Systems AG
Original Assignee
Duerr Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duerr Systems AG filed Critical Duerr Systems AG
Priority to DE102022113071.1A priority Critical patent/DE102022113071A1/de
Priority to PCT/DE2023/100377 priority patent/WO2023227165A1/de
Publication of DE102022113071A1 publication Critical patent/DE102022113071A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/04Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/022Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow
    • F26B21/028Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow by air valves, movable baffles or nozzle arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/022Heating arrangements using combustion heating incinerating volatiles in the dryer exhaust gases, the produced hot gases being wholly, partly or not recycled into the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/04Heating arrangements using electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/006Separating volatiles, e.g. recovering solvents from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/005Treatment of dryer exhaust gases
    • F26B25/007Dust filtering; Exhaust dust filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/008Seals, locks, e.g. gas barriers or air curtains, for drying enclosures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/12Vehicle bodies, e.g. after being painted

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microbiology (AREA)
  • Treating Waste Gases (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Umluftanlage (104), insbesondere für eine Behandlungsanlage (100) zum Behandeln von Werkstücken, wobei die Umluftanlage (104) Folgendes umfasst:- mehrere lokale Umluftmodule (112), mittels welchen lokale Umluftströme (114) einem Behandlungsraum (106) zuführbar, durch denselben hindurchführbar und aus demselben abführbar sind, wobei die lokalen Umluftströme (114) den Behandlungsraum (106) jeweils mehrfach durchströmen; und- eine globale Umluftführung (120), mittels welcher ein globaler Umluftstrom (122) von den mehreren lokalen Umluftmodulen (112) und/oder dem Behandlungsraum (106) abführbar, mittels einer Aufbereitungsvorrichtung (126) aufbereitbar und erneut mindestens einem der mehreren lokalen Umluftmodule (112) und/oder dem Behandlungsraum (106) zuführbar ist.

