FR3099390A1 - Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre - Google Patents

Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre Download PDF

Info

Publication number
FR3099390A1
FR3099390A1 FR1908725A FR1908725A FR3099390A1 FR 3099390 A1 FR3099390 A1 FR 3099390A1 FR 1908725 A FR1908725 A FR 1908725A FR 1908725 A FR1908725 A FR 1908725A FR 3099390 A1 FR3099390 A1 FR 3099390A1
Authority
FR
France
Prior art keywords
catalyst
nickel
copper
carried out
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1908725A
Other languages
English (en)
Other versions
FR3099390B1 (fr
Inventor
Anne-Claire Dubreuil
Malika Boualleg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to FR1908725A priority Critical patent/FR3099390B1/fr
Priority to US17/630,238 priority patent/US20220280922A1/en
Priority to CN202080054923.9A priority patent/CN114144257B/zh
Priority to JP2022506105A priority patent/JP2022542956A/ja
Priority to PCT/EP2020/070077 priority patent/WO2021018599A1/fr
Priority to EP20739700.1A priority patent/EP4003591A1/fr
Publication of FR3099390A1 publication Critical patent/FR3099390A1/fr
Application granted granted Critical
Publication of FR3099390B1 publication Critical patent/FR3099390B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Catalyseur comprenant du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que :- le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol ;- au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre ;- la teneur en nickel comprise dans l’alliage nickel-cuivre est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur,- la taille des particules de nickel dans le catalyseur est inférieure à 7 nm.

