EP4101510A1 - Brandübungsanlage - Google Patents

Brandübungsanlage Download PDF

Info

Publication number
EP4101510A1
EP4101510A1 EP22188056.0A EP22188056A EP4101510A1 EP 4101510 A1 EP4101510 A1 EP 4101510A1 EP 22188056 A EP22188056 A EP 22188056A EP 4101510 A1 EP4101510 A1 EP 4101510A1
Authority
EP
European Patent Office
Prior art keywords
fire
gas
outlet
unit
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22188056.0A
Other languages
English (en)
French (fr)
Inventor
Carsten Joester
Johannes SOHNREY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Draeger Safety AG and Co KGaA
Original Assignee
Draeger Safety AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54542200&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP4101510(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Draeger Safety AG and Co KGaA filed Critical Draeger Safety AG and Co KGaA
Publication of EP4101510A1 publication Critical patent/EP4101510A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0081Training methods or equipment for fire-fighting

Definitions

  • the invention relates to a fire training system with a fire chamber, a fire unit arranged in the fire chamber, which can be connected to a gas supply unit and has a first outlet for gaseous gas from the gas supply unit.
  • Such fire training systems are known from the prior art. They are used to simulate a fire or fire. If such a fire is simulated using the fire training facility, firefighters can practice extinguishing this fire. The firefighters can try different techniques repeatedly and internalize the technique that makes the most sense for them.
  • the fire chamber is used to delimit a space in which a fire is to be simulated.
  • the fire chamber can be delimited by several walls.
  • a container can be used for the fire chamber.
  • Other configurations with at least substantially fireproof walls can alternatively be used.
  • This fire unit is designed as a gas fire unit.
  • the first outlet can be formed by a tube with one or more openings.
  • the gas escaping from the first outlet is ignited, whereupon the fire chamber a fire occurs.
  • a corresponding fire can therefore be started again after a flame has been extinguished, with comparable fire situations occurring.
  • the fire unit can be connected to a gas supply unit.
  • the gas supply unit can be a stationary gas supply unit or a mobile gas supply unit.
  • a stationary gas supply unit can be, for example, a connection to a gas network that is arranged in a stationary manner.
  • a mobile gas supply unit can be, for example, a gas tank in which the gas to be made available is stored.
  • gaseous gas is basically suitable for a fire unit and for simulating a corresponding fire
  • not all practical fires can be simulated with such a fire unit in the fire chamber.
  • such a fire training system is not suitable for simulating a so-called "flashover", ie a situation in which the flame of the fire suddenly increases in size.
  • flashover ie a situation in which the flame of the fire suddenly increases in size.
  • liquid gas which flows out of the first outlet, instead of the gaseous gas in order to simulate a fire, since liquid gas has a higher energy density. Larger flames could therefore be simulated with liquid gas.
  • WO 92/21118 A1 describes a fire training system (multi-compartmented firefighter trainer) with several fire chambers (compartments or chambers 12, 14, 16 and 18).
  • a fire unit main burner assembly 38 with main gas burner units 38) with igniters (ignitors 62) is supplied with fuel from a tank 36.
  • a further fire unit flashover burner 41 with two elongated cylindrical combustion units (burners 41a, 41b) each with an igniter (spark ignitors 61) can generate a flame on the ceiling.
  • a sensor (spark sensor 65) monitors the igniter 61.
  • a sensor (ignitor sensor 66) monitors the igniter 62 for the fire unit 38.
  • the extinguishing agent (extinguishing agent) used by the practicing firefighters is collected in a receptacle (funnel 48). .
  • the invention is therefore based on the object of providing a fire training system with which different fires and in particular a "flashover" can be simulated by means of a fire unit in a fire chamber, with the fire unit banning gas and with the fire training system offering a high level of safety.
  • a fire training system is therefore provided with a fire chamber, a fire unit arranged in the fire chamber, which can be connected to a gas supply unit and has a first outlet for gaseous gas from the gas supply unit, the fire unit having a second outlet for liquid gas and the fire chamber within a predetermined Radius around the fire unit has at least one opening in a bottom wall of the fire chamber.
  • the invention is based on the idea that liquid gas has a higher density than air and/or gaseous gas.
  • the second outlet therefore differs from the first outlet.
  • the second outlet can have a tube section with at least one opening, preferably a plurality of openings. If liquid gas escapes from the second outlet and is not burned but sinks into the floor area of the fire chamber, the fire chamber according to the invention offers a path through which the liquid gas can flow out of the fire chamber on its own due to the at least one opening. It is envisaged that the at least one opening in the bottom wall of the fire chamber. In addition, the at least one opening is located in proximity to the second outlet because a predetermined radius around the fire unit indicates how far the at least one opening may be from the second outlet.
  • This radius can be adapted to the practical application of the fire unit or the fire training system and/or to the gas used.
  • the predetermined radius should not be chosen too large in order to keep the amount of unburned liquid gas as small or minimal as possible.
  • the radius is less than 5 meters, 3 meters, 2 meters or 1 meter. If the unburned liquid gas emerges from the fire chamber through at least one opening, there is only a minimal risk that the ignited gas will escape, even if the liquid gas is subsequently ignited on the interior of the fire chamber, at least from a thermal point of view. Because if the gas passes through the opening in the bottom wall, the gas is usually carried away by the natural wind. The practicing firefighters are therefore effectively protected from the aforementioned fire.
  • the openings in the bottom wall of the fire chamber can be made by drilling. Gratings, in particular kick gratings, have proven to be a particularly cost-effective configuration of the openings in the bottom wall.
  • the bottom wall of the fire chamber is characterized at least essentially by struts arranged at an angle to one another, between which passage areas are formed, which then represent the at least one opening in the bottom wall. It can thus also be said that a specific area of the base wall, in particular in the area of the specific radius around the fire unit, is characterized by webs spaced apart from one another, which form a large number of openings. The cross-sectional area of the openings can therefore be many times larger than the material portions of the bottom wall formed between the openings, in particular the webs of a grid.
  • a preferred embodiment of the fire training facility is characterized in that the at least one opening in the bottom wall of the fire chamber is in an environment outside the fire chamber. This is preferably the case when the floor wall of the fire chamber is at a distance from a floor on which the fire chamber stands, at least in the region of the openings.
  • the openings in the bottom wall can be designed in the manner of channels, in order to then lead to an area that belongs to the environment of the fire chamber.
  • a further preferred embodiment of the fire training system is characterized in that leg elements are provided which protrude from the underside of the fire chamber on the outside.
  • the leg members ensure that the bottom of the fire chamber is clear of a floor on which the band chamber with the leg members rests.
  • the leg elements therefore serve to transmit the weight of the fire chamber to the aforementioned floor.
  • the leg elements ensure in a particularly simple manner that liquid gas which flows out through the opening in a bottom wall of the fire chamber reaches an area surrounding the fire chamber.
  • the liquid gas that has gotten into the environment can be picked up particularly easily by natural wind and/or by an artificially generated wind flow in order to be transported away from the fire chamber.
  • the leg elements are preferably fastened to the underside of the fire chamber in a non-positive and/or materially bonded manner. Thus, a high level of stability can be guaranteed. In addition, such leg elements are particularly easy and inexpensive to produce. If the fire chamber is made of metal, the leg members can be attached to the underside of the fire chamber by means of a welded connection.
  • Another preferred embodiment of the fire training system is characterized in that an opening is provided in a side wall of the fire chamber, a door assigned to the fire chamber for opening or closing the opening, and a sensor for monitoring the door or opening.
  • an opening is provided in a side wall of the fire chamber, a door assigned to the fire chamber for opening or closing the opening, and a sensor for monitoring the door or opening.
  • the sensor can be used to monitor whether the opening in the side wall of the fire chamber is open.
  • the opening itself and/or a door for opening or closing the opening can be monitored. With both alternatives, the information necessary to determine whether the opening is open or closed can be generated.
  • the fire training system is characterized in that the fire unit has a sensor for fire monitoring at the first outlet.
  • the first outlet of the fire unit is for the outflow of gaseous gas.
  • this gaseous gas is ignited in order to initially simulate a fire situation.
  • a pilot flame is ignited with the gaseous gas flowing out of the first outlet.
  • This pilot flame remains independent of an outflow of liquid gas from the second outlet of the fire unit, because the outflowing liquid gas is ignited with the pilot flame.
  • the pilot flame also serves as an ignition flame for the liquid gas flowing out of the second outlet. This offers a particularly high level of security for the ignition of the liquid gas.
  • the pilot flame can be monitored by means of the fire monitoring sensor at the first outlet.
  • the sensor is located near the first outlet.
  • the sensor can have or be a temperature sensor, for example. Other sensors suitable for fire monitoring can also be provided. If the pilot flame is monitored with the sensor for fire monitoring, it can be ensured that escaping liquid gas is ignited. For example, the temperature can be monitored to monitor the pilot flame. The temperature of the pilot flame can be compared with an associated minimum limit temperature will. If the first outlet for the gaseous gas is not punctiform, but is formed, for example, by a plurality of openings in a pipe section, other sensor configurations for fire monitoring can also be provided.
  • the senor for fire monitoring can be formed by a plurality of sensor elements which are arranged at a distance from one another on the aforementioned pipe with the plurality of openings.
  • the sensor elements can be at a certain distance from the previously mentioned tube so as not to be exposed to excessively high temperatures.
  • the fire training system is characterized in that the sensor is designed to monitor a fire at the first and the second outlet.
  • the first gaseous gas outlet and the second liquid gas outlet are associated with the fire unit. It has proven itself in practice if the two outlets are arranged so close to one another that a flame which arises from the first outlet when the gaseous gas is ignited reaches at least as far as the second outlet. Other configurations are also conceivable, in which the flames, which arise during combustion of gas from the first outlet and/or the second outlet, have an overlapping area. It has therefore proven advantageous in practice to use the same sensor, in particular with the same sensor elements, to detect a flame caused by the gaseous gas from the first outlet and a flame caused by the liquid gas from the second outlet monitor.
  • the number of sensors for monitoring a fire at the first outlet and the second outlet can thus be kept very small.
  • a sensor for fire monitoring with two sensor elements has proven to be advantageous in practice.
  • the two sensor elements can be attached to opposite ends of the fire unit and/or the two outlets, so that it can be assumed that the flames to be generated by the fire unit can be monitored.
  • a further advantageous embodiment of the fire training system is characterized in that the fire training system has a control unit for controlling and/or monitor the fire unit.
  • valves can be assigned to the fire unit, for example, with which a gas flow or gas flow to the first outlet and/or second outlet can be adjusted.
  • At least one check valve and/or at least one throttle valve can be provided for each outlet.
  • At least one of the valves assigned to the respective outlet can be controlled by the control unit.
  • the control unit can be designed to monitor the fire unit.
  • a communication link can be provided between the at least one sensor for fire monitoring and the control unit. In this way, the information from the sensor relating to the flame to be monitored can be transmitted to the control unit. This can evaluate the information.
  • the control unit can, for example, control the valves of the fire unit.
  • the valve to the first outlet is first opened by the control unit in order to generate a pilot flame.
  • a valve to the second outlet can then be opened to allow the liquid gas to flow out through the second outlet to create a so-called "flashover". This is a flame with a very large spread.
  • the control unit can be connected to an operating unit. This control unit is used to control the states of the fire unit, and in particular to control the valves.
  • the control unit can be designed to implement the desired commands, which can be generated by a person using the operating unit, only if certain prerequisites are met. For example, opening a valve for letting liquid gas out of the second outlet is only possible if a pilot flame has been detected at the first outlet by means of the fire monitoring sensor.
  • Another preferred embodiment of the fire training system is characterized in that the second outlet is arranged above the first outlet. If a flame is ignited by the gaseous gas flowing out of the first outlet, it extends upwards. The flame hits the second outlet.
  • the second outlet is thus above the first Arranged outlet that a flame resulting from a combustion of gaseous gas from the first outlet extends at least to the second outlet and / or extends beyond.
