EP4003591A1 - Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre - Google Patents

Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre

Info

Publication number
EP4003591A1
EP4003591A1 EP20739700.1A EP20739700A EP4003591A1 EP 4003591 A1 EP4003591 A1 EP 4003591A1 EP 20739700 A EP20739700 A EP 20739700A EP 4003591 A1 EP4003591 A1 EP 4003591A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
nickel
copper
carried out
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20739700.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Anne-Claire Dubreuil
Malika Boualleg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4003591A1 publication Critical patent/EP4003591A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a supported metal catalyst based on nickel and copper intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, the selective hydrogenation of polyunsaturated compounds or the hydrogenation of aromatics.
  • Catalysts for the hydrogenation of aromatic compounds are generally based on metals from group VIII of the periodic table of the elements, such as nickel.
  • the metal is in the form of nanometric metallic particles deposited on a support which may be a refractory oxide.
  • the content of group VIII metal, the possible presence of a second metallic element, the size of the metal particles and the distribution of the active phase in the support as well as the nature and pore distribution of the support are parameters which may have an impact. importance on catalyst performance.
  • the rate of the hydrogenation reaction is governed by several criteria, such as the diffusion of the reactants to the surface of the catalyst (external diffusional limitations), the diffusion of the reactants in the porosity of the support towards the active sites (internal diffusional limitations) and the intrinsic properties of the active phase, such as the size of the metal particles and the distribution of the active phase within the support.
  • Document FR 3,011, 844 discloses a catalyst for carrying out a selective hydrogenation process comprising a support and an active metallic phase deposited on the support, the active metallic phase comprising copper and at least one nickel metal or of cobalt in a Cu: (Ni and / or Co) molar ratio greater than 1.
  • a step of reducing treatment in the presence of a reducing gas is carried out so as to obtain a catalyst comprising an active phase at least partially in metallic form.
  • This treatment activates the catalyst and forms metal particles.
  • This treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
  • the relative synergistic effect obtained in this preparation process makes it possible to obtain a catalyst comprising nickel of small particle size, particularly active, reducible at low temperature and particularly selective, in the selective hydrogenation of polyunsaturated compounds or in the hydrogenation of aromatic compounds. .
  • a first object according to the invention relates to a catalyst comprising nickel and copper, at a rate of 1 and 50% by weight of element nickel relative to the total weight of the catalyst, at a rate of 0.5 to 15% by weight of element copper relative to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that:
  • the molar ratio between nickel and copper is between 0.5 and 5 mol / mol;
  • At least part of the nickel and copper is in the form of a nickel-copper alloy
  • the nickel content in the nickel-copper alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst
  • the size of the nickel particles in the catalyst is less than 7 nm.
  • the size of the nickel particles in the catalyst is less than 5 nm.
  • the support is in the form of an extrusion with an average diameter of between 0.5 and 10 mm.
  • the support is in the form of a trilobed or quadrilobed extruded.
  • Another object according to the invention relates to a process for preparing a catalyst according to the invention, comprising the following steps: a) the alumina support is brought into contact with at least one solution containing at least one nickel precursor; b) the alumina support is brought into contact with at least one solution containing at least one nickel precursor and at least one copper precursor; c) the alumina support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function , or at least one amine function, it being understood that:
  • steps a), b) and c) are performed separately, in any order, or steps a) and c) are performed simultaneously, step b) being performed either before the combination of steps a) and c), either after;
  • steps b) and c) are performed simultaneously, step a) being performed either before the combination of steps b) and c), or after; d) at least one step of drying the catalyst precursor obtained at the end of steps a) to c) is carried out at a temperature below 250 ° C; e) a step of reduction of the catalyst precursor obtained at the end of step d) is carried out by bringing said precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C.
  • the molar ratio between said organic compound introduced in step c) and the element nickel also introduced in step a) is between 0.01 and 5.0 mol / mol.
  • the organic compound of step c) is chosen from oxalic acid, malonic acid, glycolic acid, lactic acid, tartronic acid, citric acid, tartaric acid, pyruvic acid, levulinic acid, ethylene glycol, propane-1, 3-diol, butane-1, 4-diol, glycerol, xylitol, mannitol, sorbitol, glycol, glucose , dimethyl carbonate, diethyl carbonate, formamide, N-methylformamide, acetamide, N-methylacetamide, N, N-dimethylmethanamide, 2-pyrrolidone, y-lactam, lactamide, urea , alanine, arginine, lysine, proline, serine, EDTA.
  • step e) is carried out at a temperature between 130 and 190 ° C.
  • step e) is carried out between 10 minutes and 110 minutes.
  • the copper content is between 0.5 and 12% by weight of copper element relative to the total weight of the catalyst.
  • the copper precursor is chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or fluoride. copper.
  • the copper precursor is copper nitrate.
  • Another object according to the invention relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule contained in a hydrocarbon feedstock having a final boiling point less than or equal to 300 ° C, which process being carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of a catalyst according to the invention.
  • Another object according to the invention relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, said process being carried out in phase gas or in liquid phase, at a temperature between 30 and 350 ° C, at a pressure between 0.1 and 20 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at a hourly volume speed VVH of between 0.05 and 50 h 1 , in the presence of a catalyst according to the invention.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the reduction rate (TR) of a metal M contained in the catalyst is defined as being the percentage of said metal M reduced after the step of reducing said catalyst.
  • the degree of reduction of nickel (Ni) was measured by X-ray diffraction analysis (XRD or “X-ray diffraction” according to the English terminology). The description of the method for measuring the amount of metal reducible on oxide catalysts is explained later in the description (cf. examples section).
  • the specific surface of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the specific surface B.E.T. determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society", 60, 309, (1938).
  • pores are meant pores with an opening greater than 50 nm.
  • pores are meant pores with an opening between 2 nm and 50 nm, limits included.
  • micropores we mean pores with an opening of less than 2 nm.
  • total pore volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is meant the volume measured by intrusion with a mercury porosimeter according to standard ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the wetting angle was taken equal to 140 ° by following the recommendations of the book “Engineering techniques, analysis and characterization treaty”, pages 1050-1055, written by Jean Charpin and Bernard Rasneur.
  • the value of the total pore volume corresponds to the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the sample minus the value of the total pore volume measured by intrusion with a mercury porosimeter measured on the same sample for a pressure corresponding to 30 psi (approximately 0.2 MPa).
  • the volume of macropores and mesopores is measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • the value from which the mercury fills all the intergranular voids is fixed at 0.2 MPa, and it is considered that beyond this the mercury enters the pores of the sample.
  • the macroporous volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is defined as being the cumulative volume of mercury introduced at a pressure between 0.2 MPa and 30 MPa, corresponding to the volume contained in the pores of diameter apparent greater than 50 nm.
