WO2023001641A1 - Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol - Google Patents

Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol Download PDF

Info

Publication number
WO2023001641A1
WO2023001641A1 PCT/EP2022/069498 EP2022069498W WO2023001641A1 WO 2023001641 A1 WO2023001641 A1 WO 2023001641A1 EP 2022069498 W EP2022069498 W EP 2022069498W WO 2023001641 A1 WO2023001641 A1 WO 2023001641A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nickel
support
impregnated
solution
Prior art date
Application number
PCT/EP2022/069498
Other languages
English (en)
Inventor
Malika Boualleg
Laetitia Jothie
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to US18/578,519 priority Critical patent/US20240326033A1/en
Priority to KR1020247005458A priority patent/KR20240034240A/ko
Priority to BR112023026454A priority patent/BR112023026454A2/pt
Priority to EP22748350.0A priority patent/EP4373611A1/fr
Priority to CN202280050507.0A priority patent/CN117693395A/zh
Priority to JP2024503856A priority patent/JP2024524748A/ja
Publication of WO2023001641A1 publication Critical patent/WO2023001641A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • C07C5/05Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/36Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • the present invention relates to a process for the preparation of a supported metal catalyst based on nickel intended particularly for the hydrogenation of unsaturated hydrocarbons, and more particularly, for the selective hydrogenation of polyunsaturated compounds or for the hydrogenation of aromatics.
  • Monounsaturated organic compounds such as ethylene and propylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes or aromatics, avoiding their total saturation, and therefore the formation of the corresponding alkanes or naphthenes.
  • Selective hydrogenation catalysts are generally based on metals from group VIII of the periodic table, preferably palladium or nickel.
  • the metal is in the form of metallic particles deposited on a support.
  • the metal content, the size of the metal particles and the distribution of the active phase in the support are among the criteria which have an importance on the activity and the selectivity of the catalysts.
  • the macroscopic distribution of the metallic particles in the support constitutes an important criterion, mainly within the framework of rapid and consecutive reactions such as selective hydrogenations. It is generally desirable that these elements are located in a crust at the periphery of the support in order to avoid problems of transfer of material intragranular which can lead to activity defects and a loss of selectivity.
  • Such catalysts are also called "eggshei" catalysts according to English terminology.
  • Such catalysts are widely known in the case of selective hydrogenation catalysts based on palladium. Indeed, thanks to the low palladium content (generally less than 1% by weight (1% wt) of palladium relative to the catalyst) and the appropriate preparation processes, a fine crust of palladium at the periphery of the support grains can be obtained (FR2922784, US2010/217052).
  • nickel-based catalysts generally have a metal content between 5 and 50% by weight of nickel with respect to the catalyst.
  • the nickel is generally distributed homogeneously within the support.
  • One of the possible ways of improving these catalysts in terms of activity and selectivity is to control the distribution of the nickel within the support by depositing the nickel in a more concentrated manner on a crust, at the periphery of the support. Such catalysts are known from the state of the art.
  • CN 101890351 describes a nickel supported catalyst in which more than 90% of the nickel is in a 700 ⁇ m thick crust.
  • the catalyst is prepared using an ammoniacal solution to dissolve the nickel salt. These catalysts are used in a selective hydrogenation application.
  • Document US2012/0065442 describes a supported nickel catalyst distributed both over a crust with a thickness of 3 to 15% of the diameter and at the core, the nickel concentration ratio between the crust and the core being between 3, 0:1 and 1.3:1.
  • the deposition of the active nickel phase is carried out by spraying (“spray coating” according to English terminology) of an ammoniacal solution of a nickel salt on the support.
  • the document FR3099387 describes a process for preparing a catalyst based on nickel on an alumina support obtained according to a very specific method, the nickel being distributed both on a crust on the periphery of the support, and in the heart of the support, the thickness of said crust being between 2% and 15% of the diameter of the catalyst.
  • the process for preparing such a catalyst requires, on the one hand, the use of a specific alumina support which has undergone a hydrothermal treatment in the presence of an acid solution, and, on the other hand, the performance of a step of hydrothermal treatment after adding a specific organic additive to the catalyst precursor.
  • the Applicant has discovered that carrying out a particular step of impregnating a hexanol solution on a porous alumina support, whatever its origin, and this without carrying out an intermediate drying step between the impregnation of hexanol and the impregnation of the precursor of the active phase of nickel, makes it possible to obtain a catalyst in which at least part of the nickel is distributed over a crust at the periphery of the support, the other part of the nickel being distributed in the heart of the catalyst.
  • the presence of hexanol prevents migration of the active phase of nickel to the core of the support. Indeed, only part of the porosity is occupied by hexanol.
  • the hexanol layer constitutes a barrier to the diffusion of nickel in the core of the support.
  • the present invention thus relates to a new process for the preparation of a catalyst which makes it possible to obtain a catalyst comprising performance at least as good, or even better, in terms of activity and selectivity in the context of hydrogenation reactions.
  • selective polyunsaturated compounds or hydrogenation of aromatics while using a lower effective quantity of nickel phase (that is to say a quantity of nickel located in-fine in the crust at the periphery of the support allowing the realization of the reactions selective hydrogenation or hydrogenation of aromatics) to that typically used in the state of the art, which is due to a better distribution of the active phase of nickel in the support, making the latter more accessible to the reactants.
  • the subject of the present invention is a method for preparing a catalyst comprising an active phase based on nickel and an alumina support, said catalyst comprising between 1 and 50% by weight of elemental nickel relative to the total weight of the catalyst, the nickel being distributed both on a crust on the periphery of the support, and in the heart of the support, the thickness of said crust being between 2% and 15% of the diameter of the catalyst, the size of the nickel particles in the catalyst, measured in oxide form, being less than 15 nm, which method comprises the following steps: a) said support is impregnated with a volume V1 of a hexanol solution of between 0.2 and 0.8 times the total pore volume VPT said support to obtain an impregnated support; b) the impregnated support obtained at the end of step a) is impregnated with a solution comprising at least one precursor of the active nickel phase to obtain a catalyst precursor; c) the catalyst precursor obtained at the end of step b) is dried at a temperature below 250°C.
  • step c) is carried out for a time of between 0.5 hour and 12 hours.
  • said process further comprises a step d) in which the catalyst obtained at the end of step c) is calcined at a temperature between 250°C and 600°C.
  • step d) is carried out for 0.5 hour to 24 hours.
  • step a) said volume V1 of said hexanol solution is between 0.25 and 0.75 times the total pore volume VPT of said support.
  • step a) an n-hexanol solution is used.
  • said method further comprises a step b1) in which either the impregnated support obtained at the end of step a), or the catalyst precursor obtained at the end of the step b), with at least one solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function , steps b) and b1) being carried out in any order, or simultaneously.
  • steps b) and b1) are carried out simultaneously.
  • the molar ratio between said organic compound introduced in step b1) and the nickel element also introduced in step b) is between 0.01 and 5.0 mol/mol.
  • the organic compound of step b1) is chosen from oxalic acid, malonic acid, glycolic acid, lactic acid, tartronic acid, citric acid , tartaric acid, pyruvic acid, levulinic acid, ethylene glycol, propane-1,3-diol, butane-1,4-diol, glycerol, xylitol, mannitol, sorbitol , diethylene glycol, glucose, gamma valerolactone, dimethyl carbonate, diethyl carbonate, formamide, N-methylformamide, acetamide, N-methylacetamide, N,N-dimethylmethanamide, 2-pyrrolidone , g-lactam, lactamide, urea, alanine, arginine, lysine, proline, serine, EDTA.
  • a step a1) is carried out in which the impregnated support obtained at the end of step a) is allowed to mature for 0.5 hour to 40 hours.
  • the size of the nickel particles in the catalyst, measured in oxide form, is less than 13 nm.
  • Figure 1 is a diagram showing the distribution of nickel in the catalyst.
  • the abscissa axis corresponds to the thickness of the catalyst, measured from the edge of the catalyst (in pm).
  • the ordinate axis corresponds to the nickel density (in grams of Ni/mm 3 ).
  • the nickel is distributed both on a crust at the periphery of the support, of thickness ep1, and at the heart of the support.
  • the nickel density on the outer CT crust is greater than the nickel density in the core of the core support.
  • the transition interval between the core and the crust of the catalyst has a thickness denoted ep2-ep1. Detailed description of the invention 1. Definitions
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • micropores are understood to mean pores whose diameter is less than 2 nm, that is to say 0.002 ⁇ m; by mesopores pores whose diameter is greater than or equal to 2 nm, i.e. 0.002 pm and less than or equal to 50 nm, i.e. 0.05 pm and by macropores pores whose diameter is greater than 50 nm, i.e. 0.05 ⁇ m.
  • Castaing microprobe or microanalysis by electron microprobe.
  • the apparatus used is a CAMECA XS100, equipped with four monochromator crystals allowing the simultaneous analysis of four elements.
  • Castaing's microprobe analysis technique consists of detecting X-rays emitted by a solid after its elements have been excited by a high-energy electron beam.
  • the catalyst grains are coated in epoxy resin pads. These studs are polished until they reach the cut to the diameter of the balls or extruded then metallized by depositing carbon in a metal evaporator.
  • the electron probe is scanned along the diameter of five balls or extrudates to obtain the average distribution profile of the constituent elements of the solids.
  • This method well known to those skilled in the art, is defined in the publication by L. Sorbier et al. “Measurement of palladium crust thickness on catalyst by EPMA” Materials Science and Engineering 32 (2012). It makes it possible to establish the distribution profile of a given element, here Nickel, within the grain. Furthermore, the Ni concentration is defined for each measurement and therefore for each analysis step. The density of Ni within the grain is therefore defined as the concentration of Ni per mm 3 .
  • the total pore volume is measured by mercury porosimetry according to the ASTM D4284-92 standard with a wetting angle of 140°, for example by means of an Autopore IIITM model device from the MicromeriticsTM brand.
  • the BET specific surface is measured by physisorption with nitrogen according to standard ASTM D3663-03, method described in the work Rouquerol F.; Rouquerol J.; Singh K. “Adsorption by Powders & Porous Solids: Principle, methodology and applications”, Academy Press, 1999.
  • size of the nickel particles means the diameter of the crystallites of nickel in oxide form.
  • the nickel content is measured by X-ray fluorescence.
  • the alumina support is impregnated with a volume V1 of a hexanol solution of between 0.2 and 0.8 times the total pore volume (also called here VPT) of said support at impregnate, preferably between 0.25 and 0.75.
  • hexanol is meant the organic compounds comprising an alcohol function corresponding to the gross chemical formula ObH 2 O.
  • Hexanol is thus understood to mean the family of the following organic compounds: hexan-1-ol (or n-hexanol), hexan-2-ol, and their isomers.
  • step a) is carried out in the presence of hexan-1-ol.
  • the impregnated support can be cured in the wet state for 0.5 hour to 40 hours, preferably for 1 hour to 30 hours.
  • Stage a1) of maturation is preferably carried out at a temperature less than or equal to 60° C., and more preferably at ambient temperature. This step allows the migration of the hexanol solution to the core of the support. When it is carried out, stage a1) of maturation allows the hexanol solution to reinforce the migration to the heart of the support and to release a "crown of free pores" at the periphery of the support accessible by the nickel during the step of impregnating the precursor of the active phase.
  • step b) of the process the impregnated porous alumina support obtained at the end of step a) (or matured impregnated obtained at the end of step a1)) is impregnated with a solution comprising at least one precursor of the active nickel phase to obtain a catalyst precursor.
  • the impregnation step can be carried out by dry or excess impregnation according to methods well known to those skilled in the art.
  • the pH of said solution comprising at least one precursor of the impregnated nickel active phase can be modified by the optional addition of an acid or a base.
  • said nickel precursor is introduced in aqueous solution, for example in the form of nitrate, carbonate, acetate, chloride, oxalate, complexes formed by a polyacid or an acid-alcohol and its salts, complexes formed with acetylacetonates, or any other inorganic derivative soluble in aqueous solution, which is brought into contact with said support.
  • nickel nitrate, nickel chloride, nickel acetate or nickel hydroxycarbonate are advantageously used as nickel precursor.
  • the nickel precursor is nickel nitrate.
  • the nickel concentration in solution is adjusted according to the pore volume of the support still available so as to obtain for the supported catalyst, a nickel content of between 1 and 50% by weight of nickel element relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% by weight.
  • step b1) When performing step b1), the impregnated porous alumina support obtained at the end of step a) (or matured impregnated obtained at the end of step a1)) or the precursor of catalyst obtained at the end of step b) with a solution containing at least one organic compound comprising at least one carboxylic acid function, or at least one alcohol function, or at least one ester function, or at least one amide function, or at least one amine function, said steps b) and b1) being carried out in any order, or simultaneously.
  • the impregnation step can be carried out by dry or excess impregnation according to methods well known to those skilled in the art. Indeed, it has also been observed that the catalysts prepared in the presence of an organic compound (cited below) are more active than the catalysts prepared in the absence of this type of organic compound. This effect is linked to the decrease in the size of the nickel particles.
  • Said solution containing at least one organic compound comprising at least one carboxylic acid function is preferably aqueous.
  • Said organic compound is previously at least partially dissolved in said solution at the desired concentration.
  • the pH of said solution can be modified by the possible addition of an acid or a base.
  • the molar ratio between said organic compound introduced in step b1) and the nickel element also introduced in step b) is between 0.01 and 5.0 mol/mol, preferably between 0.05 and 2.0 mol/mol, more preferably between 0.1 and 1.5 mol/mol and even more preferably between 0.3 and 1.2 mol/mol.
  • Said organic compound comprising at least one carboxylic acid function can be an aliphatic, saturated or unsaturated organic compound, or an aromatic organic compound.
  • the aliphatic organic compound, saturated or unsaturated comprises between 1 and 9 carbon atoms, preferably between 2 and 7 carbon atoms.
  • the aromatic organic compound comprises between 7 and 10 carbon atoms, preferably between 7 and 9 carbon atoms.
  • Said aliphatic organic compound, saturated or unsaturated, or said aromatic organic compound, comprising at least one carboxylic acid function can be chosen from monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, tetracarboxylic acids.
  • the organic compound comprising at least one carboxylic acid function is chosen from ethanedioic acid (oxalic acid), propanedioic acid (malonic acid), pentanedioic acid (glutaric acid), hydroxyacetic acid (glycolic acid) , 2-hydroxypropanoic acid (lactic acid), 2-hydroxypropanedioic acid (tartronic acid), 2-hydroxypropane-1,2,3-tricarboxylic acid (citric acid), 2,3-dihydroxybutanedioic acid (tartaric acid), 2-oxopropanoic acid (pyruvic acid), 4-oxopentanoic acid (levulinic acid).
  • the process for preparing the nickel catalyst can include several modes of implementation if step b1) is carried out. They are distinguished in particular by the order of introduction of the organic compound and of the nickel precursor, the contacting of the organic compound with the support being able to be carried out either after the contacting of the nickel precursor with the impregnated support obtained at the from step a) (or a1)), either before bringing the nickel precursor into contact with the impregnated support obtained at the end of step a) (or a1)), or either at the same time as bringing the nickel into contact with the impregnated support obtained at the end of step a) (or a1)).