  • a pilot flame is thus created which immediately ignites liquid gas for combustion as it exits the second outlet.
  • the liquid gas is thus surely set on fire when it comes out of the second outlet.
  • a fire training system with the arrangement of the two outlets explained above is therefore particularly safe.
  • a further advantageous embodiment of the fire training system is characterized in that a gas sensor is provided on and/or under the bottom wall of the fire chamber.
  • the gas sensor can be arranged in the immediate vicinity of the opening in the bottom wall.
  • the gas sensor can be attached to the fire chamber, in particular to the associated floor wall. With the gas sensor, the monitoring of a fire can be ensured, which occurs when liquid gas burns when it exits from the second outlet. It was previously explained that at least one fire monitoring sensor is associated with the fire unit to monitor safe combustion of the exiting gas at the first outlet and/or second outlet.
  • this liquid gas is detected by the gas sensor on and/or under the bottom wall.
  • the gas sensor is therefore preferably designed to detect liquid gas and/or the corresponding type of gas. Should a minimum concentration of the liquid gas, which may have changed into the gaseous phase, be detected by means of the named sensor, then this information can be used for the monitoring. If no gas is measured even though liquid gas flows out of the second outlet, the liquid gas is burned. Otherwise there is a malfunction. If the malfunction is detected, precautionary measures can be taken. For example, a valve can be closed with which the flow of liquid gas to the second outlet is stopped.
  • a further advantageous embodiment of the fire training system is characterized in that a communication connection is formed between the control unit and the gas sensor.
  • the information from the gas sensor is therefore transmitted to the control unit.
  • This can then compare the detected gas value with a gas threshold value. If the measured gas value exceeds the gas threshold magnitude, follow-up action can be taken. This can be, for example, the determination of the malfunction, as explained in the previous section.
  • valves can be closed, in particular the valve that is designed to open and/or close a gas flow to the second outlet.
  • the control unit can thus use the information available from the gas sensor and/or the fire control unit of the fire unit to generate control signals which stop further gas flow from the first outlet and/or from the second outlet. This is the case in particular when gas flowing out of the first outlet and/or out of the second outlet does not produce a corresponding flame that can be detected directly or indirectly with at least one of the aforementioned sensors.
  • a further advantageous embodiment of the fire training system is characterized in that the fire training system has at least one gas monitoring unit which is located outside the fire chamber in an area with a maximum radius of 15 meters, in particular between 1 meter and 25 meters, to the at least one opening in the bottom wall of the Fire chamber is arranged or are.
  • the previously discussed gas sensor on and/or under the bottom wall of the fire chamber as well as the fire monitoring sensor on the first and second outlets respectively are placed in close proximity to the fire which may be caused by the escaping gaseous or liquid gas.
  • the fire monitoring sensor and/or the aforesaid gas sensor may have heat resistance, proximity to the aforesaid fire poses a residual risk that increases the risk of failure of the aforesaid sensors.
  • the gas monitoring unit is particularly preferably arranged in a radius to the fire chamber of between 1.5 meters and 15 meters, particularly preferably between 2 meters and 10 meters.
  • the gas monitoring unit thus also has a minimum distance from the fire chamber in order to keep the heat or the effect of heat on the gas monitoring unit as low as possible.
  • the gas monitoring unit can include at least one gas meter. A number of gas measuring devices are particularly preferably provided for the gas monitoring unit.
  • These gas measuring devices can be arranged at a distance from one another around the fire chamber.
  • the multiple gas-measuring devices of the gas-measuring unit are arranged in a star shape relative to the fire chamber. With such a configuration, a liquid gas escaping through the opening in the bottom wall of the fire chamber can be detected particularly quickly and reliably. Because regardless of the wind direction through which the escaping liquid gas is transported away from the fire chamber, the gas hits one of the gas measuring devices.
  • the evaluation of the information generated by the gas-measuring devices about the measured gas can take place analogously to the previous embodiment with the gas sensor on and/or under the floor wall of the fire chamber. Reference is therefore made analogously to the corresponding explanations.
  • the information network can be designed for data forwarding and/or alarm message forwarding to the control unit.
  • a further advantageous embodiment of the fire training system is characterized in that a communication connection is formed between the control unit and the gas monitoring unit.
  • information from the gas monitoring unit in particular from at least one Gas meter of the gas monitoring unit to be transferred to the control unit.
  • the control unit can evaluate the relevant information and initiate follow-up actions.
  • the follow-up actions can be, for example, the closing of at least one valve to stop the flow of gas to the first outlet and/or second outlet.
  • a further advantageous embodiment of the fire training facility is characterized in that the fire unit is fastened on the inside to a side wall of the fire chamber.
  • a flame that occurs when the gaseous and/or liquid gas ignites when it exits from the associated outlet can then spread over a particularly large volume. This allows different fire situations to be simulated.
  • the arrangement of the fire unit on the inner side wall of the fire chamber offers the advantage that liquid gas flowing out of the second outlet catches fire before it reaches the opening in the bottom wall of the fire chamber. This increases the passive safety of the fire training facility.
  • the fire training system 2 can be seen schematically.
  • the fire training system includes a fire chamber 4.
  • the fire chamber 4 has a metal container. Doors are attached to the front sides to open the container.
  • an opening 20 is provided on a side wall 22, which can be closed or opened by means of two doors 24 arranged one above the other.
  • Another opening of the fire chamber 4 is provided in a roof wall, with a chimney 40 adjoining the opening.
  • the fire chamber 4 is not designed to be continuous in the longitudinal direction. Rather, a transverse wall 42 is provided, as well as from the figure 2 can be seen, the transverse wall 42 divides the interior of the container into two rooms.
  • One of the two rooms forms the technical room 44 in which the control unit 30 of the fire training system 2 is arranged.
  • the fire chamber 4 is then at least partially formed from the other space. Fires are simulated in fire chamber 4 in order to offer firefighters the opportunity to practice appropriate countermeasures and to extinguish the respective fire.
  • a fire unit 6 is arranged in the interior of the fire chamber 4 .
  • the fire unit 6 is preferably fastened to the transverse wall 42 .
  • the fire chamber 4 or the fire unit 6 can be connected to a gas supply unit 8 .
  • Corresponding pipeline connections can be provided for this purpose, which are suitable for transporting gas from the gas supply unit 8 to the fire unit 6 .
  • a first outlet 10 such as this one, for example figure 4 it can be seen that gas flows.
  • the first outlet 10 is designed to discharge gaseous gas.
  • the gas comes from the gas supply unit 8.
  • the first outlet 10 can be formed by a tubular element 46 with a plurality of openings 48. Other configurations of the first outlet 10 are also possible, which are suitable for allowing gaseous gas to flow out.
  • the gaseous gas is ignited.
  • a corresponding ignition device (not shown) can be provided for this purpose.
  • the ignited gas causes a corresponding flame with which different fires can be simulated, in particular depending on the pressure at which the gaseous gas flows out of the first outlet 10 and/or the number of openings 48 associated with the first outlet 10 .
  • Gaseous gas has an energy density suitable for simulating a certain number of fire situations. However, gaseous gas is usually not suitable for simulating a so-called “flashover”. Therefore, the fire unit 6 according to the invention of the fire training system 2 has a second outlet 12 for liquid gas. Analogously to the configuration of the first outlet 10, the second outlet 12 can be configured by a tube element 50 with a plurality of openings 52.
  • the fire unit 6 is connected to the gas supply unit 8, which is preferably designed to also provide liquid gas.
  • the gas supply unit 8 is preferably designed to also provide liquid gas.
  • different gas supply units can be provided for each of the two types of gas.
  • the second outlet is specially designed for the outflow of liquid gas. This applies in particular to the associated openings 52.
  • gaseous gas flowing out of the first outlet 10 is first ignited.
  • a corresponding flame is also referred to as a pilot flame, since this is suitable for igniting liquid gas that flows out of the second outlet 12 of the fire unit 6 . If the liquid gas, which has a significantly higher energy density than the gaseous gas, ignites, a significantly larger flame is created, which forms the "flashover” explained above.
  • the size of the resulting flame and/or the range of the "flashover” can be determined with the pressure and/or volume flow of liquid gas that emerges from the second outlet 12 .
  • a controllable valve 56 is provided in the supply line 54 for gaseous gas in order to control a volume flow of gaseous gas to the first outlet 10 .
  • the valve 56 can be of the Control unit 30 are controlled.
  • the valve 56 can let through, stop and/or throttle a volume flow of gaseous gas.
  • a feed line 58 for liquid gas to the second outlet 12 and a controllable valve 60 for the feed line 58 are provided for the second outlet 12 .
  • a volume flow of liquid gas to the second outlet 12 can be blocked, released and/or throttled with the valve 60 .
  • the controllable valve 60 can be controlled by means of the control unit 30 . Due to the controllability of the volume flows for gaseous gas and liquid gas, different fire situations can be simulated.
  • the fire chamber 4 has at least one opening 14 in a bottom wall 16 of the fire chamber 4 within a predetermined radius R1 of a maximum of 1.5 meters around the fire unit 6 .
  • an opening 14 is provided in the bottom wall 16 of the fire chamber 4 in the immediate vicinity of the fire unit 6 .
  • the bottom wall 16 of the fire chamber 4 is therefore not closed. Rather, the bottom wall 16 of the fire chamber 4 is open in the vicinity of the fire unit 6 .
  • a fire sensor 28 can be provided, like this one from FIG figure 4 can be seen.
  • This fire sensor 28 is preferably designed as a temperature sensor and/or as an optical flame sensor.
  • the fire sensor 28 is connected to the control unit 30 by a communication link.
  • the control unit 30 can be designed to evaluate the sensor signals of the fire sensor 28 in order to detect whether a fire is occurring when gaseous gas flows out of the first outlet 10 . If this is not the case, the gas flow can be interrupted by means of the valve 56.
  • the fire sensor 28 can also be designed to detect a "flashover", since in this case a significantly larger flame with a correspondingly higher temperature is produced.
  • valve 60 is closed by means of the control unit 30 in order to prevent further outflow of liquid gas and/or uncontrolled ignition of the liquid gas.
  • the fire training system 2 has improved passive safety through the openings 14 in the bottom wall 16 and improved active safety through the fire sensor 28 on the fire unit 6 . Due to its close arrangement to the fire that can be caused by the fire unit 6, the fire sensor 28 is exposed to a high thermal load.
  • a gas sensor 32 is arranged under the bottom wall 16 or on an outside of the bottom wall 16 of the fire chamber 4 . Should there be a leakage of liquid gas through the second outlet 12 come, wherein the outflowing gas flows unburned through the opening 14, the gas can be detected by the gas sensor 32.
  • the gas sensor 32 is connected to the control unit 30 through a communication link.
  • the control unit 30 is therefore designed in such a way that at least the valve 60 and preferably also the valve 56 are then closed in order to stop further gas flow to the first outlet 10 or second outlet 12 . This then increases the active safety of fire training facility 2.
  • At least one sensor 26 is therefore provided, which is designed to monitor a door 24 and/or an opening 20 in a side wall 22 of the fire chamber 4.
  • the opening 20 can be opened or closed with the door 24 .
  • the sensor 26 is thus used to monitor the door 24 and/or the opening or to determine whether oxygen from the environment can flow into the fire chamber 4 through the opening 20 . If this is the case, the gas flowing out of the outlets 10, 12 can be ignited. This improves the safety of fire training facility 2.
  • An expanded safety concept for fire training facility 2 also provides for the monitoring of the area around fire chamber 4.
  • a gas monitoring unit 36 is therefore assigned to the fire training system 2 .
  • the gas monitoring unit 36 can be used to monitor the environment for gas, in particular for gaseous gas and/or liquid gas.
  • the gas monitoring unit 36 has a plurality of gas measuring devices 38 .
  • These gas measuring devices 38 can be arranged around the fire unit 6 in a radius R2 of between 2 meters and 25 meters.
  • the radius R2 is significantly larger than the previously explained radius R1, within which the openings 14 in the bottom wall 16 are arranged. With the gas measuring devices 38 is therefore a larger area monitored for gas.
  • the gas monitoring unit 36 or the associated gas measuring devices 38 Corresponding information is transmitted to the control unit 30 .
  • the gas-measuring devices 38 can be connected to the control unit 30 by appropriate communication lines and/or by a radio link. The control unit 30 then closes the valves 56, 60 in the feed lines 54, 58 to the two outlets 10, 12. This prevents further outflow of gas and/or uncontrolled combustion of the gas.