  • the mesoporous volume of the catalyst or of the support used for the preparation of the catalyst according to the invention is defined as being the cumulative volume of mercury introduced at a pressure between 30 MPa and 400 MPa, corresponding to the volume contained in the pores of apparent diameter included between 2 and 50 nm.
  • the volume of the micropores is measured by nitrogen porosimetry.
  • the quantitative analysis of the microporosity is carried out using the "t" method (method of Lippens-De Boer, 1965) which corresponds to a transform of the starting adsorption isotherm as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications ”written by F. Rouquérol, J. Rouquérol and K. Sing, Academy Press, 1999.
  • the mesoporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the mesoporous volume, of size less than this diameter constitute 50% of the total mesoporous volume determined by intrusion with a mercury porosimeter.
  • the macroporous median diameter is also defined as being the diameter such that all the pores, among all the pores constituting the macroporous volume, of size less than this diameter constitute 50% of the total macroporous volume determined by intrusion with a mercury porosimeter.
  • size of the nickel particles is understood to mean the diameter of the crystallites of nickel in oxide form.
  • This method used in X-ray diffraction on powders or samples polycrystalline, which relates the width at mid-height of the diffraction peaks to the size of the particles, is described in detail in the reference: Appl. Cryst. (1978), 11, 102-113 “Scherrer after sixty years: A survey and some new results in the determination of crystallite size”, JI Langford and AJC Wilson.
  • the nickel and copper content is measured by X-ray fluorescence.
  • the invention relates to a catalyst comprising nickel and copper, in an amount of 1 and 50% by weight of nickel element relative to the total weight of the catalyst, in an amount of 0.5 to 15% by weight of copper element relative to to the total weight of the catalyst, and an alumina support, said catalyst being characterized in that:
  • the molar ratio between nickel and copper is between 0.5 and 5 mol / mol, preferably between 0.7 and 4.5 mol / mol, more preferably between 0.9 and 4 mol / mol;
  • At least part of the nickel and copper is in the form of a nickel-copper alloy, advantageously corresponding to the formula NixCuy with x ranging between 0.1 and 0.9 and including between 0.1 and 0, 9;
  • the nickel content included in the nickel-copper alloy is between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst, preferably between 1 and 12% by weight, and more preferably between 1 and 10% by weight;
  • the size of the nickel particles, measured in oxide form, in the catalyst is less than 7 nm, preferably less than 5 nm, more preferably less than 4 nm, and even more preferably less than 3 nm.
  • the nickel content in said catalyst according to the invention is advantageously between 1 and 50% by weight relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% by weight relative to the total weight of the catalyst.
  • the copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst, preferably between 0.5 and 12% by weight, preferably between 0.75 and 10% by weight , and even more preferably between 1 and 9% by weight.
  • the nickel content included in the copper-nickel alloy is advantageously between 0.5 and 15% by weight of nickel element relative to the total weight of the catalyst, preferably between 1 and 12% by weight, and more preferably between 1 and 10% by weight.
  • the molar ratio between nickel and copper is between 0.5 and 5 mol / mol, preferably between 0.7 and 4.5 mol / mol, more preferably between 0.9 and 4 mol / mol.
  • the active phase of the catalyst does not contain a metal from group VIB. In particular, it does not include molybdenum or tungsten.
  • Said catalyst is generally presented in all the forms known to those skilled in the art, for example in the form of balls (generally having a diameter of between 1 and 8 mm), of extrudates, of tablets, of hollow cylinders. Preferably, it consists of extrudates with a diameter generally between 0.5 and 10 mm, preferably between 0.8 and 3.2 mm and very preferably between 1.0 and 2.5 mm and of average length. between 0.5 and 20 mm.
  • the term “average diameter” of the extrudates is understood to mean the average diameter of the circle circumscribing the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multilobed, trilobal or quadrilobed extrudates. Preferably its shape will be trilobed or quadrilobed. The shape of the lobes can be adjusted according to all the methods known from the prior art.
  • the specific surface of the catalyst is generally greater than or equal to 30 m 2 / g, preferably greater than or equal to 50 m 2 / g, more preferably between 60 m 2 / g and 500 m 2 / g, and even more preferably between between 70 m 2 / g and 400 m 2 / g.
  • the total pore volume of the catalyst is generally between 0.1 and 1.5 cm 3 / g, preferably between 0.35 and 1.2 cm 3 / g, and even more preferably between 0.4 and 1, 0 cm 3 / g, and even more preferably between 0.45 and 0.9 cm 3 / g.
  • the catalyst advantageously has a macroporous volume less than or equal to 0.6 mL / g, preferably less than or equal to 0.5 mL / g, more preferably less than or equal to 0.4 ml / g, and even more preferably less than or equal to equal to 0.3 mL / g.
  • the mesoporous volume of the catalyst is generally at least 0.10 mL / g, preferably at least 0.20 mL / g, preferably between 0.25 mL / g and 0.80 mL / g, more preferably between 0.30 and 0.65 mL / g.
  • the mesoporous median diameter is advantageously between 3 nm and 25 nm, and preferably between 6 and 20 nm, and particularly preferably between 8 and 18 nm.
  • the catalyst advantageously has a macroporous median diameter of between 50 and 1500 nm, preferably between 80 and 1000 nm, even more preferably between 250 and 800 nm.
  • the catalyst has a low microporosity, very preferably it does not exhibit any microporosity.
  • the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and particularly preferably at least 99% by weight of alumina relative to the weight support.
  • Alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or as a mixture.
  • the alumina support may comprise impurities such as oxides of metals from groups I IA, II IB, IVB, II B, NIA, IVA according to the CAS classification, preferably silica, titanium, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, preferably magnesium, calcium, strontium or barium or else sulfur.
  • impurities such as oxides of metals from groups I IA, II IB, IVB, II B, NIA, IVA according to the CAS classification, preferably silica, titanium, zirconium dioxide, zinc oxide, magnesium oxide and calcium oxide, or even alkali metals, preferably lithium, sodium or potassium, and / or alkaline earth metals, preferably magnesium, calcium, strontium or barium or else sulfur.
  • the specific surface of the support is generally greater than or equal to 30 m 2 / g, preferably greater than or equal to 50 m 2 / g, more preferably between 60 m 2 / g and 500 m 2 / g, and even more preferably between between 70 m 2 / g and 400 m 2 / g.
  • the BET specific surface is measured by physisorption with nitrogen.
  • the total pore volume of the support is generally between 0.1 and 1.5 cm 3 / g, preferably between 0.35 and 1.2 cm 3 / g, and even more preferably between 0.4 and 1, 0 cm 3 / g, and even more preferably between 0.45 and 0.9 cm 3 / g.