Description

CATALYSEUR COMPRENANT UNE PHASE ACTIVE DE NICKEL SOUS FORME DE PETITES PARTICULES ET UN ALLIAGE NICKEL CUIVRE
La présente invention concerne un catalyseur métallique supporté à base de nickel et de cuivre destiné particulièrement à l’hydrogénation des hydrocarbures insaturés, et plus particulièrement, d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation des aromatiques.
Etat de la technique
Les catalyseurs d'hydrogénation de composés aromatiques sont généralement à base de métaux du groupe VIII de la classification périodique des éléments tel que le nickel. Le métal se présente sous la forme de particules métalliques nanométriques déposées sur un support qui peut être un oxyde réfractaire. La teneur en métal du groupe VIII, la présence éventuelle d'un deuxième élément métallique, la taille des particules de métal et la répartition de la phase active dans le support ainsi que la nature et distribution poreuse du support sont des paramètres qui peuvent avoir une importance sur les performances des catalyseurs.
La vitesse de la réaction d’hydrogénation est gouvernée par plusieurs critères, tels que la diffusion des réactifs vers la surface du catalyseur (limitations diffusionnelles externes), la diffusion des réactifs dans la porosité du support vers les sites actifs (limitations diffusionnelles internes) et les propriétés intrinsèques de la phase active telles que la taille des particules métalliques et la répartition de la phase active au sein du support.
La promotion de catalyseur à base de nickel a fréquemment été proposée afin d’améliorer les performances en hydrogénation d’hydrocarbures insaturés. A titre d’illustration, le brevet US 5,208,405 divulgue un catalyseur à base de nickel et d’argent pour l’hydrogénation sélective de dioléfines en C4-C10. D’autre part, il est connu de promouvoir le nickel, présent majoritairement, avec des métaux du groupe IB, en particulier l’or (FR 2,949,077) ou de l’étain (FR 2,949,078). Le document FR 3,011,844 divulgue un catalyseur pour la mise en œuvre d’un procédé d’hydrogénation sélective comprenant un support et une phase métallique active déposée sur le support, la phase métallique active comprenant du cuivre et au moins un métal de nickel ou de cobalt dans un ratio molaire Cu : (Ni et/ou Co) supérieur à 1.
Par ailleurs, préalablement à l’utilisation de tels catalyseurs et leur mise en œuvre dans un procédé d’hydrogénation, une étape de traitement réducteur en présence d’un gaz réducteur est réalisée de manière à obtenir un catalyseur comprenant une phase active au moins partiellement sous forme métallique. Ce traitement permet d’activer le catalyseur et de former des particules métalliques. Ce traitement peut être réalisé in-situ ou ex-situ, c’est-à-dire après ou avant le chargement du catalyseur dans le réacteur d’hydrogénation.
Enfin, en vue d’obtenir de meilleures performances catalytiques, notamment une meilleure sélectivité et/ou activité, il est connu dans l’état de la technique d’utiliser des additifs de type composés organiques pour la préparation de catalyseurs métalliques d’hydrogénation sélective ou d’hydrogénation des aromatiques.
Objets de l’invention
Poursuivant ses recherches dans le domaine des catalyseurs hydrogénants, la Demanderesse a maintenant découvert que l’on pouvait préparer des catalyseurs particulièrement actifs, et particulièrement sélectifs, en hydrogénation sélective de composés polyinsaturés ou en hydrogénation de composés aromatiques, en mettant en contact sur un support poreux, dans un ordre spécifique, au moins un précurseur de nickel, au moins un précurseur de cuivre, et au moins un composé organique spécifique, avec un ratio Cu : Ni spécifique, et en réalisant postérieurement à ces étapes de mise en contact, une étape de réduction dans le réacteur catalytique en présence d’un gaz réducteur, à une température inférieure à 200°C. Sans vouloir être lié par une quelconque théorie, il a été constaté par la Demanderesse que lors de la préparation du catalyseur, la présence de cuivre améliore fortement la réductibilité du nickel sur le support ce qui permet de réaliser une étape de réduction des éléments métalliques en présence d’un gaz réducteur à des températures plus basses et des temps de réaction plus court que ceux couramment utilisés dans l’art antérieur. Le recours à des conditions opératoires moins sévères que dans l’art antérieur permet de réaliser directement l’étape de réduction au sein du réacteur dans lequel on souhaite réaliser l’hydrogénation des composés insaturés ou des composés aromatiques.
De plus, il a été constaté par la Demanderesse que lors de la préparation du catalyseur, la réalisation d’une étape de mise en contact du support avec au moins une solution contenant simultanément un précurseur métallique à base de cuivre et un précurseur métallique à base de nickel, suivie d’une étape de séchage final et de réduction en présence d’un gaz réducteur à basse température (comprise entre 150°C et 250°C) permet d’obtenir un alliage de nickel-cuivre (sous forme réduite) qui permet de manière inattendue d’améliorer fortement la réductibilité de la phase active de nickel sur le support. Par ailleurs, la présence de cuivre dans le catalyseur permet de maintenir une bonne activité et une durée de vie plus longue du catalyseur lorsque ce dernier est mis en contact avec une charge hydrocarbonée comprenant du soufre, notamment dans les coupes d’hydrocarbures aromatiques. En effet, par rapport au nickel, le cuivre présent dans le catalyseur capte plus facilement les composés soufrés compris dans la charge, ce qui limite l’empoisonnement irréversible des sites actifs.
Il a été en outre remarqué que les catalyseurs selon l’invention préparés en présence d’un composé organique (cités ci-après) sont beaucoup plus actifs que les catalyseurs préparés en l'absence de ce type de composé organique.
L'effet de synergie relatif obtenu dans ce procédé de préparation permet d’obtenir un catalyseur comprenant du nickel de faible taille de particules, particulièrement actif, réductible à basse température et particulièrement sélectif, en hydrogénation sélective de composés polyinsaturés ou en hydrogénation de composés aromatiques.
Un premier objet selon l’invention concerne un catalyseur comprenant du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que :
- le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol ;
- au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre ;
- la teneur en nickel comprise dans l’alliage nickel-cuivre est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur,
- la taille des particules de nickel dans le catalyseur est inférieure à 7 nm.
Avantageusement, la taille des particules de nickel dans le catalyseur est inférieure à 5 nm.
Avantageusement, le support se présente sous la forme d’un extrudé de diamètre moyen compris entre 0,5 et 10 mm.
Avantageusement, le support se présente sous la forme d’un extrudé trilobé ou quadrilobé.
Un autre objet selon l’invention concerne un procédé de préparation d’un catalyseur selon l’invention, comprenant les étapes suivantes :
a) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de nickel ;
b) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de nickel et au moins un précurseur de cuivre ;
c) on met en contact le support d’alumine avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine,
étant entendu que :
- les étapes a), b) et c) sont réalisées séparément, dans un ordre indifférent, ou
- les étapes a) et c) sont réalisées simultanément, l’étape b) étant réalisée soit avant la combinaison des étapes a) et c), soit après ;
- les étapes b) et c) sont réalisées simultanément, l’étape a) étant réalisée soit avant la combinaison des étapes b) et c), soit après ;
d) on réalise au moins une étape de séchage du précurseur de catalyseur obtenu à l’issue des étapes a) à c) à une température inférieure à 250°C ;
e) on réalise une étape de réduction du précurseur de catalyseur obtenue à l’issue de l’étape d) par mise en contact dudit précurseur avec un gaz réducteur à une température supérieure ou égale à 150°C et inférieure à 250°C.
Avantageusement, le rapport molaire entre ledit composé organique introduit à l’étape c) et l’élément nickel également introduit à l’étape a) est compris entre 0,01 et 5,0 mol/mol.
Avantageusement, le composé organique de l’étape c) est choisi parmi l’acide oxalique, l’acide malonique, l’acide glycolique, l’acide acide lactique, l’acide tartronique, l’acide citrique, l’acide tartrique, l’acide pyruvique, l’acide lévulinique, l’éthylène glycol, le propane-1,3-diol, le butane-1,4-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le glycol, le glucose, le carbonate de diméthyle, le carbonate de diéthyle la formamide, la N-méthylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la 2-pyrrolidone, la γ-lactame, la lactamide, l’urée, l’alanine, l’arginine, la lysine, la proline, la sérine, l’EDTA.
Avantageusement, l’étape e) est réalisée à une température comprise entre 130 et 190°C.
Avantageusement, l’étape e) est réalisée entre 10 minutes et 110 minutes.
Avantageusement, la teneur en cuivre est comprise entre de 0,5 et 12 % poids en élément cuivre par rapport au poids total du catalyseur.
Avantageusement, le précurseur de cuivre est choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. De préférence, le précurseur de cuivre est le nitrate de cuivre.
Un autre objet selon l’invention concerne un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h-1lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h-1lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur selon l’invention.
Un autre objet selon l’invention concerne un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h-1, en présence d’un catalyseur selon l’invention.
Description détaillée de l’invention
1. Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
Le taux de réduction (TR) d'un métal M contenu dans le catalyseur est défini comme étant le pourcentage dudit métal M réduit après l'étape de réduction dudit catalyseur. Le taux de réduction (TR) correspond au ratio entre la quantité de métal réduit (M1) et la quantité de métal théoriquement réductible présente sur le catalyseur mesurée par Fluorescence X (M2), soit TR (%) = (M1/M2)x100. Dans le cadre de la présente invention, le taux de réduction du nickel (Ni) a été mesuré par analyse diffraction de rayons X (DRX ou « X-ray diffraction » selon la terminologie anglo-saxonne). La description de la méthode de mesure de la quantité de métal réductible sur des catalyseurs oxydes est explicitée plus loin dans la description (cf. partie exemples).
On entend par la surface spécifique du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention, la surface spécifique B.E.T. déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique « The Journal of American Society », 60, 309, (1938).
Dans la présente demande, le terme «comprendre » est synonyme de (signifie la même chose que) « inclure » et « contenir », et est inclusif ou ouvert et n’exclut pas d’autres éléments non récités. Il est entendu que le terme « comprendre » inclut le terme exclusif et fermé « consister ».
Par « macropores », on entend des pores dont l’ouverture est supérieure à 50 nm.
Par « mésopores », on entend des pores dont l’ouverture est comprise entre 2 nm et 50 nm, bornes incluses.
Par « micropores », on entend des pores dont l’ouverture est inférieure à 2 nm.
On entend par volume poreux total du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention le volume mesuré par intrusion au porosimètre à mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. L'angle de mouillage a été pris égal à 140° en suivant les recommandations de l'ouvrage « Techniques de l'ingénieur, traité analyse et caractérisation », pages 1050-1055, écrit par Jean Charpin et Bernard Rasneur.
Afin d'obtenir une meilleure précision, la valeur du volume poreux total correspond à la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur l'échantillon moins la valeur du volume poreux total mesuré par intrusion au porosimètre à mercure mesurée sur le même échantillon pour une pression correspondant à 30 psi (environ 0,2 MPa).
Le volume des macropores et des mésopores est mesuré par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400 MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. On fixe à 0,2 MPa la valeur à partir de laquelle le mercure remplit tous les vides intergranulaires, et on considère qu'au-delà le mercure pénètre dans les pores de l'échantillon.
Le volume macroporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 0,2 MPa et 30 MPa, correspondant au volume contenu dans les pores de diamètre apparent supérieur à 50 nm.
Le volume mésoporeux du catalyseur ou du support utilisé pour la préparation du catalyseur selon l'invention est défini comme étant le volume cumulé de mercure introduit à une pression comprise entre 30 MPa et 400 MPa, correspondant au volume contenu dans les pores de diamètre apparent compris entre 2 et 50 nm.
Le volume des micropores est mesuré par porosimétrie à l’azote. L'analyse quantitative de la microporosité est effectuée à partir de la méthode "t" (méthode de Lippens-De Boer, 1965) qui correspond à une transformée de l'isotherme d'adsorption de départ comme décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Academic Press, 1999.