Abstract

Die Erfindung betrifft eine Brandübungsanlage (2) mit einer Brandkammer (4) und einer in der Brandkammer (4) angeordneten Brandeinheit (6), die mit einer Gasversorgungseinheit (8) verbindbar ist, einen ersten Auslass (10) für gasförmiges Gas aus der Gasversorgungseinheit (8) aufweist, wobei die Brandeinheit (6) einen zweiten Auslass (12) für flüssiges Gas aus der Gasversorgungseinheit (8) aufweist, und die Brandkammer (4) innerhalb eines vorbestimmten Radius (R1) um die Brandeinheit (6) mindestens eine Öffnung (14) in einer Bodenwandung (16) der Brandkammer (4) aufweist. Mit dem Gas, das aus dem ersten Auslass (10) strömt, wird eine Pilotflamme gezündet. Die Pilotflamme gezündet das aus dem zweiten Auslass (12) strömende flüssige Gas. Ein Sensor überwacht das Feuer an dem ersten Auslass (10) und an dem zweiten Auslass (12).

Description

  • Die Erfindung betrifft eine Brandübungsanlage mit einer Brandkammer, einer in der Brandkammer angeordneten Brandeinheit, die mit einer Gasversorgungseinheit verbindbar ist und einen ersten Auslass für gasförmiges Gas aus der Gasversorgungseinheit aufweist.
  • Derartige Brandübungsanlagen sind aus dem Stand der Technik bekannt. Sie dienen zur Simulation eines Feuers bzw. eines Brands. Wird ein derartiger Brand mittels der Brandübungsanlage simuliert, können Feuerwehrleute üben, diesen Brand zu löschen. Dabei können die Feuerwehrleute unterschiedliche Techniken wiederholt ausprobieren und die für sie am sinnvollste Technik verinnerlichen.
  • Die Brandkammer dient zur Begrenzung eines Raums, in dem ein Brand simuliert werden soll. Dazu kann die Brandkammer von mehreren Wänden begrenzt sein. Für die Brandkammer kann beispielsweise ein Container verwendet werden. Andere Ausgestaltungen mit zumindest im Wesentlichen feuerfesten Wänden können alternativ eingesetzt werden.
  • Um in der Brandkammer wiederholt vergleichbare Brände hervorzurufen, die zu vergleichbaren Trainingssituationen für Feuerwehrleute führen, hat es sich als vorteilhaft erwiesen, in der Brandkammer eine Brandeinheit anzuordnen. Diese Brandeinheit ist als Gas-Brandeinheit ausgebildet. Sie weist dazu einen Auslass für gasförmiges Gas auf. Der erste Auslass kann dabei durch ein Rohr mit einer Öffnung oder mehreren Öffnungen gebildet sein. Zur Brandsimulation wird das aus dem ersten Auslass ausströmende Gas entzündet, woraufhin in der Brandkammer ein Feuer entsteht. Ein entsprechender Brand kann deshalb auch nach dem Löschen einer Flamme erneut verursacht werden, wobei vergleichbare Brandsituationen entstehen. Um Gas aus dem Auslass für gasförmiges Gas, welcher im Rahmen dieser Erfindung als erster Auslass bezeichnet wird, strömen zu lassen, ist die Brandeinheit mit einer Gasversorgungseinheit verbindbar. Ist dies erfolgt, kann aus dem ersten Auslass gasförmiges Gas strömen, welches aus der Gasversorgungseinheit stammt. Die Gasversorgungseinheit kann eine stationäre Gasversorgungseinheit oder eine mobile Gasversorgungseinheit sein. Bei einer stationären Gasversorgungseinheit kann es sich beispielsweise um einen Anschluss an ein Gasnetz handeln, welches stationär angeordnet ist. Bei einer mobilen Gasversorgungseinheit kann es sich beispielsweise um einen Gasbehälter handeln, in dem das zur Verfügung zu stellende Gas gespeichert ist.
  • Obwohl die Verwendung von gasförmigem Gas für eine Brandeinheit und zur Simulation eines entsprechenden Brands grundsätzlich geeignet ist, können mit einer derartigen Brandeinheit in der Brandkammer nicht alle praxisnahen Brände simuliert werden. Insbesondere eignet sich eine derartige Brandübungsanlage nicht dazu, um einen sogenannten "Flashover" zu simulieren, also eine Situation, in der es zu einer schlagartigen Vergrößerung der Flamme des Brands kommt. Grundsätzlich wäre es deshalb erstrebenswert, anstatt des gasförmigen Gases flüssiges Gas zu verwenden, das aus dem ersten Auslass ausströmt, um damit einen Brand zu simulieren, da flüssiges Gas eine höhere Energiedichte aufweist. Deshalb könnten mit flüssigem Gas größere Flammen simuliert werden. In der Praxis wurde jedoch festgestellt, dass die Handhabung von flüssigem Gas mit einer bekannten Brandeinheit dazu führen kann, dass sich flüssiges Gas an dem Boden der Brandkammer sammelt, und es daraufhin zu einer unkontrollierten Verbrennung des sich sammelnden Gases kommen kann. Hierbei handelt es sich sodann um eine zufällige und zumeist unkontrollierbare Brandsituation. Eine derartige Brandsituation ist unbedingt zu vermeiden.
  • In WO 92/21118 A1 wird eine Brandübungsanlage (multi-compartmented firefighter trainer) mit mehreren Brandkammern (compartments or chambers 12, 14, 16 and 18) beschrieben. Eine Brandeinheit (main burner assembly 38 with main gas burner units 38) mit Zündern (ignitors 62) wird mit Brennstoff aus einem Tank 36 versorgt. Um einen Flashover zu simulieren, vermag eine weitere Brandeinheit (flashover burner 41) mit zwei länglichen zylindrischen Brenneinheiten (burners 41a, 41b) mit jeweils einem Zünder (spark ignitors 61) an der Decke eine Flamme zu erzeugen. Ein Sensor (spark sensor 65) überwacht den Zünder 61. Ein Sensor (ignitor sensor 66) überwacht den Zünder 62 für die Brandeinheit 38. Das Löschmittel (extinguishing agent), das die übenden Feuerwehrleute verwenden, wird in einer Aufnahme (funnel 48) gesammelt.
  • Der Erfindung liegt deshalb die Aufgabe zu Grunde, eine Brandübungsanlage bereit zu stellen, mit der unterschiedliche Brände und insbesondere ein "Flashover" mittels einer Brandeinheit in einer Brandkammer simulierbar sind, wobei mittels der Brandeinheit Gas verbannt wird und wobei die Brandübungsanlage eine hohe Sicherheit bietet.
  • Gelöst wird die zuvor genannte Aufgabe durch die Merkmale des Anspruchs 1.
  • Vorgesehen ist also eine Brandübungsanlage mit einer Brandkammer, einer in der Brandkammer angeordneten Brandeinheit, die mit einer Gasversorgungseinheit verbindbar ist und einen ersten Auslass für gasförmiges Gas aus der Gasversorgungseinheit aufweist, wobei die Brandeinheit einen zweiten Auslass für flüssiges Gas aufweist und die Brandkammer innerhalb eines vorbestimmten Radius um die Brandeinheit mindestens eine Öffnung in einer Bodenwandung der Brandkammer aufweist.
  • Der Erfindung liegt der Gedanke zu Grunde, dass flüssiges Gas eine höhere Dichte aufweist als Luft und/oder gasförmiges Gas. Der zweite Auslass unterscheidet sich deshalb vom ersten Auslass. Der zweite Auslass kann einen Rohrabschnitt mit mindestens einer Öffnung, vorzugsweise mehreren Öffnungen aufweisen. Sollte flüssiges Gas aus dem zweiten Auslass austreten und nicht verbrannt werden, sondern in den Bodenbereich der Brandkammer sinken, so bietet die erfindungsgemäße Brandkammer aufgrund der mindestens einen Öffnung einen Weg, durch den das flüssige Gas selbstständig aus der Brandkammer herausströmen kann. Dabei ist es vorgesehen, dass die mindestens eine Öffnung in der Bodenwandung der Brandkammer ist. Außerdem ist die mindestens eine Öffnung in der Nähe zu dem zweiten Auslass angeordnet, da ein vorbestimmter Radius um die Brandeinheit angibt, wie weit die mindestens eine Öffnung von dem zweiten Auslass entfernt sein kann. Dieser Radius kann an die praktische Anwendung der Brandeinheit bzw. der Brandübungsanlage und/oder an das verwendete Gas angepasst sein. Allerdings sollte der vorbestimmte Radius nicht zu groß gewählt werden, um die Menge des nicht verbrannten flüssigen Gases möglichst klein bzw. minimal zu halten. Vorzugsweise ist der Radius kleiner als 5 Meter, 3 Meter, 2 Meter oder 1 Meter. Tritt das nicht verbrannte flüssige Gas durch die mindestens eine Öffnung aus der Brandkammer heraus, besteht selbst bei einer nachträglichen Zündung des flüssigen Gases für die Feuerwehrleute, die mit der Brandübungsanlage das Löschen eines Brands simulieren, nur noch eine minimale Gefahr, dass sich das entzündete Gas auf den Innenraum der Brandkammer, zumindest in thermischer Hinsicht, auswirkt. Denn passiert das Gas die Öffnung in der Bodenwandung, wird das Gas zumeist von natürlichem Wind weggetragen. Die übenden Feuerwehrleute sind also vor dem zuvor genannten Brand effektiv geschützt.
  • Die Öffnungen in der Bodenwandung der Brandkammer können durch Bohrungen hergestellt sein. Als eine besonders kostengünstige Ausgestaltung der Öffnungen in der Bodenwand haben sich Gitter, insbesondere Trittgitter, erwiesen. Im Bereich der Gitter ist die Bodenwandung der Brandkammer zumindest im Wesentlichen durch winkelig zueinander angeordnete Streben charakterisiert, zwischen denen sich Durchgangsbereiche bilden, die sodann die mindestens eine Öffnung der Bodenwand darstellen. Somit kann auch davon gesprochen werden, dass ein bestimmter Bereich der Bodenwandung, insbesondere im Bereich des bestimmten Radius um die Brandeinheit, von voneinander beabstandeten Stegen geprägt ist, die eine Vielzahl von Öffnungen bilden. Die Querschnittsfläche der Öffnungen kann deshalb um ein Vielfaches größer sein als die sich zwischen den Öffnungen ausbildenden Materialanteile der Bodenwandung, insbesondere der Stege eines Gitters.
  • Eine bevorzugte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass die mindestens eine Öffnung in der Bodenwand der Brandkammer in eine Umgebung außerhalb der Brandkammer führt. Dies ist vorzugsweise dann der Fall, wenn die Bodenwandung der Brandkammer zumindest im Bereich der Öffnungen von einem Boden beabstandet ist, auf dem die Brandkammer steht. Alternativ oder ergänzend können die Öffnungen in der Bodenwandung kanalartig ausgebildet sein, um sodann zu einem Bereich führen, der zu der Umgebung der Brandkammer gehört.