  • the present invention relates to a process for preparing a catalyst according to the invention, which process comprises the following steps:
  • the alumina support is brought into contact with at least one solution containing at least one nickel precursor
  • the alumina support is brought into contact with at least one solution containing at least one nickel precursor and at least one copper precursor; c) the alumina support is brought into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function , or at least one amine function, it being understood that:
  • steps a), b) and c) are performed separately, in any order, or steps a) and c) are performed simultaneously, step b) being performed either before the combination of steps a) and c), either after;
  • steps b) and c) are performed simultaneously, step a) being performed either before the combination of steps b) and c), or after;
  • At least one step of drying the catalyst precursor obtained at the end of steps a) to c) is carried out at a temperature below 250 ° C.
  • a step of reduction of the catalyst precursor obtained at the end of step d) is carried out by bringing said precursor into contact with a reducing gas at a temperature greater than or equal to 150 ° C and less than 250 ° C.
  • Step a) Bringing the support into contact with a nickel precursor
  • step a The deposition of nickel on said support, in accordance with the implementation of step a), can be carried out by impregnation, dry or in excess, or alternatively by deposition - precipitation, according to methods well known to those skilled in the art. job.
  • Said step a) is preferably carried out by impregnation of the support consisting for example in bringing said support into contact with at least one solution, aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethyl sulphoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent, containing at least one nickel precursor at least partially in the dissolved state, or else by bringing said support into contact with at least one colloidal solution of at least one precursor of nickel, in oxidized form (nanoparticles of nickel oxide, oxy (hydroxide) or hydroxide) or in reduced form (metallic nanoparticles of nickel in the reduced).
  • the solution is aqueous.
  • the pH of this solution can be modified by the possible addition of an acid or a base.
  • the aqueous solution may contain ammonia or ammonium ions NH 4 + .
  • said step a) is carried out by dry impregnation, which consists in bringing the catalyst support into contact with a solution, containing at least one nickel precursor, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
  • a nickel precursor is advantageously used in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, sulfate, formate. , complexes formed by a polyacid or an acid-alcohol and its salts, complexes formed with acetylacetonates, tetrammine or hexammine complexes, or even any other inorganic derivative soluble in aqueous solution, which is brought into contact with said support.
  • nickel precursor nickel nitrate, nickel hydroxide, nickel carbonate, nickel chloride or nickel hydroxycarbonate are advantageously used.
  • the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
  • the amounts of the nickel precursor (s) introduced into the solution are chosen such that the total nickel content is between 1 and 50% by weight, preferably between 2 and 40% by weight, preferably between 3 and 35%. % by weight of said element relative to the total weight of the catalyst, and even more preferably between 5 and 25% by weight.
  • step a) is carried out by impregnation, dry or in excess, preferably dry
  • the impregnation of the nickel with the support can advantageously be carried out via at least two impregnation cycles, in using identical or different nickel precursors in each cycle. In this case, each impregnation is advantageously followed by drying and possibly heat treatment.
  • Step b) Bringing the support into contact with a copper precursor and a nickel precursor
  • the deposition of nickel and copper on the alumina support can be carried out by impregnation, dry or in excess, or by deposition - precipitation, according to methods well known to those skilled in the art.
  • Said step b) is preferably carried out by impregnation of the catalyst precursor consisting, for example, in bringing said support into contact with at least one solution, aqueous or organic (for example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent, comprising, preferably consisting of, at least one nickel precursor and at least one copper precursor at least partially in the dissolved state, or by bringing said catalyst precursor into contact with at least one colloidal solution comprising, preferably consisting of, at least one nickel precursor and a copper precursor in oxidized form (nanoparticles of oxide, oxy (hydroxide) or hydroxide of nickel and copper) or in reduced form (metallic nanoparticles of nickel and copper in the reduced state) .
  • the solution is aqueous.
  • the pH of this solution can be modified by the optional addition of an acid or a base.
  • said step b) is carried out by dry impregnation, which consists in bringing the support of the catalyst precursor into contact with a solution, comprising, preferably consisting of, at least one precursor of nickel and at least one precursor of nickel. copper, the volume of the solution of which is between 0.25 and 1.5 times the pore volume of the support to be impregnated.
  • a nickel precursor is advantageously used in the form of nitrate, carbonate, acetate, chloride, hydroxide, hydroxycarbonate, oxalate, sulfate, formate. , of complexes formed by a polyacid or an acid-alcohol and its salts, of complexes formed with acetylacetonates, of tetrammine or hexammine complexes, or even of any other inorganic derivative soluble in aqueous solution, which is brought into contact with said precursor of catalyst.
  • nickel precursor, nickel nitrate, nickel hydroxide, nickel carbonate, nickel chloride or nickel hydroxycarbonate are advantageously used.
  • the nickel precursor is nickel nitrate, nickel carbonate or nickel hydroxide.
  • the copper precursor when the copper precursor is introduced in aqueous solution, a copper precursor in mineral or organic form is advantageously used.
  • the copper precursor can be chosen from copper acetate, copper acetylacetonate, copper nitrate, copper sulfate, copper chloride, copper bromide, copper iodide or copper fluoride.
  • the copper precursor salt is copper nitrate.
  • the nickel precursor is supplied to step b) at a desired concentration to obtain on the final catalyst (ie obtained at the end of step e) of reduction or of step f) of passivation if the latter is carried out) a content of between 0.5 and 10% by weight of nickel element relative to the total weight of the final catalyst, preferably between 0.5 and 8% by weight, more preferably between 1 and 7% by weight, even more preferably between 1 and 5% by weight.
  • the quantities of the copper precursor (s) introduced into the solution according to step b) are chosen such that the total copper content is between 0.5 and 15% by weight of copper element relative to the total weight of the catalyst final (ie obtained at the end of step e) of reduction or of step f) of passivation if the latter is carried out), preferably between 0.5 and 12% by weight, preferably between 0 , 75 and 10% by weight, and even more preferably between 1 and 9% by weight.
  • Step c) Bringing the support into contact with an organic compound
  • Bringing said support into contact with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function in accordance with the implementation of said step c), can be carried out by any method well known to those skilled in the art.
  • the catalysts according to the invention prepared in the presence of an organic compound are more active than the catalysts prepared in the absence of this type of organic compound. This effect is linked to the decrease in the size of the nickel particles.
  • said step c) can be carried out by impregnation, dry or in excess according to methods well known to those skilled in the art.
  • said step c) is carried out by dry impregnation, which consists in bringing the catalyst support into contact with a volume of said solution of between 0.25 and 1.5 times the pore volume of the support to be impregnated.
  • Said solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function or at least one amine function can be aqueous or organic (for example example methanol or ethanol or phenol or acetone or toluene or dimethylsulfoxide (DMSO)) or else consisting of a mixture of water and at least one organic solvent.
  • Said organic compound is at least partially dissolved beforehand in said solution at the desired concentration.