On définit également le diamètre médian mésoporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume mésoporeux, de taille inférieure à ce diamètre constituent 50% du volume mésoporeux total déterminé par intrusion au porosimètre à mercure.
On définit également le diamètre médian macroporeux comme étant le diamètre tel que tous les pores, parmi l’ensemble des pores constituant le volume macroporeux, de taille inférieure à ce diamètre constituent 50% du volume macroporeux total déterminé par intrusion au porosimètre à mercure.
On entend par « taille des particules de nickel » le diamètre des cristallites de nickel sous forme oxyde. Le diamètre des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43° (c’est-à-dire selon la direction cristallographique [200]) à l’aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 11, 102-113 « Scherrer after sixty years: A survey and some new results in the determination of crystallite size», J. I. Langford and A. J. C. Wilson.
La teneur en nickel et en cuivre est mesurée par fluorescence X.
2. Description
Catalyseur
L’invention concerne un catalyseur comprenant, du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que :
- le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol , de préférence compris entre 0,7 et 4,5 mol/mol, plus préférentiellement entre 0,9 et 4 mol/mol ;
- au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre, répondant avantageusement à la formule NixCuy avec x compris entre 0,1 et 0,9 et y compris entre 0,1 et 0,9 ;
- la teneur en nickel comprise dans l’alliage nickel-cuivre est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur, de préférence entre 1 et 12% en poids, et plus préférentiellement entre 1 et 10% en poids ;
- la taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est inférieure à 7 nm, de préférence inférieure à 5 nm, plus préférentiellement inférieure à 4 nm, et encore plus préférentiellement inférieure à 3 nm.
La teneur en nickel dans ledit catalyseur selon l'invention est avantageusement comprise entre 1 et 50 % poids par rapport au poids total du catalyseur, plus préférentiellement entre 2 et 40 % poids et encore plus préférentiellement entre 3 et 35 % poids et encore plus préférentiellement 5 et 25% poids par rapport au poids total du catalyseur.
La teneur en cuivre est comprise entre 0,5 et 15 % en poids en élément cuivre par rapport au poids total du catalyseur, de préférence comprise entre 0,5 et 12 % poids, de manière préférée comprise entre 0,75 et 10 % poids, et encore plus préférentiellement entre 1 et 9 % en poids.
La teneur en nickel comprise dans l’alliage cuivre-nickel est avantageusement comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur, de préférence entre 1 et 12% en poids, et plus préférentiellement entre 1 et 10% en poids.
Le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol, de préférence compris entre 0,7 et 4,5 mol/mol, plus préférentiellement entre 0,9 et 4 mol/mol.
La phase active du catalyseur ne comprend pas de métal du groupe VIB. Elle ne comprend notamment pas de molybdène ou de tungstène.
Ledit catalyseur est généralement présenté sous toutes les formes connues de l'Homme du métier, par exemple sous forme de billes (ayant généralement un diamètre compris entre 1 et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, il est constitué d'extrudés de diamètre généralement compris entre 0,5 et 10 mm, de préférence entre 0,8 et 3,2 mm et de manière très préférée entre 1,0 et 2,5 mm et de longueur moyenne comprise entre 0,5 et 20 mm. On entend par « diamètre moyen » des extrudés le diamètre moyen du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme sera trilobée ou quadrilobée. La forme des lobes pourra être ajustée selon toutes les méthodes connues de l'art antérieur.
La surface spécifique du catalyseur est généralement supérieure ou égale à 30 m2/g, de préférence supérieure ou égale à 50 m2/g, plus préférentiellement comprise entre 60 m2/g et 500 m2/g, et encore plus préférentiellement comprise entre 70 m2/g et 400 m2/g.
Le volume total poreux du catalyseur est généralement compris entre 0,1 et 1,5 cm3/g, de préférence compris entre 0,35 et 1,2 cm3/g, et encore plus préférentiellement compris entre 0,4 et 1,0 cm3/g, et encore plus préférentiellement entre 0,45 et 0,9 cm3/g.
Le catalyseur présente avantageusement un volume macroporeux inférieur ou égal à 0,6 mL/g, de préférence inférieur ou égal à 0,5 mL/g, plus préférentiellement inférieur ou égal à 0,4 mL/g, et encore plus préférentiellement inférieur ou égal à 0,3 mL/g.
Le volume mésoporeux du catalyseur est généralement d'au moins 0,10 mL/g, de préférence d’au moins 0,20 mL/g, de manière préférée compris entre 0,25 mL/g et 0,80 mL/g, de manière plus préférée entre 0,30 et 0,65 mL/g.
Le diamètre médian mésoporeux est avantageusement compris entre 3 nm et 25 nm, et de préférence entre 6 et 20 nm, et de manière particulièrement préférée compris entre 8 et 18 nm.
Le catalyseur présente avantageusement un diamètre médian macroporeux compris entre 50 et 1500 nm, de préférence entre 80 et 1000 nm, de manière encore plus préférée compris entre 250 et 800 nm.
De préférence, le catalyseur présente une faible microporosité, de manière très préférée il ne présente aucune microporosité.
Support
Selon l’invention, le support est une alumine c'est-à-dire que le support comporte au moins 95%, de préférence au moins 98%, et de manière particulièrement préférée au moins 99% poids d'alumine par rapport au poids du support. L’alumine présente généralement une structure cristallographique du type alumine delta, gamma ou thêta, seule ou en mélange.
Selon l'invention, le support d’alumine, peut comprendre des impuretés telles que les oxydes de métaux des groupes IIA, IIIB, IVB, IIB, IIIA, IVA selon la classification CAS, de préférence la silice, le dioxyde de titane, le dioxyde de zirconium, l'oxyde de zinc, l'oxyde de magnésium et l'oxyde de calcium, ou encore des métaux alcalins, de préférence le lithium, le sodium ou le potassium, et/ou les alcalino-terreux, de préférence le magnésium, le calcium, le strontium ou le baryum ou encore du soufre.
La surface spécifique du support est généralement supérieure ou égale à 30 m2/g, de préférence supérieure ou égale à 50 m2/g, plus préférentiellement comprise entre 60 m2/g et 500 m2/g, et encore plus préférentiellement comprise entre 70 m2/g et 400 m2/g. La surface spécifique BET est mesurée par physisorption à l'azote.
Le volume total poreux du support est généralement compris entre 0,1 et 1,5 cm3/g, de préférence compris entre 0,35 et 1,2 cm3/g, et encore plus préférentiellement compris entre 0,4 et 1,0 cm3/g, et encore plus préférentiellement entre 0,45 et 0,9 cm3/g.
Procédé de préparation du catalyseur
La présente invention a pour objet un procédé de préparation d’un catalyseur selon l’invention, lequel procédé comprenant les étapes suivantes :
a) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de nickel ;
b) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de nickel et au moins un précurseur de cuivre ;
c) on met en contact le support d’alumine avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine,
étant entendu que :
- les étapes a), b) et c) sont réalisées séparément, dans un ordre indifférent, ou
- les étapes a) et c) sont réalisées simultanément, l’étape b) étant réalisée soit avant la combinaison des étapes a) et c), soit après ;
- les étapes b) et c) sont réalisées simultanément, l’étape a) étant réalisée soit avant la combinaison des étapes b) et c), soit après ;
d) on réalise au moins une étape de séchage du précurseur de catalyseur obtenu à l’issue des étapes a) à c) à une température inférieure à 250°C.
e) on réalise une étape de réduction du précurseur de catalyseur obtenue à l’issue de l’étape d) par mise en contact dudit précurseur avec un gaz réducteur à une température supérieure ou égale à 150°C et inférieure à 250°C.
Les étapes du procédé de préparation du catalyseur sont explicitées en détail ci-après.
Etape a) Mise en contact du support avec un précurseur de nickel
Le dépôt du nickel sur ledit support, conformément à la mise en œuvre de l’étape a), peut être réalisé par imprégnation, à sec ou en excès, ou encore par dépôt – précipitation, selon des méthodes bien connues de l'Homme du métier.
Ladite étape a) est préférentiellement réalisée par imprégnation du support consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, contenant au moins un précurseur de nickel au moins partiellement à l'état dissous, ou encore en la mise en contact dudit support avec au moins une solution colloïdale d'au moins un précurseur du nickel, sous forme oxydée (nanoparticules d’oxyde, d’oxy(hydroxyde) ou d’hydroxyde du nickel) ou sous forme réduite (nanoparticules métalliques du nickel à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution pourra être modifié par l'ajout éventuel d'un acide ou d’une base. Selon une autre variante préférée, la solution aqueuse peut contenir de l’ammoniaque ou des ions ammonium NH4 +.
De manière préférée, ladite étape a) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec une solution, contenant au moins un précurseur du nickel, dont le volume de la solution est compris entre 0,25 et 1,5 fois le volume poreux du support à imprégner.
Lorsque le précurseur de nickel est introduit en solution aqueuse, on utilise avantageusement un précurseur de nickel sous forme de nitrate, de carbonate, d'acétate, de chlorure, d’hydroxyde, d’hydroxycarbonate, d'oxalate, de sulfate, de formiate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, de complexes tétrammine ou hexammine, ou encore de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support.
De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, l’hydroxyde de nickel, le carbonate de nickel, le chlorure de nickel, ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel, le carbonate de nickel ou le hydroxyde de nickel.
Les quantités du ou des précurseurs de nickel introduites dans la solution sont choisies de telle manière que la teneur totale en nickel est comprise entre 1 et 50 % poids, de préférence comprise entre 2 et 40 % poids, de manière préférée comprise entre 3 et 35% poids dudit élément par rapport au poids total du catalyseur, et encore plus préférentiellement entre 5 et 25% en poids. Dans le mode de réalisation dans lequel l’étape a) est réalisée par imprégnation, à sec ou en excès, de préférence à sec, l’imprégnation du nickel avec le support peut être avantageusement réalisée via au moins deux cycles d'imprégnation, en utilisant des précurseurs de nickel identiques ou différents à chaque cycle. Dans ce cas, chaque imprégnation est avantageusement suivie d’un séchage et éventuellement d’un traitement thermique.
Etape b) Mise en contact du support avec un précurseur de cuivre et un précurseur de nickel
Le dépôt du nickel et du cuivre sur le support d’alumine peut être réalisé par imprégnation, à sec ou en excès, ou encore par dépôt – précipitation, selon des méthodes bien connues de l'Homme du métier.
Ladite étape b) est préférentiellement réalisée par imprégnation du précurseur de catalyseur consistant par exemple en la mise en contact dudit support avec au moins une solution, aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique, comprenant, de préférence étant constituée de, au moins un précurseur de nickel et au moins un précurseur de cuivre au moins partiellement à l'état dissous, ou encore en la mise en contact dudit précurseur de catalyseur avec au moins une solution colloïdale comprenant, de préférence étant constituée de, au moins un précurseur du nickel et d’un précurseur de cuivre sous forme oxydées (nanoparticules d’oxyde, d’oxy(hydroxyde) ou d’hydroxyde du nickel et de cuivre) ou sous forme réduites (nanoparticules métalliques du nickel et de cuivre à l'état réduit). De préférence, la solution est aqueuse. Le pH de cette solution peut être modifié par l'ajout éventuel d'un acide ou d’une base.
De manière préférée, ladite étape b) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du précurseur de catalyseur avec une solution, comprenant, de préférence constituée de, au moins un précurseur du nickel et au moins un précurseur de cuivre, dont le volume de la solution est compris entre 0,25 et 1,5 fois le volume poreux du support à imprégner.
Lorsque le précurseur de nickel est introduit en solution aqueuse, on utilise avantageusement un précurseur de nickel sous forme de nitrate, de carbonate, d'acétate, de chlorure, d’hydroxyde, d’hydroxycarbonate, d'oxalate, de sulfate, de formiate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, de complexes tétrammine ou hexammine, ou encore de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit précurseur de catalyseur. De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, l’hydroxyde de nickel, le carbonate de nickel, le chlorure de nickel, ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel, le carbonate de nickel ou le hydroxyde de nickel.
Lorsque le précurseur de cuivre est introduit en solution aqueuse, on utilise avantageusement un précurseur de cuivre sous forme minérale ou organique. Sous forme minérale, le précurseur de cuivre peut être choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre. De manière très préférée, le sel précurseur du cuivre est le nitrate de cuivre.