Description

  • Die vorliegende Erfindung betrifft eine Umluftanlage sowie eine Behandlungsanlage mit einer erfindungsgemäßen Umluftanlagen. Ferner betrifft die Erfindung ein Verfahren zum Betreiben einer Umluftanlage.
  • Aus der Praxis ist bekannt, dass zur technischen Lüftung von Behandlungsanlagen wie Trocknungsanlagen im Karosseriebereich, kurz Trockner, ein ständiger Austausch von Trockneratmosphäre mit Lösemitteln (Abluft) gegen einen lösemittelfreien Frischluftstrom vorgesehen ist. Dazu wird mit Hilfe eines Abluftventilators an einer oder mehreren Stellen des Behandlungsraums bzw. des Trocknungstunnels ein Abluftvolumenstrom entnommen und einer Vorrichtung zur Abluftreinigung, zumeist eine technische Abgasreinigungsanlage (TAR), zugeführt. Der abgereinigte Volumenstrom steht - im Falle eines Einsatzes einer TAR - mit einer Temperatur von etwa 450 °C zur Trocknerbeheizung zur Verfügung. Über Reingaswärmetauscher werden die einzelnen Behandlungsraumabschnitte bzw. Trocknungsabschnitte beheizt, während sich der Reingasstrom entlang der Reingaskette abkühlt. Zuletzt durchläuft der Reingasstrom einen Frischluftwärmetauscher und verlässt die Behandlungsanlage anschließend mit einer Temperatur von beispielsweise 130 °C über das entsprechende Dach der Anlage. Der minimale Abluftvolumenstrom wird entsprechend der Norm auf Basis der unteren Explosionsgrenze bestimmt, liegt jedoch in der Praxis entsprechend höher, so dass der Energiebedarf der Trocknungsanlage durch die Reingasenthalpie abgedeckt werden kann.
  • Alternativ zu TAR-abgereinigten Trocknersystemen können auch regenerative thermische Oxidationsvorrichtungen (RTO) zum Einsatz kommen. Bei derartigen Systemen liegt die Austrittstemperatur des Reingases aus der RTO etwa 20 K bis 40 K über der Eintrittstemperatur und damit deutlich niedriger als bei einer TAR. Der Reingasstrom eignet sich daher nicht zur Beheizung der einzelnen Behandlungsraumabschnitte bzw. Trocknerzonen, sondern wird in der Regel lediglich zur Frischluftvorwärmung genutzt. Wiederum ergibt sich ein Reingasvolumenstrom von üblicherweise über 100 °C, welcher über das Dach der Anlage abgeführt wird. Die einzelnen Trocknerabschnitte werden mit Einzelbrennern oder elektrischen Heizvorrichtungen versorgt.
  • In beiden Fällen erfolgt keine stoffliche Rückführung von abgereinigter Abluft in den Trocknungsprozess.
  • Der große Enthalpiestrom des Reingases kann durch die in der Reingaskette nachgeschalteten Wärmetauscher nur teilweise zurückgewonnen werden. Ein sehr großer Anteil der eingesetzten Energie verlässt die Anlage ungenutzt mit dem Reingasstrom über das Dach.
  • Von einer direkten Rückführung von Verbrennungsprodukten in den Trocknungsprozess wurde seither Abstand genommen, da bei der Verbrennung mit Erdgas diverse Verbrennungsprodukte entstehen können (NOx, Schwefelverbindungen etc.), die prozesskritisch sein können.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Umluftanlage bereitzustellen, welche einen effizienten, abluftreduzierten Betrieb ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß durch eine Umluftanlage mit den Merkmalen gemäß Anspruch 1 gelöst.
  • Die Umluftanlage ist insbesondere eine Umluftanlage für eine Behandlungsanlage zum Behandeln von Werkstücken, insbesondere zum Trocknen von Fahrzeugkarosserien.
  • Die Umluftanlage umfasst Folgendes:
    • - mehrere lokale Umluftmodule, mittels welchen lokale Umluftströme einem Behandlungsraum zuführbar, durch denselben hindurchführbar und aus demselben abführbar sind, wobei die lokalen Umluftströme den Behandlungsraum jeweils mehrfach durchströmen; und
    • - eine globale Umluftführung, mittels welcher ein globaler Umluftstrom von den mehreren lokalen Umluftmodulen und/der dem Behandlungsraum abführbar, mittels einer Aufbereitungsvorrichtung aufbereitbar und erneut mindestens einem der mehreren lokalen Umluftmodule und/oder dem Behandlungsraum zuführbar ist.
  • Der Erfindung liegt die Idee zugrunde, dass zur Reduzierung des Energieverlusts des über das Dach abgeführten Abluftstromes bzw. Reingasstromes der aus dem Behandlungsraum bzw. Trocknungstunnel abgezogene Abluftvolumenstrom einer speziellen Vorrichtung zur Abreinigung zugeführt wird und anschließend zumindest teilweise als abgereinigte Umluft zurück in den Prozess geführt. Die Vorrichtung zur Abluftreinigung kann eine elektrisch betriebene, flammenlose RTO sein.
  • Besonders vorteilhaft ist, dass mit dieser rein elektrischen Beheizung des Gasvolumenstroms keine Fremdstoffe aus dem Gaskreislauf eingetragen werden, wie es bei der Abreinigung mit einer TAR oder einer herkömmlichen RTO der Fall ist. Zudem besteht kein Risiko, dass unverbranntes Gas die Behandlungsanlage bzw. den Trockner fluten und für Explosionsgefahr sorgen.
  • Dadurch, dass ein verringerter Reingasenthalpieverlust über das Dach erfolgt, wird eine signifikante Energieeinsparung erreicht. Zudem lässt sich der Querschnitt der Reingasführung bzw. Abluftführung reduzieren oder aber eine Reingasführung bzw. Abgasführung über Dach lässt sich bei einer vollständigen Rückführung der globalen Umluft beispielsweise vollständig vermeiden.
  • Durch die Rückführung der globalen Umluft lässt sich zugleich ein Frischluftwärmeübertrager kleiner dimensionieren, womit auch die entsprechenden Investitionskosten gesenkt werden.
  • Es soll verstanden werden, dass der Behandlungsraum einen Vorbehandlungsraum und/oder einen Nachbehandlungsraum umfassen kann.
  • Ferner ist mit der erfindungsgemäßen Umluftanlage eine Fahrweise der Anlage im Standby-Betrieb möglich, in welcher der Reingasenthalpieverlust über Dach annähernd null ist.
  • Vorzugsweise lässt sich zudem Warmwasser im Nachbehandlungsraum bzw. der Kühlzone einsparen.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Aufbereitungsvorrichtung eine Aufbereitungsvorrichtung zum Aufbereiten, insbesondere zum Reinigen, des globalen Umluftstroms ist oder umfasst, wobei die Aufbereitungsvorrichtung eine thermische Aufbereitungsvorrichtung, insbesondere eine rein elektrisch betriebene, vorzugsweise flammenlose, regenerative thermische Oxidationsvorrichtung ist oder umfasst.
  • Günstig kann es sein, wenn die RTO zum einen eine elektrischen Heizvorrichtung zur Aufbereitung des globalen Umluftstroms aufweist und zum anderen auch autotherm betrieben werden kann, wenn die Lösungsmittelkonzentration einen bestimmten Grenzwert überschritten hat.
  • Im Falle einer autothermen Reaktion lassen sich beispielsweise bei einer Lösungsmittelkonzentration von 1 g/m3 ca. 20 K an Temperatur gewinnen, wobei der Temperaturgewinn mit steigender Lösungsmittelkonzentration steigt. Die RTO kann vorzugsweise dabei katalytisch wirken.
  • Vorteilhafterweise gelangen nach der Aufbereitung keine prozesskritischen Reaktionsprodukte zurück in den globalen Umluftstrom.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die thermische Aufbereitungsvorrichtung eine elektrische Heizvorrichtung ist oder umfasst, wobei vorzugsweise vorgesehen ist, dass eine thermische Aufbereitung ausschließlich durch direkte elektrische Beheizung, insbesondere elektrische Widerstandheizung, und/oder durch exotherme Umwandlung von Bestandteilen des globalen Umluftstroms erfolgt.
  • Die Aufbereitungsvorrichtung umfasst vorzugsweise einen Ventilator zur Durchförderung des globalen Umluftstromes.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Aufbereitungsvorrichtung unabhängig von einer Abführungsvorrichtung zur Abführung von Abluft vorgesehen und/oder ausgebildet ist, insbesondere räumlich getrennt von einem Abluftstrang, welcher der Abführung von Abluft aus der Umluftanlage dient.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass mittels der lokalen Umluftmodule verschiedene und/oder aneinander angrenzende Behandlungsraumabschnitte des Behandlungsraums mit lokalen Umluftströmen durchströmbar sind und dass mittels der globalen Umluftführung an oder benachbart zu einem oder mehreren lokalen Umluftmodulen globale Umluft zuführbar ist und/oder dass mittels der globalen Umluftführung Umluft aus einem oder mehreren anderen lokalen Umluftmodulen als globaler Umluftstrom abführbar ist.
  • Vorzugsweise wird der globale Umluftstrom am Anfang und/oder am Ende des Behandlungsraums, insbesondere in eine Einlassschleuse und/oder Auslassschleuse, zugeführt.
  • Vorstellbar ist aber auch, dass die globale Umluft eingangs direkt den lokalen Umluftmodulen zugeführt wird.
  • Die Abluft der Behandlungsraumabschnitte wird bevorzugt an einem der mittleren Behandlungsraumabschnitte abgeführt.