  • said solution is aqueous or contains ethanol. Even more preferably, said solution is aqueous.
  • the pH of said solution can be modified by the optional addition of an acid or a base.
  • the solvent may be absent from the impregnation solution.
  • step c) is carried out by impregnation, dry or in excess, preferably dry
  • the impregnation of the support with at least one solution containing at least said organic compound can advantageously be carried out via at least two impregnation cycles, using the same or different organic compounds in each cycle.
  • each impregnation is advantageously followed by drying and optionally by heat treatment.
  • the molar ratio between said organic compound introduced in step c) and the element nickel also introduced in step a) is between 0.01 and 5.0 mol / mol, preferably between 0.05 and 2.0 mol / mol, more preferably between 0.1 and 1.5 mol / mol and even more preferably between 0.3 and 1.2 mol / mol.
  • the organic compound according to step c) can comprise, within the same molecule, several organic functions of carboxylic acids, alcohols, esters, amides or amines, which are identical or different.
  • the organic compound according to step c) can comprise a combination of several organic functions chosen from the organic functions of carboxylic acids, alcohols, esters, amides or amines.
  • the organic compound comprises at least one carboxylic acid function.
  • Said organic compound comprising at least one carboxylic acid function can be an aliphatic, saturated or unsaturated organic compound, or an aromatic organic compound.
  • the aliphatic organic compound, saturated or unsaturated comprises between 1 and 9 carbon atoms, preferably between 2 and 7 carbon atoms.
  • the aromatic organic compound comprises between 7 and 10 carbon atoms, preferably between 7 and 9 carbon atoms.
  • Said aliphatic organic compound, saturated or unsaturated, or said aromatic organic compound, comprising at least one carboxylic acid function can be chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids and tetracarboxylic acids.
  • the organic compound comprising at least one carboxylic acid function is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), pentanedioic acid (glutaric acid), tick hydroxyacid (glycolic acid ), 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxypropane-1, 2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid).
  • ethanedioic acid oxalic acid
  • propanedioic acid malonic acid
  • pentanedioic acid glutaric acid
  • tick hydroxyacid glycolic acid
  • 2-hydroxypropanoic acid lactic acid
  • 2-hydroxypropanedioic acid tartronic
  • the organic compound comprises at least one alcohol function.
  • said organic compound comprises between 2 and 20 carbon atoms, preferably between 2 and 12 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
  • the organic compound is chosen from methanol, ethanol, phenol, ethylene glycol, propane-1, 3-diol, butane-1, 4-diol, pentane-1, 5-diol, hexane-1,6- diol, glycerol, xylitol, mannitol, sorbitol, pyrocatechol, resorcinol, hydroquinol, diethylene glycol, triethylene glycol, polyethylene glycols having an average molar mass less than 600 g / mol, glucose, mannose, fructose, sucrose, maltose, lactose, in any of their isomeric forms.
  • the organic compound comprises at least one ester function.
  • said organic compound comprises between 2 and 20 carbon atoms, preferably between 3 and 14 carbon atoms, and even more preferably between 3 and 8 carbon atoms.
  • Said organic compound may be selected from an ester of carboxylic acid, linear or cyclic or unsaturated cyclic, or an ester of carbonic acid, cyclic or linear or alternatively a diester of linear carbonic acid.
  • said compound is g-valerolactone.
  • the compound in the case of an unsaturated cyclic ester (containing unsaturations in the ring) of carboxylic acid, the compound can be furan or pyrone or any of their derivatives, such as 6-pentyl-a-pyrone .
  • the compound may be a compound comprising a single ester function corresponding to the crude formula RCOOR ', in which R and R' are alkyl groups, linear, branched, or cyclic, or alkyl groups containing unsaturations, or alkyl groups substituted with one or several aromatic rings, or aryl groups, each containing between 1 and 15 carbon atoms, and which may be identical or different.
  • R group can also be the hydrogen atom H.
  • Said organic compound is preferably methyl laurate.
  • the organic compound can be a compound comprising at least two ester functions of carboxylic acid.
  • said compound is dimethyl succinate.
  • the organic compound can be a compound comprising at least one carboxylic acid ester function and at least one second functional group chosen from alcohols, ethers, ketones and aldehydes.
  • said compound is dimethyl malate.
  • said organic compound comprises at least one ester function of carboxylic acid and at least one ketone or aldehyde function.
  • the compound is propylene carbonate.
  • the compound is selected from dimethyl carbonate, diethyl carbonate or diphenyl carbonate.
  • the compound is selected from dimethyl dicarbonate, diethyl dicarbonate, di-tert-butyl dicarbonate.
  • the organic compound comprises at least one amide function, chosen from an acyclic amide function or a cyclic amide function, optionally comprising alkyl or aryl or alkyl substituents containing unsaturations.
  • the amide functions can be chosen from primary, secondary or tertiary amides.
  • the organic compound comprising at least one amide function is chosen from formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylmethanamide, N, N-diethylacetamide, N, N-dimethylpropionamide, propanamide, 2-pyrrolidone, N-methyl-2-pyrrolidone, g-lactam, caprolactam, acetylleucine, N-acetylaspartic acid, aminohippuric acid, N-acetylglutamic acid, 4-acetamidobenzoic acid, lactamide and glycolamide, urea, N- methylurea, N, N'-dimethylurea, 1, 1-dimethylurea, tetramethylurea according to any one of their isomeric forms.
  • the organic compound comprises at least one amine function.
  • Said organic compound comprises between 1 and 20 carbon atoms, preferably between 1 and 14 carbon atoms, and even more preferably between 2 and 8 carbon atoms.
  • said organic compound comprising at least one amine function corresponding to the crude formula C x N y H z in which 1 £ x £ 20, 1 £ y £ x, 2 £ z £ 2x + 2. More particularly, the organic compound is chosen from ethylenediamine, diaminohexane, tetramethylenediamine, hexamethylenediamine, tetramethylethylenediamine, tetraethylethylenediamine, diethylenetriamine, triethylenetetramine.
  • said organic compound comprises at least one amine function and at least one carboxylic acid (amino acid) function.
  • amino acid is preferably chosen from among alanine, arginine, lysine, proline, serine, threonine, EDTA.
  • the organic compound is chosen from oxalic acid, malonic acid, glycolic acid, lactic acid, tartronic acid, citric acid, acid. tartaric acid, pyruvic acid, levulinic acid, ethylene glycol, propane-1, 3-diol, butane-1, 4-diol, glycerol, xylitol, mannitol, sorbitol, diethylene glycol , glucose, gamma valerolactone, dimethyl carbonate, diethyl carbonate, formamide, N-methylformamide, acetamide, N-methylacetamide, N, N-dimethylmethanamide, 2-pyrrolidone, g- lactam, lactamide, urea, alanine, arginine, lysine, proline, serine, EDTA.