Selon l’invention, le précurseur de nickel est approvisionnée à l’étape b) à une concentration voulue pour obtenir sur le catalyseur final (i.e. obtenu à l’issue de l’étape e) de réduction ou de l’étape f) de passivation si cette dernière est effectuée) une teneur comprise entre 0,5 et 10 % poids en élément nickel par rapport au poids total du catalyseur final, de préférence entre 0,5 et 8% en poids, plus préférentiellement entre 1 et 7% en poids, encore plus préférentiellement entre 1 et 5% en poids.
Les quantités du ou des précurseurs de cuivre introduites dans la solution selon l’étape b) sont choisies de telle manière que la teneur totale en cuivre est comprise entre 0,5 et 15 % en poids en élément cuivre par rapport au poids total du catalyseur final (i.e. obtenu à l’issue de l’étape e) de réduction ou de l’étape f) de passivation si cette dernière est effectuée), de préférence comprise entre 0,5 et 12 % poids, de manière préférée comprise entre 0,75 et 10 % poids, et encore plus préférentiellement entre 1 et 9% en poids.
Etape c) Mise en contact du support avec un composé organique
La mise en contact dudit support avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine conformément à la mise en œuvre de ladite étape c), peut être réalisé par toute méthode bien connue de l'Homme du métier. En effet, il a été en outre remarqué que les catalyseurs selon l’invention préparés en présence d’un composé organique (cités ci-après) sont plus actifs que les catalyseurs préparés en l'absence de ce type de composé organique. Cet effet est lié à la diminution de la taille des particules de nickel.
En particulier, ladite étape c) peut être réalisée par imprégnation, à sec ou en excès selon des méthodes bien connues de l'Homme du métier. De manière préférée, ladite étape c) est réalisée par imprégnation à sec, laquelle consiste à mettre en contact le support du catalyseur avec un volume de ladite solution compris entre 0,25 et 1,5 fois le volume poreux du support à imprégner.
Ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide ou au moins une fonction amine, peut être aqueuse ou organique (par exemple le méthanol ou l'éthanol ou le phénol ou l’acétone ou le toluène ou le diméthylsulfoxyde (DMSO)) ou bien constituée d'un mélange d'eau et d'au moins un solvant organique. Ledit composé organique est préalablement au moins partiellement dissous dans ladite solution à la concentration voulue. De préférence, ladite solution est aqueuse ou contient de l’éthanol. De façon encore plus préférée, ladite solution est aqueuse. Le pH de ladite solution pourra être modifié par l'ajout éventuel d'un acide ou d’une base. Dans un autre mode de réalisation possible, le solvant peut être absent de la solution d’imprégnation.
Dans le mode de réalisation dans lequel l’étape c) est réalisée par imprégnation, à sec ou en excès, de préférence à sec, l’imprégnation du support avec au moins une solution contenant au moins ledit composé organique peut être avantageusement réalisée via au moins deux cycles d'imprégnation, en utilisant des composés organiques identiques ou différents à chaque cycle. Dans ce cas, chaque imprégnation est avantageusement suivie d’un séchage et éventuellement d’un traitement thermique.
Avantageusement, le rapport molaire entre ledit composé organique introduit à l’étape c) et l’élément nickel également introduit à l’étape a) est compris entre 0,01 et 5,0 mol/mol, de préférence entre 0,05 et 2,0 mol/mol, plus préférentiellement entre 0,1 et 1,5 mol/mol et encore plus préférentiellement entre 0,3 et 1,2 mol/mol.
Le composé organique selon l’étape c) peut comprendre au sein de la même molécule plusieurs fonctions organiques acides carboxylique, alcools esters, amides ou amines, identiques ou différentes. Le composé organique selon l’étape c) peut comprendre une combinaison de plusieurs fonctions organiques choisies parmi les fonctions organiques de acides carboxylique, alcools esters, amides ou amines.
A) Composé organique comprenant au moins une fonction acide carboxylique
Dans un mode de réalisation selon l’invention, le composé organique comprend au moins une fonction acide carboxylique.
Ledit composé organique comprenant au moins une fonction acide carboxylique peut être un composé organique aliphatique, saturé ou insaturé, ou un composé organique aromatique. De préférence, le composé organique aliphatique, saturé ou insaturé, comprend entre 1 et 9 atomes de carbone, de préférence entre 2 et 7 atomes de carbone. De préférence, le composé organique aromatique comprend entre 7 et 10 atomes de carbone, de préférence entre 7 et 9 atomes de carbone.
Ledit composé organique aliphatique, saturé ou insaturé, ou ledit composé organique aromatique, comprenant au moins une fonction acide carboxylique peut être choisi parmi les acides monocarboxyliques, les acides dicarboxyliques, les acides tricarboxyliques, les acides tétracarboxyliques.
Avantageusement, le composé organique comprenant au moins une fonction acide carboxylique est choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide pentanedioïque (acide glutarique), l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxypropane-1,2,3-tricarboxylique (acide citrique), l’acide 2,3-dihydroxybutanedioïque (acide tartrique), l’acide 2-oxopropanoïque (acide pyruvique), l’acide 4-oxopentanoïque (acide lévulinique).
B) Composé organique comprenant au moins une fonction alcool
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction alcool.
De préférence, ledit composé organique comprend entre 2 et 20 atomes de carbone, de préférence entre 2 et 12 atomes de carbone, et encore plus préférentiellement entre 2 et 8 atomes de carbone.
Avantageusement, le composé organique est choisi parmi le méthanol, l’éthanol, le phénol, l’éthylène glycol, le propane-1,3-diol, le butane-1,4-diol, le pentane-1,5-diol, l’hexane-1,6-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le pyrocatéchol, le résorcinol, l’hydroquinol, le diéthylène glycol, le triéthylène glycol, les polyéthylène glycol ayant une masse molaire moyenne inférieure à 600 g/mol, le glucose, le mannose, le fructose, le sucrose, le maltose, le lactose, sous l’une quelconque de leurs formes isomères.
C) Composé organique comprenant au moins une fonction ester
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction ester. De préférence, ledit composé organique comprend entre 2 et 20 atomes de carbone, de préférence entre 3 et 14 atomes de carbone, et encore plus préférentiellement entre 3 et 8 atomes de carbone.
Ledit composé organique peut être choisi parmi un ester d’acide carboxylique, linéaire ou cyclique ou cyclique insaturé, ou un ester d’acide carbonique, cyclique ou linéaire ou encore un diester d’acide carbonique linéaire. Dans le cas d’un ester cyclique d’acide carboxylique, ledit composé est la g-valérolactone.
Dans le cas d’un ester cyclique insaturé (contenant des insaturations dans le cycle) d’acide carboxylique, le composé peut être le furane ou la pyrone ou l’un quelconque de leurs dérivés, tel que la 6-pentyl-α-pyrone.
Dans le cas d’un ester linéaire d’acide carboxylique, le composé peut être un composé comportant une seule fonction d’ester répondant à la formule brute RCOOR’, dans laquelle R et R’ sont des groupements alkyles, linéaires, ramifiés, ou cycliques, ou des groupements alkyles contenant des insaturations, ou des groupements alkyles substitués par un ou plusieurs cycles aromatiques, ou des groupements aryles, contenant chacun entre 1 et 15 atomes de carbone, et pouvant être identiques ou différents. Le groupement R peut aussi être l’atome d’hydrogène H. Ledit composé organique est de préférence le laurate de méthyle.
Dans un autre mode de réalisation selon l’invention, le composé organique peut être un composé comportant au moins deux fonctions esters d’acide carboxylique. De préférence, ledit composé est le succinate de diméthyle.
Dans un autre mode de réalisation selon l’invention, le composé organique peut être un composé comportant au moins une fonction ester d’acide carboxylique et au moins un deuxième groupe fonctionnel choisi parmi les alcools, les éthers, les cétones, les aldéhydes.
De préférence, ledit composé est le malate de diméthyle.
Avantageusement, ledit composé organique comprend au moins une fonction ester d’acide carboxylique et au moins une fonction cétone ou aldéhyde. Dans le cas d’un ester cyclique d’acide carbonique, le composé est le carbonate de propylène. Dans le cas d’un ester linéaire d’acide carbonique, le composé est choisi parmi le carbonate de diméthyle, le carbonate de diéthyle ou le carbonate de diphényle. Dans le cas d’un diester linéaire d’acide carbonique, le composé est choisi parmi le dicarbonate de diméthyle, le dicarbonate de diéthyle, le dicarbonate de di-tert-butyle.
D) Composé organique comprenant au moins une fonction amide
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction amide, choisie parmi une fonction amide acyclique ou une fonction amide cyclique, comprenant éventuellement des substituants alkyles ou aryles ou alkyles contenant des insaturations. Les fonctions amides peuvent être choisies parmi les amides primaires, secondaires ou tertiaires.
Avantageusement, le composé organique comprenant au moins une fonction amide est choisi parmi la formamide, la N-méthylformamide, la N,N-diméthylformamide, la N-éthylformamide,la N,N-diéthylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la N,N-diéthylacétamide, la N,N-diméthylpropionamide, la propanamide, la 2-pyrrolidone, la N-méthyl-2-pyrrolidone, la γ-lactame, la caprolactame, l'acétylleucine, l’acide N-acétylaspartique, l'acide aminohippurique, l’acide N-acétylglutamique, l’acide 4-acétamidobenzoïque, la lactamide et la glycolamide, l’urée, la N-méthylurée, la N,N′-diméthylurée, la 1,1-diméthylurée, la tétraméthylurée selon l’une quelconque de leurs formes isomères.
E) Composé organique comprenant au moins une fonction amine
Dans un autre mode de réalisation selon l’invention, le composé organique comprend au moins une fonction amine. Ledit composé organique comprend entre 1 et 20 atomes de carbone, de préférence entre 1 et 14 atomes de carbone, et encore plus préférentiellement entre 2 et 8 atomes de carbone.
Dans un mode de réalisation selon l’invention, ledit composé organique comprenant au moins une fonction amine répondant à la formule brute CxNyHzdans laquelle 1 ≤ x ≤ 20, 1 ≤ y ≤ x, 2 ≤ z ≤ 2x+2. Plus particulièrement, le composé organique est choisi parmi l’éthylènediamine, le diaminohexane, la tétraméthylènediamine, l’hexaméthylènediamine, la tétraméthyléthylènediamine, la tétraéthyléthylènediamine, la diéthylènetriamine, la triéthylènetétramine.
Dans un mode de réalisation selon l’invention, ledit composé organique comprend au moins une fonction amine et au moins une fonction acide carboxylique (acide aminé). Lorsque le composé est un acide aminé, il est de préférence choisi parmi l’alanine, l’arginine, la lysine, la proline, la sérine, la thréonine, l’EDTA.
Parmi tous les modes de réalisation ci-avant, le composé organique est choisi parmi l’acide oxalique, l’acide malonique, l’acide glycolique, l’acide acide lactique, l’acide tartronique, l’acide citrique, l’acide tartrique, l’acide pyruvique, l’acide lévulinique, l’éthylène glycol, le propane-1,3-diol, le butane-1,4-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le diéthylène glycol, le glucose, la gamma valérolactone, le carbonate de diméthyle, le carbonate de diéthyle, la formamide, la N-méthylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la 2-pyrrolidone, la γ-lactame, la lactamide, l’urée, l’alanine, l’arginine, la lysine, la proline, la sérine, l’EDTA.
Mise en œuvre des étapes a), b) et c)
Selon l’invention :
- les étapes a), b) et c) sont réalisées séparément, dans un ordre indifférent, ou
- les étapes a) et c) sont réalisées simultanément, l’étape b) étant réalisée soit avant la combinaison des étapes a) et c), soit après ;
- les étapes b) et c) sont réalisées simultanément, l’étape a) étant réalisée soit avant la combinaison des étapes b) et c), soit après.
Dans un mode de réalisation préférentiel, on réalise l’étape a) avant de réaliser simultanément les étapes b) et c).
Dans un autre mode de réalisation préférentiel, on réalise simultanément les étapes a) et c), puis on réalise l’étape b).
Etape d) Séchage du support imprégné
L’étape d) de séchage du support imprégné est effectuée à une température inférieure à 250°C, de préférence comprise entre 15 et 180°C, plus préférentiellement entre 30 et 160°C, encore plus préférentiellement entre 50 et 150°C, et de manière encore plus préférentielle entre 70 et 140°C, typiquement pendant une durée comprise entre 10 minutes et 24 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.
Traitement thermique du catalyseur séché (étape optionnelle)
Le précurseur de catalyseur séché peut subir une étape complémentaire de traitement thermique, avant l’étape e) de réduction, à une température comprise entre 250 et 1000°C et de préférence entre 250 et 750°C, typiquement pendant une durée comprise entre 15 minutes et 10 heures, sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène, en présence d’eau ou non. Des durées de traitement plus longues ne sont pas exclues, mais n’apportent pas nécessaire d’amélioration.