  • Somit wird die dem Behandlungsraum zugeführte globale Umluft den Behandlungsraumabschnitten zugeführt, in diesen mittels der lokalen Umluftmodule mehrfach umgewälzt und dann zur Aufbereitung abgeführt.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die globale Umluftführung in eine oder mehrere Schleusen des Behandlungsraums zur fluidwirksamen Trennung einer Atmosphäre im Behandlungsraum von einer Umgebung der Umluftanlage mündet.
  • Hierbei ist vorteilhaft, dass der globale Umluftstrom insbesondere als Schleusenluftstrom oder als Teil des Schleusenluftstroms am Anfang und/oder Ende des Behandlungsraums zuführbar und infolgedessen in den Behandlungsraum einleitbar ist.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Umluftanlage eine oder mehrere zusätzlich zur Aufbereitungsvorrichtung vorgesehene Zusatzheizvorrichtungen umfasst, mittels welcher ein oder mehrere Teilströme des globalen Umluftstroms erhitzbar sind.
  • Alternativ oder ergänzend dazu kann vorgesehen sein, dass der gesamte globale Umluftstrom erhitzbar ist.
  • Weiter alternativ oder ergänzend dazu kann vorgesehen sein, dass ein oder mehrere Teilströme eines oder mehrerer lokaler Umluftströme erhitzbar sind.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass ein durch die Aufbereitungsvorrichtung hindurchgeführter Luftstrom mittels der Aufbereitungsvorrichtung zumindest temporär auf eine Temperatur erhitzbar ist, welche eine chemische Umwandlung von im Luftstrom enthaltenen Stoffen, insbesondere Lösemittel, bewirkt.
  • Vorzugsweise ist die Aufbereitungsvorrichtung eine RTO, welche eine Abreinigung von lösemittelhaltiger und/oder geruchsbelästigender Abluft ermöglicht.
  • Bei dieser Technologie können durch die Verwendung von keramischen Wärmespeichermedien im Gegensatz zu konventionellen TAR höhere thermische Wirkungsgrade bis über 97% erzielt werden. Das Grundprinzip der RTO basiert auf der Nutzung von mehreren kombinierten Reaktor-/ Wärmespeicherbetten. Hierbei wird der kontaminierte Luftstrom, d.h. der aus dem Behandlungsraum abgeführte globale Umluftstrom, zunächst vorgewärmt und anschließend durch einen Gasbrenner oder eine elektrische Heizvorrichtung auf die erforderliche Reaktionstemperatur aufgeheizt, so dass die thermische Umsetzung der Schadstoffe erfolgen kann. Als Reaktor/- Wärmespeicherbetten werden in der Regel keramische Wabenkörper eingesetzt. Die Abwärme des Reaktors wird dann mit der Abluft, der aufbereiteten globalen Umluft, durch ein zweites Bett geführt und die Wärme dort gespeichert. Nach der Aufheizung dieses Speicherbettes wird die Prozessluftführung umgeschaltet. Die abgeführte globale Umluft passiert nun das aufgeheizte Reaktor-/Wärmebett, wärmt sich dabei auf und die Schadstoffe werden anschließend im ersten Bett oxidiert. In der weiteren Betriebsweise wird zyklisch zwischen diesen Zuständen umgeschaltet. Auf diese Weise kann bei diesem Verfahren bereits bei sehr niedrigen Schadstoffkonzentrationen in der Abluft ein autothermer Betriebzustand erreicht werden, d.h. die Anlage beheizt sich durch die bei der Oxidation der Schadstoffe freiwerdende Exothermie selbst und benötigt keine weitere Zuheizung durch Primärenergie.
  • Alternativ oder ergänzend dazu kann vorgesehen sein, dass ein durch eine oder mehrere Zusatzheizvorrichtungen hindurchgeführter Luftstrom mittels der einen oder mehreren Zusatzheizvorrichtungen erhitzbar ist, insbesondere ohne wesentliche Umwandlung von im Luftstrom enthaltenen Stoffen.
  • In der einen oder den mehreren Zusatzheizvorrichtungen wird der globale Umluftstrom bevorzugt nur aufgeheizt, bevor er dem Behandlungsraum wieder zugeführt wird.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Umluftluftanlage mindestens einen Wärmeübertrager umfasst, mittels welchem in einem abgeleiteten globalen Umluftstrom oder in einem Abluftstrom enthaltene Wärmeenergie auf einen dem globalen Umluftstrom zugeführten Frischluftstrom übertragbar ist.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass ein aus dem Wärmeübertrager abgeführter, abgekühlter Abluftstrom einem Frischluftstrom und/oder einem abgekühlten Abluftstrom, welche einem Nachbehandlungsraum zugeordnet sind, zuführbar ist.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass stromabwärts und/oder stromaufwärts der Aufbereitungsvorrichtung mindestens eine Filtereinrichtung und/oder Absorptionseinrichtung zur Aufkonzentration oder Abkonzentration mindestens eines Elements, einer Verbindung und/oder eines Gemisches des globalen Umluftstromes angeordnet ist.
  • Vorzugsweise ist die Filtereinrichtung ein Heißbereichsfilter, insbesondere ein Filter für klebrige Stoffe wie z.B. Phosphate, ein Baffle-Filter oder eine Filterkerze, wobei die Effizienz der Filtereinrichtung durch eine Vorbeschichtung (pre-coating) oder eine zyklische Filterabreinigung verbessert werden kann. Alternativ oder ergänzend kann die Filtereinrichtung ein chemischer Filter (Chemisorption) sein oder Branntkalk umfassen.
  • Die Absorptionseinrichtung ist vorzugsweise eine Anlage zur Rauchgasentschwefelung.
  • Die Aufgabe wird ferner durch eine Behandlungsanlage mit einer erfindungsgemäßen Umluftanlage gelöst.
  • Vorzugsweise ist vorgesehen, dass die Behandlungsanlage mit einer Mittelspannung von mindestens ungefähr 3 kV und/oder höchstens ungefähr 8 kV, insbesondere 4.160 V bis 6.600 V, versorgbar ist.
  • Vorzugsweise können alle elektrisch betriebenen Heizkomponenten der Umluftanlage bzw. der Behandlungsanlage, wie u.a. die vorzugsweise elektrisch betriebenen Zusatzheizvorrichtungen und die Aufbereitungsvorrichtung, mit einer Mittelspannung von beispielsweise mindestens ungefähr 3 kV und/oder höchstens ungefähr 8 kV, insbesondere 4.160 V bis 6.600 V, statt der üblichen 400 V versorgt werden. Das kann zwar besondere Heizelemente mit entsprechenden Mehrkosten erfordern, bietet jedoch vorzugsweise in der Peripherie, d.h. bzgl. der Anschlüsse, Kabel, etc., große Einsparpotentiale. Außerdem ist ein wesentlich geringerer Faktor der Spannungstransformation aus dem Versorgungsnetz notwendig, was u.a. die Trafostation zugunsten geringerer Investitionskosten verkleinert und Platz spart. Der Anschluss an eine elektrisch betriebene Heizkomponente mit einer derartigen Mittelspannung bringt zudem deutlich geringere Kabeldurchmesser mit sich.
  • Der vorliegenden Erfindung liegt ferner die Aufgabe zugrunde, ein Verfahren bereitzustellen, welches einen abluftreduzierten Betrieb einer Umluftanlage ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß dem unabhängigen Verfahrensanspruch gelöst.
  • Vorzugsweise werden beim Verfahren zum Betreiben einer Umluftanlage mehrere lokale Umluftströme mittels mehrerer lokaler Umluftmodule einem zu belüftenden Raum, insbesondere einem Behandlungsraum, zugeführt, durch denselben hindurchgeführt und aus demselben abgeführt, wobei die lokalen Umluftströme den Behandlungsraum jeweils mehrfach durchströmen. Ferner wird vorzugsweise ein globaler Umluftstrom mittels einer globalen Umluftführung von den mehreren lokalen Umluftmodulen und/oder dem Behandlungsraum abgeführt, aufbereitet und erneut mindestens einem der mehreren lokalen Umluftmodule und/oder dem Behandlungsraum zugeführt.
  • Das Verfahren weist vorzugsweise einzelne oder mehrere der im Zusammenhang mit der Umluftanlage beschriebenen Merkmale und/oder Vorteile auf.
  • Vorzugsweise weist ferner die Umluftanlage einzelne oder mehrere der im Zusammenhang mit dem Verfahren beschriebenen Merkmale und/oder Vorteile auf.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass der globale Umluftstrom zur Aufbereitung desselben erhitzt wird, insbesondere direkt und/oder ausschließlich mittels einer elektrischen Widerstandsheizung und/oder durch exotherme Umwandlung von Bestandteilen des globalen Umluftstroms.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass mindestens ungefähr 90 %, insbesondere mindestens ungefähr 95 %, eines Gesamtvolumenstroms des von dem Behandlungsraum abgeführten globalen Umluftstroms aufbereitet und erneut dem Behandlungsraum zugeführt werden.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass die Aufbereitung des globalen Umluftstroms unabhängig von einer Abführung von Abluft erfolgt, insbesondere räumlich getrennt von einem Abluftstrang, welcher der Abführung von Abluft aus der Umluftanlage dient.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass zumindest näherungsweise der gesamte, von den lokalen Umluftmodulen abgeführte globale Umluftstrom bei jedem Umlauf innerhalb der globalen Umluftführung thermisch aufbereitet wird, insbesondere ohne die Verwendung von Zusatzstoffen oder sonstigen Eintrag von Stoffen in den globalen Umluftstrom.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass der globale Umluftstrom zumindest teilweise oder zumindest näherungsweise vollständig durch die Aufbereitungsvorrichtung hindurchgeführt und dabei zumindest temporär auf eine Temperatur erhitzt wird, welche eine chemische Umwandlung von im Luftstrom enthaltenen Stoffen, insbesondere Lösemittel, bewirkt, und dass ein zumindest ein Teil der temporär im globalen Umluftstrom enthaltenen Wärme rekuperiert wird, so dass der globale Umluftstrom die Aufbereitungsvorrichtung mit einer Temperatur verlässt, welche zwischen einer Eingangstemperatur und einer temporären Maximaltemperatur liegt.