  • a first mode of implementation consists in carrying out said step b) prior to said step b1) (post-impregnation).
  • a second mode of implementation consists in carrying out said step b1) prior to said step b) (pre-impregnation).
  • step b) and b1) of impregnation of the impregnated support with the nickel precursor, and of impregnation of the impregnated support, optionally matured, with at least one solution containing at least one organic compound comprising at least one carboxylic acid function is carried out at least once and can advantageously be carried out several times, optionally in the presence of a nickel precursor and/or an identical or different organic compound at each stage b) and/or b1) respectively, all possible combinations of implementations of steps b) and b1) being included within the scope of the invention.
  • a third mode of implementation consists in carrying out said step b) and said step b1) simultaneously (co-impregnation).
  • This mode of implementation can advantageously comprise the implementation of one or more stages b), optionally with an identical or different nickel precursor at each stage b).
  • one or more steps b) advantageously precede(s) and/or follow(follow) said co-impregnation step, optionally with an identical or different nickel precursor at each step.
  • This method of implementation can also include several co-impregnation steps: the steps b) and b1) are carried out simultaneously on several occasions, optionally in the presence of a nickel precursor and/or of an identical or different organic compound(s) at each co-impregnation step.
  • steps b) and b1) are carried out simultaneously.
  • Step c) of drying is advantageously carried out at a temperature below 250° C., preferably between 15° C. and 180° C., more preferably between 30 and 160° C., even more preferably between 50° C. and 150° C. C, and even more preferably between 70° C. and 140° C., for a duration typically comprised between 0.5 hour to 12 hours, and even more preferably for a duration of 0.5 hour to 5 hours. Longer durations are not excluded, but do not necessarily bring improvement.
  • the drying step can be carried out by any technique known to those skilled in the art. It is advantageously carried out under an inert atmosphere or under an atmosphere containing oxygen or under a mixture of inert gas and oxygen. It is advantageously carried out at atmospheric pressure or at reduced pressure. Preferably, this step is carried out at atmospheric pressure and in the presence of air or nitrogen.
  • the total, partial presence or absence of the hexanol solution in the catalyst has no effect on the activity and/or the selectivity of the catalyst in the part of the selective hydrogenation of polyunsaturated compounds or the hydrogenation of aromatic compounds.
  • Step d) of calcination can be carried out at a temperature of between 250° C. and 600° C., preferably between 350° C. and 550° C., for a duration typically of between 0.5 hour and 24 hours, so as preferably for a period of 0.5 hour to 12 hours, and even more preferably for a period of 0.5 hour to 10 hours, preferably under an inert atmosphere or under an atmosphere containing oxygen. Longer durations are not excluded, but do not necessarily bring improvement.
  • the total, partial presence or absence of the hexanol solution in the catalyst has no effect on the activity and/or the selectivity of the catalyst in the framework selective hydrogenation of polyunsaturated compounds or the hydrogenation of aromatic compounds.
  • At least one reducing treatment step e) is advantageously carried out in the presence of a reducing gas after steps c) or d ) so as to obtain a catalyst comprising nickel at least partially in metallic form.
  • This treatment makes it possible to activate said catalyst and to form metallic particles, in particular nickel in the zero valent state.
  • Said reducing treatment can be carried out in-situ or ex-situ, that is to say after or before loading the catalyst into the hydrogenation reactor.
  • the reducing gas is preferably hydrogen.
  • the hydrogen can be used pure or in a mixture (for example a hydrogen/nitrogen, or hydrogen/argon, or hydrogen/methane mixture). In the case where the hydrogen is used as a mixture, all the proportions are possible.
  • Said reducing treatment is carried out at a temperature comprised between 120°C and 500°C, preferably between 150°C and 450°C.
  • the reducing treatment is carried out at a temperature between 180° C. and 500° C., preferably between 200° C. and 450° C., and even more preferably between 350°C and 450°C.
  • the reducing treatment is generally carried out at a temperature of between 120°C and 350°C, preferably between 150°C and 350°C.
  • the duration of the reducing treatment is generally between 2 hours and 40 hours, preferably between 3 hours and 30 hours.
  • the rise in temperature up to the desired reduction temperature is generally slow, for example fixed between 0.1° C./min and 10° C./min, preferably between 0.3° C./min and 7° C./min .
  • the hydrogen flow rate is between 0.01 and 100 L/hour/gram of catalyst, preferably between 0.05 and 10 L/hour/gram of catalyst, even more preferably between 0.1 and 5 L/hour/gram of catalyst.
  • the preparation process according to the invention makes it possible to obtain a catalyst comprising an active phase based on nickel and an alumina support, said catalyst comprising between 1 and 50% by weight of elemental nickel relative to the total weight of the catalyst, the nickel being distributed both on a crust on the periphery of the support, and in the heart of the support, the thickness of said crust (also called ep1) being between 2 % and 15% of the diameter of the catalyst, the size of the nickel particles, measured in oxide form, in the catalyst being less than 15 nm.
  • the nickel is distributed both on a crust on the periphery of the support, and in the heart of the support, the thickness of said crust (also called ep1) being between 2% and 15% of the diameter of the catalyst, preferably between 2.5% and 12% of the diameter of the catalyst, even more preferably between 3% and 10% of the diameter of the catalyst, and even more preferably between 3% and 7.5% of the diameter of the catalyst.
  • the nickel density ratio between the crust and the core (also called here d crust /d core ) is strictly greater than 3, preferably greater than 3.5, and preferably between 3.8 and 15;
  • said crust comprises more than 25% by weight of nickel element relative to the total weight of nickel element contained in the catalyst, preferably more than 40% by weight, more preferably between 45% and 90% by weight, and even more preferably between 60% and 90% by weight.
  • the transition interval between the core and the crust of the catalyst (also called here the core/crust transition interval, or ep2-ep1 according to the notations of FIG. 1), linked to the variation in the density of nickel measured over the thickness of the catalyst from the edge of the catalyst to the center of the catalyst, is very steep.
  • the core/crust transition range is between 0.05% and 3% of the diameter of the catalyst, preferably between 0.5% and 2.5% of the diameter of the catalyst.
  • the nickel content in said catalyst is advantageously between 1 and 50% by weight relative to the total weight of the catalyst, more preferably between 2 and 40% by weight and even more preferably between 3 and 35% by weight and even more preferably 5 and 25% weight relative to the total weight of the catalyst. “% wt” values are based on the elemental form of nickel.
  • the catalyst can be described as a “semi-egg-shell” catalyst, ie the concentration of nickel is higher at the periphery of the support than in the core of the support, said concentration of nickel in the core of the support being non-zero.
  • the specific surface of the catalyst is generally between 10 m 2 /g and 350 m 2 /g, preferably between 25 m 2 /g and 300 m 2 /g, more preferably between 40 m 2 /g and 250 m 2 /g.
  • the total pore volume of the catalyst is generally between 0.1 ml/g and 1 ml/g, preferably between 0.2 ml/g and 0.8 ml/g, and particularly preferably between 0.3 ml/g and 0.7 ml/g.
  • the size of the nickel particles, measured in oxide form, in the catalyst is advantageously less than 15 nm, preferably less than 13 nm, preferably less than 10 nm.
  • step b1) of the process according to the invention is carried out, then the size of the nickel particles, measured in oxide form, in the catalyst is advantageously less than 7 nm, preferably less than 5 nm, more preferably less than 4 nm, and even more preferably less than 3 nm.
  • the active phase of the catalyst does not comprise any metal from group VI B. In particular, it does not comprise molybdenum or tungsten.
  • Said catalyst is in the form of grains advantageously having a diameter of between 0.5 mm and 10 mm.
  • the grains can have any shape known to those skilled in the art, for example the shape of beads (preferably having a diameter of between 1 mm and 8 mm), extrudates, tablets, hollow cylinders.
  • the catalyst (and the support used for the preparation of the catalyst) are in the form of extrudates with a diameter of between 0.5 mm and 10 mm, preferably between 0.8 mm and 3.2 mm and in a very preferably between 1.0 mm and 2.5 mm and of length between 0.5 mm and 20 mm.
  • the term “diameter” of the extrudates is understood to mean the diameter of the circle circumscribed to the cross section of these extrudates.
  • the catalyst can advantageously be presented in the form of cylindrical, multi-lobed, tri-lobed or quadri-lobed extrudates. Preferably its shape is tri-lobed or quadri-lobed. The shape of the lobes can be adjusted according to all known methods of the prior art.
  • the characteristics of the alumina correspond to the characteristics of the alumina before carrying out step a) of the preparation process according to the invention.
  • the support is an alumina, that is to say that the support comprises at least 95%, preferably at least 98%, and in a particularly preferred manner at least 99% by weight of alumina relative to the weight of the support.
  • the alumina generally has a crystallographic structure of the delta, gamma or theta alumina type, alone or as a mixture.
  • the alumina support may include impurities such as metal oxides of groups MA, INB, IVB, MB, NIA, IVA according to the CAS classification, for example silica, titanium dioxide, zirconium dioxide, l zinc oxide, magnesium oxide and calcium oxide, or alternatively alkali metals, for example lithium, sodium or potassium, and/or alkaline earth metals, for example magnesium, calcium, strontium or barium or sulfur.
  • impurities such as metal oxides of groups MA, INB, IVB, MB, NIA, IVA according to the CAS classification, for example silica, titanium dioxide, zirconium dioxide, l zinc oxide, magnesium oxide and calcium oxide, or alternatively alkali metals, for example lithium, sodium or potassium, and/or alkaline earth metals, for example magnesium, calcium, strontium or barium or sulfur.
  • the BET specific surface of the alumina is generally between 10 m 2 /g and 400m 2 /g, preferably between 30 m 2 /g and 350 m 2 /g, more preferably between 50 m 2 /g and 300m 2 /g.
  • the total pore volume of the alumina is generally between 0.1 ml/g and 1.2 ml/g, preferably between 0.3 ml/g and 0.9 ml/g, and very preferably between between 0.5 ml/g and 0.9 ml/g.
  • the present invention also relates to a process for the selective hydrogenation of polyunsaturated compounds containing at least 2 carbon atoms per molecule, such as diolefins and/or acetylenics and/or alkenylaromatics, also called styrenics, contained in a charge of hydrocarbons having a final boiling point less than or equal to 300°C, which process is carried out at a temperature between 0 and 300°C, at a pressure between 0.1 MPa and 10 MPa, at a hydrogen molar ratio /(polyunsaturated compounds to be hydrogenated) of between 0.1 and 10 and at an hourly volume rate of between 0.1 and 200 h 1 when the process is carried out in the liquid phase, or at a molar ratio hydrogen/(polyunsaturated compounds to be hydrogenated ) between 0.5 and 1000 and at an hourly volume rate between 100 h -1 and 40000 h -1 when the process is carried out in the gas phase, in the presence of a catalyst obtained by
  • Monounsaturated organic compounds such as ethylene and propylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes.
  • Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes or aromatics while avoiding their total saturation and therefore the formation of the corresponding alkanes or naphthenes. In the case of steam cracked gasolines used as feed, selective hydrogenation also makes it possible to selectively hydrogenate alkenylaromatics into aromatics by avoiding the hydrogenation of aromatic rings.
  • the hydrocarbon feed treated in the selective hydrogenation process has a final boiling point less than or equal to 300°C and contains at least 2 carbon atoms per molecule and includes at least one polyunsaturated compound.
  • polyunsaturated compounds means compounds comprising at least one acetylenic function and/or at least one diene function and/or at least one alkenylaromatic function.
  • the feedstock is selected from the group consisting of a C2 steam cracking cut, a C2-C3 steam cracking cut, a C3 steam cracking cut, a C4 steam cracking cut, a C5 steam cracking cut and a steam cracking gasoline also called pyrolysis gasoline or C5+ cut.
  • the C2 cut from steam cracking advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following composition: between 40 and 95% by weight of ethylene, of the order of 0.1 to 5% by weight of acetylene, the remainder being essentially ethane and methane.
  • C2 cuts from steam cracking between 0.1 and 1% by weight of C3 compounds may also be present.
  • the C3 steam cracking cut advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average composition: of the order of 90% by weight of propylene, of the order of 1 to 8% by weight of propadiene and methylacetylene, the remainder being essentially propane. In some C3 cuts, between 0.1 and 2% by weight of C2 compounds and C4 compounds may also be present. A C2-C3 cut can also be advantageously used for implementing the selective hydrogenation process according to the invention.
  • composition of the order of 0.1 to 5% by weight of acetylene, of the order of 0.1 to 3% by weight of propadiene and methylacetylene, of the order of 30% by weight of ethylene, of the order of 5% by weight of propylene, the remainder being essentially methane, ethane and propane.
  • This filler may also contain between 0.1 and 2% by weight of C4 compounds.
  • the C4 cut from steam cracking advantageously used for the implementation of the selective hydrogenation process according to the invention, has for example the following average mass composition: 1% weight of butane, 46.5% weight of butene, 51% weight of butadiene, 1.3% by weight of vinylacetylene and 0.2% by weight of butyne. In some C4 cuts, between 0.1 and 2% by weight of C3 compounds and C5 compounds may also be present.
  • the C5 cut from steam cracking advantageously used for carrying out the selective hydrogenation process according to the invention, has for example the following composition: 21% by weight of pentanes, 45% by weight of pentenes, 34% by weight of pentadienes.
  • the steam cracking gasoline or pyrolysis gasoline corresponds to a hydrocarbon cut whose boiling point is generally between 0 and 300° C., from preferably between 10°C and 250°C.
  • the polyunsaturated hydrocarbons to be hydrogenated present in said steam cracked gasoline are in particular diolefinic compounds (butadiene, isoprene, cyclopentadiene, etc.), styrenic compounds (styrene, alpha-methylstyrene, etc.) and indene compounds (indene, etc.). ).
  • Steam cracked gasoline generally comprises the C5-C12 cut with traces of C3, C4, C13, C14, C15 (for example between 0.1 and 3% by weight for each of these cuts).
  • a charge formed from pyrolysis gasoline generally has the following composition: 5 to 30% by weight of saturated compounds (paraffins and naphthenes), 40 to 80% by weight of aromatic compounds, 5 to 20% by weight of mono-olefins, 5 to 40% by weight of diolefins, 1 to 20% by weight of alkenylaromatic compounds, all the compounds forming 100%. It also contains from 0 to 1000 ppm by weight of sulphur, preferably from 0 to 500 ppm by weight of sulphur.
  • the charge of polyunsaturated hydrocarbons treated in accordance with the selective hydrogenation process according to the invention is a C2 cut from steam cracking, or a C2-C3 cut from steam cracking, or a gasoline from steam cracking.
  • the selective hydrogenation process according to the invention aims to eliminate said polyunsaturated hydrocarbons present in said charge to be hydrogenated without hydrogenating the monounsaturated hydrocarbons.
  • the process Selective hydrogenation aims to selectively hydrogenate acetylene.
  • the selective hydrogenation process aims to selectively hydrogenate propadiene and methylacetylene.
  • the aim is to eliminate the butadiene, vinylacetylene (VAC) and the butyne
  • the aim is to eliminate the pentadienes.
  • the selective hydrogenation process aims to selectively hydrogenate said polyunsaturated hydrocarbons present in said feed to be treated so that the diolefinic compounds are partially hydrogenated into mono-olefins and the styrenic and indenic compounds are partially hydrogenated to the corresponding aromatic compounds avoiding the hydrogenation of the aromatic rings.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in ascending or descending current, of the charge of polyunsaturated hydrocarbons and hydrogen into at least one fixed-bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the charge of polyunsaturated hydrocarbons can advantageously be diluted by one or more re-injections) of the effluent, from said reactor where the selective hydrogenation reaction takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors-exchangers or in a reactor of the slurry type. .
  • the hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