On entend par « traitement thermique » le traitement en température respectivement sans présence ou en présence d'eau. Dans ce dernier cas, le contact avec la vapeur d'eau peut se dérouler à pression atmosphérique ou en pression autogène. Plusieurs cycles combinés sans présence ou avec présence d'eau peuvent être réalisés. Après ce ou ces traitement(s), le précurseur de catalyseur comprend du nickel sous forme oxyde, c’est-à-dire sous forme NiO.
En cas de présence d’eau, la teneur en eau est de préférence comprise entre 150 et 900 grammes par kilogramme d'air sec, et de manière encore plus préférée, entre 250 et 650 grammes par kilogramme d'air sec.
Etape e) Réduction par un gaz réducteur
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue une étape de traitement réducteur e) en présence d’un gaz réducteur de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique. Cette étape est avantageusement réaliséein-situc'est-à-dire après le chargement du catalyseur dans un réacteur d’hydrogénation de composés aromatiques ou polyaromatiques. Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. La réalisationin-situdu traitement réducteur du catalyseur permet de s’affranchir d’une étape supplémentaire de passivation du catalyseur par un composé oxygéné ou par le CO2, ce qui est nécessairement le cas lorsque le catalyseur est préparé en réalisant un traitement réducteur ex-situ, c’est-à-dire en dehors du réacteur utilisé pour l’hydrogénation de composés aromatiques ou polyaromatiques. En effet, lorsque le traitement réducteur est réalisé ex-situ, il est nécessaire de réaliser une étape de passivation afin de préserver la phase métallique du catalyseur en présence d’air (lors des opérations de transport et de chargement du catalyseur dans le réacteur d’hydrogénation), puis de réaliser une étape nouvelle étape de réduction du catalyseur.
Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène/azote, hydrogène/argon, hydrogène/méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables.
Selon un aspect essentiel du procédé de préparation selon l’invention, ledit traitement réducteur est réalisé à une température supérieure ou égale à 150°C et inférieure à 250°C, de préférence comprise entre 160 et 230°C, et plus préférentiellement entre 170 et 220°C. La durée du traitement réducteur est comprise entre 5 minutes et moins de 5 heures, de préférence entre 10 minutes et 4 heures, et encore plus préférentiellement entre 10 minutes et 110 minutes.
La présence de l’alliage de nickel-cuivre au moins partiellement sous forme réduite permet de recourir à des conditions opératoires de réduction de la phase active de nickel moins sévères que dans l’art antérieur et permet ainsi de réaliser directement l’étape de réduction au sein du réacteur dans lequel on souhaite réaliser l’hydrogénation de composés aromatiques ou polyaromatiques.
Par ailleurs, la présence de cuivre dans le catalyseur permet de conserver une bonne activité du catalyseur et une bonne durée de vie du catalyseur lorsque ce dernier est mis en contact avec une charge hydrocarbonée comprenant du soufre. En effet, par rapport au nickel, le cuivre présent dans le catalyseur capte plus facilement les composés soufrés compris dans la charge, ce qui limite l’empoisonnement irréversible des sites actifs. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1 et 10°C/min, de préférence entre 0,3 et 7°C/min.
Le débit d'hydrogène, exprimé en L/heure/gramme de précurseur de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de précurseur de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de précurseur de catalyseur.
Etape f) Passivation (optionnelle)
Le catalyseur préparé selon le procédé selon l'invention peut subir une étape de passivation par un composé soufré qui permet d'améliorer la sélectivité des catalyseurs et d'éviter les emballements thermiques lors des démarrages de catalyseurs neufs (« run away » selon la terminologie anglo-saxonne). La passivation consiste généralement à empoisonner irréversiblement par le composé soufré les sites actifs les plus virulents du nickel qui existent sur le catalyseur neuf et donc à atténuer l’activité du catalyseur en faveur de sa sélectivité. L'étape de passivation est réalisée par la mise en œuvre de méthodes connues de l'Homme du métier.
L'étape de passivation par un composé soufré est généralement effectuée à une température comprise entre 20 et 350°C, de préférence entre 40 et 200°C, pendant 10 à 240 minutes. Le composé soufré est par exemple choisi parmi les composés suivants: thiophène, thiophane, alkylmonosulfures tels que diméthylsulfure, diéthylsulfure, dipropylsulfure et propylméthylsulfure ou encore un disulfure organique de formule HO-R1-S-S-R2-OH tel que le di-thio-di-éthanol de formule HO-C2H4-S-S-C2H4-OH (appelé souvent DEODS). La teneur en soufre est généralement comprise entre 0,1 et 2 % poids dudit élément par rapport au poids total du catalyseur.
Dans un mode de réalisation selon l’invention, la préparation du catalyseur est effectuée ex-situ, c'est-à-dire avant chargement du catalyseur dans l'unité réactionnelle du procédé d'hydrogénation sélective ou d’hydrogénation des aromatiques.
Procédé d’hydrogénation sélective
Le catalyseur obtenu selon le procédé selon l’invention peut être utilisé dans un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C. Le procédé peut être réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h-1lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h-1lorsque le procédé est réalisé en phase gazeuse, en présence du catalyseur obtenu par le procédé de préparation tel que décrit ci-avant dans la description.
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono-insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3-butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques.
La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique.
Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.
La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent.
Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10 et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha-méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage.
Le procédé d'hydrogénation sélective vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière à ce que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques.
La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs – échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur.
D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 et 200 h-1pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire V.V.H. comprise entre 100 et 40000 h-1pour un procédé réalisé en phase gazeuse.
Dans un mode de réalisation, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1,0 et 2,0, la température est comprise entre 0 et 200°C, de préférence entre 20 et 200 C et de manière encore plus préférée entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 et 100 h-1, de préférence entre 1 et 50 h-1et la pression est généralement comprise entre 0,3 et 8,0 MPa, de préférence entre 1,0 et 7,0 MPa et de manière encore plus préférée entre 1,5 et 4,0 MPa.
Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20 et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h-1et la pression est comprise entre 1,0 et 7,0 MPa.
Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1,0 et 2,0, la température est comprise entre 30 et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 et 50 h-1et la pression est comprise entre 1,5 et 4,0 MPa.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur.
Dans un autre mode de réalisation, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0 et 300°C, de préférence entre 15 et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 et 40000 h-1, de préférence entre 500 et 30000 h-1et la pression est généralement comprise entre 0,1 et 6,0 MPa, de préférence entre 0,2 et 5,0 MPa.
Procédé d’hydrogénation des aromatiques
Le catalyseur obtenu selon le procédé selon l’invention peut être utilisé dans un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C. Ladite charge d’hydrocarbures contenant au moins un composé aromatique ou polyaromatique peut être choisi parmi les coupes pétrolières ou pétrochimiques suivantes : le reformat du reformage catalytique, le kérosène, le gazole léger, le gazole lourd, les distillats de craquage, tels que l’huile de recyclage de FCC, le gazole d’unité de cokéfaction, les distillats d’hydrocraquage.
La teneur en composés aromatiques ou polyaromatiques contenus dans la charge d’hydrocarbures traitée dans le procédé d’hydrogénation est généralement compris entre 0,1 et 80% en poids, de préférence entre 1 et 50% en poids, et de manière particulièrement préférée entre 2 et 35% en poids, le pourcentage étant basé sur le poids total de la charge d’hydrocarbures. Les composés aromatiques présents dans ladite charge d’hydrocarbures sont par exemple le benzène ou des alkylaromatiques tels que le toluène, l'éthylbenzène, l'o-xylène, le m-xylène, ou le p-xylène, ou encore des aromatiques ayant plusieurs noyaux aromatiques (polyaromatiques) tels que le naphtalène.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 5000 ppm poids de soufre ou de chlore, de préférence inférieure à 100 ppm poids, et de manière particulièrement préférée inférieure à 10 ppm poids.
La mise en œuvre technologique du procédé d’hydrogénation des composés aromatiques ou polyaromatiques est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation des aromatiques, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation des aromatiques peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation des composés aromatiques ou polyaromatiques peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. D'une manière générale, l'hydrogénation des composés aromatiques ou polyaromatiques s'effectue à une température comprise entre 30 et 350°C, de préférence entre 50 et 325°C, à une pression comprise entre 0,1 et 20 MPa, de préférence entre 0,5 et 10 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h-1, de préférence entre 0,1 et 10 h-1d’une charge d'hydrocarbures contenant des composés aromatiques ou polyaromatiques et ayant un point d'ébullition final inférieur ou égal à 650°C, généralement entre 20 et 650°C, et de préférence entre 20 et 450°C.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés aromatiques et de maintenir un excès d’hydrogène en sortie de réacteur.
La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20% en mole, de préférence supérieure à 40% en mole, de manière plus préférée supérieure à 80% en mole, et de manière particulièrement préférée supérieure à 90 % en mole des composés aromatiques ou polyaromatiques contenus dans la charge hydrocarbonée. La conversion se calcule en divisant la différence entre les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures.
Selon une variante particulière du procédé, on réalise un procédé d’hydrogénation du benzène d’une charge d’hydrocarbures, tel que le reformat issu d’une unité de reformage catalytique. La teneur en benzène dans ladite charge d’hydrocarbures est généralement comprise entre 0,1 et 40% poids, de préférence entre 0,5 et 35% poids, et de manière particulièrement préférée entre 2 et 30% poids, le pourcentage en poids étant basé sur le poids total de la charge d’hydrocarbures.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 10 ppm poids de soufre ou chlore respectivement, et de préférence inférieure à 2 ppm poids.
L'hydrogénation du benzène contenu dans la charge d’hydrocarbures peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. Lorsqu’elle est réalisée en phase liquide, un solvant peut être présent, tel que le cyclohexane, l’heptane, l’octane. D'une manière générale, l'hydrogénation du benzène s'effectue à une température comprise entre 30 et 250°C, de préférence entre 50 et 200°C, et de manière plus préférée entre 80 et 180°C, à une pression comprise entre 0,1 et 10 MPa, de préférence entre 0,5 et 4 MPa, à un ratio molaire hydrogène/(benzène) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h-1, de préférence entre 0,5 et 10 h-1.
La conversion du benzène est généralement supérieure à 50% en mole, de préférence supérieure à 80% en mole, de manière plus préférée supérieure à 90% en mole et de manière particulièrement préférée supérieure à 98 % en mole.
L’invention va maintenant être illustré via les exemples ci-après qui ne sont nullement limitatifs.
Exemples
Pour tous les catalyseurs mentionnés dans les exemples mentionnées ci-après, le support est une alumine A présentant une surface spécifique de 80 m²/g, un volume poreux de 0,7 mL/g et un diamètre poreux médian de 12 nm.
Exemple 1 : Préparation d’une solution aqueuse de précurseurs de Ni
La solution aqueuse de précurseurs de Ni (solution S1) utilisée pour la préparation du catalyseur A est préparée en dissolvant 43,5 g de nitrate de nickel (NiNO3, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S1 dont la concentration en Ni est de 350 g de Ni par litre de solution.
Exemple 2 : Préparation d’une solution aqueuse de précurseurs de Ni avec additifs