  • Bei einer Ausgestaltung der Erfindung kann vorgesehen sein, dass der globale Umluftstrom teilweise oder zumindest näherungsweise vollständig durch eine oder mehrere Zusatzheizvorrichtungen hindurchgeführt und dass dabei die Temperatur des globalen Umluftstroms um höchstens ungefähr 20 K, insbesondere höchstens ungefähr 15 K, angehoben wird, insbesondere ohne zwischenzeitliche Überhitzung und hierdurch bewirkte Umwandlung von im Umluftstrom enthaltenen Stoffen.
  • Weitere bevorzugte Merkmale und/oder Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung und der zeichnerischen Darstellung von Ausführungsbeispielen.
  • In den Figuren zeigen:
    • 1 eine schematische Darstellung einer ersten Ausführungsform einer Behandlungsanlage;
    • 2 eine schematische Darstellung einer zweiten Ausführungsform einer Behandlungsanlage;
    • 3 eine schematische Darstellung einer dritten Ausführungsform einer Behandlungsanlage;
    • 4 eine schematische Darstellung einer vierten Ausführungsform einer Behandlungsanlage;
    • 5 eine schematische Darstellung einer fünften Ausführungsform einer Behandlungsanlage;
    • 6 eine schematische Darstellung einer sechsten Ausführungsform einer Behandlungsanlage;
    • 7 eine schematische Darstellung einer siebten Ausführungsform einer Behandlungsanlage;
    • 8 eine schematische Darstellung einer achten Ausführungsform einer Behandlungsanlage;
    • 9 eine schematische Darstellung einer neunten Ausführungsform einer Behandlungsanlage;
    • 10 eine schematische Darstellung einer zehnten Ausführungsform einer Behandlungsanlage;
    • 11 eine schematische Darstellung einer elften Ausführungsform einer Behandlungsanlage; und
    • 12 eine schematische Darstellung einer zwölften Ausführungsform einer Behandlungsanlage.
  • Gleiche oder funktional äquivalente Elemente sind in sämtlichen Figuren mit denselben Bezugszeichen versehen.
  • Eine in 1 dargestellte, erste Ausführungsform einer als Ganzes mit 100 bezeichneten Behandlungsanlage dient der Behandlung von Werkstücken (nicht dargestellt), insbesondere der Trocknung von Fahrzeugkarosserien.
  • Die Behandlungsanlage 100 ist insbesondere ein Trockner 102 zum Trocknen von zuvor beschichteten Fahrzeugkarosserien.
  • Die Behandlungsanlage 100 umfasst eine Umluftanlage 104, einen Behandlungsraum 106 und einen Nachbehandlungsraum 108.
  • Der Behandlungsraum 106 umfasst mehrere Behandlungsraumabschnitte 110.
  • Die Behandlungsraumabschnitte 110 sind mehreren separaten, lokalen Umluftmodulen 112 der Umluftanlage 104 zugeordnet.
  • Die lokalen Umluftmodule 112 wälzen jeweils einen lokalen Umluftstrom 114 in einer lokalen Umluftführung 116 durch den jeweils zugeordneten Behandlungsraumabschnitt 110.
  • Die lokalen Umluftmodule 112 umfassen vorzugsweise einen Ventilator und eine bevorzugt elektrische Heizvorrichtung zum Anheizen des jeweiligen lokalen Umluftstromes 114.
  • Die zu behandelnden Werkstücke, insbesondere Fahrzeugkarosserien, werden durch den Behandlungsraum 106 und den Nachbehandlungsraum 108 entlang einer Förderrichtung 118 gefördert.
  • Die Umluftanlage 104 umfasst ferner eine globale Umluftführung 120, welche einen globalen Umluftstrom 122 führt.
  • Der globale Umluftstrom 122 wird vom Behandlungsraum 106 auf Höhe eines der mittleren Behandlungsraumabschnitte 110 abgeführt und diesem anschließend zumindest teilweise wieder zugeführt.
  • Dabei wird ein an einem der mittleren Behandlungsraumabschnitte 110 abgeführter globaler Umluftstrom 124 einer stromabwärts des Behandlungsraums 106 angeordneten Aufbereitungsvorrichtung 126 zur Aufbereitung zugeführt.
  • Die Aufbereitung in der Aufbereitungsvorrichtung 126 erfolgt vorzugsweise mittels RTO, welche vorzugsweise elektrisch betriebene, flammenlose RTO ist.
  • Ein in der Aufbereitungsvorrichtung 126 aufbereiteter globaler Umluftstrom 128 wird stromabwärts der Aufbereitungsvorrichtung 126 aufgeteilt in einen abgeleiteten globalen Umluftstrom 130 sowie einen zurückgeführten globalen Umluftstrom 132.
  • Der abgeleitete globale Umluftstrom 130 dient dazu, seine Wärmeenergie in einem Wärmeübertrager 133 auf einen zugeführten Frischluftstrom 134 zu übertragen.
  • Der Wärmeübertrager 133 ist bevorzugt ein Luft-Luft-Wärmeübertrager wie beispielsweise ein Rohrbündel- oder Plattenwärmetauscher, in welchem der abgeführte globale Umluftstrom 130 möglichst stark bei der Übertragung der Wärmeenergie auf den zugeführten Frischluftstrom 134 heruntergekühlt wird, d.h. beispielsweise auf 60 °C, um damit möglichst viel Wärmeenergie in der Behandlungsanlage 100 zu halten.
  • Der abgeleitete globale Umluftstrom 130 wird nach dem Durchströmen des Wärmeübertragers 133 als abgekühlter Abluftstrom 136 entweder an die Umwelt, d. h. über Dach, abgegeben oder einem Abgasstrang zugeführt, in welchem eine weitere Reinigung erfolgt.
  • Der Normvolumenstrom des abgekühlten Abluftstromes 136 entspricht vorzugsweise demjenigen des zugeführten Frischluftstroms 134, wobei der Frischluftstrom 134 teilweise über die Schleusen angesaugt und teilweise über den Wärmeübertrager 133 geführt wird (in der Regel 500 Nm3/h Ansaugung je Schleuse). Insbesondere beträgt dieser Normvolumenstrom 2.000 Nm3/h.
  • Durch die Wärmeübertragung von dem abgeleiteten globalen Umluftstrom 130 auf den zugeführten Frischluftstrom 134 im Wärmeübertrager 133 ergibt sich ein vorgewärmter Frischluftstrom 138, welcher zur Auffrischung dem zurückgeführten globalen Umluftstrom 132 zugeführt wird.
  • Der aufgemischte globale Umluftstrom 140 wird dann in einer Zusatzheizvorrichtung 142 aufgeheizt.
  • Der aufgeheizte globale Umluftstrom 144 wird in der in 1 dargestellten, ersten Ausführungsform einer Einlassschleuse 146 und/oder einer Auslassschleuse 148 des Behandlungsraum 106 zugeführt.
  • Der zurückgeführte globale Umluftstrom 132, welcher mit dem vorgewärmten Frischluftstrom 138 vermischt wird, wird, wie bereits erwähnt, als aufgemischter globaler Umluftstrom 140 in der Zusatzheizvorrichtung 142 aufgeheizt, wobei die Zusatzheizvorrichtung eine Brennkammer sein kann, vorzugsweise aber eine elektrische Heizvorrichtung ist. Das Aufheizen bringt den durchströmenden globalen Umluftstrom auf eine für den Schleusenbetrieb der Einlassschleuse 146 und/oder Auslassschleuse günstige bzw. geeignete Temperatur. Die Zusatzheizvorrichtung 142 gleicht dabei durch eine schnelle Temperaturregelung Schwankungen in der Austrittstemperatur aus der Aufbereitungsvorrichtung 126 aus, welche bei RTO-Systemen bedingt sind durch den zyklischen Umschaltvorgang zwischen den Zuständen. Der Einsatz einer nachgeschalteten, vorzugsweise elektrischen Zusatzheizvorrichtung mit geringer Trägheit und schneller Regelbarkeit ist deshalb besonders vorteilhaft.
  • Nach der Zuführung des aufgeheizten globalen Umluftstroms 144 zum Behandlungsraum 106 wird dieser dort mittels der lokalen Umluftmodule 112 mehrfach umgewälzt. Die globale Umluftführung 120 ist vorzugsweise ein kontinuierlicher Prozess zur Aufbereitung des in den Behandlungsraumabschnitten 110 und den lokalen Umluftmodulen 112 umgewälzten lokalen Umluftstromes 114.
  • Der abgeführte globale Umluftstrom 124, welcher der Aufbereitungsvorrichtung 126 zugeführt wird, orientiert sich vorzugsweise am Luftmengenbedarf der Einlassschleuse 146 und/oder Auslassschleuse 148, wobei dieser Bedarf insbesondere abhängig von der Auslastung der Behandlungsanlage 100 ist.
  • Der Nachbehandlungsraum 108 schließt sich in Förderrichtung 118 an den Behandlungsraum 106 an.
  • Der Nachbehandlungsraum 108 umfasst mehrere Nachbehandlungsraumabschnitte 150.
  • Dem Nachbehandlungsraum 108 ist ein Wärmeüberträger 152 zugeordnet, welcher die in einem Abluftstrom 154 enthaltene Wärmeenergie auf einen zugeführten Frischluftstrom 156 überträgt. Gängiger ist allerdings eine Bypassführung (nicht dargestellt), wodurch die Frischluftansaugung einen Teilstrom der Frischluft angesaugt werden kann,
  • Ein vorgewärmter Frischluftstrom 158 wird einem der Nachbehandlungsraumabschnitte 150 vom Wärmeübertrager 152 zugeführt.
  • Zwischen den Nachbehandlungsraumabschnitten 150 ist eine Kaskadenluftfühunrg 160 ausgebildet.