  • the selective hydrogenation of the C2, C2-C3, C3, C4, C5 and C5+ cuts from steam cracking can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase for the C3, C4, C5 and C5+ cuts and in the carbonated for C2 and C2-C3 cuts.
  • a reaction in the liquid phase makes it possible to lower the energy cost and to increase the cycle time of the catalyst.
  • the selective hydrogenation of a hydrocarbon charge containing polyunsaturated compounds containing at least 2 carbon atoms per molecule and having a final boiling point less than or equal to 300°C is carried out at a temperature between 0°C and 300°C, at a pressure between 0.1 MPa and 10 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio between 0.1 and 10 and at an hourly volume rate (defined as the ratio of the volume flow rate of charge to the volume of the catalyst) between 0.1 h 1 and 200 h -1 for a process carried out in the liquid phase, or at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000 and at an hourly volume rate of between 100 and 40,000 h 1 for a process carried out in the gas phase.
  • the molar ratio (hydrogen)/(polyunsaturated compounds to be hydrogenated) is generally comprised between 0.5 and 10, preferably between 0.7 and 5.0 and even more preferably between 1.0 and 2.0
  • the temperature is between 0°C and 200°C, preferably between 20°C C and 200°C and even more preferably between 30°C and 180°C
  • the hourly volume velocity (VVH) is generally between 0.5 h 1 and 100 h 1 , preferably between 1 and 50 h -1
  • the pressure is generally between 0.3 MPa and 8.0 MPa, preferably between 1.0 MPa and 7.0 MPa and even more preferably between 1.5 MPa and 4.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0, the temperature is between 20° C. and 200° C., the hourly volume velocity (VVH) is generally between 1 rev 1 and 50 h -1 and the pressure is between 1.0 MPa and 7.0 MPa.
  • the feedstock is a steam cracked gasoline comprising polyunsaturated compounds
  • the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 0.7 and 5.0
  • the temperature is between 20° C. and 200° C.
  • the hourly volume velocity (VVH) is generally between 1 rev 1 and 50 h -1
  • the pressure is between 1.0 MPa and 7.0 MPa.
  • a selective hydrogenation process is carried out in which the feedstock is a steam cracked gasoline comprising polyunsaturated compounds, the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0, the temperature is between 30° C. and 180° C., the hourly volume velocity (VVH) is generally between 1 h -1 and 50 h -1 and the pressure is between 1.5 MPa and 4.0 MPa.
  • the feedstock is a steam cracked gasoline comprising polyunsaturated compounds
  • the hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio is between 1.0 and 2.0
  • the temperature is between 30° C. and 180° C.
  • the hourly volume velocity (VVH) is generally between 1 h -1 and 50 h -1
  • the pressure is between 1.5 MPa and 4.0 MPa.
  • the hydrogen flow is adjusted in order to have a sufficient quantity of it to theoretically hydrogenate all the polyunsaturated compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the molar ratio ( hydrogen)/(polyunsaturated compounds to be hydrogenated) is generally between 0.5 and 1000, preferably between 0.7 and 800
  • the temperature is between 0°C and 300°C, preferably between 15°C and 280° C
  • the hourly volume velocity (VVH) is included generally between 100 h 1 and 40,000 h 1 , preferably between 500 h 1 and 30,000 h 1
  • the pressure is generally between 0.1 MPa and 6.0 MPa, preferably between 0.2 MPa and 5.0 MPa.
  • the present invention also relates to a process for the hydrogenation of at least one aromatic or polyaromatic compound contained in a charge of hydrocarbons having a final boiling point less than or equal to 650° C., generally between 20° C. and 650° C. °C, and preferably between 20°C and 450°C.
  • Said hydrocarbon charge containing at least one aromatic or polyaromatic compound can be chosen from the following petroleum or petrochemical fractions: reformate from catalytic reforming, kerosene, light gas oil, heavy gas oil, cracking distillates, such as FCC recycle oil, coker diesel, hydrocracking distillates.
  • the content of aromatic or polyaromatic compounds contained in the hydrocarbon charge treated in the hydrogenation process according to the invention is generally between 0.1% and 80% by weight, preferably between 1% and 50% by weight, and most preferably between 2% and 35% by weight, the percentage being based on the total weight of the hydrocarbon charge.
  • the aromatic compounds present in said hydrocarbon charge are, for example, benzene or alkylaromatics such as toluene, ethylbenzene, ⁇ -xylene, m-xylene, or p-xylene, or alternatively aromatics having several aromatic rings (polyaromatics) such as naphthalene.
  • the sulfur or chlorine content of the charge is generally less than 5000 ppm by weight of sulfur or chlorine, preferably less than 100 ppm by weight, and in a particularly preferred manner less than 10 ppm by weight.
  • the technological implementation of the process for the hydrogenation of aromatic or polyaromatic compounds is for example carried out by injection, in ascending or descending current, of the hydrocarbon charge and hydrogen into at least one fixed-bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type.
  • An adiabatic reactor is preferred.
  • the hydrocarbon charge can advantageously be diluted by one or more re-injection(s) of the effluent, from said reactor where the hydrogenation reaction of the aromatics takes place, at various points of the reactor, located between the inlet and the outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the process for the hydrogenation of aromatics according to the invention can also be advantageously carried out by the implantation of at least said supported catalyst in a reactive distillation column or in reactors-exchangers or in a reactor of slurry type.
  • the hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
  • the hydrogenation of the aromatic or polyaromatic compounds can be carried out in the gas phase or in the liquid phase, preferably in the liquid phase.
  • the hydrogenation of aromatic or polyaromatic compounds is carried out at a temperature of between 30° C. and 350° C., preferably between 50° C.
  • the hydrogen flow is adjusted in order to have a sufficient quantity of it to theoretically hydrogenate all the aromatic compounds and to maintain an excess of hydrogen at the reactor outlet.
  • the conversion of the aromatic or polyaromatic compounds is generally greater than 20% by mole, preferably greater than 40% by mole, more preferably greater than 80% by mole, and in a particularly preferred manner greater than 90% by mole of the aromatic compounds or polyaromatics contained in the hydrocarbon charge.
  • the conversion is calculated by dividing the difference between the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed and in the product by the total moles of the aromatic or polyaromatic compounds in the hydrocarbon feed.
  • a process is carried out for the hydrogenation of benzene from a hydrocarbon charge, such as the reformate from a catalytic reforming unit.
  • the benzene content in said hydrocarbon charge is generally between 0.1 and 40% by weight, preferably between 0.5 and 35% by weight, and particularly preferably between 2 and 30% by weight, the percentage by weight being based on the total weight of the hydrocarbon charge.
  • the sulfur or chlorine content of the charge is generally less than 10 ppm by weight of sulfur or chlorine respectively, and preferably less than 2 ppm by weight.
  • the hydrogenation of the benzene contained in the hydrocarbon charge can be carried out in the gaseous phase or in the liquid phase, preferably in the liquid phase.
  • a solvent may be present, such as cyclohexane, heptane, octane.
  • the hydrogenation of benzene is carried out at a temperature between 30° C. and 250° C., preferably between 50° C.
  • the conversion of benzene is generally greater than 50 mol%, preferably greater than 80 mol%, more preferably greater than 90 mol% and particularly preferably greater than 98 mol%.
  • the support is an alumina A having a specific surface area of 80 m 2 /g, a total pore volume (TPV) of 0.7 mL/g and a median mesoporous diameter of 12 n.
  • the aqueous solution S used for the preparation of catalysts B to H is prepared by dissolving 43.5 g of nickel nitrate (N1NO3, supplier Strem Chemicals®) and 7.69 g of malonic acid (CAS 141-82-2; Fluka® supplier) in a volume of 13 mL of distilled water.
  • the additive/Ni molar ratio is set at 0.5.
  • the solution S is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 1 bis Preparation of an aqueous solution of Ni precursor without additive
  • the aqueous solution S′ used for the preparation of catalyst A is prepared by dissolving 43.5 g of nickel nitrate (N1NO 3 , supplier Strem Chemicals®) in a volume of 13 mL of distilled water.
  • the solution S′ is obtained, the Ni concentration of which is 350 g of Ni per liter of solution.
  • Example 2 Preparation of a catalyst A according to the invention [10% weight of Ni - hexanol 25%
  • VRE in pre-impregnation1 10 g of alumina A are impregnated with 2.4 ml of n-hexanol added dropwise. The impregnated support is then left to mature for 30 min at 60°C. Then, 7.1 ml of the solution S′ prepared in Example 1 bis is impregnated drop by drop onto the impregnated support. The catalyst precursor thus obtained is then dried in an oven for 12 hours at 120° C., then calcined under a stream of dry air of 1 L/h/g of catalyst at 450° C. for 2 hours. Catalyst A containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained. The characteristics of catalyst A thus obtained are reported in Table 1 below.
  • Example 3 Preparation of a catalyst B according to the invention [10% weight of Ni - hexanol 25%
  • VRE in pre-impregnation+additive 10 g of alumina A are impregnated with 2.4 ml of n-hexanol added dropwise.
  • the impregnated support is then left to mature for 30 min at 60°C.
  • 7.1 ml of solution S prepared in example 1 is impregnated drop by drop onto the impregnated support.
  • the catalyst precursor thus obtained is then dried in an oven for 12 hours at 120°C, then calcined under a stream of dry air of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst B containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 4 Preparation of a catalyst C according to the invention [5% weight of Ni - hexanol 25% VRE in pre-impregnation + additive 10 g of alumina A are impregnated with 2.4 ml of n-hexanol added dropwise. The impregnated support is then left to mature for 30 min at 60°C. Then, 3.55 ml of the solution S prepared in example 1 diluted with water in order to complete to 7.1 ml is impregnated drop by drop on the impregnated support. The catalyst precursor thus obtained is then dried in an oven for 12 hours at 120°C, then calcined under a stream of dry air of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst C containing 5% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 5 Preparation of a catalyst D according to the invention [10% weight of Ni - hexanol 75% of the VRE in pre-impregnation + additive 10 g of alumina A are impregnated with 7.2 ml of n-hexanol added dropwise . The impregnated support is then left to mature for 30 min at 60°C. Then, 2.4 ml of solution S prepared in example 1 is impregnated drop by drop onto the impregnated support. The catalyst precursor thus obtained is then dried in an oven for 12 hours at 120°C, then calcined under a stream of dry air of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst D containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 1 The solution S prepared in Example 1 is impregnated dry, by adding it drop by drop, to 10 g of alumina.
  • the catalyst precursor thus obtained is then dried in an oven for 12 hours at 120°C, then calcined under a stream of dry air of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst E containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 7 Preparation of a non-compliant catalyst F [10% weight of Ni - hexanol 25% VRE in post-imginaqnationl
  • the solid thus obtained is then dried in an oven for 12 hours at 120°C, then calcined under a flow of dry air of 1 L/h/g of catalyst at 450°C for 2 hours.
  • Catalyst F containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 8 Preparation of a non-compliant catalyst G [10% weight of Ni - toluene 25% VRE in pre-impregnationl
  • Catalyst G containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 9 Preparation of a non-compliant catalyst H [10% weight of Ni - n-propanol 25%
  • VRE in pre-imestiqnationl 10 g of alumina A are impregnated with 2.4 ml of n-propanol added drop by drop.
  • the impregnated support is then left to mature for 30 min at 60°C.
  • 7.1 ml of the solution S prepared in example 1 is impregnated drop by drop onto the impregnated support.
  • the catalyst precursor thus obtained is then dried in an oven for 12 hours at 120° C., then calcined under a stream of dry air of 1 L/h/g of catalyst at 450° C. for 2 hours.
  • Catalyst H containing 10% by weight of the element nickel relative to the total weight of the catalyst is obtained.
  • Example 10 Catalytic tests: performances in selective hydrogenation of a mixture containing styrene and isoprene (AHYDI)
  • Catalysts A to H described in the examples above are tested against the selective hydrogenation reaction of a mixture containing styrene and isoprene.
  • composition of the charge to be selectively hydrogenated is as follows: 8% by weight styrene (Sigma Aldrich® supplier, purity 99%), 8% by weight isoprene (Sigma Aldrich® supplier, purity 99%), 84% by weight n-heptane (solvent ) (VWR® supplier, purity > 99% chromanorm HPLC).
  • This feed also contains very low sulfur compounds: 10 ppm wt of sulfur introduced in the form of pentanethiol (Fluka® supplier, purity > 97%) and 100 ppm wt of sulfur introduced in the form of thiophene (Merck® supplier, purity 99 %).
  • This composition corresponds to the initial composition of the reaction mixture.
  • This mixture of model molecules is representative of a pyrolysis gasoline.
  • the selective hydrogenation reaction is carried out in a 500 mL stainless steel autoclave, equipped with mechanical stirring with magnetic drive and able to operate under a maximum pressure of 100 bar (10 MPa) and temperatures between 5°C and 200°C.
  • a quantity of 3 mL of catalyst Prior to its introduction into the autoclave, a quantity of 3 mL of catalyst is reduced ex situ under a flow of hydrogen of 1 L/h/g of catalyst, at 400°C for 16 hours (temperature rise ramp of 1°C/min), then it is transferred to the autoclave, protected from air._After adding 214 mL of n-heptane (VWR® supplier, purity > 99% chromanorm HPLC), the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the test temperature equal to 30°C.
  • VWR® supplier purity > 99% chromanorm HPLC
  • the progress of the reaction is monitored by taking samples from the reaction medium at regular time intervals: the styrene is hydrogenated to ethylbenzene, without hydrogenation of the aromatic ring, and the isoprene is hydrogenated to methyl-butenes. If the reaction is prolonged longer than necessary, the methyl-butenes are in turn hydrogenated to isopentane. Hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor. The catalytic activity is expressed in moles of H2 consumed per minute and per gram of Ni.
  • Catalysts A to H described in the examples above are also tested with respect to the hydrogenation reaction of toluene.
  • the selective hydrogenation reaction is carried out in the same autoclave as that described in Example 9.
  • a quantity of 2 mL of catalyst Prior to its introduction into the autoclave, a quantity of 2 mL of catalyst is reduced ex situ under a hydrogen flow of 1 L /h/g of catalyst, at 400° C. for 16 hours (temperature rise ramp of 1° C./min), then it is transferred to the autoclave, in the absence of air.
  • the autoclave is closed, purged, then pressurized under 35 bar (3.5 MPa) of hydrogen, and brought to the temperature of the test equal to 80°C.
  • toluene SDS® supplier, purity > 99.8%
  • the pressure is kept constant at 35 bar (3.5 MPa) in the autoclave using a reservoir bottle located upstream of the reactor.
  • the progress of the reaction is monitored by taking samples of the reaction medium at regular time intervals: the toluene is completely hydrogenated to methylcyclohexane. Hydrogen consumption is also monitored over time by the decrease in pressure in a reservoir bottle located upstream of the reactor.
  • the catalytic activity is expressed in moles of H2 consumed per minute and per gram of Ni.
  • the catalytic activities measured for catalysts A to H are reported in Table 2 below. They are related to the catalytic activity (A HYD 2) measured for catalyst E.
  • Catalyst E is down in activity due to the conventional impregnation implemented without pre-impregnation of hexanol.
  • Catalyst F has undergone post-impregnation with hexanol, which does not allow a crust distribution of the nickel.
  • Catalyst G is prepared with a toluene pre-impregnation step.
  • toluene is not very miscible with water, as in the case of hexanol, the absence of -OH groups in the molecule does not allow it a strong interaction with the -OH of the alumina support, which can explain the migration of toluene by the water contained in the nickel nitrate solution during the nickel impregnation step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé de préparation d'un catalyseur comprenant une phase active de nickel et un support d'alumine, ledit catalyseur comprenant entre 1 et 50% en poids de nickel élémentaire par rapport au poids total du catalyseur, le nickel étant réparti à la fois sur une croûte en périphérie du support, et à cœur du support, lequel procédé comprend les étapes suivantes : a) on imprègne ledit support avec un volume V1 d'une solution d'hexanol compris entre 0,2 et 0,8 fois le volume poreux total VPT dudit support pour obtenir un support imprégné; b) on imprègne le support imprégné obtenu à l'issue de l'étape a) avec une solution comprenant un précurseur de la phase active de nickel pour obtenir un précurseur de catalyseur; c) on sèche le précurseur de catalyseur obtenu à l'issue de l'étape b) à une température inférieure à 250°C.