  • Eine weitere bevorzugte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass über eine Unterseite der Brandkammer außenseitig hervorragende Beinelemente vorgesehen sind. Die Beinelemente stellen sicher, dass die Unterseite der Brandkammer von einem Boden beabstandet ist, auf dem die Bandkammer mit den Beinelementen steht. Die Beinelemente dienen deshalb zur Kraftübertragung der Gewichtskraft der Brandkammer auf den zuvor genannten Boden. Mit den Beinelementen wird besonders einfach sichergestellt, dass flüssiges Gas, welches durch die Öffnung in einer Bodenwand der Brandkammer ausströmt, in einen Umgebungsbereich der Brandkammer gelangt. Indem die Beinelemente die Brandkammer von dem Boden auf einem Abstand halten, kann sich das austretende flüssige Gas besonders einfach und schnell verteilen. Darüber hinaus kann das in die Umgebung gelangte, flüssige Gas besonders einfach von natürlichem Wind und/oder durch einen künstlich gezeugten Windstrom erfasst werden, um von der Brandkammer abtransportiert zu werden. Die Beinelemente sind vorzugsweise an der Unterseite der Brandkammer kraftschlüssig und/oder stoffschlüssig befestigt. Somit kann eine hohe Standstabilität gewährleistet werden. Darüber hinaus sind derartige Beinelemente besonders einfach und kostengünstig herzustellen. Sofern die Brandkammer aus Metall ist, können die Beinelemente an der Unterseite der Brandkammer mittels einer Schweißverbindung befestigt sein.
  • Eine weitere bevorzugte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass eine Öffnung in einer Seitenwand der Brandkammer, eine der Brandkammer zugeordnete Tür zum Öffnen oder Verschließen der Öffnung, und einen Sensor zur Überwachung der Tür oder Öffnung vorgesehen sind. In der Praxis wurde festgestellt, dass nicht verbranntes, flüssiges Gas, welches aus dem zweiten Auslass der Brandeinheit austritt, besonders schnell durch die Öffnung in der Bodenwandung der Brandkammer strömt, wenn die Brandkammer mindestens eine weitere, nicht verschlossene Öffnung aufweist. In diesem Fall ist der Strömungswiderstand für das flüssige Gas besonders gering. Um nun sicherzustellen, dass das nicht verbrannte, flüssige Gas mit dem zuvor genannten verringerten Strömungswiderstand aus der Brandkammer durch die Öffnung in der Bodenwandung strömen kann, kann mit dem Sensor überwacht werden, ob die Öffnung in der Seitenwand der Brandkammer geöffnet ist. Dabei kann die Öffnung selbst und/oder eine Tür zum Öffnen oder Schließen der Öffnung überwacht werden. Mit beiden Alternativen kann die Information generiert werden, die zum Bestimmen notwendig ist, ob die Öffnung geöffnet oder geschlossen ist.
  • Die erfindungsgemäße Brandübungsanlage zeichnet sich dadurch aus, dass die Brandeinheit einen Sensor zur Feuerüberwachung an dem ersten Auslass aufweist. Der erste Auslass der Brandeinheit dient zum Ausströmen von gasförmigem Gas. Im Betrieb wird dieses gasförmige Gas entzündet, um zunächst eine Brandsituation zu simulieren. Mit dem aus dem ersten Auslass strömenden, gasförmigen Gas wird eine Pilotflamme gezündet. Diese Pilotflamme bleibt unabhängig von einem Ausströmen von flüssigem Gas aus dem zweiten Auslass der Brandeinheit bestehen, denn mit der Pilotflamme wird das ausströmende, flüssige Gas entzündet. Mit anderen Worten dient die Pilotflamme auch als Zündflamme für das aus dem zweiten Auslass ausströmende, flüssige Gas. Dies bietet eine besonders hohe Sicherheit für die Zündung des flüssigen Gases. Um nun sicherzustellen, dass das flüssige Gas nicht unverbrannt in den Innenraum der Brandkammer strömt, ist mittels des Sensors zur Feuerüberwachung an dem ersten Auslass die Pilotflamme überwachbar. Vorzugsweise ist der Sensor in der Nähe des ersten Auslasses angeordnet. Der Sensor kann beispielsweise ein Temperatursensor aufweisen oder sein. Andere Sensoren, die zur Feuerüberwachung geeignet sind, können ebenfalls vorgesehen sein. Wird mit dem Sensor zur Feuerüberwachung also die Pilotflamme überwacht, kann sichergestellt werden, dass ausströmendes, flüssiges Gas entzündet wird. Zur Überwachung der Pilotflamme kann beispielsweise die Temperatur überwacht werden. Dabei kann die Temperatur der Pilotflamme mit einer zugehörigen minimalen Grenztemperatur verglichen werden. Sofern der erste Auslass für das gasförmige Gas nicht punktuell ist, sondern beispielsweise durch mehrere Öffnungen in einem Rohrabschnitt gebildet ist, können auch andere Sensorkonfigurationen zur Feuerüberwachung vorgesehen sein. Der Sensor zur Feuerüberwachung kann in diesem Sinne durch mehrere Sensorelemente gebildet sein, die voneinander beanstandet an dem zuvor genannten Rohr mit den mehreren Öffnungen angeordnet ist. Insbesondere können die Sensorelemente einen bestimmten Abstand zu dem zuvor genannten Rohr ausweisen, um keiner zu hohen Temperatur ausgesetzt zu sein.
  • Die erfindungsgemäße Brandübungsanlage zeichnet sich dadurch aus, dass der Sensor zur Überwachung eines Feuers an dem ersten und dem zweiten Auslass ausgestaltet ist. Der erste Auslass für gasförmiges Gas und der zweite Auslass für flüssiges Gas sind der Brandeinheit zugeordnet. Dabei hat es sich in der Praxis bewährt, wenn die beiden Auslässe derart dicht zueinander angeordnet sind, dass eine Flamme, welche beim Zünden des gasförmigen Gases aus dem ersten Auslass entsteht, zumindest bis zu dem zweiten Auslass reicht. Andere Konfigurationen sind ebenfalls denkbar, bei denen die Flammen, welche bei einer Verbrennung von Gas aus dem ersten Auslass und/oder dem zweiten Auslass entstehen, einen Überlappungsbereich aufweisen. Es hat sich deshalb in der Praxis als vorteilhaft erwiesen, den gleichen Sensor, insbesondere mit den gleichen Sensorelementen, zu verwenden, um eine von dem gasförmigen Gas aus dem ersten Auslass hervorgerufene Flamme als auch ein von dem flüssigen Gas aus dem zweiten Auslass hervorgerufene Flamme zu überwachen. Damit kann die Anzahl der Sensoren zur Überwachung eines Feuers an dem ersten Auslass und dem zweiten Auslass sehr gering gehalten werden. Insbesondere hat sich in der Praxis ein Sensor zur Feuerüberwachung mit zwei Sensorelementen als vorteilhaft erwiesen. Die beiden Sensorelemente können an gegenüber liegenden Enden der Brandeinheit und/oder der beiden Auslässe angebracht sein, sodass davon ausgegangen werden kann, dass die zu erzeugenden Flammen der Brandeinheit überwachbar sind.
  • Eine weitere vorteilhafte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass die Brandübungsanlage eine Steuereinheit zur Steuerung und/oder Überwachung der Brandeinheit aufweist. Der Brandeinheit können dazu beispielsweise Ventile zugeordnet sein, mit denen ein Gasfluss oder Gasstrom zu dem ersten Auslass und/oder zweiten Auslass einstellbar ist. Dabei kann für jeden Auslass mindestens ein Sperrventil und/oder mindestens ein Drosselventil vorsehbar sein. Mindestens eines der Ventile, die dem jeweiligen Auslass zugeordnet sind, kann mittels der Steuereinheit gesteuert werden. Alternativ oder ergänzend kann die Steuereinheit zur Überwachung der Brandeinheit ausgestaltet sein. Dazu kann zwischen dem mindestens einen Sensor zur Feuerüberwachung und der Steuereinheit eine Kommunikationsverbindung vorgesehen sein. Somit können die Informationen des Sensors bezüglich der jeweils zu überwachenden Flamme an die Steuereinheit übermittelt werden. Diese kann die Informationen auswerten. Je nach Ergebnis der Auswertung kann die Steuereinheit beispielsweise die Ventile der Brandeinheit steuern. So wird beispielsweise durch die Steuereinheit zunächst das Ventil zu dem ersten Auslass geöffnet, um eine Pilotflamme zu erzeugen. Wird mit dem Sensor zur Feuerüberwachung die Pilotflamme erkannt, kann daraufhin ein Ventil zu dem zweiten Auslass geöffnet werden, um das flüssige Gas durch den zweiten Auslass ausströmen zu lassen, um einen sogenannten "Flashover" zu erzeugen. Hierbei handelt es sich um eine Flamme mit einer sehr großen Ausbreitung. Darüber hinaus kann die Steuereinheit mit einer Bedieneinheit verbunden werden. Diese Bedieneinheit dient zur Steuerung der Zustände der Brandeinheit, und insbesondere zur Steuerung der Ventile. In diesem Fall kann die Steuereinheit dazu ausgestaltet sein, die gewünschten Befehle, die von einer Person mittels der Bedieneinheit erzeugbar sind, nur dann umzusetzen, wenn bestimmte Voraussetzungen erfüllt sind. So ist beispielweise das Öffnen eines Ventils zum Auslassen von flüssigem Gas aus dem zweiten Auslass nur dann möglich, wenn mittels des Sensors zur Feuerüberwachung eine Pilotflamme an dem ersten Auslass erkannt wurde.
  • Eine weitere bevorzugte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass der zweite Auslass oberhalb des ersten Auslasses angeordnet ist. Wird durch das ausströmende, gasförmige Gas aus dem ersten Auslass eine Flamme gezündet, erstreckt sich diese nach oben. Dabei trifft die Flamme auf den zweiten Auslass. Bevorzugt ist der zweite Auslass derart oberhalb des ersten Auslasses angeordnet, dass eine Flamme, die bei einem Verbrennen von gasförmigem Gas aus dem ersten Auslass entsteht zumindest bis zu dem zweiten Auslass reicht und/oder sich darüber hinaus erstreckt. Somit wird eine Pilotflamme erzeugt, die flüssiges Gas unmittelbar zur Verbrennung zündet, wenn dieses aus dem zweiten Auslass austritt. Das flüssige Gas wird also sicher in Brand gesetzt, wenn dieses aus dem zweiten Auslass austritt. Deshalb ist eine Brandübungsanlage mit der zuvor erläuterten Anordnung der beiden Auslässe besonders sicher.
  • Eine weitere vorteilhafte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass an und/oder unter der Bodenwand der Brandkammer ein Gassensor vorgesehen ist. Dabei kann der Gassensor in unmittelbarer Nähe zu der Öffnung in der Bodenwand angeordnet sein. Sofern der Gassensor unter der Bodenwand angeordnet ist, kann der Gassensor jedoch an der Brandkammer, insbesondere an der zugehörigen Bodenwand, befestigt sein. Mit dem Gassensor kann die Überwachung eines Feuers gewährleistet werden, welches bei einem Verbrennen von flüssigem Gas bei einem Austritt aus dem zweiten Auslass entsteht. Zuvor wurde erläutert, dass mindestens ein Sensor zur Feuerüberwachung der Brandeinheit zugeordnet ist, um eine sichere Verbrennung des austretenden Gases an dem ersten Auslass und/oder zweiten Auslass zu überwachen. Sollte diese Überwachung, beispielsweise aufgrund von einem Defekt, fehlschlagen und zugleich unverbranntes, flüssiges Gas durch die Öffnung in der Bodenwand der Brandkammer strömen, wird dieses flüssige Gas von dem Gassensor an und/oder unter der Bodenwand detektiert. Der Gassensor ist also vorzugsweise zur Detektion von flüssigem Gas und/oder dem entsprechenden Gastyp ausgestaltet. Sollte nun mittels des genannten Sensors eine Mindestkonzentration des flüssigen Gases detektiert werden, das gegebenenfalls in die gasförmige Phase übergegangen ist, so kann diese Information für die Überwachung eingesetzt werden. Wird kein Gas gemessen, obwohl flüssiges Gas aus dem zweiten Auslass strömt, wird das flüssige Gas verbrannt. Andernfalls liegt eine Fehlfunktion vor. Wird die Fehlfunktion erkannt, können Vorsichtsmaßnahmen eingeleitet werden. So kann beispielsweise ein Ventil geschlossen werden, mit dem der Gasfluss von flüssigem Gas zu dem zweiten Auslass gestoppt wird.