  • Nach dem Übertragen zumindest eines Teils der Wärmeenergie wird der Abluftstrom stromabwärts des Wärmeübertragers 152 als ein abgekühlter Abluftstrom 162 abgeführt.
  • In 2 ist eine zweite Ausführungsform der Behandlungsanlage 100 dargestellt.
  • Bei der in 2 dargestellten Ausführungsform der Behandlungsanlage 100 wird der in der Zusatzheizvorrichtung 142 aufgeheizte globale Umluftstrom 144 alternativ direkt den außen angeordneten, lokalen Umluftmodulen 112 zugeführt, d.h. den lokalen Umluftmodulen 112, welche den Behandlungsraumabschnitten 110 mit der Einlassschleuse 146 und der Auslassschleuse 148 zugeordnet sind.
  • Die Zuführung in die beiden außen angeordneten, lokalen Umluftmodule 112 erfolgt aus Balancegründen und zu Gunsten einer optimalen Durchspülung des Behandlungsraums 106.
  • Auch eine Zuführung in mehr als zwei Umluftmodule 112 ist vorstellbar.
  • Im Falle einer Zuführung des aufgeheizten Umluftstromes 144 zu den lokalen Umluftmodule 112 werden die Einlassschleuse 146 und die Auslassschleuse 148 als Umluftschleusen betrieben.
  • Es soll verstanden werden, dass die zurückgeführte, aufgeheizte Umluft, welche durch die Aufbereitung zumindest annähernd einem Reingas entspricht, an den Außenbereichen des Behandlungsraumes 106 zuführbar ist, d.h. insbesondere an den entsprechenden lokalen Umluftmodulen 112 und/oder der Einlassschleuse 146 und/oder Auslassschleuse 148, und danach insbesondere durch die lokale Umluftführung 116 von beiden Enden des Behandlungsraums 106 in Richtung der Mitte des Behandlungsraums 106 gefördert wird.
  • Der Normvolumenstrom des aufgeheizten globalen Umluftstromes 144 beträgt bevorzugt 10000 Nm3/h.
  • Folglich zeigt die in 3 dargestellte, dritte Ausführungsform der Behandlungsanlage 100 eine Kombination der Zuführmöglichkeiten des aufgeheizten Umluftstromes 144, welcher dementsprechend sowohl der Einlassschleuse 146 und der Auslassschleuse 148 als auch zumindest den beiden in der 3 außen angeordneten, lokalen Umluftmodulen 112 zugeführt wird.
  • Die kombinierte Zuführung ist besonders dann von Vorteil, wenn große Luftmengen bereitgestellt werden bzw. in der globalen Umluftführung zirkulieren, d.h. wenn die in dem globalen Umluftstrom 122 geführte Luftmenge größer als der Luftbedarf der Einlassschleuse 146 und Auslassschleuse 148 ist.
  • In der in 4 dargestellten, vierten Ausführungsform der Behandlungsanlage 100 wird der abgeleitete globale Umluftstrom 130 nach der Übertragung zumindest eines Teils seiner Wärmeenergie auf den zugeführten Frischluftstrom 134 im Wärmeübertrager 133 nicht als abgekühlte Abluft ausgeführt, sondern als ein Zuluftstrom 164 einem Vorbehandlungsraum 166 zugeführt, welcher bezogen auf die Förderrichtung 118 vor dem Behandlungsraum 106 angeordnet ist und einen oder mehrere Vorbehandlungsraumabschnitte 168 umfasst.
  • Die Vorbehandlungsraumabschnitte 168 sind ebenfalls jeweils einem lokalen Umluftmodul 112 zugeordnet.
  • Der am Anfang des Vorbehandlungsraum 166 angeordnete Vorbehandlungsraumabschnitte 168 weist gleichfalls eine eigene Einlassschleuse 146 auf.
  • Der Zuluftstrom 164 kann der Einlassschleuse 146 des Vorbehandlungsraums 166 und/oder einem der den Vorbehandlungsraumabschnitten 168 zugeordneten, lokalen Umluftmodule 112 zugeführt werden.
  • Vorzugsweise zwischen den beiden oder inmitten von mehreren Vorbehandlungsraumabschnitten 168 kann ferner ein Abluftstrom 170 über Dach oder in einen Abgasstrang zur Reinigung ausgeführt werden, dessen Normvolumenstrom bevorzugt 2.000 Nm3/h beträgt.
  • Alternativ zu der in 4 dargestellten vierten Ausführungsform wird in einer fünften Ausführungsform der Behandlungsanlage 100, welche in 5 dargestellt ist, der zurückgeführte globale Umluftstrom 138 nicht mit vorgewärmter Frischluft aus einem Frischluft-Wärmeübertrager aufgemischt, sondern der zugeführte Frischluftstrom 134 wird dem aufbereiteten globalen Umluftstrom 128 direkt zugemischt.
  • Infolgedessen wird der aufgemischte globale Umluftstrom 140 ohne Vorwärmung der Einlassschleuse 146 des Vorbehandlungsraums 166 und/oder einem der den Vorbehandlungsraumabschnitten 168 zugeordneten, lokalen Umluftmodule 112 zugeführt.
  • Weiter alternativ zu der vierten und der fünften Ausführungsform zeigt 6 eine sechste Ausführungsform eine Behandlungsanlage 100, in welcher der Abluftstrom 170 des Vorbehandlungsraums 166 zum Wärmetauscher 132 geführt wird.
  • Die im Abluftstrom 170 enthaltene Wärmeenergie wird im Wärmeübertrager 133 an den zugeführten Frischluftstrom 134 übertragen.
  • Es kann ferner günstig sein, wenn der abgekühlte Abluftstrom 136 nicht über Dach aus der Behandlungsanlage 100 geführt wird, sondern - wie in 7 in einer siebten Ausführungsform der Behandlungsanlage 100 dargestellt - dem abgekühlten Abluftstrom 162 und/oder dem zugeführten Frischluftstrom 156 des Wärmeübertragers 152, welcher dem Nachbehandlungsraum 108 zugeordnet ist, zugeführt wird.
  • Die Einspeisung des abgekühlten Abluftstromes 136 in den Bereich des Nachbehandlungsraums 150, welcher vorzugsweise eine Kühlzone bildet, reduziert dort den Bedarf an Heizenergie, insbesondere im Winterbetrieb. Außerdem entfällt durch diese Zuführung ein Abluftkanal der Behandlungsanlage 100, um die Abluft über Dach auszuführen. Diese wird nun über den Abluftstrom 162 des Nachbehandlungsraums 108 aus der Behandlungsanlage 100 geführt.
  • Für den Fall, dass der Nachbehandlungsraum 108 keine Wärmeenergiebedarf aufweist, kann auch mit Hilfe einer Bypass-Führung der mit dem globalen Umluftstrom 122 assoziierte, abgekühlte Abluftstrom 136 zusammen dem Abluftstrom 162 des Nachbehandlungsraums 108 über Dach ausgeführt werden.
  • In einer achten und neunte Ausführungsform der Behandlungsanlage 100, welche in der 8 bzw. 9 dargestellt ist, wird der vorgewärmte Frischluftstrom 138 vor der Zumischung zum zurückgeführten globalen Umluftstrom 132 zunächst mittels der Zusatzheizvorrichtung 142, welche vorzugsweise eine elektrische Heizvorrichtung ist oder umfasst, weiter aufgeheizt, d.h. die Zusatzvorrichtung ist direkt stromabwärts des Wärmeübertragers 133 angeordnet und nicht wie in der ersten bis siebten Ausführungsform unmittelbar stromaufwärts des Behandlungsraums 106.
  • Der aus dem Wärmeübertrager 133 geführte, vorgewärmte Frischluftstrom 138 wird mittels der Zusatzheizvorrichtung 142 derart zu einem aufgeheizten Frischluftstrom 172 aufgeheizt, dass dieser nach dem Zumischen zum zurückgeführten globalen Umluftstrom 132 den aufgeheizten globalen Umluftstrom 144 ergibt, welcher die für den Behandlungsraum 106 bzw. die Schleusen 146, 148 geeignete bzw. günstige Temperatur aufweist.
  • In diesem Fall kann die Zusatzheizvorrichtung 142 als eine einfache Heizvorrichtung, insbesondere ohne Schutzummantelung, ausgebildet sein, da sie ausschließlich mit der zugeführten Frischluft in Kontakt kommt und nicht mit der globalen Umluft.
  • Ferner kann die Zusatzvorrichtung 142 mit einem Regler 174 verbunden sein oder einen solchen aufweisen, um die Temperatur des Luftstromes nach der Zusatzheizvorrichtung 142 und/oder nach dem Zumischen des aufgeheizten Frischluftstromes 172 zu dem zurückgeführten globalen Umluftstrom 132 zu regeln.
  • Da die Schwankungen hinsichtlich der Austritttemperatur des aufbereiteten globalen Umluftstromes 128 zyklisch und daher gut vorhersehbar sind, kann der Regler 174 modellprädikativ betrieben werden, d.h. die Leistung der Zusatzheizvorrichtung 142 kann vorausschauend angepasst werden, womit insbesondere vermieden wird, das festgelegte Grenzwerte erreicht und/oder überschritten werden.
  • Der aufgeheizte globale Umluftstrom 144 wird nach dem Zumischen gemäß der achten Ausführungsform in 8 der Einlassschleuse 146 und der Auslassschleuse 148 des Behandlungsraums 106 zugeführt, wohingegen in der neunten Ausführungsform in 9 dieser zumindest zwei der lokalen Umluftmodule 112 zugeführt wird.
  • Vorstellbar ist auch hier, dass der aufgeheizte globale Umluftstrom 144 alternativ sowohl den Schleusen 146, 148 als auch mindestens einem lokalen Umluftmodul 112 zugeführt wird.
  • In 10 ist eine zehnte Ausführungsform der Behandlungsanlage 100 dargestellt, bei welcher der abgeleitete globale Umluftstrom 130, vergleichbar zur achten und neunten Ausführungsform, seine Wärmeenergie in dem Wärmeübertrager 133 auf einen zugeführten Frischluftstrom 134 überträgt und die erwärmte Frischluft sodann als vorgewärmter Frischluftstrom 138 die vorzugsweise Zusatzheizvorrichtung 142 durchströmt, um in dieser weiter aufgeheizt zu werden. Die Zusatzheizvorrichtung 142 ist nicht zwingend erforderlich, weil die Luftmischung ohnehin durch die Zusatzheizvorrichtung 176 auf die gewünschte Beimischtemperatur gebracht wird.