La solution aqueuse de précurseurs de Ni (solution S2) utilisée pour la préparation des catalyseurs B à G est préparée en dissolvant 43,5 g de nitrate de nickel (NiNO3, fournisseur Strem Chemicals®) et de l’acide malonique (CAS 141-82-2 ; fournisseur Fluka®) dans un volume de 13 mL d’eau distillée. Le ratio molaire additif/Ni étant de 0,5. On obtient la solution S2 dont la concentration en Ni est de 350 g de Ni par litre de solution.
Exemple 3 : Préparation d’une solution aqueuse des précurseurs de l’alliage NiCu (5%Ni)
La solution aqueuse de précurseurs de Ni (solution S3) utilisée pour la préparation des catalyseurs C, D, E, et G est préparée en dissolvant 14,5 g de nitrate de nickel (NiNO3, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient une solution dont la concentration en Ni est de 116,6 g de Ni par litre de solution. Le précurseur Nitrate de cuivre est ensuite ajouté afin d’avoir notamment un ratio molaire Ni/Cu 1 (catalyseurs C à F) et 2 (catalyseur G) selon les exemples. On obtient la solution S3. Elle permet d’introduire les précurseurs de l’alliage NiCu avec une teneur massique en Ni par rapport au catalyseur final d’environ 5%pds.
Cette solution est adaptée pour obtenir un alliage contenant 2% pds de Ni par rapport au catalyseur final (catalyseur F).
Exemple 4 : Catalyseur A (non conforme)
La solution S préparée à l’exemple 1 est imprégnée à sec sur 10 g d'alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Le catalyseur calciné ainsi préparé contient 15 % en poids de l'élément nickel par rapport au poids total du catalyseur supporté sur alumine.
L’air sec utilisé dans cet exemple et dans tous les exemples ci-dessous contient moins de 5 grammes d’eau par kilogramme d’air.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 5 : Catalyseur B (non conforme)
La solution S2 préparée à l’exemple 2 est imprégnée à sec sur 10 g d'alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Le catalyseur calciné ainsi préparé contient 15 % en poids de l'élément nickel par rapport au poids total du catalyseur supporté sur alumine.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 6 : Catalyseur C (non conforme)
La solution S2 et la solution S3 préparées dans les exemples 2 et 3 sont co imprégnées sur 10 g de l’alumine A. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 7 : Catalyseur D (conforme)
La solution S2 est imprégnée à sec sur l’alumine A pour obtenir 15% de Ni seul par rapport au poids total du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. Ensuite la solution S3 (avec un ratio molaire visé Ni/Cu=3), est imprégnée à sec sur le précurseur de catalyseur. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 8 : Catalyseur E (conforme)
La solution S3 (avec un ration visé Ni/Cu=3) est imprégnée à sec sur l’alumine A. La teneur en Ni visée sur cette étape est de 5% en poids de Ni par rapport au poids du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. La solution S2 est ensuite imprégnée à sec sur le précurseur de catalyseur pour obtenir 15% de Ni seul par rapport au poids total du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 9 : Catalyseur F (conforme)
La solution S2 est imprégnée à sec sur l’alumine A pour obtenir 15% de Ni seul par rapport au poids total du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. La solution S3 préparée et adaptée dans l’exemple 3 est imprégnée à sec sur le précurseur de catalyseur. La teneur en Ni visée sur cette étape est de 2% en poids de Ni par rapport au poids du catalyseur final. Le ration Ni/Cu visée est de 3. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 10 : Catalyseur G (conforme)
La solution S2 est imprégnée à sec sur l’alumine A pour obtenir 15% de Ni seul par rapport au poids total du catalyseur final. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures. La solution S3 préparée dans l’exemple 3 est imprégnée à sec sur le précurseur de catalyseur. La teneur en Ni visée sur cette étape est de 2% en poids de Ni par rapport au poids du catalyseur final. Le ratio Ni/Cu visée est de 1. Le solide ainsi obtenu est ensuite séché en étuve pendant une nuit à 120°C, puis calciné sous un flux d’air de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
Le précurseur de catalyseur est ensuite réduit dans les conditions telles que décrites à l’exemple 11 ci-après.
Exemple 11 : Caractérisation
Tous les catalyseurs contiennent les teneurs visées lors de l’imprégnation c'est-à-dire 15% en élément nickel (caractérisé par Fluorescence X) par rapport au poids total du catalyseur, et le % de Cuivre ajouté (caractérisé par Fluorescence X).
La quantité d’alliage obtenue après l’étape de calcination puis réduction a été déterminée par analyse par diffraction des rayons X (DRX) sur des échantillons de catalyseur sous forme de poudre.
La quantité de nickel sous forme métallique obtenue après l’étape de réduction a été déterminée par analyse par diffraction des rayons X (DRX) sur des échantillons de catalyseur sous forme de poudre. Entre l’étape de réduction et pendant toute la durée de la caractérisation par DRX les catalyseurs ne sont jamais remis à l’air libre. Les diagrammes de diffraction sont obtenus par analyse radiocristallographique au moyen d'un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Kα1 du cuivre (λ = 1,5406 Å).
Le taux de réduction a été calculé en calculant l’aire de la raie de Ni0située vers 52°2θ, sur l’ensemble des diffractogrammes de chaque échantillon de catalyseur analysé, puis en soustrayant le signal présent dès la température ambiante sous la raie à 52° et qui est dû à l’alumine.
La tableau 1 ci-après rassemble les taux de réduction ou encore la teneur en nickel métallique Ni° (exprimée en % poids par rapport au poids total de nickel actif, i.e. le nickel qui ne compose pas l’alliage) pour tous les catalyseurs A à E caractérisés par DRX après une étape de réduction à 170°C pendant 90 minutes sous flux d’hydrogène. Ces valeurs ont également été comparées avec le taux de réduction obtenu pour le catalyseur A (Ni seul) après une étape de réduction classique (c’est-à-dire à une température de 400°C pendant 15 heures sous flux d’hydrogène).
A température ambiante sur tous les catalyseurs, après calcination, contenant du cuivre et du nickel, nous détectons de l’alumine sous forme delta et thêta, et des grandes raies de NiO et de CuO.
Nous détectons par ailleurs après réduction une raie correspondant à l’alliage sous forme Ni0,76Cu0,24.
Afin d’évaluer le taux de réductibilité et donc la formation du Ni0, on mesure l’aire de la raie de Ni0située vers 52°2θ, sur l’ensemble des diffractogrammes, en soustrayant le signal présent dès la température ambiante sous la raie à 52° et qui est dû à l’alumine. On peut ainsi déterminer le pourcentage relatif de Ni0cristallisé après la réduction.
Le tableau 1 ci-dessous récapitule les taux de réductibilité ou encore la teneur en Ni° pour tous les catalyseurs caractérisés par DRX après réduction à 170°C pendant 90 minutes sous flux d’hydrogène. Ces valeurs ont également été comparées avec le taux de réduction obtenu pour le catalyseur A (Ni seul) après une étape de réduction classique (c’est-à-dire à une température de 400°C pendant 15 heures sous flux d’hydrogène).
Catalyseur Réduction finale Teneur Ni pour la 1èreimp.
(% pds)
Teneur Ni pour la 2èmeimp.
(% pds)
Ratio molaire Ni/Cu Taille des particules
(nm)
Pourcentage de Ni° seul (DRX) après réduction (%)
A (comparatif) 400°C, 15h 15 - - 14 80
A (comparatif) 170°C, 90 min 15 - - 14 0*
B (comparatif) 170°C, 90 min 15 - - 2 0*
C (comparatif) 170°C, 90 min Une seul imprégnation S2+S3 3 10 0**
D (invention) 170°C, 90 min 15 5 3 2 90
E (invention) 170°C, 90 min 5 15 3 2 95
F
(invention)
170°C, 90 min 15 2 3 2 90
G
(invention)
170°C, 90 min 15 5 1 2 95
*Nickel sous forme de NiO
**Nickel sous forme d’alliage
Pour le catalyseur A (15%Ni seul/alumine), le taux de réductibilité de nickel est de 0% après exactement le même traitement de réduction sous hydrogène que pour les catalyseurs B à E. Il faut réduire à 400°C pour avoir une réduction du nickel oxyde en Ni° de l’ordre de 80%.
Le catalyseur C préparé par co-imprégnation des solution S2 et S3 présente d’après da DRX que de l’alliage NiCu est dont pas de phase active seule Ni°.
La post ou la pré-imprégnation de nickel de la solution S3 avec ratio Ni/Cu de 3 (catalyseurs D, E, F) ou 1 (catalyseur G) avec une teneur de Ni de 2% (catalyseur F) ou 5% (catalyseur D,E, G) permet également une réduction du Nickel oyde en Ni° de l’ordre de 90% au final sur le catalyseur.
Exemple 12 : Test catalytiques : performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (A HYD1 )
Les catalyseurs A à G décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène.
La composition de la charge à hydrogéner sélectivement est la suivante : 8 % pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 % pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 % pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C.
Dans une autoclaves sont ajoutés 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC) et une quantité de 3 mL de catalyseur. L’autoclave est fermé et purgé. Ensuite l’autoclave est pressurisé sous 35 bar (3,5 MPa) d’hydrogène. Le catalyseur est d’abord réduitin situ, à 170 °C pendant 90 minutes sous un flux d'hydrogène de 1 L/h/g (rampe de montée en température de 1 °C/min) pour les catalyseurs A à G (ce qui correspond ici à l’étape e) du procédé de préparation selon l’invention selon un mode de réalisation). Ensuite l’autoclave est porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci-dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur.
Un autre test a été effectué pour le catalyseur A, mais avec une température de réduction du catalyseur de 400°C pendant 15 heures.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2consommées par minute et par gramme de Ni.
Les activités catalytiques mesurées pour les catalyseurs A à G sont reportées dans le tableau 2 ci-après. Elles sont rapportées à l’activité catalytique (AHYD1) mesurée pour le catalyseur A préparé dans les conditions classiques de réduction (à une température de 400C° pendant 15 heures sous flux d’hydrogène).
Exemple 13 : Tests catalytiques : performances en hydrogénation du toluène (A HYD2 )
Les catalyseurs A à G décrits dans les exemples ci-dessus sont également testés vis-à-vis de la réaction d'hydrogénation du toluène.
La réaction d'hydrogénation sélective est opérée dans le même autoclave que celui décrit à l’exemple 10.
Dans une autoclaves sont ajoutés 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC) et une quantité de 3 mL de catalyseur. L’autoclave est fermé et purgé. Ensuite l’autoclave est pressurisé sous 35 bar (3,5 MPa) d’hydrogène. Le catalyseur est d’abord réduitin situ, à 170 °C pendant 90 minutes sous un flux d'hydrogène de 1 L/h/g (rampe de montée en température de 1 °C/min) pour les catalyseurs A à G (ce qui correspond ici à l’étape e) du procédé de préparation selon l’invention selon un mode de réalisation). Après l’ajout de 216 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 80°C. Au temps t=0, environ 26 g de toluène (fournisseur SDS®, pureté > 99,8%) sont introduits dans l’autoclave (la composition initiale du mélange réactionnel est alors toluène 6 % pds / n-heptane 94 % pds) et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le toluène est totalement hydrogéné en méthylcyclohexane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni.
Les activités catalytiques mesurées pour les catalyseurs A à G sont reportées dans le tableau 2 ci-après. Elles sont rapportées à l’activité catalytique (AHYD2) mesurée pour le catalyseur A préparé dans les conditions classiques de réduction (à une température de 400°C pendant 15 heures sous flux d’hydrogène dans un recteur en flux continu en ex situ).
Catalyseur Réduction finale Taille des particules de Ni°
(nm)
Pourcentage de Ni° seul (DRX) après réduction (%) AHYD1(%) AHYD2(%)
A (comparatif) 400°C, 15h 14 80 100 100
A (comparatif) 170°C, 90 min 14 0* <1 <1
B (comparatif) 170°C, 90 min 2 0* <1 <1
C (comparatif) 170°C, 90 min - 0** 15 20
D (invention) 170°C, 90 min 2 90 185 190
E (invention) 170°C, 90 min 2 95 175 185
F
(invention)
170°C, 90 min 2 90 172 182
G
(invention)
170°C, 90 min 2 95 180 192
*Nickel sous forme de NiO
**Nickel sous forme d’alliage
Les catalyseurs A et B réduits à 170°C pendant 90 minutes ne sont pas actifs du fait de leur teneur en Ni réduit de 0. En revanche si l’on augmente la température jusqu’à 400°C, le catalyseur A est actif du fait de sa teneur en Ni réduit de l’ordre de 80%. Cependant la taille de particules de 14 nm lui confère une activité catalytique relativement modeste. Le catalyseur C ne présente pas d’après la DRX de Ni réduit seul, l’activité évaluée dans les exemples 11 et 12 est le fait de la présence de l’alliage qui a un caractère légèrement hydrogénant mais beaucoup moins que le Ni réduit seul (une activité très en retrait par rapport à la référence (de l’ordre de 20%)).
Ceci montre bien les performances améliorées des catalyseurs D à G selon l’invention, par rapport au catalyseur Ni seul sur alumine réduit à 170°C pendant 90 min, qui est complètement inactif. De plus les petites particules obtenues du fait de l’utilisation de la solution 2 permet un gain substantiel en activité même par rapport au catalyseur A réduit à 400°C.