  • steps a), b) and c) are carried out separately, in any order, or
  • step b) being carried out either before the combination of steps a) and c), or after;
  • Steps b) and c) are performed simultaneously, step a) being performed either before the combination of steps b) and c), or after. In a preferred embodiment, step a) is carried out before simultaneously performing steps b) and c).
  • steps a) and c) are carried out simultaneously, then step b) is carried out.
  • Step d) of drying the impregnated support is carried out at a temperature below 250 ° C, preferably between 15 and 180 ° C, more preferably between 30 and 160 ° C, even more preferably between 50 and 150 ° C, and even more preferably between 70 and 140 ° C, typically for a period of between 10 minutes and 24 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the dried catalyst precursor can undergo an additional heat treatment step, before reduction step e), at a temperature between 250 and 1000 ° C and preferably between 250 and 750 ° C, typically for a period of between 15 minutes and 10 hours, under an inert atmosphere or under an atmosphere containing oxygen, in the presence of water or not. Longer durations of treatment are not excluded, but do not necessarily bring improvement.
  • the term “heat treatment” is understood to mean treatment at temperature respectively without the presence or in the presence of water. In the latter case, the contact with the water vapor can take place at atmospheric pressure or at autogenous pressure. Several combined cycles without the presence or with the presence of water can be carried out.
  • the catalyst precursor comprises nickel in oxide form, that is to say in NiO form.
  • the water content is preferably between 150 and 900 grams per kilogram of dry air, and even more preferably, between 250 and 650 grams per kilogram of dry air.
  • a reducing treatment step e) is carried out in the presence of a reducing gas so as to obtain a catalyst comprising nickel in less partially in metallic form.
  • This step is advantageously carried out in-situ, that is to say after loading the catalyst into a reactor for the hydrogenation of aromatic or polyaromatic compounds.
  • This treatment makes it possible to activate said catalyst and to form metal particles, in particular nickel in the zero valent state.
  • Carrying out in situ the reducing treatment of the catalyst eliminates the need for an additional step of passivation of the catalyst with an oxygenated compound or with C0 2 , which is necessarily the case when the catalyst is prepared by performing a reducing treatment ex-situ, that is to say outside the reactor used for the hydrogenation of aromatic or polyaromatic compounds.
  • a passivation step in order to preserve the metallic phase of the catalyst in the presence of air (during the operations of transporting and loading the catalyst into the reactor d. 'hydrogenation), then to carry out a new step of reduction of the catalyst.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or as a mixture (for example a mixture of hydrogen / nitrogen, hydrogen / argon, hydrogen / methane). In the case where the hydrogen is used as a mixture, all the proportions can be envisaged.
  • said reducing treatment is carried out at a temperature greater than or equal to 150 ° C and less than 250 ° C, preferably between 160 and 230 ° C, and more preferably between 170 and 220 ° C.
  • the duration of the reducing treatment is between 5 minutes and less than 5 hours, preferably between 10 minutes and 4 hours, and even more preferably between 10 minutes and 110 minutes.
  • the presence of the nickel-copper alloy at least partially in reduced form makes it possible to use operating conditions for reducing the active phase of nickel which are less severe than in the prior art and thus makes it possible to carry out the reduction step directly. within the reactor in which it is desired to carry out the hydrogenation of aromatic or polyaromatic compounds.
  • the presence of copper in the catalyst makes it possible to maintain good activity of the catalyst and a good lifetime of the catalyst when the latter is brought into contact with a hydrocarbon feed comprising sulfur.
  • the copper present in the catalyst more easily captures the sulfur compounds included in the feed, which limits the irreversible poisoning of the active sites.
  • the rise in temperature to the desired reduction temperature is generally slow, for example set between 0.1 and 10 ° C / min, preferably between 0.3 and 7 ° C / min.
  • the hydrogen flow rate, expressed in L / hour / gram of catalyst precursor is between 0.01 and 100 L / hour / gram of catalyst, preferably between 0.05 and 10 L / hour / gram of catalyst precursor , even more preferably between 0.1 and 5 L / hour / gram of catalyst precursor.
  • the catalyst prepared according to the process according to the invention can undergo a passivation step by a sulfur compound which makes it possible to improve the selectivity of the catalysts and to avoid thermal runaways during the start-up of new catalysts ("run away" according to the terminology Anglo-Saxon).
  • Passivation generally consists in irreversibly poisoning with the sulfur compound the most virulent active sites of nickel which exist on the new catalyst and therefore in attenuating the activity of the catalyst in favor of its selectivity.
  • the passivation step is carried out by implementing methods known to those skilled in the art.
  • the passivation step with a sulfur compound is generally carried out at a temperature of between 20 and 350 ° C, preferably between 40 and 200 ° C, for 10 to 240 minutes.
  • the sulfur compound is, for example, chosen from the following compounds: thiophene, thiophane, alkylmonosulfides such as dimethylsulfide, diethylsulfide, dipropylsulfide and propylmethylsulfide or else an organic disulfide of formula HO-R SSR 2 -OH such as di-thio-di-ethanol of formula HO-C2H4-SS-C2H4-OH (often called DEODS).
  • the sulfur content is generally between 0.1 and 2% by weight of said element relative to the total weight of the catalyst.
  • the preparation of the catalyst is carried out ex situ, that is to say before loading the catalyst into the reaction unit of the process for selective hydrogenation or hydrogenation of aromatics.
  • the catalyst obtained according to the process according to the invention can be used in a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenic, contained in a hydrocarbon feed having a final boiling point less than or equal to 300 ° C.
  • polyunsaturated compounds containing at least 2 carbon atoms per molecule such as diolefins and / or acetylenics and / or alkenylaromatics, also called styrenic
  • the process can be carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at a hourly volume speed between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed between 100 and 40,000 h 1 when the process is carried out in the gas phase, in the presence of the catalyst obtained by the preparation process as described above in the description.
  • Monounsaturated organic compounds such as ethylene and propylene, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feeds. It enables the conversion of the polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracking gasolines used as feed, the selective hydrogenation also makes it possible to selectively hydrogenate the alkenylaromatics into aromatics while avoiding the hydrogenation of the aromatic rings.
  • the hydrocarbon feed treated in the selective hydrogenation process has a final boiling point of 300 ° C or less and contains at least 2 carbon atoms per molecule and includes at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and / or at least one diene function and / or at least one alkenylaromatic function.
  • the feed is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5 + cut.
  • the C2 steam cracking cut advantageously used for carrying out the selective hydrogenation process, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of 'acetylene, the remainder being essentially ethane and methane.
  • ethylene of the order of 0.1 to 5% by weight of 'acetylene
  • the remainder being essentially ethane and methane.
  • C3 compounds can also be present.
  • the C3 steam cracking cut advantageously used for carrying out the selective hydrogenation process, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds can also be present.