  • Eine weitere vorteilhafte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass zwischen der Steuereinheit und dem Gassensor eine Kommunikationsverbindung ausgebildet ist. Die Informationen des Gassensors werden also an die Steuereinheit übermittelt. Diese kann sodann den erfassten Gaswert mit einer Gasschwellwertgröße vergleichen. Übersteigt der gemessene Gaswert die Gasschwellwertgröße, können Folgemaßnahmen eingeleitet werden. Dies kann beispielsweise die Bestimmung der Fehlfunktion sein, wie sie in dem vorangegangenen Abschnitt erläutert wurde. Alternativ oder ergänzend können Ventile geschlossen werden, insbesondere das Ventil, das zum Öffnen und/oder Schließen eines Gasflusses zu dem zweiten Auslass ausgestaltet ist. Die Steuereinheit kann also die zur Verfügung stehenden Informationen des Gassensors und/oder der Feuerüberwachung der Brandeinheit verwenden, um Steuersignale zu erzeugen, die einen weiteren Gasstrom aus dem ersten Auslass und/oder aus dem zweiten Auslass stoppen. Dies ist insbesondere dann der Fall, wenn ausströmendes Gas aus dem ersten Auslass und/oder aus dem zweiten Auslass keine jeweils entsprechende Flamme hervorruft, die mit mindestens einem der zuvor genannten Sensoren unmittelbar oder indirekt detektierbar ist.
  • Eine weitere vorteilhafte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass die Brandübungsanlage mindestens eine Gasüberwachungseinheit aufweist, die außerhalb der Brandkammer in einer Umgebung mit einem maximalen Radius von 15 Metern, insbesondere zwischen 1 Meter und 25 Metern, zu der mindestens einen Öffnung der Bodenwand der Brandkammer angeordnet ist bzw. sind. Der zuvor erörterte Gassensor an und/oder unter der Bodenwand der Brandkammer sowie der Sensor zur Feuerüberwachung an dem ersten bzw. dem zweiten Auslass sind in geringer Nähe zu dem Feuer angeordnet, welches durch das ausströmende gasförmige oder flüssige Gas entstehen kann. Obwohl der Sensor zur Feuerüberwachung und/oder der genannte Gassensor eine Hitzebeständigkeit aufweisen können, birgt die Nähe zu dem zuvor genannten Feuer ein Restrisiko, welches die Gefahr eines Defekts der zuvor genannten Sensoren erhöht. Mit einer Gasüberwachungseinheit in einem größeren Abstand zu der Brandkammer, und zwar von maximal 5 Metern, 10 Metern, 15 Metern oder 25 Metern, wird erreicht, dass die Gasüberwachungseinheit einer deutlich geringeren Wärme bzw. Hitzebelastung ausgesetzt ist und dass durch die Öffnung in der Bodenwand der Brandkammer austretendes, flüssiges Gas zeitnah und mit einer gut messbaren Konzentration detektierbar ist. Besonders bevorzugt ist die Gasüberwachungseinheit in einem Radius zu der Brandkammer zwischen 1,5 Metern und 15 Metern, besonders bevorzugt zwischen 2 Metern und 10 Metern, angeordnet. Somit weist die Gasüberwachungseinheit auch einen Mindestabstand zu der Brandkammer auf, um die Wärme bzw. Hitzeeinwirkung auf die Gasüberwachungseinheit möglichst gering zu halten. Die Gasüberwachungseinheit kann mindestens ein Gasmessgerät umfassen. Besonders bevorzugt sind mehrere Gasmessgeräte für die Gasüberwachungseinheit vorgesehen. Diese Gasmessgeräte können voneinander beabstandet um die Brandkammer angeordnet sein. Insbesondere sind die mehreren Gasmessgeräte der Gasmesseinheit sternförmig zu der Brandkammer angeordnet. Mit einer derartigen Ausgestaltung kann ein durch die Öffnung in der Bodenwand der Brandkammer austretendes, flüssiges Gas besonders schnell und sicher detektiert werden. Denn unabhängig von der Windrichtung, durch die das austretende, flüssige Gas von der Brandkammer weg transportiert wird, trifft das Gas auf eines der Gasmessgeräte. Die Auswertung der durch die Gasmessgeräte generierten Information über das gemessene Gas kann analog zu der vorherigen Ausgestaltung mit dem Gassensor an und/oder unter der Bodenwand der Brandkammer erfolgen. Es wird deshalb auf die entsprechenden Erläuterungen analog Bezug genommen. Sofern für die Gasüberwachungseinheit mehrere Gasmessgeräte vorgesehen sind, können diese ein Kommunikationsnetz ausbilden, um Informationen miteinander und/oder der Steuereinheit auszutauschen. Insbesondere kann das Informationsnetz zur Datenweiterleitung und/oder Alarmmeldungsweiterleitung an die Steuereinheit ausgestaltet sein.
  • Eine weitere vorteilhafte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass zwischen der Steuereinheit und der Gasüberwachungseinheit eine Kommunikationsverbindung ausgebildet ist. Somit können Informationen der Gasüberwachungseinheit, insbesondere von mindestens einem Gasmessgerät der Gasüberwachungseinheit, an die Steuereinheit übertragen werden. Die Steuereinheit kann die entsprechenden Informationen auswerten und Folgeaktionen einleiten. Die Folgeaktionen können beispielsweise das Schließen von mindestens einem Ventil sein, um den Gasstrom zu dem ersten Auslass und/oder zweiten Auslass zu stoppen.
  • Eine weitere vorteilhafte Ausgestaltung der Brandübungsanlage zeichnet sich dadurch aus, dass die Brandeinheit innenseitig an einer Seitenwand der Brandkammer befestigt ist. Eine Flamme, die sich bei einem Entzünden des gasförmigen und/oder flüssigen Gases beim Austritt aus dem jeweils zugehörigen Auslass entsteht, kann sich sodann besonders großvolumig ausbreiten. Damit können unterschiedliche Brandsituationen simuliert werden. Außerdem bietet die Anordnung der Brandeinheit an der inneren Seitenwand der Brandkammer den Vorteil, dass aus dem zweiten Auslass ausströmendes, flüssiges Gas noch in Brand gerät, bevor es die Öffnung in der Bodenwandung der Brandkammer erreicht. Dies vergrößert die passive Sicherheit der Brandübungsanlage.
  • Figuren
  • Im Folgenden wird die Erfindung ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen beschrieben. In den Zeichnungen zeigen:
  • Fig. 1
    eine schematische, perspektivische Ansicht des Brandübungsanlage,
    Fig. 2
    eine schematische Schnittansicht einer Brandkammer mit Blick von oben in den zugehörigen Innenraum,
    Fig. 3
    eine schematische Darstellung der Brandkammer in einem Teilschnitt, und
    Fig. 4
    eine schematische Ansicht der Brandeinheit.
  • Aus der Figur 1 ist die Brandübungsanlage 2 schematisch zu entnehmen. Die Brandübungsanlage umfasst eine Brandkammer 4. Die Brandkammer 4 weist einen metallischen Container auf. An den Stirnseiten sind Türen angebracht, um den Container zu öffnen. Darüber hinaus ist an einer Seitenwand 22 eine Öffnung 20 vorgesehen, die mittels zwei übereinander angeordneten Türen 24 verschließbar ist bzw. geöffnet werden kann. Eine weitere Öffnung der Brandkammer 4 ist in einer Dachwandung vorgesehen, wobei an die Öffnung ein Schornstein 40 anschließt. In Längsrichtung ist die Brandkammer 4 jedoch nicht durchgängig ausgestaltet. Vielmehr ist eine Querwand 42 vorgesehen, wie sie auch aus der Figur 2 zu entnehmen ist, wobei die Querwand 42 den Innenraum des Containers in zwei Räume aufteilt. Einer der beiden Räume, vorzugsweise der kleinere, bildet den Technikraum 44, in dem die Steuereinheit 30 der Brandübungsanlage 2 angeordnet ist. Von dem anderen Raum wird sodann die Brandkammer 4 zumindest teilweise gebildet. In der Brandkammer 4 werden Brände simuliert, um Feuerwehrleuten die Möglichkeit zu bieten, entsprechende Gegenmaßnahmen zu üben und den jeweiligen Brand zu löschen. Um einen Brand zu simulieren, ist in dem Innenraum der Brandkammer 4 eine Brandeinheit 6 angeordnet. Bevorzugt ist die Brandeinheit 6 an der Querwand 42 befestigt. Zur Versorgung der Brandeinheit 6 mit brennbarem Gas ist die Brandkammer 4 bzw. die Brandeinheit 6 mit einer Gasversorgungseinheit 8 verbindbar. Dazu können entsprechende Rohrleitungsverbindung vorgesehen sein, die zum Transport von Gas aus der Gasversorgungseinheit 8 zu der Brandeinheit 6 geeignet sind. Ist die Brandeinheit 6 nun also an die Gasversorgungseinheit 8, beispielsweise ein Gasspeicher, angeschlossen, kann aus einem ersten Auslass 10, wie dieser beispielsweise aus Figur 4 zu entnehmen ist, Gas strömen. Der erste Auslass 10 ist dazu ausgestaltet, um gasförmiges Gas ausströmen zu lassen. Das Gas stammt dabei aus der Gasversorgungseinheit 8. Der erste Auslass 10 kann dabei durch ein Rohrelement 46 mit einer Mehrzahl von Öffnungen 48 gebildet sein. Andere Ausgestaltungen des ersten Auslasses 10 sind ebenfalls möglich, die geeignet sind, um gasförmiges Gas ausströmen zu lassen. Um nun einen Brand mittels des ausströmenden, gasförmigen Gases zu erreichen, wird das gasförmige Gas entzündet. Hierzu kann eine entsprechende Zündvorrichtung (nicht dargestellt) vorgesehen sein. Das entzündete Gas verursacht eine entsprechende Flamme, mit der insbesondere in Abhängigkeit des Druckes, mit dem das gasförmige Gas aus dem ersten Auslass 10 ausströmt und/oder der Anzahl der Öffnungen 48, die dem ersten Auslass 10 zugeordnet sind, unterschiedliche Brände simuliert werden können. Gasförmiges Gas hat eine Energiedichte, die dazu geeignet ist, eine bestimmte Anzahl von Brandsituationen zu simulieren. Gasförmiges Gas ist jedoch zumeist nicht dazu geeignet, einen sogenannten "Flashover" zu simulieren. Deshalb weist die erfindungsgemäße Brandeinheit 6 der Brandübungsanlage 2 einen zweiten Auslass 12 für flüssiges Gas auf. Analog zu der Ausgestaltung des ersten Auslasses 10 kann der zweite Auslass 12 durch ein Rohrelement 50 mit einer Mehrzahl von Öffnungen 52 ausgestaltet sein. Um nun mittels des zweiten Auslasses 12 flüssiges Gas ausströmen zu lassen, ist die Brandeinheit 6 mit der Gasversorgungseinheit 8 verbunden, wobei diese vorzugsweise dazu ausgebildet ist, auch flüssiges Gas bereit zu stellen. Alternativ können anstatt einer gemeinsamen Gasversorgungseinheit für flüssiges Gas und für gasförmiges Gas für jede der beiden Gassorten unterschiedliche Gasversorgungseinheiten vorgesehen sein. Außerdem ist es bevorzugt, dass der zweite Auslass speziell zum Ausströmen von flüssigem Gas ausgestaltet ist. Dies gilt insbesondere für die zugehörigen Öffnungen 52.