Claims (13)

  1. Catalyseur comprenant du nickel et du cuivre, à raison de 1 et 50 % en poids en élément nickel par rapport au poids total du catalyseur, à raison de 0,5 à 15 % en poids en élément cuivre par rapport au poids total du catalyseur, et un support d’alumine, ledit catalyseur étant caractérisé en ce que :
    - le ratio molaire entre le nickel et le cuivre est compris entre 0,5 et 5 mol/mol;
    - au moins une partie du nickel et du cuivre se présente sous la forme d’un alliage de nickel-cuivre ;
    - la teneur en nickel comprise dans l’alliage nickel-cuivre est comprise entre 0,5 et 15% en poids en élément nickel par rapport au poids total du catalyseur,
    - la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, est inférieure à 7 nm.
  2. Catalyseur selon la revendication 1, caractérisé en ce que la taille des particules de nickel dans le catalyseur est inférieure à 5 nm.
  3. Catalyseur selon l’une des revendications 1 ou 2, caractérisé en ce que le support se présente sous la forme d’un extrudé de diamètre moyen compris entre 0,5 et 10 mm.
  4. Catalyseur selon la revendication 3, caractérisé en ce que le support se présente sous la forme d’un extrudé trilobé ou quadrilobé.
  5. Procédé de préparation d’un catalyseur selon l’une quelconque des revendications 1 à 4, comprenant les étapes suivantes :
    a) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de nickel ;
    b) on met en contact le support d’alumine avec au moins une solution contenant au moins un précurseur de nickel et au moins un précurseur de cuivre ;
    c) on met en contact le support d’alumine avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine,
    étant entendu que :
    - les étapes a), b) et c) sont réalisées séparément, dans un ordre indifférent, ou
    - les étapes a) et c) sont réalisées simultanément, l’étape b) étant réalisée soit avant la combinaison des étapes a) et c), soit après ;
    - les étapes b) et c) sont réalisées simultanément, l’étape a) étant réalisée soit avant la combinaison des étapes b) et c), soit après ;
    d) on réalise au moins une étape de séchage du précurseur de catalyseur obtenu à l’issue des étapes a) à c) à une température inférieure à 250°C ;
    e) on réalise une étape de réduction du précurseur de catalyseur obtenue à l’issue de l’étape d) par mise en contact dudit précurseur avec un gaz réducteur à une température supérieure ou égale à 150°C et inférieure à 250°C.
  6. Procédé selon la revendication 5, dans lequel le rapport molaire entre ledit composé organique introduit à l’étape c) et l’élément nickel également introduit à l’étape a) est compris entre 0,01 et 5,0 mol/mol.
  7. Procédé selon l’une des revendications 5 ou 6, dans lequel le composé organique de l’étape c) est choisi parmi l’acide oxalique, l’acide malonique, l’acide glycolique, l’acide acide lactique, l’acide tartronique, l’acide citrique, l’acide tartrique, l’acide pyruvique, l’acide lévulinique, l’éthylène glycol, le propane-1,3-diol, le butane-1,4-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le diéthylène glycol, le glucose, la gamma valérolactone, le carbonate de diméthyle, le carbonate de diéthyle, la formamide, la N-méthylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la 2-pyrrolidone, la γ-lactame, la lactamide, l’urée, l’alanine, l’arginine, la lysine, la proline, la sérine, l’EDTA.
  8. Procédé selon l’une quelconque des revendications 5 à 7, dans lequel l’étape e) est réalisée à une température comprise entre 130 et 190°C.
  9. Procédé selon l’une quelconque des revendications 5 à 8, dans lequel l’étape e) est réalisée entre 10 minutes et 110 minutes.
  10. Procédé selon l’une quelconque des revendications 5 à 9, dans lequel le précurseur de cuivre est choisi parmi l’acétate de cuivre, l’acétylacétonate de cuivre, le nitrate de cuivre, le sulfate de cuivre, le chlorure de cuivre, le bromure de cuivre, l’iodure de cuivre ou le fluorure de cuivre.
  11. Procédé selon la revendication 10, dans lequel le précurseur de cuivre est le nitrate de cuivre.
  12. Procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h-1lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 et 40000 h-1lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur selon l’une quelconque des revendications 1 à 4.
  13. Procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, ledit procédé étant réalisé en phase gazeuse ou en phase liquide, à une température comprise entre 30 et 350°C, à une pression comprise entre 0,1 et 20 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire V.V.H. comprise entre 0,05 et 50 h-1, en présence d’un catalyseur selon l’une quelconque des revendications 1 à 4.
FR1908725A 2019-07-31 2019-07-31 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre Active FR3099390B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR1908725A FR3099390B1 (fr) 2019-07-31 2019-07-31 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
US17/630,238 US20220280922A1 (en) 2019-07-31 2020-07-16 Catalyst comprising an active nickel phase in the form of small particles and a nickel-copper alloy
CN202080054923.9A CN114144257B (zh) 2019-07-31 2020-07-16 包含小颗粒形式的活性镍相和镍铜合金的催化剂
JP2022506105A JP2022542956A (ja) 2019-07-31 2020-07-16 小粒子の形態にある活性なニッケル相と、ニッケル-銅アロイとを含んでいる触媒
PCT/EP2020/070077 WO2021018599A1 (fr) 2019-07-31 2020-07-16 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
EP20739700.1A EP4003591A1 (fr) 2019-07-31 2020-07-16 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908725A FR3099390B1 (fr) 2019-07-31 2019-07-31 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
FR1908725 2019-07-31