  • Der aufgeheizte Frischluftstrom 172 wird dann dem zurückgeführten globalen Umluftstrom 132 zugemischt, wodurch zusammen ein globaler Umluftstrom 144 gebildet wird.
  • In der zehnten Ausführungsform umfassen die lokalen Umluftmodule 112 keine eigenen Heizvorrichtungen, sondern es ist eine zentrale Heizvorrichtung 176, insbesondere eine elektrische Heizvorrichtung, stromaufwärts der lokalen Umluftmodule 112 angeordnet, welche den aufgeheizten globalen Umluftstrom 144 weiter aufheizt, bevor dieser über die lokalen Umluftmodule 112 den lokalen Umluftströmen 114 zugeführt wird und in den lokalen Umluftführungen 116 gewälzt wird.
  • Ferner weist die Behandlungsanlage 100 nach 10 eine Bypass-Umluftführung 178 auf, welche den abgeführten globalen Umluftstrom 124 bei Bedarf an der Aufbereitungsvorrichtung 126 vorbeiführen kann.
  • Der Normvolumenstrom in der Bypass-Umluftführung 178 liegt je nach Bedarf vorzugsweise im Bereich von 0 bis 10000 Nm3/h.
  • In 11 ist eine elfte Ausführungsform der Behandlungsanlage 100 dargestellt, welche wie die zehnte Ausführungsform eine Bypass-Umluftführung 178 aufweist, um den abgeführte globale Umluftstrom 124 an der Aufbereitungsvorrichtung 126 vorbeizuführen.
  • Die Bypass-Umluftführung 178 ist insbesondere dann von Vorteil, wenn die Behandlungsanlage energieeffizient im Teillastbereich betrieben wird.
  • Der globale Umluftstrom 122, welcher zur Aufbereitungsvorrichtung 126 geführt wird, welche vorzugsweise eine elektrisch beheizte, flammenlose RTO ist oder umfasst, sowie der Teilstrom, der die Behandlungsanlage 100 verlässt, können auslastungsabhängig angepasst werden, beispielsweise über Klappenregelung in den entsprechenden Strömungspfaden / -führungen. Auch der Frischluftstrom lässt sich entsprechend mittels einer Volumenstrommessung und einer Regelungsvorrichtung anpassen.
  • Alternativ kann, wie in 11 gezeigt, ein konstanter Volumenstrom für alle Lastfälle vorgesehen sein, jedoch wird hierbei bei verringerter Anlagenauslastung nur ein Teilstrom der Aufbereitungsvorrichtung 126 zugeführt, der restliche globale Umluftstrom wird über die Bypass-Umluftführung 178 geführt. Je nach Lastfall kann der Bypass stufenweise angepasst werden.
  • Statt eines einstellbaren Umluftvolumenanteils über den Bypass kann auch der gesamte globale Umluftstrom 122 zur Aufbereitungsvorrichtung 126 auslastungsabhängig angepasst werden.
  • In der globalen Umluftführung 120, wie in 11 gezeigt, ist ein erster Ventilator 180 stromabwärts der Aufbereitungsvorrichtung 126 angeordnet sowie ein zweiter Ventilator 182 stromabwärts des ersten Ventilators 180, welche beide insbesondere der Absaugung globaler Umluft aus dem Behandlungsraum 106 dienen.
  • Vorstellbar ist aber auch, dass der erste Ventilator 180 stromaufwärts der Aufbereitungsvorrichtung 126 angeordnet ist, während der zweite Ventilator 182 stromabwärts der Aufbereitungsvorrichtung 126 angeordnet ist.
  • Der erste Ventilator 180 treibt die globale Umluft vorzugsweise konstant an, während der Durchsatz des zweiten Ventilators 182 an den Luftmengenbedarf der Schleusen 146, 148 anpassbar ist.
  • Ähnlich wie bei der siebten Ausführungsform wird der abgekühlte Abluftstrom 136 nicht über Dach abgeführt, sondern dem Abluftstrom 162 und/oder dem Frischluftstrom 156 des Wärmeübertragers 152 des Nachbehandlungsraums 108 zugeführt.
  • Obwohl das Einbringen von Fremdstoffen in die Behandlungsanlage 100 durch Erdgas bei einer Aufbereitung mit einer elektrischen Beheizung in der Aufbereitungsvorrichtung vermieden wird, kann es dennoch zu Verunreinigungen durch Lackbestandteile und deren Verbrennungsprodukte kommen, welche im Zuge der Behandlung der Werkstücke im Behandlungsraum 106 freigesetzt werden.
  • Kontaminationen von Kanälen bzw. Führungen durch folgende Stoffe sind denkbar:
    1. a) Partikel (Silanverbindungen, Phosphate); und/ oder
    2. b) weitere chemische Reaktionsprodukte (Crackprodukte); und/oder
    3. c) Schwefelverbindungen.
  • Durch die stark abluftreduzierte Fahrweise der erfindungsgemäßen Behandlungsanlage 100 ergibt sich ferner
    • d) eine Aufkonzentration von Komponenten wie CO2; und/oder
    • e) eine Abkonzentration von Sauerstoff.
  • Insbesondere zur Reinigung des der Aufbereitungsvorrichtung 126 zugeführten globalen Umluftstroms 124 können daher in Bezug auf die Kontaminationen a) bis c) folgende Maßnahmen ergriffen werden:
    • zu a) Heißbereichsfilter der Behandlungsanlage 100, insbesondere ein Filter für klebrige Stoffe (z.B. Phosphate), Baffle-Filter, Filterkerzen, Pre-Coatierung von Filtern und zyklische Filterabreinigung; und/oder
    • zu b) chemische Filter (Chemisorption) oder Brandkalk; und/oder
    • zu c) Rauchgasentschwefelung.
  • Alle Vorrichtungen a) bis c) können vor und/oder nach der Aufbereitungsreinigungsvorrichtung 126 angeordnet werden.
  • In 12 ist eine zwölfte Ausführungsform der Behandlungsanlage 100 gezeigt, welche im Wesentlichen der siebten Ausführungsform entspricht. Allerdings wird in der 12 aus Darstellungsgründen der abgeführte globale Umluftstrom 124 nach unten abgeführt, wodurch der globale Umluftstrom 122, anders als bei den Ausführungsformen in den 1 bis 11, im Uhrzeigersinn verläuft.
  • Die globale Umluftführung 120 der Behandlungsanlage 100 in 12 weist eine Zuführung 184 stromaufwärts der Zusatzheizvorrichtung 142 auf, mit welcher der aufgemischte globale Umluftstrom 140 ohne zusätzliches Aufheizen der Einlassschleuse 146 zugeführt werden kann.
  • Ferner weist die Umluftführung 120 stromabwärts der Zusatzheizvorrichtung eine Rückführung 186 auf, mit welcher zumindest ein Teil des aufgeheizten globalen Umluftstromes in die Zuführung 184 geleitet werden kann.
  • In der Zuführung 184 ist eine erste Drosselklappe 188 und in der Rückführung 186 ein zweite Drosselklappe 190 angeordnet.
  • Mittels der klappengesteuerten und/oder -geregelten Zuführung 184 und der ebenfalls klappengesteuerten und/oder -geregelten Rückführung lassen sich für den Einlass und den Auslass des Behandlungsraums 106, insbesondere beim Aufheizen des Behandlungsraums 106, zwei Temperaturniveaus einstellen; und zwar ein niedrigeres Temperaturniveau am Einlass bei vorzugsweise maximaler Aufheizung am Auslass.
  • Während des Betriebes kann dieser Temperaturunterschied per Steuerung und/oder Regelung der Drosselklappen 188, 190 angepasst werden.
  • Es sind des Weiteren zur Energieeinsparung beim Anfahren bzw. Abfahren der Behandlungsanlage 100 folgende Möglichkeiten bekannt oder zumindest vorstellbar:
    1. a) Ein optimiertes Aufheizen, d.h. abluftfrei; hierbei wird kein Abluftstrom über Dach geführt, die Rückführung ist vollständig und sämtliche Klappen für einen Teilstrom, welcher die Behandlungsanlage verlässt, sind geschlossen;
    2. b) Ein Break-Time-Modus, welcher ebenso abluftfrei ist; und
    3. c) Ein abluftfreier Stand-by-Betrieb über z.B. zwei Schichten, bei welchem die Rolltore geschlossen sind und sämtliche Ventilatoren in der Umluft auf ein Leistungsminimum abgesenkt sind.
  • Bezugszeichenliste
  • 100
    Behandlungsanlage
    102
    Trockner
    104
    Umluftanlage
    106
    Behandlungsraum
    108
    Nachbehandlungsraum
    110
    Behandlungsraumabschnitt
    112
    lokales Umluftmodul
    114
    lokaler Umluftstrom
    116
    lokale Umluftführung
    118
    Förderrichtung
    120
    globale Umluftführung
    122
    globaler Umluftstrom
    124
    abgeführter globaler Umluftstrom
    126
    Aufbereitungsvorrichtung
    128
    aufbereiteter globaler Umluftstrom
    130
    abgeleiteter globaler Umluftstrom
    132
    zurückgeführter globaler Umluftstrom
    133
    Wärmeüberträger
    134
    Frischluftstrom
    136
    abgekühlter Abluftstrom
    138
    vorgewärmter Frischluftstrom
    140
    aufgemischter globaler Umluftstrom
    142
    Zusatzheizvorrichtung
    144
    aufgeheizter globaler Umluftstrom
    146
    Einlassschleuse
    148
    Auslassschleuse
    150
    Nachbehandlungsraumabschnitt
    152
    Wärmeübertrager
    154
    Abluftstrom
    156
    Frischluftstrom
    158
    vorgewärmte Frischluftstrom
    160
    Umluftstrom
    162
    abgekühlter Abluftstrom
    164
    Zuluftstrom
    166
    Vorbehandlungsraum
    168
    Vorbehandlungsraumabschnitt
    170
    Abluftstrom
    172
    aufgeheizter Frischluftstrom
    174
    Regler
    176
    zentrale Heizvorrichtung
    178
    Bypass-Umluftführung
    180
    erster Ventilator
    182
    zweiter Ventilator
    184
    Zuführung
    186
    Rückführung
    188
    erste Drosselklappe
    190
    zweite Drosselklappe