  • Um nun einen "Flashover" mittels der Brandübungsanlage 2 zu simulieren, wird zunächst gasförmiges Gas, das aus dem ersten Auslass 10 strömt, entzündet. Eine entsprechende Flamme wird auch als Pilotflamme bezeichnet, da diese zum Entzünden von flüssigem Gas geeignet ist, das aus dem zweiten Auslass 12 der Brandeinheit 6 strömt. Entzündet sich das flüssige Gas, welches eine deutlich höhere Energiedichte aufweist als das gasförmige Gas, entsteht eine deutlich größere Flamme, die den zuvor erläuterten "Flashover" bildet. Mit dem Druck und/oder Volumenstrom an flüssigem Gas, der aus dem zweiten Auslass 12 austritt, kann die Größe der entstehenden Flamme und/oder Reichweite des "Flashovers" bestimmt werden.
  • Wie aus der Figur 4 hervorgeht, ist in der Zuleitung 54 für gasförmiges Gas ein steuerbares Ventil 56 vorgesehen, um einen Volumenstrom an gasförmigem Gas zu dem ersten Auslass 10 zu steuern. Das Ventil 56 kann dabei von der Steuereinheit 30 gesteuert werden. Dabei kann das Ventil 56 eine Volumenstrom von gasförmigem Gas durchlassen, aufhalten und/oder drosseln. Analog zu der Zuleitung 54 und dem Ventil 56 ist für den zweiten Auslass 12 eine Zuleitung 58 für flüssiges Gas zu dem zweiten Auslass 12 sowie ein steuerbares Ventil 60 für die Zuleitung 58 vorgesehen. Mit dem Ventil 60 kann ein Volumenstrom an flüssigem Gas zu dem zweiten Auslass 12 gesperrt, freigegeben und/oder gedrosselt werden. Dazu kann das steuerbare Ventil 60 mittels der Steuereinheit 30 gesteuert werden. Durch die Steuerbarkeit der Volumenströme für gasförmiges Gas und flüssiges Gas können unterschiedliche Brandsituationen simuliert werden.
  • Aufgrund der hohen Energiedichte des flüssigen Gases geht von der Brandeinheit 6 eine höhere Gefahr aus. Deshalb ist es erfindungsgemäß vorgesehen und aus Figur 2 ersichtlich, dass die Brandkammer 4 innerhalb eines vorbestimmten Radius R1 von maximal 1,5 Metern um die Brandeinheit 6 mindestens eine Öffnung 14 in einer Bodenwandung 16 der Brandkammer 4 aufweist. Mit anderen Worten ist in der Bodenwandung 16 der Brandkammer 4 in unmittelbarer Nähe zu der Brandeinheit 6 eine Öffnung 14 vorgesehen. Die Bodenwandung 16 der Brandkammer 4 ist also nicht geschlossen. Vielmehr ist die Bodenwandung 16 der Brandkammer 4 in der Nähe der Brandeinheit 6 geöffnet. Sollte es nun dazu kommen, dass aus dem zweiten Auslass 12 flüssiges Gas ausströmt, welches nicht unmittelbar daraufhin in Brand gerät, sondern aufgrund der höheren Dichte als die Umgebungsluft zu Boden sinkt, kann das flüssige Gas die Brandkammer 4 durch die Öffnungen 14 in der Bodenwandung 16 verlassen. Wie aus Figur 3 zu entnehmen ist, ist die Bodenwandung 16 der Brandkammer 4 von einem Boden, insbesondere der Erde, auf der die Brandkammer 4 steht, beabstandet. Es bildet sich also an der Unterseite der Brandkammer 4 im Bereich der Öffnung 14 in der Bodenwandung 16 ein quer verlaufender Kanal aus, der außenseitig mit der Umgebung verbunden ist. Somit kann Wind oder ein künstlich erzeugter Luftstrom unter der Brandkammer 4 durch den Kanal strömen und dabei das durch die Öffnungen 14 austretende, flüssige Gas mittragen. Das flüssige Gas wird dabei von der Gefahrenstelle in der Nähe der Brandkammer 4 entfernt, sodass die Gefahr einer unkontrollierten Entzündung schnell sinkt. Mit den Öffnungen 14 in der Bodenwandung 16 der Brandkammer 4 wird also die passive Sicherheit der Brandübungsanlage 2 mit einer Brandeinheit 6, die einen Auslass für flüssiges Gas aufweist, deutlich erhöht.
  • Darüber hinaus ist zur Erhöhung der Sicherheit eine aktive Überwachung der Brandeinheit 6 vorgesehen. Dazu kann ein Feuersensor 28 vorgesehen sein, wie dieser aus der Figur 4 zu entnehmen ist. Dieser Feuersensor 28 ist vorzugsweise als Temperatursensor und/oder als optischer Flammensensor ausgebildet. Der Feuersensor 28 ist mit der Steuereinheit 30 durch eine Kommunikationsverbindung verbunden. Die Steuereinheit 30 kann zur Auswertung der Sensorsignale des Feuersensors 28 ausgestaltet sein, um zu erkennen, ob ein Feuer bei einem Ausströmen von gasförmigem Gas aus dem ersten Auslass 10 entsteht. Ist dies nicht der Fall, kann der Gasstrom mittels des Ventils 56 unterbrochen werden. Darüber hinaus kann der Feuersensor 28 auch zur Erkennung eines "Flashovers" ausgestaltet sein, da in diesem Fall eine deutlich größere Flamme mit einer entsprechend höheren Temperatur entsteht. Sollte also flüssiges Gas aus dem zweiten Auslass 12 ausströmen, ohne dass mittels des Feuersensors 28 und der Steuereinheit 30 ein starker Temperaturanstieg und/oder eine entsprechend größere Flamme erkannt werden, kann dies darauf hindeuten, dass das flüssige Gas aus dem zweiten Auslass 12 austritt, ohne dass es daraufhin zu einer Verbrennung kommt. In diesem Fall wird mittels der Steuereinheit 30 das Ventil 60 geschlossen, um ein weiteres Ausströmen von flüssigem Gas und/oder eine unkontrollierte Entzündung des flüssigen Gases zu verhindern.
  • Zuvor wurde erläutert, dass die Brandübungsanlage 2 sowohl eine verbesserte passive Sicherheit durch die Öffnungen 14 in der Bodenwandung 16 sowie eine verbesserte aktive Sicherheit durch den Feuersensor 28 an der Brandeinheit 6 aufweist. Der Feuersensor 28 ist aufgrund seiner nahen Anordnung zu dem mittels der Brandeinheit 6 hervorrufbaren Feuer einer hohen thermischen Belastung ausgesetzt. Um die aktive Sicherheit der Brandübungsanlage 2 deshalb weiter zu verbessern, ist unter der Bodenwandung 16 bzw. an einer Außenseite der Bodenwandung 16 der Brandkammer 4 ein Gassensor 32 angeordnet. Sollte es also zu einem Ausströmen von flüssigem Gas durch den zweiten Auslass 12 kommen, wobei das ausströmende Gas unverbrannt durch die Öffnung 14 strömt, kann das Gas mittels des Gassensors 32 detektiert werden. Der Gassensor 32 ist mit der Steuereinheit 30 durch eine Kommunikationsverbindung verbunden. Mit der Erkennung des flüssigen Gases an der Unterseite der Bodenwandung 16 kann deshalb darauf geschlossen werden, dass flüssiges Gas unverbrannt in die Brandkammer 4 einströmt. Die Steuereinheit 30 ist deshalb in der Weise ausgestaltet, dass daraufhin zumindest das Ventil 60 und vorzugsweise auch das Ventil 56 geschlossen werden, um einen weiteren Gasstrom zu dem ersten Auslass 10 bzw. zweiten Auslass 12 zu stoppen. Dies erhöht sodann die aktive Sicherheit der Brandübungsanlage 2.
  • Um Gas zu einem Feuer zu entzünden, ist Sauerstoff notwendig. Ist in der Brandkammer 4 kein Sauerstoff, kann das aus dem ersten Auslass 10 und/oder aus dem zweiten Auslass 12 strömende Gas nicht entzündet werden. Zur Verbesserung der passiven Sicherheit der Brandübungsanlage 2, ist deshalb mindestens ein Sensor 26 vorgesehen, der zur Überwachung einer Tür 24 und/oder einer Öffnung 20 in einer Seitenwand 22 der Brandkammer 4 ausgestaltet ist. Mit der Tür 24 kann die Öffnung 20 geöffnet oder verschlossen werden. Somit dient der Sensor 26 zur Überwachung der Tür 24 und/oder der Öffnung bzw. zur Feststellung, ob durch die Öffnung 20 Sauerstoff aus der Umgebung in die Brandkammer 4 strömen kann. Ist dies der Fall kann das aus den Auslässen 10, 12 ausströmende Gas entzündet werden. Dies verbessert die Sicherheit der Brandübungsanlage 2.
  • Ein erweitertes Sicherheitskonzept für die Brandübungsanlage 2 sieht auch die Überwachung der Umgebung um die Brandkammer 4 vor. Der Brandübungsanlage 2 ist deshalb eine Gasüberwachungseinheit 36 zugeordnet. Mit der Gasüberwachungseinheit 36 kann die Umgebung auf Gas, insbesondere auf gasförmiges Gas und/oder flüssiges Gas, überwacht werden. Die Gasüberwachungseinheit 36 weist dazu mehrere Gasmessgeräte 38 auf. Diese Gasmessgeräte 38 können in einem Radius R2 zwischen 2 Metern und 25 Metern um die Brandeinheit 6 angeordnet sein. Der Radius R2 ist dabei deutlich größer als der zuvor erläuterte Radius R1, innerhalb dem die Öffnungen 14 in der Bodenwandung 16 angeordnet sind. Mit den Gasmessgeräten 38 wird deshalb ein größerer Bereich auf Gas überwacht. Sollte es nun zu einem Gasaustritt von flüssigem Gas und/oder gasförmigem Gas durch die Öffnung 14 in der Bodenwandung 16 kommen, welches daraufhin durch Wind oder einen anderen künstlichen Volumenstrom an Luft in der Umgebung verteilt wird, wird dies durch die Gasüberwachungseinheit 36 bzw. die zugeordneten Gasmessgeräte 38 erkannt. Eine entsprechende Information wird an die Steuereinheit 30 übermittelt. Dazu können die Gasmessgeräte 38 durch entsprechende Kommunikationsleitungen und/oder durch eine Funkverbindung mit der Steuereinheit 30 verbunden sein. Die Steuereinheit 30 schließt daraufhin die Ventile 56, 60 in den Zuleitungen 54, 58 zu den beiden Auslässen 10, 12. Damit wird verhindert, dass es zu einem weiteren Ausströmen von Gas und/oder einer unkontrollierten Verbrennung vom Gas kommt.
  • Bezugszeichenliste
  • R1
    Radius
    R2
    Radius
    2
    Brandübungsanlage
    4
    Brandkammer
    6
    Brandeinheit
    8
    Gasversorgungseinheit
    10
    erster Auslass
    12
    zweiter Auslass
    14
    Öffnung
    16
    Bodenwandung
    18
    Beinelement
    20
    Öffnung in Seitenwand
    22
    Seitenwand
    24
    Tür
    26
    Sensor
    28
    Feuersensor
    30
    Steuereinheit
    32
    Gassensor
    36
    Gasüberwachungseinheit
    38
    Gasmessgerät
    40
    Schornstein
    42
    Querwand
    44
    Technikraum
    46
    Rohrelement
    48
    Öffnung
    50
    Rohrelement
    52
    Öffnung
    54
    Zuleitung
    56
    Ventil
    58
    Zuleitung
    60
    Ventil