  • a C2 - C3 cut can also be advantageously used for carrying out the selective hydrogenation process. It has for example the following composition: of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane. This charge can also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 steam cracking cut advantageously used for carrying out the selective hydrogenation process, has for example the following average composition by weight: 1% by weight of butane, 46.5% by weight of butene, 51% by weight of butadiene, 1 , 3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds can also be present.
  • the C5 steam cracking cut advantageously used for carrying out the selective hydrogenation process, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
  • Steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300 ° C, preferably between 10 and 250 ° C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracking gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrene compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.) ).
  • Steam cracking gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of monoolefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all of the compounds forming 100%. It also contains 0 to 1000 ppm by weight of sulfur, preferably 0 to 500 ppm by weight of sulfur.
  • the polyunsaturated hydrocarbon feed treated according to the selective hydrogenation process is a C2 steam cracking cut, or a C2-C3 steam cracking cut, or a steam cracked gasoline.
  • the selective hydrogenation process aims to eliminate said polyunsaturated hydrocarbons present in said feedstock to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the selective hydrogenation process aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate the butadiene, vinylacetylene (VAC) and butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefin compounds are partially hydrogenated to mono-olefins and that the styrenic and indene compounds are partially hydrogenated to the corresponding aromatic compounds while avoiding the hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in an ascending or descending current, of the feed of polyunsaturated hydrocarbons and of hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred.
  • the polyunsaturated hydrocarbon feedstock can advantageously be diluted by one or more re-injections of the effluent, coming from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor. reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor.
  • the hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5 + cuts from steam cracking can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5 + cuts and in the carbonated for cuts C2 and C2-C3.
  • a liquid phase reaction lowers the energy cost and increases the cycle time of the catalyst.
  • the selective hydrogenation of a hydrocarbon feed containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300 ° C is carried out at a temperature between 0 and 300 ° C, at a pressure between 0.1 and 10 MPa, at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.1 and 10 and at an hourly volume speed VVH (defined as the ratio of the volume flow rate of feed to the volume of the catalyst) between 0.1 and 200 h 1 for a process carried out in the liquid phase, or at a hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume speed VVH of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • VVH defined as the ratio of the volume flow rate of feed to the volume of the catalyst
  • the molar ratio (hydrogen) / (polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0
  • the temperature is between 0 and 200 ° C, preferably between 20 and 200 C and still more more preferred between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 0.5 and 100 h 1 , preferably between 1 and 50 h 1
  • the pressure is generally between 0.3 and 8.0 MPa, preferably between 1.0 and 7.0 MPa and even more preferably between 1.5 and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam cracking gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20 and 200 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1.0 and 7.0 MPa.
  • the feed is a steam cracking gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0
  • the temperature is between 20 and 200 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1.0 and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feed is a steam-cracked gasoline comprising polyunsaturated compounds, the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30 and 180 ° C, the hourly volume speed (VVH) is generally between 1 and 50 h 1 and the pressure is between 1, 5 and 4.0 MPa.
  • the feed is a steam-cracked gasoline comprising polyunsaturated compounds
  • the hydrogen / (polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0
  • the temperature is between 30 and 180 ° C
  • the hourly volume speed (VVH) is generally between 1 and 50 h 1
  • the pressure is between 1, 5 and 4.0 MPa.
  • the hydrogen flow rate is adjusted in order to have enough of it to theoretically hydrogenate all the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the molar ratio (hydrogen) / ( polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800, the temperature is between 0 and 300 ° C, preferably between 15 and 280 ° C, the hourly volume speed (VVH ) is generally between 100 and 40,000 h 1 , preferably between 500 and 30,000 h 1 and the pressure is generally between 0.1 and 6.0 MPa, preferably between 0.2 and 5.0 MPa.
  • the catalyst obtained according to the process according to the invention can be used in a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a hydrocarbon feedstock having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C.
  • Said hydrocarbon feedstock containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical cuts: reformate from reforming catalytic, kerosene, light gas oil, heavy gas oil, cracked distillates, such as FCC recycle oil, coker gas oil, hydrocracking distillates.
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon feed treated in the hydrogenation process is generally between 0.1 and 80% by weight, preferably between 1 and 50% by weight, and particularly preferably between 2 and 35% by weight, the percentage being based on the total weight of the hydrocarbon feed.
  • the aromatic compounds present in said hydrocarbon feed are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, o-xylene, m-xylene or p-xylene, or else aromatics having several aromatic (polyaromatic) rings such as naphthalene.
  • the sulfur or chlorine content of the feed is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and particularly preferably less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is, for example, carried out by injection, in ascending or descending current, of the hydrocarbon feed and hydrogen in at least one fixed bed reactor.
  • Said reactor may be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon feedstock can advantageously be diluted by one or more re-injection (s) of the effluent, coming from said reactor where the aromatic hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the reactor. the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the aromatics hydrogenation process can also be advantageously carried out by implanting at least said supported catalyst in a reactive distillation column or in reactors - exchangers or in a slurry type reactor.
  • the hydrogen stream can be introduced at the same time as the feed to be hydrogenated and / or at one or more different points of the reactor.
  • the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature between 30 and 350 ° C, preferably between 50 and 325 ° C, at a pressure between 0.1 and 20 MPa, from preferably between 0.5 and 10 MPa, at a hydrogen / (aromatic compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume speed VVH of between 0.05 and 50 h 1 , preferably between 0, 1 and 10 h 1 from a charge hydrocarbons containing aromatic or polyaromatic compounds and having a final boiling point less than or equal to 650 ° C, generally between 20 and 650 ° C, and preferably between 20 and 450 ° C.
  • the hydrogen flow rate is adjusted in order to have it in sufficient quantity to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20 mol%, preferably greater than 40 mol%, more preferably greater than 80 mol%, and particularly preferably greater than 90 mol% of the aromatic compounds. or polyaromatics contained in the hydrocarbon feed.
  • the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed.
  • a process is carried out for the hydrogenation of benzene from a hydrocarbon feed, such as the reformate obtained from a catalytic reforming unit.
  • the benzene content in said hydrocarbon feedstock is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the oil charge.
  • the sulfur or chlorine content of the feed is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of the benzene contained in the hydrocarbon feed can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane, octane.
  • the hydrogenation of benzene is carried out at a temperature between 30 and 250 ° C, preferably between 50 and 200 ° C, and more preferably between 80 and 180 ° C, at a pressure of between 0.1 and 10 MPa, preferably between 0.5 and 4 MPa, at a hydrogen / (benzene) molar ratio between 0.1 and 10 and at an hourly volume speed VVH of between 0.05 and 50 h 1 , preferably between 0.5 and 10 h 1 .