Description

PROCEDE DE PREPARATION D’UN CATALYSEUR COMPRENANT UNE PHASE ACTIVE DE NICKEL REPARTIE EN CROUTE VIA IMPREGNATION D’HEXANOL
Domaine technique
La présente invention concerne un procédé de préparation d’un catalyseur métallique supporté à base de nickel destiné particulièrement à l’hydrogénation des hydrocarbures insaturés, et plus particulièrement, d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation des aromatiques.
Etat de la technique
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono- insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3-butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la fraction essence C5+ (essences contenant des composés hydrocarbonés ayant 5 atomes de carbone ou plus), en particulier des composés styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants, en évitant leur saturation totale, et donc la formation des alcanes ou naphtènes correspondants.
Les catalyseurs d'hydrogénation sélective sont généralement à base de métaux du groupe VIII du tableau périodique, de préférence le palladium ou le nickel. Le métal se présente sous la forme de particules métalliques déposées sur un support. La teneur en métal, la taille des particules de métal et la répartition de la phase active dans le support font partie des critères qui ont une importance sur l'activité et la sélectivité des catalyseurs.
La répartition macroscopique des particules métalliques dans le support constitue un critère important, principalement dans le cadre de réactions rapides et consécutives telles que les hydrogénations sélectives. Il est généralement souhaitable que ces éléments se situent dans une croûte à la périphérie du support afin d’éviter les problèmes de transfert de matière intragranulaire pouvant conduire à des défauts d’activité et une perte de sélectivité. De tels catalyseurs sont aussi appelé catalyseurs "eggsheiï' selon la terminologie anglo-saxonne.
De tels catalyseurs sont largement connus dans le cas des catalyseurs d'hydrogénation sélective à base de palladium. En effet, grâce à la faible teneur en palladium (généralement inférieure à 1 % en poids (1 % pds) de palladium par rapport au catalyseur) et des procédés de préparation adaptés, une croûte fine de palladium à la périphérie des grains de support peut être obtenue (FR2922784, US2010/217052).
Il est souvent proposé de substituer le palladium par le nickel, métal moins actif que le palladium, qu'il est donc nécessaire de disposer en plus grande quantité dans le catalyseur. Ainsi, les catalyseurs à base de nickel ont généralement une teneur en métal entre 5 et 50 % pds de nickel par rapport au catalyseur. Dans ces catalyseurs, le nickel est généralement réparti de façon homogène au sein du support. Une des voies d'amélioration possible de ces catalyseurs en matière d'activité et de sélectivité est de contrôler la répartition du nickel au sein du support en déposant le nickel de façon plus concentrée sur une croûte, à la périphérie du support. De tels catalyseurs sont connus de l'état de l'art.
Le document US 4 519 951 décrit un catalyseur de type « eggshell » avec du nickel sur un support poreux ayant un volume poreux des pores dont la taille est inférieure à 11,7 nm d'au moins 0,2 ml/g et un volume poreux des pores dont la taille est supérieure à 11,7 nm d'au moins 0,1 ml/g. Plus de 50 % du nickel se trouve dans une croûte dont l’épaisseur est égale à 0,15 fois le rayon du support. Ce catalyseur est utilisé pour l'hydrogénation de matières grasses.
Le document CN 101890351 décrit un catalyseur supporté de nickel dans lequel plus de 90 % du nickel se trouve dans une croûte de 700 pm d’épaisseur. Le catalyseur est préparé en utilisant une solution ammoniacale pour dissoudre le sel de nickel. Ces catalyseurs sont utilisés dans une application d'hydrogénation sélective.
Le document US2012/0065442 décrit un catalyseur supporté de nickel reparti à la fois sur une croûte d'une épaisseur de 3 à 15 % du diamètre et à cœur, le ratio de concentration en nickel entre la croûte et le cœur étant compris entre 3,0 : 1 et 1,3 : 1. Le dépôt de la phase active de nickel est réalisé par pulvérisation (« spray coating » selon la terminologie anglo-saxonne) d'une solution ammoniacale d'un sel de nickel sur le support.
Le document FR3099387 décrit un procédé de préparation d’un catalyseur à base de nickel sur un support d’alumine obtenu selon une méthode bien spécifique, le nickel étant réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte étant comprise entre 2% et 15% du diamètre du catalyseur. Le procédé de préparation d’un tel catalyseur nécessite d’une part l’utilisation d’un support d’alumine spécifique ayant subi un traitement hydrothermal en présence d’une solution acide, et d’autre part la réalisation d’une étape de traitement hydrothermal après l’ajout d’un additif organique spécifique sur le précurseur de catalyseur.
Objets de l’invention
De manière surprenante, la Demanderesse a découvert que la réalisation d’une étape particulière d’imprégnation d’une solution d’hexanol sur un support poreux d’alumine, quel que soit son origine, et cela sans réaliser d’étape de séchage intermédiaire entre l’imprégnation d’hexanol et l’imprégnation du précurseur de la phase active de nickel, permet d’obtenir un catalyseur dans lequel au moins une partie du nickel est répartie sur une croûte à la périphérie du support, l’autre partie du nickel étant répartie au cœur du catalyseur. Sans vouloir être lié par une quelconque théorie, la présence d’hexanol empêche la migration de la phase active de nickel au cœur du support. En effet, une partie seulement de la porosité est occupée par l’hexanol. De plus, l’hexanol et l’eau étant peu miscibles, la couche d’hexanol constitue une barrière à la diffusion du nickel à cœur du support.
La présente invention concerne ainsi un nouveau procédé de préparation d’un catalyseur qui permet l’obtention d’un catalyseur comprenant des performances au moins aussi bonnes, voire meilleures, en terme d’activité et de sélectivité dans le cadre des réactions d’hydrogénation sélective de composés polyinsaturés ou d’hydrogénation des aromatiques, tout en utilisant une quantité de phase de nickel effective inférieure (c’est-à-dire une quantité de nickel se trouvant in-fine en croûte en périphérie du support permettant la réalisation des réactions d’hydrogénation sélective ou d’hydrogénation des aromatiques) à celle utilisée typiquement dans l’état de la technique, ce qui est due à une meilleure répartition de la phase active de nickel dans le support, rendant cette dernière plus accessible aux réactifs.
La présente invention a pour objet un procédé de préparation d’un catalyseur comprenant une phase active à base de nickel et un support d’alumine, ledit catalyseur comprenant entre 1 et 50% en poids de nickel élémentaire par rapport au poids total du catalyseur, le nickel étant réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte étant comprise entre 2% et 15% du diamètre du catalyseur, la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, étant inférieure à 15 nm, lequel procédé comprend les étapes suivantes : a) on imprègne ledit support avec un volume V1 d’une solution d’hexanol compris entre 0,2 et 0,8 fois le volume poreux total VPT dudit support pour obtenir un support imprégné ; b) on imprègne le support imprégné obtenu à l’issue de l’étape a) avec une solution comprenant au moins un précurseur de la phase active de nickel pour obtenir un précurseur de catalyseur ; c) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape b) à une température inférieure à 250°C.
Selon un ou plusieurs modes de réalisation, à l’étape b) le volume V2 de la solution comprenant au moins un précurseur de la phase active de nickel imprégné sur le support imprégné obtenu à l’issue de l’étape a) est tel que le V2 = VPT - V1.
Selon un ou plusieurs modes de réalisation, l’étape c) est réalisée pendant un temps compris entre 0,5 heure et 12 heures.
Selon un ou plusieurs modes de réalisation, ledit procédé comprend en outre une étape d) dans laquelle on calcine le catalyseur obtenu à l’issue de l’étape c) à une température comprise entre 250°C et 600°C.
Selon un ou plusieurs modes de réalisation, l’étape d) est réalisée pendant 0,5 heure à 24 heures.
Selon un ou plusieurs modes de réalisation, à l’étape a) ledit volume V1 de ladite solution d’hexanol est compris entre 0,25 et 0,75 fois le volume poreux total VPT dudit support.
Selon un ou plusieurs modes de réalisation, à l’étape a) on utilise une solution de n-hexanol.
Selon un ou plusieurs modes de réalisation, ledit procédé comprend en outre une étape b1) dans laquelle on imprègne soit le support imprégné obtenu à l’issue de l’étape a), soit le précurseur de catalyseur obtenu à l’issue de l’étape b), avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine, les étapes b) et b1) étant réalisées dans un ordre indifférent, ou simultanément.
Selon un ou plusieurs modes de réalisation, le volume V2 de la solution comprenant au moins un précurseur de la phase active de nickel et le volume V3 de la solution comprenant au moins une composé organique imprégnés sur le support imprégné obtenu à l’issue de l’étape a) sont tels que V2 + V3 = VPT - V1. Selon un ou plusieurs modes de réalisation, les étapes b) et b1) sont réalisées simultanément.
Selon un ou plusieurs modes de réalisation, le volume V2’ de la solution comprenant au moins un précurseur de la phase active de nickel et au moins une composé organique imprégnés sur le support imprégné obtenu à l’issue de l’étape a) est tel que V2’ = VPT - V1.
Selon un ou plusieurs modes de réalisation, le rapport molaire entre ledit composé organique introduit à l’étape b1) et l’élément nickel également introduit à l’étape b) est compris entre 0,01 et 5,0 mol/mol.
Selon un ou plusieurs modes de réalisation, le composé organique de l’étape b1) est choisi parmi l’acide oxalique, l’acide malonique, l’acide glycolique, l’acide acide lactique, l’acide tartronique, l’acide citrique, l’acide tartrique, l’acide pyruvique, l’acide lévulinique, l’éthylène glycol, le propane-1,3-diol, le butane-1,4-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le diéthylène glycol, le glucose, la gamma valérolactone, le carbonate de diméthyle, le carbonate de diéthyle, la formamide, la N-méthylformamide, l’acétamide, la N-méthylacétamide, la N,N- diméthylméthanamide, la 2-pyrrolidone, la g-lactame, la lactamide, l’urée, l’alanine, l’arginine, la lysine, la proline, la sérine, l’EDTA.
Selon un ou plusieurs modes de réalisation, on réalise une étape a1) dans laquelle on laisse maturer le support imprégné obtenu à l’issue de l’étape a) pendant 0,5 heure à 40 heures.
Selon un ou plusieurs modes de réalisation, la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde est inférieure à 13 nm.
Description de la figure
La figure 1 est un schéma représentant la répartition du nickel dans le catalyseur. L’axe des abscisses correspond à l’épaisseur du catalyseur, mesurée depuis le bord du catalyseur (en pm). L’axe des ordonnées correspond à la densité en nickel (en gramme de Ni / mm3). Le nickel est réparti à la fois sur une croûte en périphérie du support, d’épaisseur ep1, et à cœur du support. La densité en nickel sur la croûte dCToute est supérieure à la densité en nickel au cœur du support dœeur. L’intervalle de transition entre le cœur et la croûte du catalyseur a une épaisseur notée ep2-ep1. Description détaillée de l’invention 1. Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81ème édition, 2000-2001). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC.
Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm, c'est à dire 0,002 pm; par mésopores les pores dont le diamètre est supérieur ou égal à 2 nm, c'est à dire 0,002 pm et inférieur ou égal à 50 nm, c'est à dire 0,05 pm et par macropores les pores dont le diamètre est supérieur à 50 nm, c'est à dire 0,05 pm.
Afin d'analyser la répartition de la phase métallique sur le support, on mesure une épaisseur de croûte par microsonde de Castaing (ou microanalyse par microsonde électronique). L'appareil utilisé est un CAMECA XS100, équipé de quatre cristaux monochromateurs permettant l'analyse simultanée de quatre éléments. La technique d'analyse par microsonde de Castaing consiste en la détection de rayonnement X émis par un solide après excitation de ses éléments par un faisceau d'électrons de hautes énergies. Pour les besoins de cette caractérisation, les grains de catalyseur sont enrobés dans des plots de résine époxy. Ces plots sont polis jusqu'à atteindre la coupe au diamètre des billes ou extrudés puis métallisés par dépôt de carbone en évaporateur métallique. La sonde électronique est balayée le long du diamètre de cinq billes ou extrudés pour obtenir le profil de répartition moyen des éléments constitutifs des solides. Cette méthode, bien connue de l’Homme du métier, est définie dans la publication de L. Sorbier et al. “ Measurement of palladium crust thickness on catalyst by EPMA” Materials Science and Engineering 32 (2012). Elle permet d’établir le profil de répartition d’un élément donné, ici le Nickel, au sein du grain. Par ailleurs, la concentration en Ni est définie pour chaque mesure et donc pour chaque pas d’analyse. La densité de Ni au sein du grain est donc définie comme la concentration de Ni par mm3.
Le volume poreux total est mesuré par porosimétrie au mercure selon la norme ASTM D4284- 92 avec un angle de mouillage de 140°, par exemple au moyen d'un appareil modèle Autopore III™ de la marque Microméritics™.
La surface spécifique BET est mesurée par physisorption à l'azote selon la norme ASTM D3663-03, méthode décrite dans l'ouvrage Rouquerol F.; Rouquerol J.; Singh K. « Adsorption by Powders & Porous Solids: Principle, methodology and applications », Academie Press, 1999.
On entend par « taille des particules de nickel » le diamètre des cristallites de nickel sous forme oxyde. Le diamètre des cristallites de nickel sous forme oxyde est déterminé par diffraction des rayons X, à partir de la largeur de la raie de diffraction située à l’angle 2thêta=43° (c’est-à-dire selon la direction cristallographique [200]) à l’aide de la relation de Scherrer. Cette méthode, utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des particules, est décrite en détail dans la référence : Appl. Cryst. (1978), 11, 102-113 « Scherrer after sixty years: A survey and some new results in the détermination of crystallite size», J. I. Langford and A. J. C. Wilson.
La teneur en nickel est mesurée par fluorescence X.
2. Procédé de préparation du catalyseur
Les étapes dudit procédé de préparation sont décrites en détail ci-après.
Etape a)
Selon l’étape a) du procédé, on imprègne le support d’alumine avec un volume V1 d’une solution d’hexanol compris entre 0,2 et 0,8 fois le volume poreux total (appelé aussi ici VPT) dudit support à imprégner, de préférence entre 0,25 et 0,75.
Par hexanol, on entend les composés organiques comprenant une fonction alcool répondant à la formule chimique brute ObH^O. On entend ainsi par hexanol la famille des composés organiques suivants : le hexan-1-ol (ou n-hexanol), le hexan-2-ol, et leurs isomères. De préférence l’étape a) est réalisée en présence de hexan-1-ol.
Etape a1) (optionnelle)