Claims (11)

  1. Brandübungsanlage (2) mit
    a. einer Brandkammer (4) und
    b. einer in der Brandkammer (4) angeordneten Brandeinheit (6), die
    i. mit einer Gasversorgungseinheit (8) verbindbar ist und
    ii. einen ersten Auslass (10) für gasförmiges Gas aus der Gasversorgungseinheit (8) aufweist,
    wobei
    c. die Brandeinheit (6) einen zweiten Auslass (12) für flüssiges Gas aus der Gasversorgungseinheit (8) aufweist und
    d. die Brandkammer (4) innerhalb eines vorbestimmten Radius (R1) um die Brandeinheit (6) mindestens eine Öffnung (14) in einer Bodenwandung (16) der Brandkammer (4) aufweist,
    wobei die Brandübungsanlage (2) so ausgestaltet ist, dass mit dem aus dem ersten Auslass strömenden, gasförmigen Gas eine Pilotflamme gezündet wird, mit der Pilotflamme das ausströmende, flüssige Gas entzündet wird und die Pilotflamme unabhängig von einem Ausströmen von flüssigem Gas aus dem zweiten Auslass der Brandeinheit bestehen bleibt,
    wobei die Brandeinheit (6) einen Sensor (28) zur Feuerüberwachung an dem ersten Auslass (10) aufweist und
    wobei der Sensor (28) zur Überwachung eines Feuers an dem ersten Auslass (10) und dem zweiten Auslass (12) ausgestaltet ist,
  2. Brandübungsanlage (2) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die mindestens eine Öffnung (14) in der Bodenwand (16) der Brandkammer (4) in eine Umgebung außerhalb der Brandkammer führt.
  3. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass außenseitig über die Bodenwandung (16) der Brandkammer (4) hervorragende Beinelemente (18) vorgesehen sind.
  4. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Öffnung (20) in einer Seitenwand (22) der Brandkammer (4), eine der Brandkammer (4) zugeordnete Tür (24) zum Öffnen oder Verschließen der Öffnung (20), und einen Sensor (26) zur Überwachung der Tür oder Öffnung (24).
  5. Brandübungsanlage (2) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Brandübungsanlage (2) eine Steuereinheit (30) zur Steuerung und/oder Überwachung der Brandeinheit (6) aufweist.
  6. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Auslass (12) oberhalb des ersten Auslass (10) angeordnet ist.
  7. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an und/oder unter der Bodenwandung (16) der Brandkammer (4) ein Gassensor (32) vorgesehen ist.
  8. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche 4 bis 7, dadurch gekennzeichnet, dass zwischen der Steuereinheit (30) und dem mindestens einen Sensor (32) jeweils eine Kommunikationsverbindung ausgebildet ist.
  9. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brandübungsanlage (2) mindestens eine Gasüberwachungseinheit (36) aufweist, die außerhalb der Brandkammer (4) in einer Umgebung mit einem maximalen Radius (R2) von 15 Metern zu der mindestens einen Öffnung (14) der Bodenwand (16) der Brandkammer (4) angeordnet ist bzw. sind.
  10. Brandübungsanlage (2) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass zwischen der Steuereinheit (30) und der mindestens einen Gasüberwachungseinheit (36) jeweils eine Kommunikationsverbindung ausgebildet ist.
  11. Brandübungsanlage (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Brandeinheit (6) innenseitig an einer Seitenwand (22) der Brandkammer (4) befestigt ist.
EP22188056.0A 2014-11-06 2015-11-04 Brandübungsanlage Pending EP4101510A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014016311.3A DE102014016311B4 (de) 2014-11-06 2014-11-06 Brandübungsanlage
EP15794463.8A EP3215239B1 (de) 2014-11-06 2015-11-04 Brandübungsanlage
PCT/EP2015/002209 WO2016070990A1 (de) 2014-11-06 2015-11-04 Brandübungsanlage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP15794463.8A Division EP3215239B1 (de) 2014-11-06 2015-11-04 Brandübungsanlage