  • the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
  • the invention will now be illustrated via the examples below which are in no way limiting.
  • the support is an alumina A having a specific surface area of 80 m 2 / g, a pore volume of 0.7 mL / g and a median pore diameter of 12 nm.
  • Example 1 Preparation of an aqueous solution of Ni precursors
  • the aqueous solution of Ni precursors (solution S1) used for the preparation of catalyst A is prepared by dissolving 43.5 g of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. The solution S1 is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 2 Preparation of an aqueous solution of Ni precursors with additives
  • the aqueous solution of Ni precursors (solution S2) used for the preparation of catalysts B to G is prepared by dissolving 43.5 g of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) and malonic acid (CAS 141 -82-2; supplier Fluka®) in a volume of 13 mL of distilled water.
  • the additive molar ratio / Ni being 0.5.
  • Solution S2 is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 3 Preparation of an aqueous solution of the precursors of the NiCu alloy (5% Ni)
  • the aqueous solution of Ni precursors (solution S3) used for the preparation of catalysts C, D, E, and G is prepared by dissolving 14.5 g of nickel nitrate (NiN0 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water. A solution is obtained in which the Ni concentration is 116.6 g of Ni per liter of solution. The copper nitrate precursor is then added in order to have in particular an Ni / Cu molar ratio of 1 (catalysts C to F) and 2 (catalyst G) according to the examples. The solution S3 is obtained. It makes it possible to introduce the precursors of the NiCu alloy with a mass content of Ni relative to the final catalyst of about 5% by weight.
  • Solution S prepared in Example 1 is dry impregnated with 10 g of alumina A.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under a flow of dry air of 1 L. / h / g of catalyst at 450 ° C for 2 hours.
  • the calcined catalyst thus prepared contains 15% by weight of the element nickel relative to the total weight of the catalyst supported on alumina.
  • the dry air used in this example and all of the examples below contains less than 5 grams of water per kilogram of air.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • Solution S2 prepared in Example 2 is dry impregnated with 10 g of alumina A.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the calcined catalyst thus prepared contains 15% by weight of the element nickel relative to the total weight of the catalyst supported on alumina.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • Solution S2 and solution S3 prepared in Examples 2 and 3 are co-impregnated with 10 g of alumina A.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • Solution S2 is dry impregnated on alumina A to obtain 15% of Ni alone relative to the total weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C. for 2 hours.
  • the Ni content targeted in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C., then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C. for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • the Ni content targeted in this step is 5% by weight of Ni relative to the weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the solution S2 is then dry impregnated on the catalyst precursor to obtain 15% of Ni alone relative to the total weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • Solution S2 is dry impregnated on alumina A to obtain 15% of Ni alone relative to the total weight of the final catalyst.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Solution S3 prepared and adapted in Example 3 is dry impregnated on the catalyst precursor.
  • the Ni content targeted in this step is 2% by weight of Ni relative to the weight of the final catalyst.
  • the target Ni / Cu ration is 3.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • Solution S2 is dry impregnated on alumina A to obtain 15% of Ni alone relative to the total weight of the final catalyst.
  • the solid thus obtained is then dried in an oven for overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • Solution S3 prepared in Example 3 is dry impregnated on the catalyst precursor.
  • the Ni content targeted in this step is 2% by weight of Ni relative to the weight of the final catalyst.
  • the target Ni / Cu ratio is 1.
  • the solid thus obtained is then dried in an oven overnight at 120 ° C, then calcined under an air flow of 1 L / h / g of catalyst at 450 ° C for 2 hours.
  • the catalyst precursor is then reduced under the conditions as described in Example 11 below.
  • All the catalysts contain the target contents during the impregnation, i.e. 15% of nickel element (characterized by Fluorescence X) relative to the total weight of the catalyst, and the% of added copper (characterized by Fluorescence X) .
  • the amount of alloy obtained after the calcination then reduction step was determined by X-ray diffraction (XRD) analysis on samples of the catalyst in powder form.
  • the amount of metallic nickel obtained after the reduction step was determined by X-ray diffraction (XRD) analysis on samples of the catalyst in powder form. Between the reduction step and throughout the duration of the XRD characterization, the catalysts are never vented.
  • XRD X-ray diffraction
  • the reduction rate was calculated by calculating the area of the Ni 0 line located around 52 ° 2Q, on all the diffractograms of each sample of catalyst analyzed, then by subtracting the signal present from ambient temperature under the line. at 52 ° and which is due to alumina.
  • Table 1 collates the reduction rates or even the metallic nickel content Ni ° (expressed in% by weight relative to the total weight of active nickel, ie the nickel which does not make up the alloy) for all the catalysts A at E characterized by DRX after a reduction step at 170 ° C for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst A (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C. for 15 hours under a flow of hydrogen).
  • the area of the Ni 0 line located around 52 ° 2Q is measured, on all the diffractograms, by subtracting the signal present from ambient temperature under the line at 52 ° and which is due to the alumina. It is thus possible to determine the relative percentage of Ni 0 crystallized after reduction.
  • Table 1 recapitulates the reducibility rates or else the Ni ° content for all the catalysts characterized by DRX after reduction at 170 ° C. for 90 minutes under a flow of hydrogen. These values were also compared with the reduction rate obtained for catalyst A (Ni alone) after a conventional reduction step (that is to say at a temperature of 400 ° C for 15 hours under a flow of hydrogen) .
  • Nickel in alloy form For catalyst A (15% Ni alone / alumina), the nickel reducibility rate is 0% after exactly the same reduction treatment under hydrogen as for catalysts B to E. It is necessary to reduce to 400 ° C to have a reduction of the oxide nickel to Ni ° of the order of 80%.
  • Catalyst C prepared by co-impregnation of solution S2 and S3 shows, according to da DRX, that the NiCu alloy has no active phase only Ni °.
  • Catalysts A to G described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the feed to be selectively hydrogenated is as follows: 8% wt styrene (supplier Sigma Aldrich®, purity 99%), 8% wt isoprene (supplier Sigma Aldrich®, purity 99%), 84% wt n-heptane (solvent ) (VWR® supplier, purity> 99% chromanorm HPLC).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis essence.
  • the selective hydrogenation reaction is carried out in a 500 mL autoclave made of stainless steel, fitted with mechanical stirring with magnetic drive and capable of operating under a maximum pressure of 100 bar (10 MPa) and temperatures between 5 ° C and 200 ° C.
  • n-heptane supplier VWR®, purity> 99% chromanorm HPLC
  • a quantity of 3 mL of catalyst are added in an autoclave.
  • the autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen.
  • the catalyst is first reduced in situ, at 170 ° C for 90 minutes under a hydrogen flow of 1 L / h / g (temperature rise ramp of 1 ° C / min) for catalysts A to G (which corresponds here to step e) of the preparation process according to the invention according to one embodiment). Then the autoclave is brought to the test temperature equal to 30 ° C.