Après l’étape a), le support imprégné peut être maturé à l'état humide pendant 0,5 heure à 40 heures, de manière préférée pendant 1 heure à 30 heures. L’étape a1) de maturation est de préférence réalisée à une température inférieure ou égale à 60°C, et plus préférentiellement à température ambiante. Cette étape permet la migration de la solution d’hexanol au cœur du support. Lorsqu’elle est réalisée, l’étape a1) de maturation permet à la solution d’hexanol de renforcer la migration à cœur du support et de libérer une « couronne de pores libres » à la périphérie du support accessible par le nickel lors de l’étape d’imprégnation du précurseur de la phase active.
Etape b)
Lors de l’étape b) du procédé, on imprègne le support poreux d’alumine imprégné obtenu à l’issue de l’étape a) (ou imprégné maturé obtenu à l’issue de l’étape a1)) avec une solution comprenant au moins un précurseur de la phase active de nickel pour obtenir un précurseur de catalyseur. L’étape d’imprégnation peut être réalisée par imprégnation à sec ou en excès selon des méthodes bien connues de l'Homme du métier.
Le pH de ladite solution comprenant au moins un précurseur de la phase active de nickel imprégné peut être modifié par l'ajout éventuel d'un acide ou d’une base.
De manière préférée, ledit précurseur de nickel est introduit en solution aqueuse, par exemple sous forme de nitrate, de carbonate, d'acétate, de chlorure, d'oxalate, de complexes formés par un polyacide ou un acide-alcool et ses sels, de complexes formés avec les acétylacétonates, ou de tout autre dérivé inorganique soluble en solution aqueuse, laquelle est mise en contact avec ledit support. De manière préférée, on utilise avantageusement comme précurseur de nickel, le nitrate de nickel, le chlorure de nickel, l'acétate de nickel ou le hydroxycarbonate de nickel. De manière très préférée, le précurseur de nickel est le nitrate de nickel.
La concentration en nickel en solution est ajustée selon le volume poreux du support encore disponible de façon à obtenir pour le catalyseur supporté, une teneur en nickel comprise entre 1 et 50 % poids en élément nickel par rapport au poids total du catalyseur, plus préférentiellement entre 2 et 40 % poids et encore plus préférentiellement entre 3 et 35 % poids et encore plus préférentiellement 5 et 25 % poids.
Etape b1) (optionnelle)
Lorsqu’on réalise l’étape b1), on imprègne le support poreux d’alumine imprégné obtenu à l’issue de l’étape a) (ou imprégné maturé obtenu à l’issue de l’étape a1 )) ou le précurseur de catalyseur obtenu à l’issue de l’étape b) avec une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine, lesdites étapes b) et b1) étant réalisées dans un ordre indifférent, ou simultanément. L’étape d’imprégnation peut être réalisée par imprégnation à sec ou en excès selon des méthodes bien connues de l'Homme du métier. En effet, il a été en outre remarqué que les catalyseurs préparés en présence d’un composé organique (cités ci-après) sont plus actifs que les catalyseurs préparés en l'absence de ce type de composé organique. Cet effet est lié à la diminution de la taille des particules de nickel.
Ladite solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique est de préférence aqueuse. Ledit composé organique est préalablement au moins partiellement dissous dans ladite solution à la concentration voulue. Le pH de ladite solution peut être modifié par l'ajout éventuel d'un acide ou d’une base.
Avantageusement, le rapport molaire entre ledit composé organique introduit à l’étape b1) et l’élément nickel également introduit à l’étape b) est compris entre 0,01 et 5,0 mol/mol, de préférence entre 0,05 et 2,0 mol/mol, plus préférentiellement entre 0,1 et 1 ,5 mol/mol et encore plus préférentiellement entre 0,3 et 1,2 mol/mol.
Ledit composé organique comprenant au moins une fonction acide carboxylique peut être un composé organique aliphatique, saturé ou insaturé, ou un composé organique aromatique. De préférence, le composé organique aliphatique, saturé ou insaturé, comprend entre 1 et 9 atomes de carbone, de préférence entre 2 et 7 atomes de carbone. De préférence, le composé organique aromatique comprend entre 7 et 10 atomes de carbone, de préférence entre 7 et 9 atomes de carbone.
Ledit composé organique aliphatique, saturé ou insaturé, ou ledit composé organique aromatique, comprenant au moins une fonction acide carboxylique peut être choisi parmi les acides monocarboxyliques, les acides dicarboxyliques, les acides tricarboxyliques, les acides tétracarboxyliques.
Avantageusement, le composé organique comprenant au moins une fonction acide carboxylique est choisi parmi l’acide éthanedioïque (acide oxalique), l’acide propanedioïque (acide malonique), l’acide pentanedioïque (acide glutarique), l’acide hydroxyacétique (acide glycolique), l’acide 2-hydroxypropanoïque (acide lactique), l’acide 2-hydroxypropanedioïque (acide tartronique), l’acide 2-hydroxypropane-1,2,3-tricarboxylique (acide citrique), l’acide 2,3- dihydroxybutanedioïque (acide tartrique), l’acide 2-oxopropanoïque (acide pyruvique), l’acide 4-oxopentanoïque (acide lévulinique). Mises en œuvre des étapes b) et b1)
Le procédé de préparation du catalyseur au nickel peut comporter plusieurs modes de mises en œuvre si l’étape b1) est réalisée. Ils se distinguent notamment par l’ordre d’introduction du composé organique et du précurseur de nickel, la mise en contact du composé organique avec le support pouvant être effectuée soit après la mise en contact du précurseur de nickel avec le support imprégné obtenu à l’issue de l’étape a) (ou a1)), soit avant la mise en contact du précurseur de nickel avec le support imprégné obtenu à l’issue de l’étape a) (ou a1)), ou soit en même temps que la mise en contact du nickel avec le support imprégné obtenu à l’issue de l’étape a) (ou a1)) .
Un premier mode de mise en œuvre consiste à effectuer ladite étape b) préalablement à ladite étape b1) (post-imprégnation).
Un deuxième mode de mise en œuvre consiste à effectuer ladite étape b1) préalablement à ladite étape b) (pré-imprégnation).
Chaque étape b) et b1) d’imprégnation du support imprégné avec le précurseur de nickel, et d’imprégnation du support imprégné, éventuellement maturé, avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique est réalisée au moins une fois et peut avantageusement être réalisée plusieurs fois, éventuellement en présence d’un précurseur de nickel et/ou d’un composé organique identique(s) ou différent(s) à chaque étape b) et/ou b1) respectivement, toutes les combinaisons possibles de mises en œuvre des étapes b) et b1) étant incluses dans la portée de l'invention.
De préférence, le volume V2 de la solution comprenant au moins un précurseur de la phase active de nickel et le volume V3 de la solution comprenant au moins une composé organique imprégnés sur le support imprégné, éventuellement maturé, obtenu à l’issue de l’étape a) sont tels que V2 + V3 = VPT - V1.
Un troisième mode de mise en œuvre consiste à effectuer ladite étape b) et ladite étape b1) simultanément (co-imprégnation). Ce mode de mise en œuvre peut comprendre avantageusement la mise en œuvre d’une ou plusieurs étapes b), éventuellement avec un précurseur de nickel identique ou différent à chaque étape b). En particulier, une ou plusieurs étapes b) précède(nt) et/ou suit(suivent) avantageusement ladite étape de co-imprégnation, éventuellement avec un précurseur de nickel identique ou différent à chaque étape. Ce mode de mise en œuvre peut également comprendre plusieurs étapes de co-imprégnation : les étapes b) et b1) sont effectuées de manière simultanée à plusieurs reprises, éventuellement en présence d’un précurseur de nickel et/ou d’un composé organique identique(s) ou différent(s) à chaque étape de co-imprégnation.
De préférence, les étapes b) et b1) sont réalisées simultanément. De préférence, le volume V2’ de la solution comprenant au moins un précurseur de la phase active de nickel et au moins un composé organique imprégné sur le support obtenu à l’issue de l’étape a) (ou a1)) est tel que V2’ = VPT -V1.
Etape c)
L’étape c) de séchage est réalisée avantageusement à une température inférieure à 250°C, de préférence comprise entre 15°C et 180°C, plus préférentiellement entre 30 et 160°C, encore plus préférentiellement entre 50°C et 150°C, et de manière encore plus préférentielle entre 70°C et 140°C, pendant une durée typiquement comprise entre 0,5 heure à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 heure à 5 heures. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
L’étape de séchage peut être effectuée par toute technique connue de l’Homme du métier. Elle est avantageusement effectuée sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène ou sous un mélange de gaz inerte et d’oxygène. Elle est avantageusement effectuée à pression atmosphérique ou à pression réduite. De manière préférée, cette étape est réalisée à pression atmosphérique et en présence d’air ou d’azote.
A l’issue de l’étape c), la présence totale, partielle, ou l’absence de la solution d’hexanol dans le catalyseur n’a pas d’incidence sur l’activité et/ou la sélectivité du catalyseur dans le cadre de l’hydrogénation sélective de composés polyinsaturés ou l’hydrogénation de composés aromatiques.
Etape d) (optionnelle)
L’étape d) de calcination peut être réalisée à une température comprise entre 250°C et 600°C, de préférence entre 350°C et 550°C, pendant une durée typiquement comprise entre 0,5 heure à 24 heures, de façon préférée pendant une durée de 0,5 heure à 12 heures, et de façon encore plus préférée pendant une durée de 0,5 heure à 10 heures, de préférence sous une atmosphère inerte ou sous une atmosphère contenant de l’oxygène. Des durées plus longues ne sont pas exclues, mais n’apportent pas nécessairement d’amélioration.
A l’issue de l’étape d), la présence totale, partielle, ou l’absence de la solution d’hexanol dans le catalyseur n’a pas d’incidence sur l’activité et/ou la sélectivité du catalyseur dans le cadre de l’hydrogénation sélective de composés polyinsaturés ou l’hydrogénation de composés aromatiques.
Etape e) (optionnelle)
Préalablement à l’utilisation du catalyseur dans le réacteur catalytique et la mise en œuvre d’un procédé d'hydrogénation, on effectue avantageusement au moins une étape de traitement réducteur e) en présence d’un gaz réducteur après les étapes c) ou d) de manière à obtenir un catalyseur comprenant du nickel au moins partiellement sous forme métallique.
Ce traitement permet d'activer ledit catalyseur et de former des particules métalliques, en particulier du nickel à l'état zéro valent. Ledit traitement réducteur peut être réalisé in-situ ou ex-situ c'est-à-dire après ou avant le chargement du catalyseur dans le réacteur d'hydrogénation.
Le gaz réducteur est de préférence l'hydrogène. L'hydrogène peut être utilisé pur ou en mélange (par exemple un mélange hydrogène / azote, ou hydrogène / argon, ou hydrogène / méthane). Dans le cas où l'hydrogène est utilisé en mélange, toutes les proportions sont envisageables.
Ledit traitement réducteur est réalisé à une température comprise entre 120°C et 500°C, de préférence entre 150°C et 450°C. Lorsque le catalyseur ne subit pas de passivation, ou subit un traitement réducteur avant passivation, le traitement réducteur est effectué à une température comprise entre 180°C et 500°C, de préférence entre 200°C et 450°C, et encore plus préférentiellement entre 350°C et 450°C. Lorsque le catalyseur a subi au préalable une passivation, le traitement réducteur est généralement effectué à une température comprise entre 120°C et 350°C, de préférence entre 150°C et 350°C.
La durée du traitement réducteur est généralement comprise entre 2 heures et 40 heures, de préférence entre 3 heures et 30 heures. La montée en température jusqu'à la température de réduction désirée est généralement lente, par exemple fixée entre 0,1°C/min et 10°C/min, de préférence entre 0,3°C/min et 7°C/min.
Le débit d'hydrogène, exprimé en L/heure/gramme de catalyseur est compris entre 0,01 et 100 L/heure/gramme de catalyseur, de préférence entre 0,05 et 10 L/heure/gramme de catalyseur, de façon encore plus préférée entre 0,1 et 5 L/heure/gramme de catalyseur.
3. Catalyseur
Le procédé de préparation selon l’invention permet d’obtenir un catalyseur comprenant une phase active à base de nickel et un support d’alumine, ledit catalyseur comprenant entre 1 et 50 % poids de nickel élémentaire par rapport au poids total du catalyseur, le nickel étant réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte (appelée aussi ep1) étant comprise entre 2% et 15% du diamètre du catalyseur, la taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur étant inférieure à 15 nm.
De préférence, le nickel est réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte (appelée aussi ep1) étant comprise entre 2% et 15% du diamètre du catalyseur, de préférence entre 2,5% et 12% du diamètre du catalyseur, de façon encore plus préférée entre 3% et 10% du diamètre du catalyseur, et de façon encore plus préférée entre 3% et 7,5% du diamètre du catalyseur.
De préférence, le ratio de densité en nickel entre la croûte et le cœur (appelé aussi ici dcroute/dcoeur) est supérieur strictement à 3, de préférence supérieur à 3,5, et de préférence compris entre 3,8 et 15 ;
De préférence, ladite croûte comprend plus de 25% en poids d’élément nickel par rapport au poids total d’élément nickel contenu dans le catalyseur, de préférence plus de 40% en poids, plus préférentiellement entre 45% et 90% en poids, et encore plus préférentiellement entre 60% et 90% en poids.
Avantageusement, l’intervalle de transition entre le cœur et la croûte du catalyseur (appelé aussi ici intervalle de transition cœur/croûte, ou ep2-ep1 d’après les notations de la figure 1), lié à la variation de la densité de nickel mesurée sur l’épaisseur du catalyseur depuis le bord du catalyseur jusqu’au centre du catalyseur, est très abrupte. De préférence, l’intervalle de transition cœur/croûte est compris entre 0,05 % et 3 % du diamètre du catalyseur, de préférence entre 0,5 % et 2,5 % du diamètre du catalyseur.
La teneur en nickel dans ledit catalyseur est avantageusement comprise entre 1 et 50 % poids par rapport au poids total du catalyseur, plus préférentiellement entre 2 et 40 % poids et encore plus préférentiellement entre 3 et 35 % poids et encore plus préférentiellement 5 et 25% poids par rapport au poids total du catalyseur. Les valeurs « % poids » se basent sur la forme élémentaire du nickel.
Le catalyseur peut être qualifié de catalyseur « semi egg-shell », i.e. la concentration du nickel est plus élevée en périphérie du support que dans le cœur du support, ladite concentration du nickel dans le cœur du support étant non nulle. La surface spécifique du catalyseur est généralement comprise entre 10 m2/g et 350 m2/g, de préférence entre 25 m2/g et 300 m2/g, de façon plus préférée entre 40 m2/g et 250 m2/g.
Le volume poreux total du catalyseur est généralement compris entre 0,1 ml/g et 1 ml/g, de préférence compris entre 0,2 ml/g et 0,8 ml/g, et de manière particulièrement préférée compris entre 0,3 ml/g et 0,7 ml/g.
La taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est avantageusement inférieure à 15 nm, de préférence inférieure à 13 nm, de préférence inférieure à 10 nm. Lorsque l’étape b1) du procédé selon l’invention est réalisée, alors la taille des particules de nickel, mesurée sous forme oxyde, dans le catalyseur est avantageusement inférieure à 7 nm, de préférence inférieure à 5 nm, plus préférentiellement inférieure à 4 nm, et encore plus préférentiellement inférieure à 3 nm.
La phase active du catalyseur ne comprend pas de métal du groupe VI B. Elle ne comprend notamment pas de molybdène ou de tungstène.
Ledit catalyseur (et le support utilisé pour la préparation du catalyseur) est sous forme de grains ayant avantageusement un diamètre compris entre 0,5 mm et 10 mm. Les grains peuvent avoir toutes les formes connues de l'Homme du métier, par exemple la forme de billes (ayant de préférence un diamètre compris entre 1 mm et 8 mm), d’extrudés, de tablettes, de cylindres creux. De préférence, le catalyseur (et le support utilisé pour la préparation du catalyseur) sont sous forme d'extrudés de diamètre compris entre 0,5 mm et 10 mm, de préférence entre 0,8 mm et 3,2 mm et de manière très préférée entre 1,0 mm et 2,5 mm et de longueur comprise entre 0,5 mm et 20 mm. On entend par « diamètre» des extrudés le diamètre du cercle circonscrit à la section droite de ces extrudés. Le catalyseur peut être avantageusement présenté sous la forme d'extrudés cylindriques, multilobés, trilobés ou quadrilobés. De préférence sa forme est trilobée ou quadrilobée. La forme des lobes peut être ajustée selon toutes les méthodes connues de l'art antérieur.
4. Support
Les caractéristiques de l’alumine, mentionnées dans cette section, correspondent aux caractéristiques de l’alumine avant la réalisation de l’étape a) du procédé de préparation selon l’invention. Le support est une alumine, c'est-à-dire que le support comporte au moins 95%, de préférence au moins 98%, et de manière particulièrement préférée au moins 99% poids d'alumine par rapport au poids du support. L’alumine présente généralement une structure cristallographique du type alumine delta, gamma ou thêta, seule ou en mélange.
Le support d’alumine, peut comprendre des impuretés telles que les oxydes de métaux des groupes MA, INB, IVB, MB, NIA, IVA selon la classification CAS, par exemple la silice, le dioxyde de titane, le dioxyde de zirconium, l'oxyde de zinc, l'oxyde de magnésium et l'oxyde de calcium, ou encore des métaux alcalins, par exemple le lithium, le sodium ou le potassium, et/ou les alcalino-terreux, par exemple le magnésium, le calcium, le strontium ou le baryum ou encore du soufre.
La surface spécifique BET de l’alumine est généralement comprise entre 10 m2/g et 400m2/g, de préférence entre 30 m2/g et 350 m2/g, de façon plus préférée entre 50 m2/g et 300m2/g.
Le volume poreux total de l’alumine est généralement compris entre 0,1 ml/g et 1,2 ml/g, de préférence compris entre 0,3 ml/g et 0,9 ml/g, et de manière très préférée compris entre 0,5 ml/g et 0,9 ml/g.
5. Procédé d’hydrogénation sélective
La présente invention a également pour objet un procédé d’hydrogénation sélective de composés polyinsaturés contenant au moins 2 atomes de carbone par molécule, tels que les dioléfines et/ou les acétyléniques et/ou les alcénylaromatiques, aussi appelés styréniques, contenus dans une charge d’hydrocarbures ayant un point d'ébullition final inférieur ou égal à 300°C, lequel procédé étant réalisé à une température comprise entre 0 et 300°C, à une pression comprise entre 0,1 MPa et 10 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,1 et 200 h 1 lorsque le procédé est réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire entre 100 h-1 et 40000 h-1 lorsque le procédé est réalisé en phase gazeuse, en présence d’un catalyseur obtenu par le procédé de préparation tel que décrit ci- avant dans la description.
Les composés organiques mono-insaturés tels que par exemple l’éthylène et le propylène, sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono- insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, le propadiène et le méthylacétylène (ou propyne), le 1-2-butadiène et le 1-3-butadiène, le vinylacétylène et l'éthylacétylène, et d’autres composés polyinsaturés dont le point d’ébullition correspond à la coupe C5+ (composés hydrocarbonés ayant au moins 5 atomes de carbone), en particulier des composés dioléfiniques ou styréniques ou indéniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes.
L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes ou aromatiques correspondants en évitant leur saturation totale et donc la formation des alcanes ou naphtènes correspondants. Dans le cas d'essences de vapocraquage utilisées comme charge, l'hydrogénation sélective permet également d'hydrogéner sélectivement les alcénylaromatiques en aromatiques en évitant l’hydrogénation des noyaux aromatiques.
La charge d'hydrocarbures traitée dans le procédé d’hydrogénation sélective a un point d'ébullition final inférieur ou égal à 300°C et contient au moins 2 atomes de carbone par molécule et comprend au moins un composé polyinsaturé. On entend par « composés polyinsaturés » des composés comportant au moins une fonction acétylénique et/ou au moins une fonction diénique et/ou au moins une fonction alcénylaromatique.
Plus particulièrement, la charge est sélectionnée dans le groupe constitué par une coupe C2 de vapocraquage, une coupe C2-C3 de vapocraquage, une coupe C3 de vapocraquage, une coupe C4 de vapocraquage, une coupe C5 de vapocraquage et une essence de vapocraquage encore appelée essence de pyrolyse ou coupe C5+.
La coupe C2 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : entre 40 et 95 % poids d'éthylène, de l'ordre de 0,1 à 5 % poids d'acétylène, le reste étant essentiellement de l'éthane et du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peut aussi être présent.
La coupe C3 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition moyenne suivante : de l’ordre de 90 % poids de propylène, de l’ordre de 1 à 8 % poids de propadiène et de méthylacétylène, le reste étant essentiellement du propane. Dans certaines coupes C3, entre 0,1 et 2 % poids de composés en C2 et de composés en C4 peut aussi être présent. Une coupe C2 - C3 peut aussi être avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention. Elle présente par exemple la composition suivante : de l'ordre de 0,1 à 5 % poids d'acétylène, de l’ordre de 0,1 à 3 % poids de propadiène et de méthylacétylène, de l’ordre de 30 % poids d'éthylène, de l’ordre de 5 % poids de propylène, le reste étant essentiellement du méthane, de l’éthane et du propane. Cette charge peut aussi contenir entre 0,1 et 2 % poids de composés en C4.
La coupe C4 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition massique moyenne suivante : 1 % poids de butane, 46,5 % poids de butène, 51 % poids de butadiène, 1,3 % poids de vinylacétylène et 0,2 % poids de butyne. Dans certaines coupes C4, entre 0,1 et 2 % poids de composés en C3 et de composés en C5 peut aussi être présent.
La coupe C5 de vapocraquage, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, présente par exemple la composition suivante : 21 % poids de pentanes, 45 % poids de pentènes, 34 % poids de pentadiènes.
L'essence de vapocraquage ou essence de pyrolyse, avantageusement utilisée pour la mise en œuvre du procédé d'hydrogénation sélective selon l'invention, correspond à une coupe hydrocarbonée dont la température d'ébullition est généralement comprise entre 0 et 300°C, de préférence entre 10°C et 250°C. Les hydrocarbures polyinsaturés à hydrogéner présents dans ladite essence de vapocraquage sont en particulier des composés dioléfiniques (butadiène, isoprène, cyclopentadiène...), des composés styréniques (styrène, alpha- méthylstyrène...) et des composés indéniques (indène...). L'essence de vapocraquage comprend généralement la coupe C5-C12 avec des traces de C3, C4, C13, C14, C15 (par exemple entre 0,1 et 3% poids pour chacune de ces coupes). Par exemple, une charge formée d'essence de pyrolyse a généralement une composition suivante: 5 à 30 % poids de composés saturés (paraffines et naphtènes), 40 à 80 % poids de composés aromatiques, 5 à 20 % poids de mono-oléfines, 5 à 40 % poids de dioléfines, 1 à 20 % poids de composés alcénylaromatiques, l'ensemble des composés formant 100 %. Elle contient également de 0 à 1000 ppm poids de soufre, de préférence de 0 à 500 ppm poids de soufre.
De manière préférée, la charge d'hydrocarbures polyinsaturés traitée conformément au procédé d'hydrogénation sélective selon l'invention est une coupe C2 de vapocraquage, ou une coupe C2-C3 de vapocraquage, ou une essence de vapocraquage.
Le procédé d'hydrogénation sélective selon l'invention vise à éliminer lesdits hydrocarbures polyinsaturés présents dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures monoinsaturés. Par exemple, lorsque ladite charge est une coupe C2, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement l'acétylène. Lorsque ladite charge est une coupe C3, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement le propadiène et le méthylacétylène. Dans le cas d'une coupe C4, on vise à éliminer le butadiène, le vinylacétylène (VAC) et le butyne, dans le cas d'une coupe C5, on vise à éliminer les pentadiènes. Lorsque ladite charge est une essence de vapocraquage, le procédé d'hydrogénation sélective vise à hydrogéner sélectivement lesdits hydrocarbures polyinsaturés présents dans ladite charge à traiter de manière que les composés dioléfiniques soient partiellement hydrogénés en mono-oléfines et que les composés styréniques et indéniques soient partiellement hydrogénés en composés aromatiques correspondants en évitant l’hydrogénation des noyaux aromatiques.
La mise en œuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré injections) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation sélective des coupes C2, C2-C3, C3, C4, C5 et C5+ de vapocraquage peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide pour les coupes C3, C4, C5 et C5+ et en phase gazeuse pour les coupes C2 et C2-C3. Une réaction en phase liquide permet d’abaisser le coût énergétique et d’augmenter la durée de cycle du catalyseur.
D'une manière générale, l'hydrogénation sélective d’une charge d'hydrocarbures contenant des composés polyinsaturés contenant au moins 2 atomes de carbone par molécule et ayant un point d'ébullition final inférieur ou égal à 300°C s'effectue à une température comprise entre 0°C et 300°C, à une pression comprise entre 0,1 MPa et 10 MPa, à un ratio molaire hydrogène/(com posés polyinsaturés à hydrogéner) compris entre 0,1 et 10 et à une vitesse volumique horaire (définie comme le rapport du débit volumique de charge sur le volume du catalyseur) comprise entre 0,1 h 1 et 200 h-1 pour un procédé réalisé en phase liquide, ou à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000 et à une vitesse volumique horaire comprise entre 100 et 40000 h 1 pour un procédé réalisé en phase gazeuse.
Dans un mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 10, de préférence entre 0,7 et 5,0 et de manière encore plus préférée entre 1,0 et 2,0, la température est comprise entre 0°C et 200°C, de préférence entre 20°C et 200 °C et de manière encore plus préférée entre 30°C et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 0,5 h 1 et 100 h 1, de préférence entre 1 et 50 h-1 et la pression est généralement comprise entre 0,3 MPa et 8,0 MPa, de préférence entre 1 ,0 MPa et 7,0 MPa et de manière encore plus préférée entre 1 ,5 MPa et 4,0 MPa.
Plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 0,7 et 5,0, la température est comprise entre 20°C et 200 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 tr1 et 50 h-1 et la pression est comprise entre 1,0 MPa et 7,0 MPa.
Encore plus préférentiellement, on effectue un procédé d’hydrogénation sélective dans lequel la charge est une essence de vapocraquage comportant des composés polyinsaturés, le ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) est compris entre 1,0 et 2,0, la température est comprise entre 30°C et 180°C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 1 h-1 et 50 h-1 et la pression est comprise entre 1,5 MPa et 4,0 MPa.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés polyinsaturés et de maintenir un excès d’hydrogène en sortie de réacteur.
Dans un autre mode de réalisation selon l’invention, lorsqu’on effectue un procédé d'hydrogénation sélective dans lequel la charge est une coupe C2 de vapocraquage et/ou une coupe C2-C3 de vapocraquage comportant des composés polyinsaturés, le ratio molaire (hydrogène)/(composés polyinsaturés à hydrogéner) est généralement compris entre 0,5 et 1000, de préférence entre 0,7 et 800, la température est comprise entre 0°C et 300°C, de préférence entre 15°C et 280 °C, la vitesse volumique horaire (V.V.H.) est comprise généralement entre 100 h 1 et 40000 h 1, de préférence entre 500 h 1 et 30000 h 1 et la pression est généralement comprise entre 0,1 MPa et 6,0 MPa, de préférence entre 0,2 MPa et 5,0 MPa.
6. Procédé d’hydrogénation des aromatiques
La présente invention a également pour objet un procédé d’hydrogénation d’au moins un composé aromatique ou polyaromatique contenu dans une charge d’hydrocarbures ayant un point d’ébullition final inférieur ou égal à 650°C, généralement entre 20°C et 650°C, et de préférence entre 20°C et 450°C. Ladite charge d’hydrocarbures contenant au moins un composé aromatique ou polyaromatique peut être choisi parmi les coupes pétrolières ou pétrochimiques suivantes : le reformat du reformage catalytique, le kérosène, le gazole léger, le gazole lourd, les distillais de craquage, tels que l’huile de recyclage de FCC, le gazole d’unité de cokéfaction, les distillais d’hydrocraquage.
La teneur en composés aromatiques ou polyaromatiques contenus dans la charge d’hydrocarbures traitée dans le procédé d’hydrogénation selon l’invention est généralement compris entre 0,1% et 80% en poids, de préférence entre 1% et 50% en poids, et de manière particulièrement préférée entre 2% et 35% en poids, le pourcentage étant basé sur le poids total de la charge d’hydrocarbures. Les composés aromatiques présents dans ladite charge d’hydrocarbures sont par exemple le benzène ou des alkylaromatiques tels que le toluène, l'éthylbenzène, Go-xylène, le m-xylène, ou le p-xylène, ou encore des aromatiques ayant plusieurs noyaux aromatiques (polyaromatiques) tels que le naphtalène.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 5000 ppm poids de soufre ou de chlore, de préférence inférieure à 100 ppm poids, et de manière particulièrement préférée inférieure à 10 ppm poids.
La mise en œuvre technologique du procédé d’hydrogénation des composés aromatiques ou polyaromatiques est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation des aromatiques, en divers points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en œuvre technologique du procédé d’hydrogénation des aromatiques selon l'invention peut également être avantageusement réalisée par l'implantation d’au moins dudit catalyseur supporté dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur.