Publications (2)

Publication Number Publication Date
FR3099390A1 true FR3099390A1 (fr) 2021-02-05
FR3099390B1 FR3099390B1 (fr) 2021-10-29

Family

ID=68807009

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1908725A Active FR3099390B1 (fr) 2019-07-31 2019-07-31 Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre

Country Status (6)

Country Link
US (1) US20220280922A1 (fr)
EP (1) EP4003591A1 (fr)
JP (1) JP2022542956A (fr)
CN (1) CN114144257B (fr)
FR (1) FR3099390B1 (fr)
WO (1) WO2021018599A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017703A1 (fr) 2022-07-21 2024-01-25 IFP Energies Nouvelles Procede de preparation d'un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112087B1 (fr) * 2020-07-03 2022-09-30 Ifp Energies Now Procede de preparation d’un catalyseur d’hydrogenation de composes aromatiques obtenu a partir de sels fondus et un alliage nickel cuivre
FR3112088B1 (fr) * 2020-07-03 2022-09-30 Ifp Energies Now Procede de preparation d’un catalyseur d’hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208405A (en) 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins
US5948942A (en) * 1994-12-13 1999-09-07 Intevep, S.A. Bimetallic catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
FR2927267A1 (fr) * 2008-02-07 2009-08-14 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation
FR2949078A1 (fr) 2009-08-17 2011-02-18 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte ni/sn pour l'hydrogenation selective d'hydrocarbures polyinsatures
FR2949077A1 (fr) 2009-08-17 2011-02-18 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte a base de ni et d'un metal du groupe ib pour l'hydrogenation selective d'hydrocarbures polyinsatures
FR3011844A1 (fr) 2013-10-16 2015-04-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
FR3064500A1 (fr) * 2017-03-29 2018-10-05 IFP Energies Nouvelles Catalyseur en multicouches d'hyrogenation selective
FR3076746A1 (fr) * 2018-01-15 2019-07-19 IFP Energies Nouvelles Procede de preparation d'un catalyseur particulier d'hydrogenation selective par malaxage et impregnation
WO2019201617A1 (fr) * 2018-04-18 2019-10-24 IFP Energies Nouvelles Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007945B (zh) * 2012-12-24 2015-06-03 南京大学 负载型铜镍合金纳米颗粒催化剂及其制法和在甲烷二氧化碳重整制合成气中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208405A (en) 1992-03-03 1993-05-04 Phillips Petroleum Company Selective hydrogenation of diolefins
US5948942A (en) * 1994-12-13 1999-09-07 Intevep, S.A. Bimetallic catalyst for the simultaneous selective hydrogenation of diolefins and nitriles and method of making same
FR2927267A1 (fr) * 2008-02-07 2009-08-14 Inst Francais Du Petrole Catalyseur d'hydrogenation selective et son procede de preparation
FR2949078A1 (fr) 2009-08-17 2011-02-18 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte ni/sn pour l'hydrogenation selective d'hydrocarbures polyinsatures
FR2949077A1 (fr) 2009-08-17 2011-02-18 Inst Francais Du Petrole Procede de preparation d'un catalyseur supporte a base de ni et d'un metal du groupe ib pour l'hydrogenation selective d'hydrocarbures polyinsatures
FR3011844A1 (fr) 2013-10-16 2015-04-17 IFP Energies Nouvelles Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
FR3064500A1 (fr) * 2017-03-29 2018-10-05 IFP Energies Nouvelles Catalyseur en multicouches d'hyrogenation selective
FR3076746A1 (fr) * 2018-01-15 2019-07-19 IFP Energies Nouvelles Procede de preparation d'un catalyseur particulier d'hydrogenation selective par malaxage et impregnation
WO2019201617A1 (fr) * 2018-04-18 2019-10-24 IFP Energies Nouvelles Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000
F. ROUQUÉROLJ. ROUQUÉROLK. SING: "Adsorption by powders and porous solids. Principles, methodology and applications", 1999, ACADEMIC PRESS
J. I. LANGFORDA. J. C. WILSON: "Scherrer after sixty years: A survey and some new results in the détermination of crystallite size", APPL. CRYST., vol. 11, 1978, pages 102 - 113
JEAN CHARPINBERNARD RASNEUR, TECHNIQUES DE L'INGÉNIEUR, TRAITÉ ANALYSE ET CARACTÉRISATION, pages 1050 - 1055
MIN KANG ET AL: "[gamma]-Alumina supported Cu-Ni bimetallic catalysts: Characterization and selective hydrogenation of 1,3-butadiene", CANADIAN JOURNAL OF CHEMICAL ENGINEERING, vol. 80, no. 1, 1 February 2002 (2002-02-01), US, pages 63 - 70, XP055672478, ISSN: 0008-4034, DOI: 10.1002/cjce.5450800107 *
THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024017703A1 (fr) 2022-07-21 2024-01-25 IFP Energies Nouvelles Procede de preparation d'un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
FR3138050A1 (fr) 2022-07-21 2024-01-26 IFP Energies Nouvelles Procede de preparation d’un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre

Also Published As

Publication number Publication date
JP2022542956A (ja) 2022-10-07
EP4003591A1 (fr) 2022-06-01
FR3099390B1 (fr) 2021-10-29
US20220280922A1 (en) 2022-09-08
CN114144257A (zh) 2022-03-04
WO2021018599A1 (fr) 2021-02-04
CN114144257B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
EP3740309B1 (fr) Procede de preparation d&#39;un catalyseur particulier d&#39;hydrogenation selective et d&#39;hydrogenation des aromatiques par malaxage
EP3781311B1 (fr) Procede de preparation d&#39;un catalyseur bimetallique a base de nickel et de cuivre pour l&#39;hydrogenation de composes aromatiques
EP3781310B1 (fr) Procede de preparation d&#39;un catalyseur bimetallique d&#39;hydrogenation selective a base de nickel et de cuivre
EP4003591A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
EP4003587B1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
WO2020148132A1 (fr) Procede de preparation d&#39;un catalyseur d&#39;hydrogenation selective comprenant une etape de formation d&#39;un alliage de ni-cu en post-impregnation
FR3099386A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2020148131A1 (fr) Procede de preparation d&#39;un catalyseur d&#39;hydrogenation selective comprenant une etape de formation d&#39;un alliage de ni-cu en pre-impregnation
FR3099387A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute
WO2021018602A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute
FR3061197A1 (fr) Procede d&#39;hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d&#39;un additif comprenant une fonction ester
FR3080300A1 (fr) Procede de preparation d&#39;un catalyseur bimetallique a base de nickel et de platine ou de palladium
FR3061196A1 (fr) Procede d&#39;hydrogenation selective mettant en œuvre un catalyseur a base de nickel prepare au moyen d&#39;un additif comprenant une fonction alcool
WO2020148134A1 (fr) Procede de preparation d&#39;un catalyseur d&#39;hydrogenation des aromatiques comprenant une etape de formation d&#39;un alliage de ni-cu en post-impregnation
WO2024017703A1 (fr) Procede de preparation d&#39;un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
FR3061195A1 (fr) Procede d&#39;hydrogenation selective mettant en œuvre un catalyseur de nickel prepare au moyen d&#39;un additif comprenant une fonction amine, amide, ou un acide amine
WO2023001641A1 (fr) Procede de preparation d&#39;un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d&#39;hexanol
WO2023001642A1 (fr) Procede de preparation d&#39;un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d&#39;heptanol
FR3110863A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus et un alliage nickel cuivre
FR3112088A1 (fr) Procede de preparation d’un catalyseur d’hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre
FR3110865A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
EP4157517A1 (fr) Procede de preparation d&#39;un catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2020148133A1 (fr) Procede de preparation d&#39;un catalyseur d&#39;hydrogenation des aromatiques comprenant une etape de formation d&#39;un alliage de ni-cu en pre-impregnation
FR3110867A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus
FR3110862A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20210205

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5