Claims (20)

  1. Umluftanlage (104), insbesondere für eine Behandlungsanlage (100) zum Behandeln von Werkstücken, wobei die Umluftanlage (104) Folgendes umfasst: - mehrere lokale Umluftmodule (112), mittels welchen lokale Umluftströme (114) einem Behandlungsraum (106) zuführbar, durch denselben hindurchführbar und aus demselben abführbar sind, wobei die lokalen Umluftströme (114) den Behandlungsraum (106) jeweils mehrfach durchströmen; und - eine globale Umluftführung (120), mittels welcher ein globaler Umluftstrom (122) von den mehreren lokalen Umluftmodulen (112) und/oder dem Behandlungsraum (106) abführbar, mittels einer Aufbereitungsvorrichtung (126) aufbereitbar und erneut mindestens einem der mehreren lokalen Umluftmodule (112) und/oder dem Behandlungsraum (106) zuführbar ist.
  2. Umluftanlage (104) nach Anspruch 1, dadurch gekennzeichnet, dass die Aufbereitungsvorrichtung (126) eine Aufbereitungsvorrichtung (126) zum Aufbereiten, insbesondere zum Reinigen, des globalen Umluftstroms (122) ist oder umfasst, wobei die Aufbereitungsvorrichtung (126) eine thermische Aufbereitungsvorrichtung, insbesondere eine rein elektrisch betriebene, vorzugsweise flammenlose, regenerative thermische Oxidationsvorrichtung ist oder umfasst.
  3. Umluftanlage (104) nach Anspruch 2, dadurch gekennzeichnet, dass die thermische Aufbereitungsvorrichtung (126) eine elektrische Heizvorrichtung ist oder umfasst, wobei vorzugsweise vorgesehen ist, dass eine thermische Aufbereitung ausschließlich durch direkte elektrische Beheizung, insbesondere elektrische Widerstandheizung, und/oder durch exotherme Umwandlung von Bestandteilen des globalen Umluftstroms (122) erfolgt.
  4. Umluftanlage (104) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Aufbereitungsvorrichtung (126) unabhängig von einer Abführungsvorrichtung zur Abführung von Abluft vorgesehen und/oder ausgebildet ist, insbesondere räumlich getrennt von einem Abluftstrang, welcher der Abführung von Abluft (136) aus der Umluftanlage (104) dient.
  5. Umluftanlage (104) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mittels der lokalen Umluftmodule (112) verschiedene und/oder aneinander angrenzende Behandlungsraumabschnitte (110) des Behandlungsraums (106), mit lokalen Umluftströmen (114) durchströmbar sind und dass mittels der globalen Umluftführung (120) an oder benachbart zu einem oder mehreren lokalen Umluftmodulen (112) globale Umluft zuführbar ist und/oder dass mittels der globalen Umluftführung (120) Umluft aus einem oder mehreren anderen lokalen Umluftmodulen (112) als globaler Umluftstrom (120) abführbar ist.
  6. Umluftanlage (104) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die globale Umluftführung (116) in eine oder mehrere Schleusen (146, 148) des Behandlungsraums (106) zur fluidwirksamen Trennung einer Atmosphäre im Behandlungsraum (106) von einer Umgebung der Umluftanlage (104) mündet.
  7. Umluftanlage (104) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Umluftanlage (104) eine oder mehrere zusätzlich zur Aufbereitungsvorrichtung (126) vorgesehene Zusatzheizvorrichtungen (142) umfasst, mittels welcher a) ein oder mehrere Teilströme des globalen Umluftstroms (122); und/oder b) der gesamte globale Umluftstrom (122); und/oder c) ein oder mehrere Teilströme eines oder mehrerer lokaler Umluftströme (114) erhitzbar sind.
  8. Umluftanlage (104) nach Anspruch 7, dadurch gekennzeichnet, dass a) ein durch die Aufbereitungsvorrichtung (126) hindurchgeführter Luftstrom mittels der Aufbereitungsvorrichtung (126) zumindest temporär auf eine Temperatur erhitzbar ist, welche eine chemische Umwandlung von im Luftstrom enthaltenen Stoffen, insbesondere Lösemittel, bewirkt; und/oder b) ein durch eine oder mehrere Zusatzheizvorrichtungen (142) hindurchgeführter Luftstrom mittels der einen oder mehreren Zusatzheizvorrichtungen (142) erhitzbar ist, insbesondere ohne wesentliche Umwandlung von im Luftstrom enthaltenen Stoffen.
  9. Umluftanlage (104) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Umluftluftanlage (104) mindestens einen Wärmeübertrager (133) umfasst, mittels welchem in einem abgeleiteten globalen Umluftstrom (130) oder in einem Abluftstrom (170) enthaltene Wärmeenergie auf einen dem globalen Umluftstrom (122) zugeführten Frischluftstrom (134) übertragbar ist.
  10. Umluftanlage (104) nach Anspruch 9, dadurch gekennzeichnet, dass ein aus dem Wärmeübertrager (133) abgeführter, abgekühlter Abluftstrom (136) einem Frischluftstrom (156) und/oder einem abgekühlten Abluftstrom (162), welche einem Nachbehandlungsraum (108) zugeordnet sind, zuführbar ist.
  11. Umluftanlage (104) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass stromabwärts und/oder stromaufwärts der Aufbereitungsvorrichtung (126) mindestens eine Filtereinrichtung und/oder Absorptionseinrichtung zur Aufkonzentration oder Abkonzentration mindestens eines Elements, einer Verbindung und/oder eines Gemisches des globalen Umluftstromes (122) angeordnet ist.
  12. Behandlungsanlage (100) mit einer Umluftanlage (104) nach einem der Ansprüche 1 bis 11.
  13. Behandlungsanlage (100) nach Anspruch 12, dadurch gekennzeichnet, dass die Behandlungsanlage (100), insbesondere eine oder mehrere oder sämtliche elektrisch betriebenen Zusatzheizvorrichtungen und/oder eine Aufbereitungsvorrichtung, mit einer Mittelspannung von mindestens ungefähr 3 kV und/oder höchstens ungefähr 8 kV, insbesondere 4.160 V bis 6.600 V, versorgbar ist.
  14. Verfahren zum Betreiben einer Umluftanlage (104), - bei welchem mehrere lokale Umluftströme (114) mittels mehrerer lokaler Umluftmodule (112) einem Behandlungsraum (106) zugeführt, durch denselben hindurchgeführt und aus demselben abgeführt werden, wobei die lokalen Umluftströme (114) den Behandlungsraum (106) jeweils mehrfach durchströmen; und - bei welchem ein globaler Umluftstrom (122) mittels einer globalen Umluftführung (120) von den mehreren lokalen Umluftmodulen (112) und/oder dem Behandlungsraum (106) abgeführt, aufbereitet und erneut mindestens einem der mehreren lokalen Umluftmodule (112) und/oder dem Behandlungsraum (106) zugeführt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass der globale Umluftstrom (122) zur Aufbereitung desselben erhitzt wird, insbesondere direkt und/oder ausschließlich mittels einer elektrischen Widerstandsheizung und/oder durch exotherme Umwandlung von Bestandteilen des globalen Umluftstroms (122).
  16. Verfahren nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, dass mindestens ungefähr 90 %, insbesondere mindestens ungefähr 95 %, eines Gesamtvolumenstroms des von dem Behandlungsraum (106) abgeführten globalen Umluftstroms (122) aufbereitet und erneut dem Behandlungsraum (106) zugeführt werden.
  17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Aufbereitung des globalen Umluftstroms (122) unabhängig von einer Abführung von Abluft (136) erfolgt, insbesondere räumlich getrennt von einem Abluftstrang, welcher der Abführung von Abluft (136) aus der Umluftanlage (104) dient.
  18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass zumindest näherungsweise der gesamte, von den lokalen Umluftmodulen (112) abgeführte globale Umluftstrom (124) bei jedem Umlauf innerhalb der globalen Umluftführung (120) thermisch aufbereitet wird, insbesondere ohne die Verwendung von Zusatzstoffen oder sonstigen Eintrag von Stoffen in den globalen Umluftstrom (122).
  19. Verfahren nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass der globale Umluftstrom (122) zumindest teilweise oder zumindest näherungsweise vollständig durch die Aufbereitungsvorrichtung (126) hindurchgeführt und dabei zumindest temporär auf eine Temperatur erhitzt wird, welche eine chemische Umwandlung von im Luftstrom enthaltenen Stoffen, insbesondere Lösemittel, bewirkt, und dass ein zumindest ein Teil der temporär im globalen Umluftstrom (122) enthaltenen Wärme rekuperiert wird, so dass der globale Umluftstrom (122) die Aufbereitungsvorrichtung (126) mit einer Temperatur verlässt, welche zwischen einer Eingangstemperatur und einer temporären Maximaltemperatur liegt.
  20. Verfahren nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass der globale Umluftstrom (122) teilweise oder zumindest näherungsweise vollständig durch eine oder mehrere Zusatzheizvorrichtungen (142) hindurchgeführt und dass dabei die Temperatur des globalen Umluftstroms (122) um höchstens ungefähr 20 °C, insbesondere höchstens ungefähr 15 °C, angehoben wird, insbesondere ohne zwischenzeitliche Überhitzung und hierdurch bewirkte Umwandlung von im Umluftstrom enthaltenen Stoffen.
DE102022113071.1A 2022-05-24 2022-05-24 Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage Pending DE102022113071A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102022113071.1A DE102022113071A1 (de) 2022-05-24 2022-05-24 Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage
PCT/DE2023/100377 WO2023227165A1 (de) 2022-05-24 2023-05-23 Umluftanlage, behandlungsanlage und verfahren zum betreiben einer umluftanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102022113071.1A DE102022113071A1 (de) 2022-05-24 2022-05-24 Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage

Publications (1)

Publication Number Publication Date
DE102022113071A1 true DE102022113071A1 (de) 2023-11-30

Family

ID=86760571

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102022113071.1A Pending DE102022113071A1 (de) 2022-05-24 2022-05-24 Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage

Country Status (2)

Country Link
DE (1) DE102022113071A1 (de)
WO (1) WO2023227165A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224916A1 (de) 2015-12-10 2017-06-14 Dürr Systems Ag Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
DE202016009021U1 (de) 2015-07-31 2021-07-06 Dürr Systems Ag Behandlungsanlage
DE102020213991A1 (de) 2020-11-06 2022-05-12 Dürr Systems Ag Verfahren zum Betreiben einer Behandlungsanlage und Behandlungsanlage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849001A1 (de) * 1996-12-20 1998-06-24 Robert sen. Wälti Spritzkabine und Luftzirkulationssystem für einen Arbeitsraum
EP2360443B1 (de) * 2009-12-30 2016-08-03 Crone Wärmetechnik GmbH Verfahren zum Trocknen von lackierten Trocknungsgütern, insbesondere Fahrzeugkarosserien

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016009021U1 (de) 2015-07-31 2021-07-06 Dürr Systems Ag Behandlungsanlage
DE102015224916A1 (de) 2015-12-10 2017-06-14 Dürr Systems Ag Behandlungsanlage und Verfahren zum Behandeln von Werkstücken
DE102020213991A1 (de) 2020-11-06 2022-05-12 Dürr Systems Ag Verfahren zum Betreiben einer Behandlungsanlage und Behandlungsanlage

Also Published As

Publication number Publication date
WO2023227165A1 (de) 2023-11-30

Similar Documents

Publication Publication Date Title
EP3387355B1 (de) Behandlungsanlage und verfahren zum behandeln von werkstücken
DE2819814C3 (de) Verfahren und Einrichtung zur Entfernung von Lösungsmitteln aus den insbesondere von einer mit Tiefdruckzylindern arbeitenden Druck- oder Verpackungspresse in einen Maschinenraum abgegebenen Abgasen
EP0306695B1 (de) Heissgaserzeugungseinrichtung mit thermischer Nachverbrennung
EP0944423B1 (de) Verfahren sowie vorrichtungen zur reinigung und wiederverwendung von mit zusatzstoffen (z.b. lösungsmitteln) oder verunreinigungen versetzter abluft
DE3209185A1 (de) Gas-behandlungsvorrichtung fuer eine mehrzahl von kesseln
DE2254848B2 (de) Anordnung zur thermischen nachverbrennung
EP2839230A1 (de) Anlage zum behandeln von gegenständen
EP3356753A1 (de) Vorrichtung zur temperierung von gegenständen, insbesondere zum trocknen von beschichteten fahrzeugkarosserien
EP2437866A1 (de) Verfahren und anlage zur abscheidung von quecksilber aus abgasen eines zementherstellungsprozesses
EP2213939A2 (de) Verfahren zum Betreiben einer Oxidationsanlage sowie Oxidationsanlage
DE3047060C2 (de) Verfahren und Vorrichtung zum Trocknen und Verbrennen von Schlamm
DE2528334A1 (de) Verfahren und ofenanlage fuer die waermebehandlung von werkstuecken
DE102014106991B4 (de) Vorrichtungen und Verfahren zur katalytischen Entstickung und regenerativen thermischen Nachverbrennung
DE102022113071A1 (de) Umluftanlage, Behandlungsanlage und Verfahren zum Betreiben einer Umluftanlage
DE102015003856A1 (de) Vorrichtung zur Temperierung von Gegenständen
EP0273230A2 (de) Verfahren und Einrichtung zur thermischen Behandlung einer kontinuierlich bewegten textilen Wahrenbahn
EP1197257A1 (de) Verfahren und Vorrichtung zur Erzeugung heisser Arbeitsgase
DE102022113079A1 (de) Umbausatz für eine Behandlungsanlage und Verfahren zum Umbau einer Behandlungsanlage
EP2886985B1 (de) Trocknungsanlage und Verfahren dafür
EP0464586B1 (de) Verfahren und Vorrichtung zur katalytischen Abluftreinigung
EP1398587A2 (de) Trockner für Gegenstände, insbesondere für Fahrzeugkarosserien, sowie Verfahren zum Betreiben eines solchen Trockners
WO2023227163A1 (de) Behandlungsanlage zum behandeln von werkstücken und ein verfahren zum behandeln von werkstücken
WO2022223075A1 (de) Werkstückbearbeitungsanlage und verfahren zum herstellen und betreiben einer solchen werkstückbearbeitungsanlage
DE102022212614A1 (de) Integrationskammer zum mischen von kabinen-abgas und ofen-abgas und voc-entfernungssystem, welches dieselbe verwendet
DE102021134014A1 (de) Prozessanlage für das Umsetzen eines feststoffförmigen Eingangsmaterials in ein feststoffförmiges Prozessprodukt

Legal Events

Date Code Title Description
R163 Identified publications notified