L'hydrogénation des composés aromatiques ou polyaromatiques peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. D'une manière générale, l'hydrogénation des composés aromatiques ou polyaromatiques s'effectue à une température comprise entre 30°C et 350°C, de préférence entre 50°C et 325°C, à une pression comprise entre 0,1 MPa et 20 MPa, de préférence entre 0,5 MPa et 10 MPa, à un ratio molaire hydrogène/(composés aromatiques à hydrogéner) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 h 1 et 50 h 1, de préférence entre 0,1 h-1 et 10 h-1 d’une charge d'hydrocarbures contenant des composés aromatiques ou polyaromatiques et ayant un point d'ébullition final inférieur ou égal à 650°C, généralement entre 20°C et 650°C, et de préférence entre 20°C et 450°C.
Le débit d’hydrogène est ajusté afin d’en disposer en quantité suffisante pour hydrogéner théoriquement l’ensemble des composés aromatiques et de maintenir un excès d’hydrogène en sortie de réacteur.
La conversion des composés aromatiques ou polyaromatiques est généralement supérieure à 20% en mole, de préférence supérieure à 40% en mole, de manière plus préférée supérieure à 80% en mole, et de manière particulièrement préférée supérieure à 90 % en mole des composés aromatiques ou polyaromatiques contenus dans la charge hydrocarbonée. La conversion se calcule en divisant la différence entre les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures et dans le produit par les moles totales des composés aromatiques ou polyaromatiques dans la charge d'hydrocarbures.
Selon une variante particulière du procédé selon l’invention, on réalise un procédé d’hydrogénation du benzène d’une charge d’hydrocarbures, tel que le reformat issu d’une unité de reformage catalytique. La teneur en benzène dans ladite charge d’hydrocarbures est généralement comprise entre 0,1 et 40% poids, de préférence entre 0,5 et 35% poids, et de manière particulièrement préférée entre 2 et 30% poids, le pourcentage en poids étant basé sur le poids total de la charge d’hydrocarbures.
La teneur en soufre ou en chlore de la charge est généralement inférieure à 10 ppm poids de soufre ou chlore respectivement, et de préférence inférieure à 2 ppm poids.
L'hydrogénation du benzène contenu dans la charge d’hydrocarbures peut être réalisée en phase gazeuse ou en phase liquide, de préférence en phase liquide. Lorsqu’elle est réalisée en phase liquide, un solvant peut être présent, tel que le cyclohexane, l’heptane, l’octane. D'une manière générale, l'hydrogénation du benzène s'effectue à une température comprise entre 30°C et 250°C, de préférence entre 50°C et 200°C, et de manière plus préférée entre 80°C et 180°C, à une pression comprise entre 0,1 MPa et 10 MPa, de préférence entre 0,5 MPa et 4 MPa, à un ratio molaire hydrogène/(benzène) entre 0,1 et 10 et à une vitesse volumique horaire comprise entre 0,05 h 1 et 50 h 1, de préférence entre 0,5 h-1 et 10 h 1.
La conversion du benzène est généralement supérieure à 50% en mole, de préférence supérieure à 80% en mole, de manière plus préférée supérieure à 90% en mole et de manière particulièrement préférée supérieure à 98 % en mole.
L’invention va maintenant être illustrée via les exemples ci-après qui ne sont nullement limitatifs.
Exemples
Pour tous les catalyseurs mentionnés dans les exemples ci-après, le support est une alumine A présentant une surface spécifique de 80 m2/g, un volume poreux total (VPT) de 0,7 mL/g et un diamètre médian mésoporeux de 12 nm.
Figure imgf000023_0001
La solution aqueuse S utilisée pour la préparation des catalyseurs B à H est préparée en dissolvant 43,5 g de nitrate de nickel (N1NO3, fournisseur Strem Chemicals®) et 7,69 g d’acide malonique (CAS 141-82-2 ; fournisseur Fluka®) dans un volume de 13 mL d’eau distillée. Le ratio molaire additif/Ni est fixé à 0,5. On obtient la solution S dont la concentration en Ni est de 350 g de Ni par litre de solution.
Exemple 1 bis : Préparation d’une solution aqueuse de précurseur de Ni sans additif La solution aqueuse S’ utilisée pour la préparation du catalyseur A est préparée en dissolvant 43,5 g de nitrate de nickel (N1NO3, fournisseur Strem Chemicals®) dans un volume de 13 mL d’eau distillée. On obtient la solution S’ dont la concentration en Ni est de 350 g de Ni par litre de solution.
Exemple 2 : Préparation d’un catalyseur A selon invention [10% poids de Ni - hexanol 25%
VRE en pré-imprégnationl 10 g d'alumine A sont imprégnés avec 2,4 ml de n-hexanol ajouté au goutte à goutte. Le support imprégné est ensuite laissé à maturer pendant 30 min à 60°C. Ensuite, 7,1 ml de la solution S’ préparée à l’exemple 1 bis est imprégnée goutte-à-goutte sur le support imprégné. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures. On obtient le catalyseur A contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur. Les caractéristiques du catalyseur A ainsi obtenu sont reportées dans le tableau 1 ci-après.
Exemple 3 : Préparation d’un catalyseur B selon invention [10% poids de Ni - hexanol 25%
VRE en pré-imprégnation+ additifl 10 g d'alumine A sont imprégnés avec 2,4 ml de n-hexanol ajouté au goutte à goutte. Le support imprégné est ensuite laissé à maturer pendant 30 min à 60°C. Ensuite, 7,1 ml de la solution S préparée à l’exemple 1 est imprégnée goutte-à-goutte sur le support imprégné. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur B contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur B ainsi obtenu sont reportées dans le tableau 1 ci-après.
Exemple 4 : Préparation d’un catalyseur C selon invention [5% poids de Ni - hexanol 25%VRE en pré-imprégnation+ additifl 10 g d'alumine A sont imprégnés avec 2,4 ml de n-hexanol ajouté au goutte à goutte. Le support imprégné est ensuite laissé à maturer pendant 30 min à 60°C. Ensuite, 3,55 ml la solution S préparée à l’exemple 1 diluée avec de l’eau afin de compléter à 7, 1 ml est imprégnée goutte-à-goutte sur le support imprégné. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur C contenant 5 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur C ainsi obtenu sont reportées dans le tableau 1 ci-après.
Exemple 5 : Préparation d’un catalyseur D selon invention [10% poids de Ni - hexanol 75% du VRE en pré-imprégnation+ additifl 10 g d'alumine A sont imprégnés avec 7,2 ml de n-hexanol ajouté au goutte à goutte. Le support imprégné est ensuite laissé à maturer pendant 30 min à 60°C. Ensuite, 2,4 ml de la solution S préparée à l’exemple 1 est imprégnée goutte-à-goutte sur le support imprégné. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur D contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur D ainsi obtenu sont reportées dans le tableau 1 ci-après. Exemple 6 : Préparation d’un catalyseur E non-conforme à l’invention [imprégnation classique
10%Ni+ additifl
La solution S préparée à l’exemple 1 est imprégnée à sec, en l’ajoutant goutte-à-goutte, sur 10 g d'alumine. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur E contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur E ainsi obtenu sont reportées dans le tableau 1 ci-après.
Exemple 7 : Préparation d’un catalyseur F non-conforme [10% poids de Ni - hexanol 25%VRE en post-impréqnationl
7,1 ml de la solution S préparée à l’exemple 1 est imprégnée à sec, en l’ajoutant goutte-à- goutte, sur 10 g de l’alumine. Les 10 g du précurseur de catalyseur préparé sont imprégnés avec 2,4 ml de n-hexanol ajouté au goutte à goutte. Le solide est ensuite laissé à maturé pendant 30 min à 60°C.
Le solide ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur F contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur F ainsi obtenu sont reportées dans le tableau 1 ci-après.
Exemple 8 : Préparation d’un catalyseur G non-conforme [10% poids de Ni - toluène 25%VRE en pré-impréqnationl
10 g d'alumine A sont imprégnés avec 2,4 ml de toluène ajouté au goutte à goutte. Le support imprégné est ensuite laissé à maturer pendant 30 min à 60°C. Ensuite, 7,1 ml de la solution S préparée à l’exemple 1 est imprégnée goutte-à-goutte sur le support imprégné. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur G contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur G ainsi obtenu sont reportées dans le tableau 1 ci-après.
Exemple 9 : Préparation d’un catalyseur H non conforme [10% poids de Ni - n-propanol 25%
VRE en pré-impréqnationl 10 g d'alumine A sont imprégnés avec 2,4 ml de n-propanol ajouté au goutte à goutte. Le support imprégné est ensuite laissé à maturer pendant 30 min à 60°C. Ensuite, 7,1 ml de la solution S préparée à l’exemple 1 est imprégnée goutte-à-goutte sur le support imprégné. Le précurseur de catalyseur ainsi obtenu est ensuite séché en étuve pendant 12 heures à 120°C, puis calciné sous un flux d’air sec de 1 L/h/g de catalyseur à 450°C pendant 2 heures.
On obtient le catalyseur H contenant 10 % en poids de l'élément nickel par rapport au poids total du catalyseur.
Les caractéristiques du catalyseur H ainsi obtenu sont reportées dans le tableau 1 ci-après.
Figure imgf000027_0001
Exemple 10 : Tests catalytiques : performances en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (AHYDI)
Les catalyseurs A à H décrits dans les exemples ci-dessus sont testés vis-à-vis de la réaction d'hydrogénation sélective d'un mélange contenant du styrène et de l’isoprène.
La composition de la charge à hydrogéner sélectivement est la suivante : 8 % pds styrène (fournisseur Sigma Aldrich®, pureté 99%), 8 % pds isoprène (fournisseur Sigma Aldrich®, pureté 99%), 84 % pds n-heptane (solvant) (fournisseur VWR®, pureté > 99% chromanorm HPLC). Cette charge contient également des composés soufrés en très faible teneur : 10 ppm pds de soufre introduits sous forme de pentanethiol (fournisseur Fluka®, pureté > 97%) et 100 ppm pds de soufre introduits sous forme de thiophène (fournisseur Merck®, pureté 99%). Cette composition correspond à la composition initiale du mélange réactionnel. Ce mélange de molécules modèles est représentatif d’une essence de pyrolyse.
La réaction d'hydrogénation sélective est opérée dans un autoclave de 500 mL en acier inoxydable, muni d’une agitation mécanique à entraînement magnétique et pouvant fonctionner sous une pression maximale de 100 bar (10 MPa) et des températures comprises entre 5°C et 200°C.
Préalablement à son introduction dans l’autoclave, une quantité de 3 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400 °C pendant 16 heures (rampe de montée en température de 1 °C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air._Après ajout de 214 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 30°C. Au temps t=0, environ 30 g d'un mélange contenant du styrène, de l’isoprène, du n-heptane, du pentanethiol et du thiophène sont introduits dans l’autoclave. Le mélange réactionnel a alors la composition décrite ci- dessus et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur.
L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le styrène est hydrogéné en éthylbenzène, sans hydrogénation du cycle aromatique, et l’isoprène est hydrogéné en méthyl-butènes. Si la réaction est prolongée plus longtemps que nécessaire, les méthyl-butènes sont à leur tour hydrogénés en isopentane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni.
Les activités catalytiques mesurées pour les catalyseurs A à H sont reportées dans le tableau 2 ci-après. Elles sont rapportées à l’activité catalytique (AHYDI) mesurée pour le catalyseur E. Exemple 11 : Tests catalytiques : performances en hydrogénation du toluène
Figure imgf000029_0001
Les catalyseurs A à H décrits dans les exemples ci-dessus sont également testés vis-à-vis de la réaction d'hydrogénation du toluène.
La réaction d'hydrogénation sélective est opérée dans le même autoclave que celui décrit à l’exemple 9. Préalablement à son introduction dans l’autoclave, une quantité de 2 mL de catalyseur est réduite ex situ sous un flux d'hydrogène de 1 L/h/g de catalyseur, à 400°C pendant 16 heures (rampe de montée en température de 1°C/min), puis elle est transvasée dans l’autoclave, à l'abri de l'air. Après ajout de 216 mL de n-heptane (fournisseur VWR®, pureté > 99% chromanorm HPLC), l’autoclave est fermé, purgé, puis pressurisé sous 35 bar (3,5 MPa) d’hydrogène, et porté à la température du test égale à 80°C. Au temps t=0, environ 26 g de toluène (fournisseur SDS®, pureté > 99,8%) sont introduits dans l’autoclave (la composition initiale du mélange réactionnel est alors toluène 6 % pds / n-heptane 94 % pds) et l’agitation est mise en route à 1600 tr/min. La pression est maintenue constante à 35 bar (3,5 MPa) dans l’autoclave à l’aide d’une bouteille réservoir située en amont du réacteur. L’avancement de la réaction est suivi par prélèvement d’échantillons du milieu réactionnel à intervalles de temps réguliers : le toluène est totalement hydrogéné en méthylcyclohexane. La consommation d'hydrogène est également suivie au cours du temps par la diminution de pression dans une bouteille réservoir située en amont du réacteur. L’activité catalytique est exprimée en moles de H2 consommées par minute et par gramme de Ni. Les activités catalytiques mesurées pour les catalyseurs A à H sont reportées dans le tableau 2 ci-après. Elles sont rapportées à l’activité catalytique (AHYD2) mesurée pour le catalyseur E.
Figure imgf000030_0001
Tableau 2 : Comparaison des performances des catalyseurs A à H en hydrogénation sélective d'un mélange contenant du styrène et de l'isoprène (AHYDI) et en hydrogénation du toluène (AHYD2) Ces exemples montrent bien les performances améliorées des catalyseurs A, B, C et D selon l’invention, par rapport aux catalyseurs E, F, G et H non conformes. Ceci s'explique par la répartition du nickel en croûte sur les catalyseurs A, B, C et D qui leur confèrent une activité nettement améliorée notamment dans les réactions rapides d'hydrogénation. Le catalyseur A malgré le fait que les particules soient plus importantes en taille (8 nm) du fait de la non- utilisation d’acide malonique reste assez performant car le nickel est bien réparti en croûte et donc très accessible. Le catalyseur E est en retrait d’activité du fait de l’imprégnation classique mis en œuvre sans pré-imprégnation de hexanol. Le catalyseur F a subi une post- imprégnation au hexanol ce qui ne permet pas une répartition en croûte du nickel. Le catalyseur G est préparé avec une étape de pré-imprégnation au toluène. Ainsi, bien que le toluène soit peu miscible avec l’eau, comme dans le cas du hexanol, l’absence de groupements -OH dans la molécule ne lui permet pas une interaction forte avec les -OH du support d’alumine, qui peut expliquer la migration du toluène par l’eau contenue dans la solution de nitrate de nickel lors de l’étape d’imprégnation du nickel. Dans le cas du propanol, les groupements -OH semblent lui permettre bien à la fois d’aller à cœur du support et d’être en interaction avec le support. En revanche, l’eau et le n-propanol étant très miscibles contrairement au couple hexanol/eau, la diffusion à cœur de la solution aqueuse de nitrate de nickel semble avoir lieu compte tenu à la fois des caractéristiques physico-chimiques du catalyseur final obtenu et des résultats de tests catalytiques. Ainsi, pour les catalyseurs F, G et H, le nickel est réparti de façon homogène dans tout le grain de catalyseur. Les catalyseurs F et G ont dès lors une activité bien en retrait du catalyseur A en AHYDI et en AHYD2. Le catalyseur G est encore plus en retrait du fait de la présence de toluène qui perturbe l’imprégnation de la solution de nitrate de nickel.