  • the progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane.
  • the hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H 2 consumed per minute and per gram of Ni.
  • catalytic activities measured for catalysts A to G are reported in Table 2 below. They are related to the catalytic activity (A H YDI) measured for catalyst A prepared under conventional reduction conditions (at a temperature of 400 ° C. for 15 hours under a flow of hydrogen).
  • Example 13 Catalytic tests: performance in hydrogenation of toluene
  • Catalysts A to G described in the examples above are also tested against the reaction of hydrogenation of toluene.
  • the selective hydrogenation reaction is carried out in the same autoclave as that described in Example 10.
  • n-heptane supplier VWR®, purity> 99% chromanorm HPLC
  • a quantity of 3 mL of catalyst are added in an autoclave.
  • the autoclave is closed and purged. Then the autoclave is pressurized under 35 bar (3.5 MPa) of hydrogen.
  • the catalyst is first reduced in situ, at 170 ° C for 90 minutes under a hydrogen flow of 1 L / h / g (temperature rise ramp of 1 ° C / min) for catalysts A to G (which corresponds here to step e) of the preparation process according to the invention according to one embodiment).
  • n-heptane supplied by n-heptane
  • the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the test temperature equal to 80 ° C.
  • time t 0
  • approximately 26 g of toluene supplied into the autoclave (the initial composition of the reaction mixture is then toluene 6% wt / n-heptane 94% wt) and agitation is started at 1600 rpm.
  • the pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
  • the progress of the reaction is followed by taking samples of the reaction medium at regular time intervals: the toluene is completely hydrogenated to methylcyclohexane.
  • the hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • Catalytic activity is expressed in moles of H2 consumed per minute and per gram of Ni.
  • catalytic activities measured for catalysts A to G are reported in Table 2 below. They are related to the catalytic activity (AHYD2) measured for catalyst A prepared under conventional reduction conditions (at a temperature of 400 ° C. for 15 hours under a flow of hydrogen in a continuous flow rector in ex situ).
  • AHYD2 catalytic activity measured for catalyst A prepared under conventional reduction conditions (at a temperature of 400 ° C. for 15 hours under a flow of hydrogen in a continuous flow rector in ex situ).
  • Catalysts A and B reduced at 170 ° C for 90 minutes are not active due to their Ni content reduced to 0.
  • catalyst A is active from due to its reduced Ni content of the order of 80%.
  • the particle size of 14 nm gives it a relatively modest catalytic activity.
  • Catalyst C does not exhibit, according to the DRX of reduced Ni alone, the activity evaluated in Examples 11 and 12 is due to the presence of the alloy which has a slightly hydrogenating character but much less than reduced Ni alone. (an activity very far behind the reference (around 20%)).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
EP20739700.1A 2019-07-31 2020-07-16 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre Pending EP4003591A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908725A FR3099390B1 (fr) 2019-07-31 2019-07-31 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
PCT/EP2020/070077 WO2021018599A1 (fr) 2019-07-31 2020-07-16 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre

Publications (1)

Publication Number Publication Date
EP4003591A1 true EP4003591A1 (fr) 2022-06-01

Family

ID=68807009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20739700.1A Pending EP4003591A1 (fr) 2019-07-31 2020-07-16 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre

Country Status (6)

Country Link
US (1) US20220280922A1 (ja)
EP (1) EP4003591A1 (ja)
JP (1) JP2022542956A (ja)
CN (1) CN114144257B (ja)
FR (1) FR3099390B1 (ja)
WO (1) WO2021018599A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112087B1 (fr) * 2020-07-03 2022-09-30 Ifp Energies Now Procede de preparation d’un catalyseur d’hydrogenation de composes aromatiques obtenu a partir de sels fondus et un alliage nickel cuivre
FR3112088B1 (fr) * 2020-07-03 2022-09-30 Ifp Energies Now Procede de preparation d’un catalyseur d’hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre
FR3138050B1 (fr) 2022-07-21 2024-06-28 Ifp Energies Now Procede de preparation d’un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208405A (en) 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins
US5948942A (en) * 1994-12-13 1999-09-07 Intevep, S.A. Bimetallic catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
US7229946B2 (en) * 2003-03-24 2007-06-12 Saudi Basic Industries Corporation Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
FR2927267B1 (fr) * 2008-02-07 2010-04-16 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation
FR2949078B1 (fr) 2009-08-17 2011-07-22 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte ni/sn pour l'hydrogenation selective d'hydrocarbures polyinsatures
FR2949077B1 (fr) 2009-08-17 2011-07-22 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte a base de ni et d'un metal du groupe ib pour l'hydrogenation selective d'hydrocarbures polyinsatures
CN103007945B (zh) * 2012-12-24 2015-06-03 南京大学 负载型铜镍合金纳米颗粒催化剂及其制法和在甲烷二氧化碳重整制合成气中的应用
FR3011844A1 (fr) * 2013-10-16 2015-04-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
FR3064500A1 (fr) * 2017-03-29 2018-10-05 IFP Energies Nouvelles Catalyseur en multicouches d'hyrogenation selective
FR3076746B1 (fr) * 2018-01-15 2022-07-01 Ifp Energies Now Procede de preparation d'un catalyseur particulier d'hydrogenation selective par malaxage et impregnation
FR3080299B1 (fr) * 2018-04-18 2020-07-10 IFP Energies Nouvelles Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre

Also Published As

Publication number Publication date
CN114144257B (zh) 2023-11-17
FR3099390A1 (fr) 2021-02-05
FR3099390B1 (fr) 2021-10-29
WO2021018599A1 (fr) 2021-02-04
US20220280922A1 (en) 2022-09-08
JP2022542956A (ja) 2022-10-07
CN114144257A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
EP3740309B1 (fr) Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
EP4003587B1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
WO2021018599A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
EP3781311B1 (fr) Procede de preparation d'un catalyseur bimetallique a base de nickel et de cuivre pour l'hydrogenation de composes aromatiques
EP3781310B1 (fr) Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre
WO2020148132A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
WO2020148131A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation
WO2021018601A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2021018602A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute
EP4003588A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute
FR3080300A1 (fr) Procede de preparation d'un catalyseur bimetallique a base de nickel et de platine ou de palladium
WO2018114399A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction ester
FR3061196A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d'un additif comprenant une fonction alcool
WO2021018603A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
WO2020148134A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
WO2024017703A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
FR3061195A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur de nickel prepare au moyen d'un additif comprenant une fonction amine, amide, ou un acide amine
WO2023001641A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol
WO2023001642A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'heptanol
WO2022002675A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre
WO2021239496A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2020148133A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation
EP4157521A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
FR3110867A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus
FR3110863A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus et un alliage nickel cuivre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)