EP4048631A1 - Procédé pour alimenter, au moyen d'oxygène généré de manière intégrée au processus, un moteur à circuit d'hydrogène présentant une circulation d'un gaz noble - Google Patents

Procédé pour alimenter, au moyen d'oxygène généré de manière intégrée au processus, un moteur à circuit d'hydrogène présentant une circulation d'un gaz noble

Info

Publication number
EP4048631A1
EP4048631A1 EP20808010.1A EP20808010A EP4048631A1 EP 4048631 A1 EP4048631 A1 EP 4048631A1 EP 20808010 A EP20808010 A EP 20808010A EP 4048631 A1 EP4048631 A1 EP 4048631A1
Authority
EP
European Patent Office
Prior art keywords
oxygen
gas
reactors
air
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20808010.1A
Other languages
German (de)
English (en)
Other versions
EP4048631B1 (fr
Inventor
Ralf Kriegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP4048631A1 publication Critical patent/EP4048631A1/fr
Application granted granted Critical
Publication of EP4048631B1 publication Critical patent/EP4048631B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • F02B47/10Circulation of exhaust gas in closed or semi-closed circuits, e.g. with simultaneous addition of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B43/12Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for supplying hydrogen-operated internal combustion engines with oxygen, an inert gas, preferably argon, also being circulated.
  • the invention is based on the objective of using inexpensive internal combustion engines for local energy production or for driving machines and vehicles, while avoiding any CO 2 emissions by using hydrogen as a fuel and at the same time noticeably increasing the efficiency of energy conversion.
  • Oxygen Storage Material based on complex mixed oxides are able to selectively and reversibly build oxygen into and out of the crystal lattice of the solid phase at medium to high temperatures depending on the oxygen partial pressure and temperature change (DE 102005034071 B4). Accordingly, both temperature changes and changes in the oxygen partial pressure can be used for oxygen enrichment in gases.
  • the targeted change in the oxygen partial pressure is also partially implemented by flushing gases such as CO2 or steam (EP 0913 184 B1) or chemical reactions such as the partial oxidation of hydrocarbons are carried out on the oxygen storage material (US 6379586 B1). So far, there is no reliable information on the energy requirements of the process.
  • a hydrogen cycle engine requires pure oxygen, since all the gaseous impurities that have entered accumulate more and more during operation and lead to an increase in the amount of gas recirculated or the total pressure in the gas cycle. Therefore, the excess amount of gas would have to be blown off from time to time, but the inert gas circulated would also be lost. This would have to be topped up regularly and z. B. in vehicles can also be carried in a pressure tank. This is not practical. In addition, atmospheric nitrogen brought in with the oxygen would lead to the formation of nitrogen oxides and, under certain circumstances, form nitrous acid or nitric acid with the condensation water.
  • a hydrogen cycle engine must be designed as a gas-tight engine and operated with a nitrogen-free oxidizer gas.
  • the invention is based on the object of realizing an inexpensive, local supply of pure oxygen for a hydrogen cycle engine with an argon cycle by separating it from the ambient air without having to use the useful work output of the engine.
  • the object is achieved in that OSM ceramics as well as the exhaust gas heat and the low oxygen partial pressure of the exhaust gas are used to generate oxygen.
  • At least two reactors filled with OSM ceramics are used, which are alternately flushed with exhaust gas and regenerated with air. Loss of inert gas and the introduction of atmospheric nitrogen are avoided by intermediate flushing with low-pressure steam. The latter is generated with the waste heat of the exhaust gas or the exhaust air.
  • the reactors are flushed, a mixture of water vapor, inert gas and oxygen is produced. Subsequently, the oxygen content in the gas phase is noticeably increased by the condensation of the water vapor.
  • the cycle gas is therefore to be equated with the oxidizer gas after the H20 separation.
  • the process must be run in such a way that only the amount of oxygen required for combustion is released. However, excess oxygen does not interfere too much, it would also be circulated and thereby slows down the oxygen release of the OSM.
  • the oxygen content in the circulating gas is set by varying the flushing time of the respective OSM reactor with the circulating gas.
  • a bypass valve is used for this, which by bridging the OSM reactors enables the flushing time of the OSM reactors with the circulating gas to be varied freely. It is advantageous here that a regeneration time that deviates from the flushing time with circulating gas can be used for the regeneration of the OSM reactors with air. This ensures that the OSM ceramic is always adequately loaded with oxygen.
  • the method for supplying oxygen to a hydrogen cycle engine 1 with 100 kW fuel output is shown schematically in FIG. 1.
  • the exhaust gas from the hydrogen cycle engine 1 is fed directly via a switching valve 2 to a first reactor 4 which is filled with an OSM ceramic.
  • a mixed oxide with the composition Cao, 5Sro, 5Feo, 5Mno, s03-ö, which was synthesized from the individual oxides or carbonates by solid-state reaction, is used as the OSM ceramic. It was mixed with 25% by volume of an organic burn-out material, plasticized with the addition of organic binders and thickening agents and extruded into thin rods with a diameter of approx. 2 mm. The extrudates are sintered at 1,420 ° C.
  • the circulating gas enriched with the oxygen in the first reactor 4 is passed through the further switching valve 3 and from this via an outgoing manifold for circulating gas 6 through a first heat exchanger 15 of a low-pressure steam generator 8, in which part of the exhaust gas heat is used to generate steam ( ⁇ 110 ° C , ⁇ 0.5 bar) is used.
  • the low-pressure steam generator 8 can also be heated via a separate, further heat exchanger 16 with the oxygen-depleted exhaust air, which is alternately routed from the second reactor 5 or from the first reactor 4 via the collecting line for exhaust air 7.
  • the gas mixture of the manifold for cycle gas 6 of water vapor, argon and oxygen is after Passing through the first heat exchanger 15 of the low-pressure steam generator 8 subsequently passed through an air-cooled condenser 9, so that the water vapor is condensed out.
  • the liquid water is introduced into the liquid phase of the low-pressure steam generator 8, with excess water that has accumulated being drained off via an overflow.
  • the cycle gas consisting of argon and oxygen is temporarily stored in a membrane gas reservoir 12 at approximately ambient pressure and is fed back to the hydrogen cycle engine 1 from there.
  • the membrane gas reservoir 12 is used for better homogenization of the circulating gas, since fluctuating oxygen contents can occur in this.
  • the oxygen partial pressure in the membrane gas reservoir 12 is constantly monitored with an oxygen sensor 14 and driven to the preset target value by increasing the purging time in the first reactor 4 and / or second reactor 5 with circulating gas if the oxygen content is too low, if the oxygen content is too high however, is lowered.
  • the membrane gas storage 12 also serves to restart the system after it has come to a standstill without an external gas supply.
  • the second reactor 5 or first reactor 4 which is in the regeneration cycle with air, is flushed with low-pressure steam at the end of the cycle via a valve for fresh air 11, which is connected on the inlet side to the low-pressure steam generator 8, in order to remove the remaining air from the second reactor 5 or first reactor 4 into the collecting line for exhaust air 7 so that no foreign gases or residual air remain in the second reactor 5 or first reactor 4 and subsequently get into the circulating gas.
  • both switching valves 2 and 3 switch simultaneously, as a result of which the supply of the circulating gas is diverted from the first reactor 4 to the second reactor 5 or from the second reactor 5 to the first reactor 4 and at the same time the air is supplied from the second reactor 5 to the first reactor 4 or from the first reactor 4 to the second reactor 5.
  • the oxygen content in the cycle gas is set in a simple manner by varying the flushing time of the first reactor 4 or of the second reactor 5 with the cycle gas.
  • This purpose is served by a bypass valve 13 which enables the flushing time of the first reactor 4 or of the second reactor 5 with the circulating gas to be varied freely. It is advantageous here that for the regeneration of the second reactor 5 or the first reactor 4 with air, a regeneration time that deviates from the flushing time with circulating gas can be used. This ensures that the OSM ceramic is adequately loaded with oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Compounds Of Iron (AREA)

Abstract

L'invention concerne un procédé pour alimenter, en oxygène, des moteurs à combustion interne fonctionnant au moyen d'hydrogène, un gaz inerte, de préférence de l'argon, étant également guidé dans le circuit. L'objectif de cette invention est de permettre, pour un moteur à circuit d'hydrogène (1) présentant une circulation d'argon, une alimentation locale et peu onéreuse en oxygène pur, par séparation de cet oxygène contenu dans l'air ambiant, sans solliciter le travail utile du moteur à cet effet. Pour atteindre cet objectif, des céramiques OSM à stockage d'oxygène ainsi que la chaleur des gaz d'échappement et la faible pression partielle de l'oxygène des gaz d'échappement sont employés pour générer de l'oxygène. Au moins deux réacteurs (4, 5) remplis de céramique OSM sont utilisés et sont tour à tour remplis de gaz d'échappement et régénérés au moyen d'air. Les pertes de gaz inerte et l'apport d'azote atmosphérique sont évités au moyen d'un rinçage intermédiaire faisant intervenir de la vapeur à faible pression générée à l'aide de la chaleur dissipée des gaz d'échappement ou de l'air d'échappement. Un mélange de vapeur d'eau, de gaz inerte et d'oxygène se forme pendant le rinçage des réacteurs (4, 5). La teneur en oxygène est ensuite significativement augmentée dans la phase gazeuse par condensation de la vapeur d'eau.
EP20808010.1A 2019-10-25 2020-10-23 Procédé pour alimenter, au moyen d'oxygène généré de manière intégrée au processus, un moteur à circuit d'hydrogène présentant une circulation d'un gaz noble Active EP4048631B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019128882.7A DE102019128882B3 (de) 2019-10-25 2019-10-25 Verfahren zur prozessintegrierten Sauerstoff-Versorgung eines Wasserstoff-Kreislaufmotors mit Kreislaufführung eines Edelgases
PCT/DE2020/100913 WO2021078333A1 (fr) 2019-10-25 2020-10-23 Procédé pour alimenter, au moyen d'oxygène généré de manière intégrée au processus, un moteur à circuit d'hydrogène présentant une circulation d'un gaz noble

Publications (2)

Publication Number Publication Date
EP4048631A1 true EP4048631A1 (fr) 2022-08-31
EP4048631B1 EP4048631B1 (fr) 2023-03-08

Family

ID=73455490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20808010.1A Active EP4048631B1 (fr) 2019-10-25 2020-10-23 Procédé pour alimenter, au moyen d'oxygène généré de manière intégrée au processus, un moteur à circuit d'hydrogène présentant une circulation d'un gaz noble

Country Status (8)

Country Link
US (1) US11808238B2 (fr)
EP (1) EP4048631B1 (fr)
JP (1) JP7525122B2 (fr)
KR (1) KR20220088479A (fr)
CN (1) CN114641451B (fr)
DE (1) DE102019128882B3 (fr)
ES (1) ES2942757T3 (fr)
WO (1) WO2021078333A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022203737B4 (de) 2022-04-13 2024-05-08 EAG Automatisierungsbau GmbH Wasserstoff-Speicherkraftwerk und Verfahren zu dessen Betrieb

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3792690A (en) * 1972-03-22 1974-02-19 T Cooper Method and system for open cycle operation of internal combustion engines
US4287170A (en) 1980-03-06 1981-09-01 Erickson Donald C Nitrogen and oxygen via chemical air separation
US4411223A (en) * 1980-06-20 1983-10-25 Martin Kiely Method of operating an I.C. engine
DE3809386C2 (de) * 1988-03-16 1996-01-11 Bernau Klaus Juergen Rotationskolbenmotor
JPH07292372A (ja) * 1994-04-22 1995-11-07 Aqueous Res:Kk リーンバーンエンジンシステム
JP3631891B2 (ja) 1997-09-22 2005-03-23 三菱重工業株式会社 水素エンジン
US6059858A (en) * 1997-10-30 2000-05-09 The Boc Group, Inc. High temperature adsorption process
US5954859A (en) 1997-11-18 1999-09-21 Praxair Technology, Inc. Solid electrolyte ionic conductor oxygen production with power generation
US6379586B1 (en) * 1998-10-20 2002-04-30 The Boc Group, Inc. Hydrocarbon partial oxidation process
US7427449B2 (en) * 2001-10-23 2008-09-23 General Dynamics Information Technology, Inc. Integrated oxygen generation and carbon dioxide absorption method apparatus and systems
US20030138747A1 (en) 2002-01-08 2003-07-24 Yongxian Zeng Oxy-fuel combustion process
US7273044B2 (en) * 2004-09-27 2007-09-25 Flessner Stephen M Hydrogen fuel system for an internal combustion engine
DE102005034071B4 (de) * 2005-07-21 2013-08-22 Bauhaus Universität Weimar Verfahren zur reversiblen Sauerstoff-Speicherung
US7591992B2 (en) 2006-01-25 2009-09-22 Air Products And Chemicals, Inc. Hydrogen production process with regenerant recycle
JP4586780B2 (ja) 2006-09-07 2010-11-24 トヨタ自動車株式会社 作動ガス循環型エンジン
US8061120B2 (en) 2007-07-30 2011-11-22 Herng Shinn Hwang Catalytic EGR oxidizer for IC engines and gas turbines
JP4844586B2 (ja) * 2008-04-21 2011-12-28 トヨタ自動車株式会社 作動ガス循環型水素エンジン
CN101837278A (zh) 2009-03-18 2010-09-22 中国科学院大连化学物理研究所 一种氧吸附剂、制备方法及其应用
US9488100B2 (en) 2012-03-22 2016-11-08 Saudi Arabian Oil Company Apparatus and method for oxy-combustion of fuels in internal combustion engines
EP2860373A4 (fr) * 2012-06-06 2015-11-25 Toyota Motor Co Ltd Moteur du type à circulation de gaz de travail
JP6059455B2 (ja) 2012-07-04 2017-01-11 三菱化学株式会社 酸素製造装置
JP6008764B2 (ja) 2013-03-15 2016-10-19 三菱重工業株式会社 作動ガス循環型エンジンシステム
DE102013103426B4 (de) * 2013-04-05 2018-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Membranmodul zur energieeffizienten Sauerstofferzeugung in der Biomassevergasung
US20150051067A1 (en) 2013-08-19 2015-02-19 Cdti Oxygen storage material without rare earth metals
US9557053B1 (en) 2013-09-20 2017-01-31 U.S. Department Of Energy Metal ferrite oxygen carriers for chemical looping combustion of solid fuels
JP6012649B2 (ja) 2014-02-27 2016-10-25 三菱重工業株式会社 作動ガス循環型エンジンシステム及びその運転方法
US10830185B2 (en) 2014-08-01 2020-11-10 The Regents Of The University Of California Recirculating noble gas internal combustion power cycle
DE102015119915A1 (de) 2015-11-18 2017-05-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Betrieb einer Gasturbine mit nasser Verbrennung
CN107191288A (zh) 2016-03-15 2017-09-22 邹立松 纯氧富氧燃烧原动机系统装置
EP3431736A1 (fr) 2017-07-20 2019-01-23 Vahtec Sp. z o.o. Système à base d'hydrogène permettant de stocker et de récupérer de l'énergie électrique et moteur à jet rotatif à base d'hydrogène et d'oxygène destiné à être utilisé dans un tel système
JP7264390B2 (ja) 2017-09-04 2023-04-25 三菱ケミカル株式会社 酸素過剰型金属酸化物並びに、酸素吸脱着装置及び酸素濃縮装置
EP3848468A1 (fr) * 2020-01-08 2021-07-14 Valmet Ab Procédé de refroidissement et de détoxification de biomasse

Also Published As

Publication number Publication date
DE102019128882B3 (de) 2020-12-17
US11808238B2 (en) 2023-11-07
CN114641451B (zh) 2024-04-02
EP4048631B1 (fr) 2023-03-08
CN114641451A (zh) 2022-06-17
ES2942757T3 (es) 2023-06-06
JP7525122B2 (ja) 2024-07-30
KR20220088479A (ko) 2022-06-27
US20220372936A1 (en) 2022-11-24
WO2021078333A1 (fr) 2021-04-29
JP2022554206A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2015185039A1 (fr) Procédé d'électrolyse et système d'électrolyse à fluides de balayage remis en circulation
DE69229839T2 (de) Methode zur Herstellung von Methanol unter Verwendung der Wärme eines Kernkraftwerkes
DE69717161T2 (de) Verfahren zur energiegewinnung mit hilfe eines verbrennungsprozesses
DE69829132T2 (de) Verfahren zur angereicherten Verbrennung unter Verwendung von Festelektrolyt-Ionenleitsystemen
DE4032993C1 (fr)
DE69822028T2 (de) Verfahren zur Herstellung eines oxidierten Produkts
DE69520965T2 (de) Herstellung von Sauerstoff mit mehrstufigen leitenden Mischmembranen
DE3532835C2 (fr)
DE2604981C2 (de) Unter Druck betriebene Brennstoffzellenstromversorgungsanlagen und Verfahren zu ihrem Betrieb
DE69501585T2 (de) Hochtemperatur-Sauerstoffproduktion mit Dampf- und Energieerzeugung
DE69808218T2 (de) Verfahren mit festen elektrolytischen Ionenleitern zur Erzeugung von Sauerstoff, Stickstoff und/oder Kohlendioxid für Gasturbirnen
DE2849151A1 (de) Brennstoffzellenstromversorgungsanlage und verfahren zum betreiben derselben
EP2342429A2 (fr) Centrale igcc (gazéification intégrée à un cycle combiné) avec recyclage des gaz de fumée et gaz de balayage
EP1156545A2 (fr) Système de pile à combustible et méthode de fonctionnement
EP1082774A1 (fr) Systeme de pile a combustible et procede pour produire de l'energie electrique au moyen d'un tel systeme
DE102020000476A1 (de) Verfahren und Anlage zur Herstellung von Wasserstoff
DE10108187A1 (de) Brennstoffzellensystem mit einer Druckwechseladsorptionseinheit
WO2009059571A1 (fr) Système de cellule à combustible à haute température avec circuit partiel du gaz d'anode et évacuation de composants gazeux
EP4048631B1 (fr) Procédé pour alimenter, au moyen d'oxygène généré de manière intégrée au processus, un moteur à circuit d'hydrogène présentant une circulation d'un gaz noble
EP1197257B1 (fr) Procédé et dispositif pour la production de gaz d'alimentation chaud
EP3377818B1 (fr) Dispositif permettant de faire fonctionner une turbine à gaz à combustion humide
EP0490925B1 (fr) Installation pour produire de l'energie electrique
DE19904711A1 (de) Brennstoffzellensystem mit integrierter Wasserstofferzeugung
EP2245372A2 (fr) Installation de chauffe et procédé pour faire fonctionner cette dernière
WO2019137827A1 (fr) Fabrication d'un produit gazeux contenant du monoxyde de carbone

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221021

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1552483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020002722

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2942757

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020002722

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 4

Ref country code: FR

Payment date: 20231023

Year of fee payment: 4

Ref country code: DE

Payment date: 20231018

Year of fee payment: 4

26N No opposition filed

Effective date: 20231211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031