Claims

REVENDICATIONS
1. Procédé de préparation d’un catalyseur comprenant une phase active à base de nickel et un support d’alumine, ledit catalyseur comprenant entre 1 et 50% en poids de nickel élémentaire par rapport au poids total du catalyseur, le nickel étant réparti à la fois sur une croûte en périphérie du support, et à cœur du support, l'épaisseur de ladite croûte étant comprise entre 2% et 15% du diamètre du catalyseur, la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, étant inférieure à 15 nm, lequel procédé comprend les étapes suivantes : a) on imprègne ledit support avec un volume V1 d’une solution d’hexanol compris entre 0,2 et 0,8 fois le volume poreux total VPT dudit support pour obtenir un support imprégné ; b) on imprègne le support imprégné obtenu à l’issue de l’étape a) avec une solution comprenant au moins un précurseur de la phase active de nickel pour obtenir un précurseur de catalyseur ; c) on sèche le précurseur de catalyseur obtenu à l’issue de l’étape b) à une température inférieure à 250°C.
2. Procédé selon la revendication 1, dans lequel à l’étape b) le volume V2 de la solution comprenant au moins un précurseur de la phase active de nickel imprégné sur le support imprégné obtenu à l’issue de l’étape a) est tel que le V2 = VPT - V1.
3. Procédé selon des revendications 1 ou 2, caractérisé en ce que l’étape c) est réalisée pendant un temps compris entre 0,5 heure et 12 heures.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce qu’il comprend en outre une étape d) dans laquelle on calcine le catalyseur obtenu à l’issue de l’étape c) à une température comprise entre 250°C et 600°C.
5. Procédé selon la revendication 4, dans lequel l’étape d) est réalisée pendant 0,5 heure à 24 heures.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel à l’étape a) ledit volume V1 de ladite solution d’hexanol est compris entre 0,25 et 0,75 fois le volume poreux total VPT dudit support.
7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel à l’étape a) on utilise une solution de n-hexanol.
8. Procédé selon l’une quelconque des revendications 1 à 7, dans lequel on réalise une étape b1) dans laquelle on imprègne soit le support imprégné obtenu à l’issue de l’étape a), soit le précurseur de catalyseur obtenu à l’issue de l’étape b), avec au moins une solution contenant au moins un composé organique comprenant au moins une fonction acide carboxylique, ou au moins une fonction alcool, ou au moins une fonction ester, ou au moins une fonction amide, ou au moins une fonction amine, les étapes b) et b1) étant réalisées dans un ordre indifférent, ou simultanément.
9. Procédé selon la revendication 8, dans lequel le volume V2 de la solution comprenant au moins un précurseur de la phase active de nickel et le volume V3 de la solution comprenant au moins une composé organique imprégnés sur le support imprégné obtenu à l’issue de l’étape a) sont tels que V2 + V3 = VPT - V1.
10. Procédé selon l’une des revendications 8 ou 9, dans lequel les étapes b) et b1) sont réalisées simultanément.
11. Procédé selon la revendication 10, dans lequel le volume V2’ de la solution comprenant au moins un précurseur de la phase active de nickel et au moins une composé organique imprégnés sur le support imprégné obtenu à l’issue de l’étape a) est tel que V2’ = VPT - V1.
12. Procédé selon l’une quelconque des revendications 8 à 11, dans lequel le rapport molaire entre ledit composé organique introduit à l’étape b1) et l’élément nickel également introduit à l’étape b) est compris entre 0,01 et 5,0 mol/mol.
13. Procédé selon l’une quelconque des revendications 8 à 12, dans lequel le composé organique de l’étape b1) est choisi parmi l’acide oxalique, l’acide malonique, l’acide glycolique, l’acide acide lactique, l’acide tartronique, l’acide citrique, l’acide tartrique, l’acide pyruvique, l’acide lévulinique, l’éthylène glycol, le propane-1,3-diol, le butane-1,4-diol, le glycérol, le xylitol, le mannitol, le sorbitol, le diéthylène glycol, le glucose, la gamma valérolactone, le carbonate de diméthyle, le carbonate de diéthyle, la formamide, la N-méthylformamide, l’acétamide, la N-méthylacétamide, la N,N-diméthylméthanamide, la 2-pyrrolidone, la y- lactame, la lactamide, l’urée, l’alanine, l’arginine, la lysine, la proline, la sérine, l’EDTA.
14. Procédé selon l’une quelconque des revendications 1 à 13, dans lequel on réalise une étape a1) dans laquelle on laisse maturer le support imprégné obtenu à l’issue de l’étape a) pendant 0,5 heure à 40 heures.
15. Procédé selon l’une quelconque des revendications 8 à 14, dans lequel la taille des particules de nickel dans le catalyseur, mesurée sous forme oxyde, étant inférieure à 13 nm.
PCT/EP2022/069498 2021-07-22 2022-07-12 Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol WO2023001641A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/578,519 US20240326033A1 (en) 2021-07-22 2022-07-12 Method for preparing a catalyst comprising an active nickel phase distributed in a shell via hexanol impregnation
KR1020247005458A KR20240034240A (ko) 2021-07-22 2022-07-12 헥산올 함침을 통해 쉘 내에 분포된 활성 니켈 상을 포함하는 촉매의 제조 방법
BR112023026454A BR112023026454A2 (pt) 2021-07-22 2022-07-12 Processo de preparação de um catalisador compreendendo uma fase ativa distribuída em uma crosta via impregnação de hexanol
EP22748350.0A EP4373611A1 (fr) 2021-07-22 2022-07-12 Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol
CN202280050507.0A CN117693395A (zh) 2021-07-22 2022-07-12 通过己醇浸渍制备包含分布在壳中的活性镍相的催化剂的方法
JP2024503856A JP2024524748A (ja) 2021-07-22 2022-07-12 ヘキサノール含浸を介して活性ニッケル相をシェル中に分散されて含んでいる触媒の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2107962 2021-07-22
FR2107962A FR3125439A1 (fr) 2021-07-22 2021-07-22 Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d’hexanol

Publications (1)

Publication Number Publication Date
WO2023001641A1 true WO2023001641A1 (fr) 2023-01-26

Family

ID=77519351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/069498 WO2023001641A1 (fr) 2021-07-22 2022-07-12 Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol

Country Status (8)

Country Link
US (1) US20240326033A1 (fr)
EP (1) EP4373611A1 (fr)
JP (1) JP2024524748A (fr)
KR (1) KR20240034240A (fr)
CN (1) CN117693395A (fr)
BR (1) BR112023026454A2 (fr)
FR (1) FR3125439A1 (fr)
WO (1) WO2023001641A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519951A (en) 1983-07-05 1985-05-28 Uop Inc. Selective reduction of fatty materials using a supported group VIII metal in eggshell distribution
FR2922784A1 (fr) 2007-10-29 2009-05-01 Inst Francais Du Petrole Catalyseur comprenant du palladium et son application en hydrogenation selective
US20100217052A1 (en) 2007-05-31 2010-08-26 Sud-Chemie Ag Catalyst For The Selective Hydrogenation Of Acetylenic Hydrocarbons And Method For Producing Said Catalyst
CN101890351A (zh) 2009-05-21 2010-11-24 中国石油化工股份有限公司 蛋壳型镍基催化剂
US20120065442A1 (en) 2009-05-07 2012-03-15 Reinhard Geyer Hydrogenation of aromatics and other unsaturated organic compounds
US20150099622A1 (en) * 2013-10-08 2015-04-09 Industry Foundation Of Chonnam National University Selective surface impregnation method for catalytically active materials on particulate catalyst support using mutual repulsive force and soblubility difference between hydrophilic solvent and hydrophobic solvent
FR3099387A1 (fr) 2019-07-31 2021-02-05 IFP Energies Nouvelles Catalyseur comprenant une phase active de nickel repartie en croute
WO2022002674A1 (fr) * 2020-07-03 2022-01-06 IFP Energies Nouvelles Procede de preparation d'un catalyseur d'hydrogenation de composes aromatiques obtenu a partir de sels fondus et un alliage nickel cuivre

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519951A (en) 1983-07-05 1985-05-28 Uop Inc. Selective reduction of fatty materials using a supported group VIII metal in eggshell distribution
US20100217052A1 (en) 2007-05-31 2010-08-26 Sud-Chemie Ag Catalyst For The Selective Hydrogenation Of Acetylenic Hydrocarbons And Method For Producing Said Catalyst
FR2922784A1 (fr) 2007-10-29 2009-05-01 Inst Francais Du Petrole Catalyseur comprenant du palladium et son application en hydrogenation selective
US20120065442A1 (en) 2009-05-07 2012-03-15 Reinhard Geyer Hydrogenation of aromatics and other unsaturated organic compounds
CN101890351A (zh) 2009-05-21 2010-11-24 中国石油化工股份有限公司 蛋壳型镍基催化剂
US20150099622A1 (en) * 2013-10-08 2015-04-09 Industry Foundation Of Chonnam National University Selective surface impregnation method for catalytically active materials on particulate catalyst support using mutual repulsive force and soblubility difference between hydrophilic solvent and hydrophobic solvent
FR3099387A1 (fr) 2019-07-31 2021-02-05 IFP Energies Nouvelles Catalyseur comprenant une phase active de nickel repartie en croute
WO2022002674A1 (fr) * 2020-07-03 2022-01-06 IFP Energies Nouvelles Procede de preparation d'un catalyseur d'hydrogenation de composes aromatiques obtenu a partir de sels fondus et un alliage nickel cuivre

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
J. I. LANGFORDA. J. C. WILSON: "Scherrer after sixty years: A survey and some new results in the détermination of crystallite size", APPL. CRYST., vol. 11, 1978, pages 102 - 113, XP009535077, DOI: 10.1107/s0021889878012844
JANG MIN-SU ET AL: "Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet", APPLIED CATALYSIS A: GENERAL, ELSEVIER, AMSTERDAM, NL, vol. 530, 16 November 2016 (2016-11-16), pages 211 - 216, XP029858638, ISSN: 0926-860X, DOI: 10.1016/J.APCATA.2016.11.025 *
L. SORBIER ET AL.: "Measurement of palladium crust thickness on catalyst by EPMA", MATERIALS SCIENCE AND ENGINEERING, 2012, pages 32
ROUQUEROL J.SINGH K.: "Adsorption by Powders & Porous Solids: Principle, methodology and applications", 1999, ACADEMIC PRESS

Also Published As

Publication number Publication date
KR20240034240A (ko) 2024-03-13
JP2024524748A (ja) 2024-07-05
BR112023026454A2 (pt) 2024-03-05
US20240326033A1 (en) 2024-10-03
EP4373611A1 (fr) 2024-05-29
FR3125439A1 (fr) 2023-01-27
CN117693395A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
EP4003587B1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
EP3740309B1 (fr) Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage
EP4003588B1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
WO2020148132A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
WO2021018601A1 (fr) Catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
WO2021018602A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute
WO2020148131A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation
WO2021018599A1 (fr) Catalyseur comprenant une phase active de nickel sous forme de petites particules et un alliage nickel cuivre
FR3080299A1 (fr) Procede de preparation d'un catalyseur bimetallique d'hydrogenation selective a base de nickel et de cuivre
FR3080300A1 (fr) Procede de preparation d'un catalyseur bimetallique a base de nickel et de platine ou de palladium
WO2023001641A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'hexanol
WO2023001642A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute via impregnation d'heptanol
WO2021018603A1 (fr) Catalyseur comprenant une phase active de nickel soufre repartie en croute
FR3110862A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute
EP4157521A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute
WO2021239491A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus
WO2020148134A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en post-impregnation
EP4157517A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel repartie en croute et un alliage nickel cuivre
FR3110865A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel sous forme de petites particules repartie en croute et un alliage nickel cuivre
FR3110863A1 (fr) Procede de preparation d’un catalyseur comprenant une phase active de nickel repartie en croute obtenu a partir de sels fondus et un alliage nickel cuivre
WO2024017703A1 (fr) Procede de preparation d'un catalyseur comprenant une phase active de nickel et un alliage nickel cuivre
WO2023001639A1 (fr) Procede de preparation d'un catalyseur a partir de sels fondus et d'un support particulier
WO2022002675A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation selective obtenu a partir de sels fondus et un alliage nickel cuivre
WO2020148133A1 (fr) Procede de preparation d'un catalyseur d'hydrogenation des aromatiques comprenant une etape de formation d'un alliage de ni-cu en pre-impregnation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748350

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023026454

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18578519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280050507.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202447003792

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2024503856

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247005458

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005458

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022748350

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022748350

Country of ref document: EP

Effective date: 20240222

ENP Entry into the national phase

Ref document number: 112023026454

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231215