Publications (1)

Publication Number Publication Date
EP4101510A1 true EP4101510A1 (de) 2022-12-14

Family

ID=54542200

Family Applications (3)

Application Number Title Priority Date Filing Date
EP22188057.8A Pending EP4101511A1 (de) 2014-11-06 2015-11-04 Brandübungsanlage
EP22188056.0A Pending EP4101510A1 (de) 2014-11-06 2015-11-04 Brandübungsanlage
EP15794463.8A Active EP3215239B1 (de) 2014-11-06 2015-11-04 Brandübungsanlage

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP22188057.8A Pending EP4101511A1 (de) 2014-11-06 2015-11-04 Brandübungsanlage

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15794463.8A Active EP3215239B1 (de) 2014-11-06 2015-11-04 Brandübungsanlage

Country Status (4)

Country Link
EP (3) EP4101511A1 (de)
DE (2) DE102014016311B4 (de)
ES (1) ES2927036T3 (de)
WO (1) WO2016070990A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448489A (zh) * 2018-12-14 2019-03-08 中国人民解放军海军工程大学 一种全尺寸舱室火蔓延与轰燃模拟实验装置及实验方法
DE102021102467A1 (de) 2021-02-03 2022-08-04 Dräger Safety AG & Co. KGaA Übungsanlage, welche den Brand eines Elektrofahrzeugs nachbildet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021118A1 (en) 1991-05-22 1992-11-26 Aai Corporation Flashover simulation for firefighter training
US5518402A (en) * 1994-02-15 1996-05-21 Contraves, Inc. Fire fighter trainer having personal tracking and constructive injury determination and methods of training
WO2001041874A2 (de) * 1999-12-10 2001-06-14 Amec Fire Training Systems Gmbh Verfahren sowie vorrichtung zum simulieren einer schlagartigen flammenausbreitung
EP1334749A1 (de) * 2002-02-06 2003-08-13 I.F.I. Institut für Industrieaerodynamik GmbH Vorrichtung zur Brandsimulation
DE102004058190A1 (de) * 2004-12-02 2006-06-08 Dräger Safety AG & Co. KGaA Brandsimulationsanlage
EP1905486A1 (de) * 2006-09-26 2008-04-02 Holding Haagen B.V. Brandsimulator zum Trainungsgebrauch im Rahmen der Feuerbekämpfung
WO2010060774A1 (de) * 2008-11-25 2010-06-03 Naderer Brandsimulation Ag Brandsimulationsvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226818A (en) * 1991-11-25 1993-07-13 Aai Corporation Firefighter training system with thermal agent detection
US5374191A (en) * 1993-04-12 1994-12-20 Aai Corporation Enhanced deck for firefighter training simulators
WO2013000019A1 (en) * 2011-06-27 2013-01-03 Seqr Management Services Pty Ltd Multipurpose simulator installation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021118A1 (en) 1991-05-22 1992-11-26 Aai Corporation Flashover simulation for firefighter training
US5518402A (en) * 1994-02-15 1996-05-21 Contraves, Inc. Fire fighter trainer having personal tracking and constructive injury determination and methods of training
WO2001041874A2 (de) * 1999-12-10 2001-06-14 Amec Fire Training Systems Gmbh Verfahren sowie vorrichtung zum simulieren einer schlagartigen flammenausbreitung
EP1334749A1 (de) * 2002-02-06 2003-08-13 I.F.I. Institut für Industrieaerodynamik GmbH Vorrichtung zur Brandsimulation
DE102004058190A1 (de) * 2004-12-02 2006-06-08 Dräger Safety AG & Co. KGaA Brandsimulationsanlage
EP1905486A1 (de) * 2006-09-26 2008-04-02 Holding Haagen B.V. Brandsimulator zum Trainungsgebrauch im Rahmen der Feuerbekämpfung
WO2010060774A1 (de) * 2008-11-25 2010-06-03 Naderer Brandsimulation Ag Brandsimulationsvorrichtung

Also Published As

Publication number Publication date
DE202015009994U1 (de) 2022-09-09
DE102014016311A1 (de) 2016-05-12
WO2016070990A1 (de) 2016-05-12
DE102014016311B4 (de) 2016-07-28
EP3215239B1 (de) 2022-08-10
EP3215239A1 (de) 2017-09-13
EP4101511A1 (de) 2022-12-14
ES2927036T3 (es) 2022-11-02

Similar Documents

Publication Publication Date Title
EP2281150B1 (de) Verfahren zur überwachung der zündung eines gasgerätes
EP3215239B1 (de) Brandübungsanlage
EP1682232A1 (de) Vorrichtung zum verhindern und löschen von bränden
DE19959640C2 (de) Verfahren sowie Vorrichtung zum Simulieren einer schlagartigen Flammenausbreitung
DE102016222668A1 (de) Drucktank-Anordnung für ein Fahrzeug
DE19617017A1 (de) Vorrichtung zum Verschließen von Wandöffnungen, Rohren o. dgl. Strömungsquerschnitten und im Brandfall expandierende Masse
CH699975A2 (de) Brandsimulationsvorrichtung.
DE102008011567B4 (de) Prüfeinrichtung zur Überprüfung der Funktionsfähigkeit von Rauchabzugsanlagen
DE3822012A1 (de) Quenching-vorrichtung
DE2902125A1 (de) Verfahren und einrichtung zur ermittlung der anwesenheit von gasen oder daempfen in luft oder anderen gasfoermigen medien
DE3614387A1 (de) Verfahren und vorrichtung zur gesteuerten anreicherung der raumluft in einem gewaechshaus mit kohlendioxyd (co(pfeil abwaerts)2(pfeil abwaerts))
EP2998002B1 (de) Inertgaslöschanlage
DE102014016310B4 (de) Brandübungsanlage
DE102008015244B4 (de) Verfahren und Vorrichtung zum Simulieren einer bestimmten Brandsituation insbesondere mit schlagartiger Flammenausbreitung
EP4075061B1 (de) Anordnung zur verminderung der folgen eines flammenrückschlages in einen vormisch-brenner eines heizgerätes
DE2841859A1 (de) Sicherheitsvorrichtung zum unterbrechen eines gasaustritts
AT392599B (de) Verfahren und einrichtung zur oxidation von feuer- und/oder explosionsgefaehrliche komponenten enthaltenden gase
EP4134138A1 (de) Docking-station zum sicheren stationären betrieb einer mobilen brandschutzübungsvorrichtung in innenräumen
EP4273373A1 (de) Anlage mit wärmetauscher und anlagen-betriebsverfahren
DE102021110061A1 (de) Anordnung zur Verminderung der Folgen eines Flammenrückschlages in einen Vormisch-Brenner eines Heizgerätes
DE467611C (de) Vergasungsvorrichtung zur Schaedlingsbekaempfung
DE19840863A1 (de) Sprinklerbaugruppe
WO2015128261A1 (de) Feuerwehrtrainingsverfahren und vorrichtung zur simulation eines flashovers in einem geschlossenen raum
WO2015036081A1 (de) Vorrichtung zur verbrennung von gasförmigen stoffen
DE3825608A1 (de) Verfahren zum messen und regeln der sekundaerluft bei einer feuerstaette fuer gasreiche festbrennstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221109

AC Divisional application: reference to earlier application

Ref document number: 3215239

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR