EP4100177B1 - Procédé d'étalonnage de rouleaux verticaux d'une cage de laminoir vertical et laminoir avec ensemble d'étalonnage pour la mise en oeuvre du procédé - Google Patents

Procédé d'étalonnage de rouleaux verticaux d'une cage de laminoir vertical et laminoir avec ensemble d'étalonnage pour la mise en oeuvre du procédé Download PDF

Info

Publication number
EP4100177B1
EP4100177B1 EP21703693.8A EP21703693A EP4100177B1 EP 4100177 B1 EP4100177 B1 EP 4100177B1 EP 21703693 A EP21703693 A EP 21703693A EP 4100177 B1 EP4100177 B1 EP 4100177B1
Authority
EP
European Patent Office
Prior art keywords
vertical
calibration
slab
rollers
rolling train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21703693.8A
Other languages
German (de)
English (en)
Other versions
EP4100177C0 (fr
EP4100177A1 (fr
Inventor
Stefan Wendt
Hans Günter MUSELLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP4100177A1 publication Critical patent/EP4100177A1/fr
Application granted granted Critical
Publication of EP4100177C0 publication Critical patent/EP4100177C0/fr
Publication of EP4100177B1 publication Critical patent/EP4100177B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/10Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-gap, e.g. pass indicators
    • B21B38/105Calibrating or presetting roll-gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/06Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged vertically, e.g. edgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/06Width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/22Aligning on rolling axis, e.g. of roll calibers

Definitions

  • the invention relates to a method for calibrating vertical rollers or vertical rolls (hereinafter referred to only as vertical roller) of a vertical rolling mill for rolling metal flat products, in particular for rolling steel and non-ferrous metals.
  • Calibration of a vertical rolling mill is necessary to determine the position of the vertical rolls in relation to the center of the rolling mill and, if necessary, to correct it so that the outer edges of the vertical rolls facing the center of the rolling mill are the same distance from the center line of the rolling mill. Calibration may be necessary, for example, whenever the vertical rolling mill is put back into operation after a repair, when the rolling mill is restarted after a standstill or after a signal loss from the control system, or when the rolling result suggests a correction of the position of the vertical rolls.
  • a method for calibrating the vertical roll gap of a vertical rolling mill includes determining and marking the center line of the rolling mill for the upper and lower ends of the vertical rolls, determining the distance of the axes of the vertical rolls to the marked center line and the vertical alignment of the ends of the vertical rolls to the marked center line. The distance of the lower ends of the vertical rolls to the lower end of the marked center line is then compared with the distance of the upper ends of the vertical rolls to the upper end of the marked center line. The vertical alignment and centering of the vertical rolls is then adjusted in order to then carry out calibration by measuring the width of the roll gap. How exactly the distances are measured is not described in this publication.
  • JP 2012218060 A A method is described in which the position of the vertical rolls in a vertical rolling stand is determined exclusively by means of sensors or position sensors which are arranged on the setting cylinders and on the return cylinders of the vertical roll units.
  • the WO 2010/109637 A1 describes a method for calibrating vertical rollers of a vertical rolling stand, each of which is mounted in a vertical roller unit which is adjustable with respect to a predetermined center line of several components arranged in a rolling mill, the method comprising determining actual distances of the longitudinal center axis of the vertical rollers to the center line of the rolling mill in a predetermined operating position, the provision of at least one calibration slab with a known and specific width and the introduction of the calibration slab into the vertical rolling stand.
  • the method also includes positioning the vertical rollers against the calibration slab with a defined positioning force. In this process, a displacement and pressure measurement is carried out, with the inner edge of the vertical rollers being recorded as the reference position. The roll gap is adjusted based on the reference position determined in this way.
  • the document WO 2010/109637 A1 further discloses a calibration arrangement on a vertical rolling stand in a rolling mill for rolling metal products with at least two vertical rollers, each mounted in vertical roller units, which define a roll gap and which are adjustable with at least one preferably hydraulic adjustment system and/or at least one preferably hydraulic return system in relation to a plurality of components arranged in a predetermined center line in the rolling mill.
  • the known method has the particular disadvantage that the wear condition of the vertical wheat is not taken into account.
  • the invention is based on the object of providing a method and an arrangement for calibrating vertical rolls of a vertical rolling stand, with which an at least partial automation of the calibration is possible.
  • the invention is based in particular on the object of providing a method and an arrangement for calibrating vertical rolls of a vertical rolling stand, which takes into account the guarantee of occupational safety when carrying out the method.
  • the procedure is intended to increase system availability and minimize possible sources of error during calibration.
  • a multi-stage calibration method is provided in which the position of the vertical rollers in relation to the center line of the rolling mill is determined in one step.
  • this method step an actual distance between the longitudinal center axes of the vertical rollers in relation to the center line of the rolling mill is determined.
  • the use of the longitudinal center axes of the vertical rollers represents a preferred distance reference. If a reference other than the longitudinal center axis is to be used for calculations, the connection between the other reference and the longitudinal center axis must be established according to the invention. Another reference can be, for example, an edge of a chock. If other references are used, it is essential to know the diameter of the vertical rollers.
  • This process step is preferably carried out when there is no material, such as rolling stock, between the vertical rolls, for example during a rolling break, in repair operations or during maintenance.
  • a calibration slab with a known and specific width is provided and introduced into the vertical rolling stand.
  • the calibration slab can be guided forwards and/or backwards through the vertical rolling stand, wherein the vertical rollers of the vertical rolling stand are brought into engagement with the calibration slab with a defined setting force.
  • the guiding of the calibration slab through the vertical rolling stand in the sense of the invention can comprise reversing and moving forwards or backwards as well as stopping the calibration slab during the forward or backward movement in the vertical rolling stand.
  • a control unit calculates the target distances of the longitudinal center axis of the vertical rolls from the center line of the rolling mill.
  • the calibration method proposed according to the invention can be described as multi-stage in that one calibration stage involves determining the position of the longitudinal center axes of the vertical rollers in relation to the center line of the rolling mill.
  • the diameter of the vertical rollers or their state of wear initially plays no role.
  • the other calibration stage takes into account the actual width of the calibration slab located between the vertical rollers and thus the actual diameter of the vertical rollers. This means that a separate measurement of the wear-related diameter of the vertical rollers, which would represent an additional source of error, is unnecessary.
  • the actual diameter of the vertical rollers, even in the worn state, is taken into account during the calibration stage using the calibration slab.
  • the determination of the wear-related diameter of the vertical rollers in a separate method step is not necessary in the method according to the invention.
  • Process step A) can be carried out independently of process steps B) to D).
  • process steps B) to D) on the one hand and process step A) on the other hand may vary due to the fact that process steps B) to D) can be carried out independently of process step A).
  • Process step A) can also be carried out immediately before process step C) or D).
  • the calibration steps of the method according to the invention are preferably each carried out automatically.
  • the calculation of the target distances of the longitudinal center axes of the vertical rolls from the center line of the rolling mill is carried out under the mathematical condition that the target distances of the longitudinal center axes of the vertical rolls are equal.
  • the calculation of the target distances of the longitudinal center axes of the vertical rollers from the center line of the rolling mill is carried out under the additional mathematical condition that the sum of the width of the calibration slab and the diameter of a vertical roller corresponds to the sum of the target distances of the longitudinal center axes of the vertical rollers.
  • the control unit calculates the target distances of the longitudinal center axes of the vertical rolls from the center line of the rolling mill based on the calculated diameter of the vertical rolls from the actual distances of the longitudinal center axes of the vertical rolls from the center line of the rolling mill and the width of the calibration slab.
  • an actual diameter of the vertical rollers is calculated and recorded in relation to a calibration process.
  • the calibration method according to the invention inherently takes the actual diameter of the vertical rollers into account in each calibration process, long-term planning with regard to the service life of the vertical rollers is possible. It is also possible to establish connections between certain rolling programs and the wear of the vertical rollers. This makes ordering processes for spare parts easier to plan.
  • the wear progress of the vertical rollers is conveniently recorded and monitored by means of a large number of calibration processes.
  • the calculation of the target distances between the longitudinal center axes of the vertical rollers can be carried out under the simplifying assumption that the diameter of the vertical rollers is the same. Such a simplification is permissible and generally correct, since the vertical rollers used have the same initial diameter when installed and it can be assumed that both vertical rollers wear more or less evenly.
  • the vertical roller units are preferably first moved or adjusted transversely to the center line of the rolling mill against at least one stationary stop of the vertical rolling stand, which has a certain known position with respect to the center line.
  • This position of the vertical roller units is referred to below as the calibration position.
  • the stop can, for example, be designed as a reference surface that was measured and aligned with respect to the center line when the vertical rolling stand was erected in the rolling mill.
  • the vertical roller units are then moved from the calibration position to a defined unloaded position that roughly corresponds to a planned operating position.
  • the adjustment path to be covered here is recorded or measured for each vertical roller or for each vertical roller unit.
  • the actual distance of the longitudinal center axis of the respective vertical roller from the center line of the rolling mill is obtained from the sum of the initial distance of the longitudinal center axis of the vertical roller to the center line of the rolling mill and the recorded distance covered by the vertical roller units.
  • the method according to the invention provides for reference surfaces on the movable vertical roller units or on adjacent or connected components on the one hand and measuring surfaces or reference surfaces on stationary components of the vertical rolling stand on the other hand.
  • the position of these reference surfaces relative to the position of the longitudinal center axes of the vertical rollers can be determined relatively easily, as can the position of the reference surfaces relative to each other and to the center line of the rolling mill.
  • the reference surfaces on the movable components of the vertical rolling stand are moved against reference surfaces of the stationary components in order to determine a defined starting position for further adjustment movements, so that they touch each other and a further change in position is no longer possible.
  • a calibration process is carried out for a first vertical roller unit and for an associated second vertical roller unit, wherein the first and the second vertical roller unit are moved into the unloaded position with respect to the center line of the rolling mill after the calibration process in such a way that the longitudinal center axes of the first and second vertical rollers are at the same distance from the center line of the rolling mill.
  • the position of the reference surfaces on the moving components of the vertical rolling mill are determined and known in terms of the distance from the longitudinal center axis of the vertical rolls.
  • the position of the reference surfaces on the stationary components of the vertical rolling mill are determined and known in terms of the distance from the center line of the rolling mill.
  • the calibration position is on the side of the vertical rollers facing the rolling stock or the calibration slab.
  • a calibration position that is located on the outer areas of the vertical rolling stand is just as functionally and technically possible within the scope of the invention.
  • the reference surfaces would be located on the outer areas of the vertical rolling stand. The reference surfaces would then touch each other, which could, for example, be stationary on the crossheads on the one hand and movable on the crossbeams on the other.
  • the adjustment of the vertical roller unit into the calibration position and/or the return of the vertical roller unit into the unloaded position is expediently carried out by means of at least one adjustment system and/or by means of at least one return system.
  • the adjustment system can comprise at least one translationally moving element, for example an adjustment cylinder or an adjustment screw.
  • the The return system may comprise at least one translationally moving element in the form of a screw drive or a return cylinder.
  • the actuation system and/or the return system are preferably designed as hydraulic systems comprising corresponding piston-cylinder arrangements.
  • the vertical roller unit is advantageously placed in a defined operating position by means of at least one positioning system and/or by means of at least one return system.
  • the calibration process according to method step a) is preferably monitored by at least one measuring element, for example a position sensor, in order to be able to carry out a target/actual comparison of the actual position and the desired position of the vertical rollers.
  • at least one position sensor can be provided in the adjustment system.
  • the achievement of the defined unloaded position of the vertical roller unit can be monitored by means of at least one measuring element, preferably by means of a position sensor, on at least one hydraulic piston-cylinder arrangement of the at least one hydraulic adjustment system and/or the at least one hydraulic return system.
  • a preferred variant of the method is characterized in that method step a) comprises that at least one first reference surface of a defined position on a vertical roller unit or on a component adjacent to the vertical roller unit that is movable with the vertical roller unit is first brought into contact with at least one second reference surface of a defined position on the vertical rolling stand that is stationary with respect to the center line of the rolling mill, preferably by applying an adjusting force.
  • a movable component can be, for example, a cross member or a chock of the vertical rolling stand.
  • the adjustment of the vertical roller unit according to process step a) can be carried out over a first path at an increased speed and over a second path at a reduced speed until the first and second reference surfaces touch each other.
  • an increase in the setting force is preferably provided when the measuring surfaces associated with one another are in contact, followed by a return of the vertical roller unit with associated moving components to the defined unloaded position.
  • the increase in the setting force and the duration of the effect are preferably each individually limited.
  • the actuating force of the contacting reference surfaces can be monitored by means of at least one pressure sensor on at least one piston-cylinder arrangement of the hydraulic actuating system and/or the hydraulic return system and limited to a predetermined maximum value.
  • the pressure sensor acts like a limit switch.
  • the actual position of the vertical roll can be compared with a target position.
  • the vertical roller unit is expediently adjusted to the unloaded position by means of at least one hydraulic adjustment system and/or by means of at least one hydraulic return system, wherein the reaching of the unloaded position is monitored by means of at least one measuring element, preferably by means of a position sensor PG on at least one hydraulic piston-cylinder arrangement of the at least one hydraulic adjustment system and/or the at least one hydraulic return system.
  • the setting force according to method step C) is limited to a value that is below the plastic deformation of the calibration slab. This basically makes it possible to use the calibration slab for a large number of calibration processes.
  • the setting force is preferably limited at least to a value at which the elastic deformation of the calibration slab is below a defined limit value for the expected calibration result.
  • the calibration of the vertical rolling stand according to the second stage of the method according to the invention takes place with a calibration slab that is unusable for repeated use.
  • the setting force according to method step C) is preferably limited to a value that is above the plastic deformation of the calibration slab.
  • plastic deformation of the calibration slab is to be accepted during the calibration process, it can be planned to use certain sections of the length of the calibration slab for each calibration process. For this purpose, a certain section of the calibration slab to be calibrated can be recorded and tracked using a belt tracking system.
  • the method comprises determining the actual width of the calibration slab after the engagement of the vertical rollers and calculating the target distances of the longitudinal center axes of the vertical rollers, wherein the target distances are calculated as a function of the actual distances of the longitudinal center axes of the vertical rollers from the center line of the rolling mill, taking into account the actual width of the calibration slab that occurs after the engagement of the vertical rollers.
  • the actual width of the calibration slab can be measured using at least one width measuring device located in the rolling mill or specially installed in the rolling mill for this purpose, which is located in front of and/or behind the vertical rolling stand.
  • the longitudinal section of the calibration slab to be taken into account in the width measurement is determined by the strip tracking system mentioned above.
  • the measurement of the width of the calibration slab can also be carried out, for example, with the aid of at least one inlet side guide of a rolling stand provided in the rolling mill and/or an outlet side guide of a rolling stand provided in the rolling mill or the vertical rolling stand to be calibrated.
  • the width of the calibration slab can also be determined by manual measurement.
  • a calibration slab which has at least one replaceable wear element which is selected from a group comprising at least one replaceable caliber plate and at least one replaceable centering plate.
  • the length of the calibration slab can be selected such that, for example, it is arranged or centered over a partial length in a side guide upstream or downstream of the vertical rolling stand, whereas another partial length of the calibration slab is in engagement with the vertical rollers of the vertical rolling stand.
  • the calibration slab is centered in the rolling direction upstream and/or downstream of the vertical rolling stand with at least one upstream and/or downstream lateral guide in relation to the center line of the rolling mill.
  • a rolling mill with a calibration arrangement for rolling metal products is also provided.
  • the rolling mill with a calibration arrangement according to the present invention can be intended and suitable for carrying out the method described above.
  • the rolling mill with a calibration arrangement comprises at least one vertical rolling stand with at least two vertical rollers, each mounted in vertical roller units, which define a roll gap and which can be adjusted with at least one preferably hydraulic adjustment system and/or at least one preferably hydraulic return system in relation to a predetermined center line of several components arranged in the rolling mill, wherein the calibration arrangement comprises at least one first reference surface of a defined position on at least one vertical roller unit or on a component movable with it, which can be moved with the vertical roller unit and at least one second reference surface stationary with respect to the center line and a control with which, with at least one position sensor of the adjustment system and/or the return system, an adjustment of the vertical roller units transversely to the center line against the second reference surface as a stationary stop of the vertical rolling stand and a return of the vertical roller units to a defined unloaded position can be effected.
  • At least one first reference surface can be provided at least on an upper and/or lower mounting piece of the vertical rollers and/or on an adjacent component that is movable with the vertical roller unit.
  • At least one second stationary reference surface can be provided on at least one upper and/or lower roll beam of the vertical rolling stand and/or on each of the crossheads of the vertical rolling stand.
  • At least one of the first and/or second reference surfaces may be adjustable with respect to its position.
  • the at least one first reference surface and/or the at least one second reference surface are designed as adjustable or settable and/or exchangeable measuring plates.
  • the calibration arrangement comprises at least one device which is selected from a group comprising at least one position sensor PG for monitoring the position of the vertical roller units, at least one pressure sensor DG, via which an adjusting force of the at least one first reference surface against the at least one second reference surface can be limited, at least one width measuring device BM for measuring the actual width of the calibration slab and at least one belt tracking system BV for tracking partial areas of the calibration slab.
  • the rolling mill with a calibration arrangement can, for example, comprise a width measuring device which is designed as an inlet side guide and/or outlet side guide of a rolling stand, preferably the vertical rolling stand.
  • the measurement of the width of the calibration slab or a partial area of the calibration slab can, for example, be carried out by means of position sensors or by setting up linear side guides on the partial area of the calibration slab.
  • the inlet side guide or the outlet side guide are preferably moved with preferably hydraulically driven cylinders, with the hydraulic drive preferably being monitored with position sensors and/or pressure sensors.
  • the vertical rolling stand 1 with the calibration arrangement of a rolling mill comprises two vertical roller units 3 arranged in stationary roll stands so as to be adjustable.
  • the roll stands are aligned with respect to a center line 2 of several components of a rolling mill arranged in a rolling mill.
  • the drawing shows the crossheads 4, the stand beams 5 and the upper and lower rolling beams 6A and 6B of the vertical rolling stand 1.
  • the vertical roller units 3 each comprise a vertical roller which is mounted in an upper chock 8A and a lower chock 8B.
  • the chocks 8A, 8B are each connected to one another via cross members 9 and can be adjusted relative to one another with respect to the center line 2 using the cross members 9.
  • the vertical roller units 3 are adjusted using a hydraulic adjustment system and a hydraulic return system.
  • the adjustment system comprises an upper and a lower adjustment cylinder 10A, 10B on each side of the vertical rolling stand 1 (operating side and drive side), which act on the upper and lower chocks 8A, 8B, respectively.
  • the retrieval system comprises a retrieval cylinder 11 on each side, which is operatively connected to the crossbeam 9.
  • the crossbeams 9 can be moved together with the chocks 8A, 8B.
  • Figure 1 shows the vertical rolling stand 1 during the method step A), which includes determining the actual distances of the vertical rollers 7 to the center line 2 of the rolling mill in a predetermined operating position, wherein the actual distances are determined when there is no material, for example in the form of rolled stock, between the vertical rollers.
  • the method step A In the method step shown in Figure 1 In the position shown for the vertical roller units 3, they are in the calibration position according to process step a), in which the vertical roller units 3 are moved against a stationary stop of the vertical rolling stand 1.
  • the stationary stop is formed by stationary reference surfaces which have a specific and known position with respect to the center line 2, against which in the Figure 1 shown position, movable reference surfaces rest on the vertical roller units 3.
  • the stop is formed by fixed or stationary measuring plates 12A and 12B, which are provided on both sides of the upper roller beam 6A and the lower roller beam 6B.
  • it is sufficient to provide only stationary measuring plates 12A, 12B on the upper roller beam 6A or on the lower roller beam 6B.
  • Upper and lower movable measuring plates 14A, 14B are provided as movable reference surfaces on the upper chocks 8A and lower chocks 8B of the vertical roller units 3 on the side of the chocks 8A, 8B facing the center line 2. These movable measuring plates are attached to the respective chock 8A, 8B, adjustably if necessary, and are movable together with the chocks 8A, 8B.
  • the stationary measuring plates 12A, 12B have a specific known position with respect to the center line 2
  • the movable measuring plates 14A, 14B have a known specific position with respect to the longitudinal center axes 13 of the vertical rollers 7.
  • an automatic calibration of the position of the vertical rollers 7 of the vertical rolling stand 1 with respect to the center line 2 of the rolling mill is provided, including the setting system and the return system of the vertical rolling stand 1.
  • the setting system and the return system or the associated setting cylinders 10A and 10B and return cylinder 11 are controlled via a control S.
  • At least one the adjusting cylinder 10A comprises a position sensor PG, via which a target/actual comparison of the actual position and the controlled position of the relevant vertical roller 7 can be carried out in the control S.
  • a pressure sensor DG is provided, which can monitor the pressure applied to the return cylinder 11.
  • a pressure sensor DG can be provided alternatively or additionally on one or more adjusting cylinders 10A, 10B.
  • the automatic calibration according to the invention is carried out separately for each side of the vertical rolling stand 1 (operating side and drive side) and independently of the other side. The sensors required for this are provided on each side of the vertical rolling stand 1.
  • Figure 1 Only one control, position monitoring and pressure monitoring is shown for one side. The embodiment is to be understood in such a way that such a control, position monitoring and pressure monitoring is provided for each of the sides of the vertical rolling stand 1.
  • the control S first adjusts the upper and lower chocks 8A, 8B with the aid of the adjustment cylinders 10A, 10B and the return cylinder 11 in the direction of the center line 2 until the movable measuring plates 14A, 14B rest against the stationary measuring plates 12A, 12B.
  • This adjustment movement takes place over a first path at a relatively high speed and over a second path at a relatively low speed while applying a predetermined adjustment force, the increase of which is monitored via the pressure sensor DG.
  • the process is terminated when the pressure detected by the pressure sensor DG exceeds a predetermined value.
  • a calibration position can be provided, which is located at the outer areas of the vertical rolling stand 1.
  • the reference surfaces are located at the outer areas of the vertical rolling stand 1.
  • the upper and lower movable measuring plates in this alternative embodiment are designated 14A' and 14B ⁇ .
  • the upper and lower stationary measuring plates in this alternative embodiment are designated 12A ⁇ and 12B'.
  • the upper and lower movable measuring plates 14A' and 14B' are provided on the sides of the crossbeams 9 facing away from the vertical rollers 7.
  • the upper and lower stationary measuring plates 12A' and 12B' are provided on the sides of the crossheads 4 of the vertical rolling stand 1 facing the vertical rollers 7. It follows from this that a calibration position is the position in which the vertical rollers 7 are completely moved apart.
  • the vertical roller units 3 are reset to a defined or predetermined unloaded position by means of the adjustment system and/or the return system.
  • the distance traveled by the vertical roller units 3 is preferably monitored via the position sensor PG of the adjustment system or via a position sensor of the return system.
  • the predetermined, defined unloaded position can correspond, for example, to a planned operating position of the vertical rolling stand 1.
  • the predetermined unloaded position of the vertical roller units 3 or the vertical rollers 7 is determined such that the distances A Ist1 and A Ist2 from the center line 2 of the rolling mill are equal.
  • This calibration stage comprises the provision of at least one calibration slab 20 with a known and specific width and the introduction of the calibration slab 20 into the vertical rolling stand 1 as well as the positioning of the vertical rollers 7 against the calibration slab 20 with a defined positioning force while the calibration slab 20 is guided through the vertical rolling stand 7.
  • the representation in Figure 3 corresponds to that according to Figure 1 with the difference that the calibration slab 20 is located between the vertical rollers 7.
  • process step B in this stage of the calibration process, the vertical rollers 7 are positioned against the calibration slab 20 with a defined positioning force.
  • the vertical rollers 7 can be positioned against the calibration slab 20 with a positioning force that is below the plastic deformation of the material, so that the known width of the calibration slab 20 can be used as a basis for a subsequent calculation of the target distances of the longitudinal center axes 13 of the vertical rollers 7. In this case, it is not necessary to measure the width of the calibration slab 20.
  • the vertical rollers 7 can be adjusted with an adjustment force that is above the plastic deformation of the calibration slab 20.
  • the setting force is selected such that the width of the calibration slab 20 is thereby influenced, so that a subsequent measurement of the width is provided for the purpose of calculating the desired distances.
  • the setting force is selected such that a subsequent measurement of the width of the calibration slab 20 is no longer necessary.
  • Figure 4 shows a side view of the rolling mill, in which the calibration slab is fed to the vertical rolling stand 1 via a first roller table 15.
  • a horizontal rolling stand 16 is connected downstream of the vertical rolling stand 1 in the rolling direction, which is indicated by an arrow.
  • An inlet side guide 17 is connected upstream of the vertical rolling stand 1, and an outlet side guide 18 is connected downstream of the horizontal rolling stand 16.
  • the calibration slab 20 first enters the vertical rolling stand 1 via the first roller table 15 under lateral guidance, where the vertical rollers 7 are positioned against the calibration slab 20 or against its side edges.
  • the calibration slab 20 is then fed to the horizontal rolling stand 16 and transported further via a second roller table 19 through the outlet side guide 18.
  • the inlet side guide 17 and/or the outlet side guide 18 each comprise rulers and/or optical measuring devices with which the width of the calibration slab 20 is measured via position sensors.
  • the width measuring device BM provided for this purpose according to the invention is only shown schematically. This forwards the measured values representative of the width of the calibration slab 20 to the control device S.
  • BV refers to a strip tracking system with which partial areas of the calibration slab 20 can be tracked. This is particularly useful and expedient if a calibration slab 20 is to be used several times to carry out the calibration. Then partial areas or partial lengths of the calibration slab 20 can be brought into engagement with the vertical rollers 7 of the vertical rolling stand 1. These sub-areas can then be detected using the belt tracking system and their width can be measured specifically.
  • Figure 5 illustrates a part of the method according to the invention in which, as already mentioned above, a width measurement of the calibration slab 20 is not provided.
  • the same components are shown in Figure 5 provided with the same reference symbols.
  • the length of the calibration slab 20 is dimensioned such that it can extend at least through the inlet side guide 17 and the vertical rolling stand 1 downstream in the rolling direction.
  • the rolling direction is in Figure 5 indicated with an arrow.
  • the latter is provided with a replaceable calibration plate 21.
  • the calibration plate 21, which extends over the height of the calibration slab 20 and protrudes laterally, is dimensioned such that it essentially determines the width of the calibration slab 20 in the area of engagement of the vertical rollers 7 of the vertical rolling stand 1.
  • the replaceability of the calibration plate 21 ensures that a change in the width of the calibration slab 20 due to wear can be compensated in the relevant area.
  • a centering plate 22 is provided at the end of the calibration slab 20 trailing in the rolling direction, which extends over the height of the calibration slab 20 and is arranged to protrude laterally.
  • the centering plate 22 is replaceable and, together with the inlet side guide 17, causes the calibration slab 20 to be centered with respect to the center line 2 of the rolling mill between the vertical rollers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Metal Rolling (AREA)

Claims (24)

  1. Procédé d'étalonnage de rouleaux verticaux (7) d'un laminoir vertical (1), chaque rouleau étant monté dans une unité de rouleaux verticaux (3) réglable par rapport à un axe central (2) prédéfini de plusieurs composants disposés dans une ligne de laminage, ledit procédé comprenant les étapes suivantes :
    A) détermination des distances réelles entre les axes longitudinaux des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage dans une position de fonctionnement prédéfinie, les distances réelles étant déterminées lorsqu'il n'y a pas de matériau entre les rouleaux verticaux (7),
    B) mise à disposition d'au moins une brame d'étalonnage (20) d'une largeur connue et déterminée et introduction de la brame d'étalonnage (20) dans le laminoir vertical,
    C) mise en contact des rouleaux verticaux (7) avec la brame d'étalonnage avec une force de contact définie pendant que la brame d'étalonnage (20) traverse le laminoir vertical (1), et
    D) calcul des distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage en fonction des distances réelles entre les axes longitudinaux (13) des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage, et de la largeur de la brame d'étalonnage,
    caractérisé en ce que l'étape A) du procédé comprend les étapes supplémentaires suivantes :
    a) déplacement des unités de rouleaux verticaux (3) dans une position d'étalonnage transversale à l'axe central (2) de la ligne de laminage contre au moins une butée fixe du laminoir vertical (1), ladite butée ayant une position connue et déterminée par rapport à l'axe central (2), l'axe longitudinal du rouleau vertical dans la position d'étalonnage ayant une distance initiale connue et déterminée par rapport à l'axe central (2) de la ligne de laminage, et
    b) remise des unités de rouleaux verticaux (3) dans une position de décharge définie, et
    c) calcul de la distance réelle entre l'axe longitudinal (13) du rouleau vertical (7) et l'axe central (2) de la ligne de laminage à partir de la somme de la distance initiale et du chemin parcouru par les unités de rouleaux verticaux (3), mesuré lors du mouvement de retour.
  2. Procédé selon la revendication 1, caractérisé en ce que le calcul des distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage (1) est effectué sous la condition mathématique que les distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) sont égales.
  3. Procédé selon la revendication 2, caractérisé en ce que le calcul des distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) est effectué sous la condition mathématique supplémentaire que la somme de la largeur de la brame d'étalonnage (20) et du diamètre d'un rouleau vertical (7) est égale à la somme des distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'un diamètre réel des rouleaux verticaux (7) est calculé et enregistré pour chaque opération d'étalonnage.
  5. Procédé selon la revendication 4, caractérisé en ce qu'un avancement de l'usure des rouleaux verticaux (7) est enregistré et surveillé au moyen d'une multitude d'opérations d'étalonnage.
  6. Procédé selon l'une des revendications 3 à 5, caractérisé en ce que le calcul des distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage est effectué sous l'hypothèse simplificatrice que les diamètres des rouleaux verticaux (7) sont identiques entre eux.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'une première et une deuxième distance réelle des rouleaux verticaux (7) sont déterminées séparément et indépendamment l'une de l'autre pour un premier et un deuxième rouleau vertical (7) opposés.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le déplacement de l'unité de rouleaux verticaux (3) selon l'étape a) est effectué au moyen d'au moins un système de mise en contact et/ou au moyen d'au moins un système de rappel.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'atteinte de la position de décharge définie est surveillée au moyen d'au moins un élément de mesure, de préférence au moyen d'un capteur de position (PG) sur au moins un ensemble piston-cylindre hydraulique de l'au moins un système de mise en contact et/ou de l'au moins un système de rappel.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'étape a) comprend en outre le fait que d'abord, au moins une première surface de référence de position définie sur une unité de rouleaux verticaux (3), ou sur un élément mobile adjacent à l'unité de rouleaux verticaux (3) et se déplaçant avec l'unité de rouleaux verticaux (3), est mise en contact avec au moins une deuxième surface de référence de position définie par rapport à l'axe central (2) sur le laminoir vertical (1), de préférence en appliquant une force de contact.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le déplacement de l'unité de rouleaux verticaux (3) selon l'étape a) s'effectue sur une première distance avec une vitesse accrue et sur une deuxième distance avec une vitesse réduite, jusqu'à ce que la première et la deuxième surface de référence se touchent.
  12. Procédé selon l'une des revendications 10 ou 11, caractérisé en ce que la force de contact entre les surfaces de référence en contact est surveillée et limitée à une valeur maximale prédéfinie au moyen d'au moins un capteur de pression (DG), de préférence sur au moins un ensemble piston-cylindre du système de mise en contact hydraulique et/ou du système de rappel hydraulique.
  13. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que la mise en position de décharge de l'unité de rouleaux verticaux (3) s'effectue au moyen d'au moins un système de mise en contact hydraulique et/ou d'au moins un système de rappel hydraulique, l'atteinte de la position de décharge étant surveillée au moyen d'au moins un élément de mesure, de préférence au moyen d'un capteur de position (PG) sur au moins un ensemble piston-cylindre hydraulique de l'au moins un système de mise en contact hydraulique et/ou de l'au moins un système de rappel hydraulique.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que la force de contact selon l'étape C) est limitée à une valeur inférieure à la déformation plastique de la brame d'étalonnage (20).
  15. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que la force de contact selon l'étape C) est limitée à une valeur supérieure à la déformation plastique de la brame d'étalonnage (20).
  16. Procédé selon la revendication 15, caractérisé en ce qu'il comprend en outre la détermination de la largeur réelle de la brame d'étalonnage dans le sens du laminage après l'engagement des rouleaux verticaux et le calcul des distances nominales entre les axes longitudinaux (13) des rouleaux verticaux (7) en fonction des distances réelles entre les axes longitudinaux (13) des rouleaux verticaux (7) et l'axe central (2) de la ligne de laminage, et de la largeur réelle de la brame d'étalonnage (20).
  17. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que la brame d'étalonnage (20) est centrée par rapport à l'axe central (2) de la ligne de laminage au moyen d'au moins un guide latéral en amont et/ou en aval du laminoir vertical (1) dans le sens du laminage.
  18. Ligne de laminage pour le laminage de produits métalliques avec un dispositif d'étalonnage, de préférence pour la mise en oeuvre du procédé ayant les caractéristiques de l'une des revendications 1 à 17, la ligne de laminage comprenant au moins un laminoir vertical (1) avec au moins deux rouleaux verticaux (7) chacun monté dans des unités de rouleaux verticaux (3), qui définissent une fente de laminage et qui sont ajustables par rapport à un axe central (2) prédéfini de plusieurs composants disposés dans la ligne de laminage au moyen d'au moins un système de mise en contact de préférence hydraulique et/ou d'au moins un système de rappel de préférence hydraulique, le dispositif d'étalonnage comprenant au moins une première surface de référence de position définie sur au moins une unité de rouleaux verticaux (3) ou sur un composant mobile avec celui-ci qui est mobile avec l'unité de rouleaux verticaux (3), caractérisée en ce que l'arrangement d'étalonnage comprend en outre au moins une deuxième surface de référence stationnaire par rapport à l'axe central (2), ainsi qu'une unité de commande (S) qui permet, à l'aide d'au moins un capteur de position (PG) du système de mise en contact et/ou du système de rappel, de déplacer les unités de rouleaux verticaux transversalement à l'axe central (2) contre la deuxième surface de référence comme butée fixe du laminoir vertical (1), et de ramener les unités de rouleaux verticaux (3) dans une position de décharge définie.
  19. Ligne de laminage selon la revendication 18, caractérisée en ce qu'au moins une première surface de référence est prévue au moins sur une pièce d'installation (8A, 8B) supérieure et/ou inférieure des rouleaux verticaux (7) et/ou sur un composant adjacent mobile avec l'unité de rouleaux verticaux (3).
  20. Ligne de laminage selon l'une des revendications 18 ou 19, caractérisée en ce qu'au moins une deuxième surface de référence stationnaire est prévue au moins sur une poutre de laminage (6A, 6B) supérieure et/ou inférieure du laminoir vertical (1) et/ou sur des traverses (4) du laminoir vertical (1).
  21. Ligne de laminage selon l'une des revendications 18 à 20, caractérisée en ce qu'au moins une des première et/ou deuxième surfaces de référence est réglable dans sa position.
  22. Ligne de laminage selon l'une des revendications 18 à 21, caractérisée en ce que l'au moins une première surface de référence et/ou l'au moins une deuxième surface de référence sont conçues comme des plaques de mesure (12A, 12B ; 14A, 14B) réglables ou ajustables et/ou interchangeables.
  23. Ligne de laminage selon l'une des revendications 18 à 22, caractérisée par une brame d'étalonnage (20) aux dimensions définies, notamment à une largeur définie et connue, qui présente au moins un élément d'usure interchangeable choisi dans un groupe comprenant au moins une plaque d'étalonnage (21) interchangeable et au moins une plaque de centrage (22) interchangeable.
  24. Ligne de laminage selon l'une des revendications 18 à 23, caractérisée en ce qu'elle comprend au moins un dispositif choisi dans un groupe comprenant au moins un capteur de position (PG) pour surveiller la position des unités de rouleaux verticaux (3), au moins un capteur de pression (DG) par lequel une force de contact de l'au moins une première surface de référence contre l'au moins une deuxième surface de référence peut être limitée, au moins un appareil de mesure de largeur (BM) pour mesurer la largeur réelle de la brame d'étalonnage (20) et au moins un système de suivi de bande (BV) pour suivre des zones partielles de la brame d'étalonnage (20).
EP21703693.8A 2020-02-06 2021-02-05 Procédé d'étalonnage de rouleaux verticaux d'une cage de laminoir vertical et laminoir avec ensemble d'étalonnage pour la mise en oeuvre du procédé Active EP4100177B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020201445 2020-02-06
DE102020213243.7A DE102020213243A1 (de) 2020-02-06 2020-10-20 Verfahren und Kalibrierung von Vertikalrollen eines Vertikalwalzgerüsts sowie Kalibrieranordnung zur Durchführung des Verfahrens
PCT/EP2021/052782 WO2021156427A1 (fr) 2020-02-06 2021-02-05 Procédé d'étalonnage de rouleaux verticaux d'une cage de laminoir vertical et ensemble d'étalonnage pour la mise en œuvre du procédé

Publications (3)

Publication Number Publication Date
EP4100177A1 EP4100177A1 (fr) 2022-12-14
EP4100177C0 EP4100177C0 (fr) 2024-04-17
EP4100177B1 true EP4100177B1 (fr) 2024-04-17

Family

ID=76968708

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21703897.5A Active EP4100178B1 (fr) 2020-02-06 2021-02-05 Procédé d'étalonnage automatique de rouleaux verticaux d'une cage de laminoir verticale et système d'étalonnage pour mettre en oeuvre ce procédé
EP21703693.8A Active EP4100177B1 (fr) 2020-02-06 2021-02-05 Procédé d'étalonnage de rouleaux verticaux d'une cage de laminoir vertical et laminoir avec ensemble d'étalonnage pour la mise en oeuvre du procédé

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21703897.5A Active EP4100178B1 (fr) 2020-02-06 2021-02-05 Procédé d'étalonnage automatique de rouleaux verticaux d'une cage de laminoir verticale et système d'étalonnage pour mettre en oeuvre ce procédé

Country Status (6)

Country Link
US (1) US20230048632A1 (fr)
EP (2) EP4100178B1 (fr)
JP (1) JP7429302B2 (fr)
CN (1) CN115103727A (fr)
DE (3) DE102020213243A1 (fr)
WO (3) WO2021156424A1 (fr)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142718A (en) * 1981-02-27 1982-09-03 Kawasaki Steel Corp Detecting method for edger roll opening
JPH0741287B2 (ja) * 1985-12-24 1995-05-10 石川島播磨重工業株式会社 エツジヤ−装置
JPH08192203A (ja) * 1995-01-18 1996-07-30 Kawasaki Steel Corp 竪形圧延機の開度零調方法
CN102365134B (zh) * 2009-03-26 2014-02-19 东芝三菱电机产业系统株式会社 基准位置调整监视装置
JP5720391B2 (ja) 2011-04-13 2015-05-20 株式会社Ihi エッジャー
CN102989792B (zh) 2011-09-16 2014-07-09 上海梅山钢铁股份有限公司 一种热轧立辊辊缝的标定方法
CN102688904B (zh) 2012-06-13 2014-05-07 鞍钢股份有限公司 一种轧机立辊开口度标定方法
EP2689863A1 (fr) 2012-07-27 2014-01-29 Siemens Aktiengesellschaft Procédé d'influence ciblée de la géométrie d'un produit à laminer
CN103316925B (zh) * 2013-06-07 2016-10-19 鞍钢股份有限公司 一种粗轧机立辊中心线的标定方法
KR101562125B1 (ko) * 2014-03-27 2015-10-22 현대제철 주식회사 롤 간격 측정장치
CN106040753B (zh) * 2016-06-21 2018-06-22 首钢京唐钢铁联合有限责任公司 一种立辊辊缝标定的方法
JP6870509B2 (ja) 2017-07-10 2021-05-12 日本製鉄株式会社 圧延機
CN110026440B (zh) 2019-03-20 2023-10-20 宁波中超机器有限公司 用于轧机的液压压下装置及其校准方法

Also Published As

Publication number Publication date
JP7429302B2 (ja) 2024-02-07
CN115103727A (zh) 2022-09-23
EP4100177C0 (fr) 2024-04-17
EP4100178C0 (fr) 2024-01-31
EP4100177A1 (fr) 2022-12-14
DE102020213239A1 (de) 2021-08-12
JP2023513183A (ja) 2023-03-30
DE102020213241A1 (de) 2021-08-12
US20230048632A1 (en) 2023-02-16
EP4100178A1 (fr) 2022-12-14
DE102020213243A1 (de) 2021-08-12
WO2021156424A1 (fr) 2021-08-12
WO2021156427A1 (fr) 2021-08-12
EP4100178B1 (fr) 2024-01-31
WO2021156425A1 (fr) 2021-08-12

Similar Documents

Publication Publication Date Title
EP2825332B1 (fr) Dispositif et procédé servant à redresser une bande métallique
WO2010149192A9 (fr) Procédé et dispositif d'usinage d'une brame
EP0399296B1 (fr) Justification automatique d'un laminoir universel après le changement des cylindres pour les profils neufs
DE102007059185A1 (de) Verfahren und Vorrichtung zur Messung der Geradheit von Langprodukten
DE2253025B2 (de) Vorrichtung zum Herstellen von Schraubennahtrohr
EP3544751B1 (fr) Réglage de position de bande consistant à positionner des guides latéraux sur la bande métallique, avec limitation de force
DE112007000641B4 (de) Kontinuierliche Kaltwalzanlage
DE2911364C2 (fr)
EP3177412B1 (fr) Réglage d'un profil de température ciblé sur une tête de bande et pied de bande devant la partie transversale d'une bande métallique
EP3437748A1 (fr) Réglage de débit massique dans les installations de laminage
EP4100177B1 (fr) Procédé d'étalonnage de rouleaux verticaux d'une cage de laminoir vertical et laminoir avec ensemble d'étalonnage pour la mise en oeuvre du procédé
DE3136394C2 (fr)
EP3566788B1 (fr) Installation et procédé de séparation d'un matériau en bande laminé flexible
EP1184120B1 (fr) Support de lame de scie dans un dispositif pour mesurer et corriger le profil de tension de lames de scies
DE19725726C2 (de) Verfahren zur Planheitsmessung von Bändern, insbesondere Metallbändern
EP2492630B1 (fr) Dispositif de mesure de la forme d'une tige
EP0372439A2 (fr) Méthode de commande de processus pour un train de laminage continu
EP0285746B1 (fr) Installation pour la fixation des positions de coupage pour des profilés, comme profilés du talon, profilés en I et pièces semblables en forme de barreau
DE102015121662A1 (de) Verfahren zur Durchführung einer Banddickenmessung sowie Banddickenmessgerät
DE10202526B4 (de) Einrichtung zur Messung des Walzspaltes zwischen Arbeitswalzen eines Kalt- oder Warmwalzgerüstes
DE102016113717A1 (de) Banddickenmessgerät und Verfahren zur Durchführung einer Banddickenmessung
DE102021203170A1 (de) Verfahren zum Führen und Zentrieren eines metallenen Walzguts in einer Walzstraße
EP4217125A1 (fr) Dispositif et procédé de laminage d'une bande métallique
EP4122615A1 (fr) Procédé et dispositif de fabrication d'une bande métallique
DE3223667A1 (de) Verfahren zum walzen von stangenmaterial in einem walzwerk sowie vorrichtung zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230302

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021003387

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240508