EP3912442B1 - Appareil, système et procédé de fourniture d'identification de section radiale pour la saisie et la mise en place - Google Patents
Appareil, système et procédé de fourniture d'identification de section radiale pour la saisie et la mise en place Download PDFInfo
- Publication number
- EP3912442B1 EP3912442B1 EP20741857.5A EP20741857A EP3912442B1 EP 3912442 B1 EP3912442 B1 EP 3912442B1 EP 20741857 A EP20741857 A EP 20741857A EP 3912442 B1 EP3912442 B1 EP 3912442B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pick
- previous
- circular
- place
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title description 18
- 239000003550 marker Substances 0.000 claims description 11
- 230000015654 memory Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000012545 processing Methods 0.000 description 39
- 230000008569 process Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000007792 addition Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/0015—Orientation; Alignment; Positioning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0096—Programme-controlled manipulators co-operating with a working support, e.g. work-table
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/0061—Tools for holding the circuit boards during processing; handling transport of printed circuit boards
- H05K13/0069—Holders for printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0404—Pick-and-place heads or apparatus, e.g. with jaws
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0812—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
Definitions
- the disclosure relates generally to circuit board manufacturing, and, more particularly, to an apparatus, system, and method of providing radial section identification for pick and place on a circuit board.
- SMT Surface mount technology
- PCBs printed circuit boards
- a circuit board substrate receives a plurality of traces thereon, and thereafter the SMT components are mounted to the surface of the PCB in a manner that provides conductivity through the traces between the SMT components, thereby providing a plurality of complete circuits in which the SMT components can operate.
- SMT component placement systems commonly called “pick-and-place', or “P&P", machines
- P&P pick-and-place machines
- Such pick and place machines are often used for high speed, high precision placing of a broad range of electronic components, such as capacitors, resistors, transistors, and integrated circuits (ICs) onto the PCB.
- the PCB may be used in a computer, a consumer electronic, or industrial, medical, automotive, military and telecommunications equipment.
- Similar pick and place machines are also used for so-called "through hole” components, which are placed within mounting holes in the PCB, and which are thereafter mounted to the PCB.
- the pick and place machine may use several sub-systems to work together to pick up and correctly place the SMT or through-hole components onto the PCB. These systems may use pneumatic suction cups or grips on the robotic arms of the machine to seize the components to be placed, wherein these cups or grips may be attached to a plotter-like device that allows the cups or grips to be accurately manipulated in three dimensions.
- the SMT components are typically placed along the front, back, and/or side faces of the machine to allow for seizure by the robotic arms.
- the components may be supplied on paper or plastic tape, for example, and may be on tape reels that are loaded onto feeders mounted to the pick and place machine. Larger (ICs) may be arranged in trays which are stacked in a compartment of the machine, and more typically-sized ICs in tapes as discussed above.
- Blank PCBs travel along the conveyer into the pick and place machine, and each PCB is then serially clamped in order to be subjected to the cups/nozzles and robotic arms that pick up the individual SMT components from the feeders/trays, rotate them to the correct orientation, and then place them on the appropriate pads on the PCB with high precision.
- pick and place is typically limited to relatively small boards, so as to minimize the need for multiple robots and/or the need to rotate or otherwise move the board to enable pick and place on larger boards.
- Some larger scale boards are subjected to pick and place, but placement of components as and if the board is rotated in such circumstances greatly adds to the complexities of board assembly.
- first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. That is, terms such as “first,” “second,” and other numerical terms, when used herein, do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the exemplary embodiments.
- modules, systems and methods of use are disclosed herein that may provide access to and transformation of a plurality of types of digital content, including but not limited to video, image, text, audio, metadata, algorithms, interactive and document content, and which track, deliver, manipulate, transform, transceive and report the accessed content.
- Described embodiments of these modules, systems and methods are intended to be exemplary and not limiting. As such, it is contemplated that the herein described systems and methods may be adapted and may be extended to provide enhancements and/or additions to the exemplary modules, systems and methods described. The disclosure is thus intended to include all such extensions.
- a rotary table is a precision work positioning device often used in metalworking. It enables drilling, cutting, and component placement exact radial intervals around a fixed axis-typically a fixed center vertical axis.
- a rotary table may be manually or automatically operated. That is, a rotating disc of the table to which the work item is clamped, clipped, or otherwise temporarily attached may rotate freely, may be indexed, i.e., positionally tracked, in an automated manner, or may rotate under manual control, such as under the control of a handwheel attached to a worm gear.
- the workpiece must be accurately centered on the rotary table's center vertical axis, which must, in turn, be centered with the working tool's axis, thereby making the axes coaxial.
- This allows concentric and radial machining operations on the workpiece, as long as the tool axis and the workpiece axis remain coaxial.
- such refined coaxiality is exceedingly difficult to maintain if the workpiece is moved, such as by rotation of the rotary table.
- Figure 1 illustrates a large, substantially circular circuit board 10, such as may be approximately or greater than 1 meter in diameter, for association with a rotation-capable, i.e., a "rotational", table 12 which subjects the illustrated circuit board 12 to at least one pick and place process 14, such as by subjecting the board to one or more pick and place robots.
- a rotation-capable i.e., a "rotational” table 12
- the disclosed embodiments allow for a reorientation, such as a rotation, of the illustrated circuit board 10 by the rotary table 12, while maintaining a strict positional awareness of the board's radial aspects 10a with respect to robots 14 without the need for an extraordinary level of processing by controlling processing system 1312.
- the reorientation of the board 10 discussed throughout may occur manually or automatically without departing from the disclosure. Further, the reorientation discussed throughout, upon execution by the rotational table 12, is presumed to also reorient the illustrated circuit board 10 with respect to the one or more pick and place robots 14 that pick and place components 20, such as SMT components, onto the illustrated board 10.
- a board positional assessment is made using a fiducial provided in association with the board. It is typically the case that this fiducial is at the center of the Board, and as such, as the board is rotated, i.e., moved radially/rotationally, the provided fiducial does not change location, and thereby offers little that is suitable to allow for an automated assessment of board position without significant processing.
- a board such as the one shown may also include a so-called "bad board” marker 22. It is typical that this marker 22 is used to indicate a flawed printed circuit board, such that the board will be discarded or otherwise go unused. Contrary to this known use, some disclosed embodiments use this bad board marker as a fiducial because, unlike the typical center fiducial, the bad board marker provides an off-center fiducial 22 by which the processing system 1312 disclosed herein can divide the board into identifiable quadrants. And, as the bad board fiducial is off-center, the radial quadrants and slices 10a are readily identifiable from this bad board fiducial even as the board is reoriented, such as when the board is being rotated.
- Figure 2 illustrates the association of at least one sensor 100 with a system for viewing and positionally assessing the circuit board 10 discussed herein.
- the sensor 100 sends the data 102 generated from the sensor 100 to at least one processing system 1312.
- the sensor 100 may be, by way of nonlimiting example, an optical camera, and the sensor 100 may particularly assess the position of the off-center fiducial 22 discussed herein.
- the sensor 100 in conjunction with the processing by the processing system 1312, allows for the physical treatment and digital creation of identifiable quadrants (A, B, C, D), halves, or a similar delineation of radial board aspects to be subjected to the picking and placement of components 20 onto the board 10, as performed by the pick and place robots 14 discussed herein. It will be appreciated that, in performance of the processes discussed herein, multiple robots 14 may perform pick and place for any given quadrant or quadrants (or halves, or other sections) simultaneously or independently without departing from the disclosure.
- each quadrant may, in association with one or more algorithms/applications 1490 executed by the processing system 1312, have an algorithmic pattern for the placement of low-profile components, and a second algorithmic pattern for placement of high-profile components, and these algorithmic patterns may be variably keyed to a board position as indicated by the sensor reading of the bad board fiducial (or other off-center fiducial) 22.
- either of the multiple aforementioned robots 14 may perform pick and placed simultaneously in a given quadrant, or in a staggered manner for a given quadrant, based on the positional assessment of each radial section (i.e., quadrants "A", "B", “C”, “D") as indicated to the sensor 100 by the location of the off-center fiducial 22. That is, one robot 14 may place the low-profile components 20a in a quadrant, and one robot 14 may place the high-profile components 20b, or a single robot 14 may place both types of components 20 in a given quadrant. These placements may be keyed algorithmically to the sensed off-center fiducial 22, and may comprise a unique algorithm for each placement quadrant and/or each component(s) 20 to be placed.
- Each unique algorithm 1490 mentioned above may occur during execution of a single program 1490 and/or computing code operation 1490, such as for a particular board type and/or size, as discussed herein throughout.
- the components 20 may be placed in a staggered manner by being subjected to a first quadrant component placement program/algorithm 1490 for low for low-profile components 20 in a quadrant, and then a second high-profile component placement program/algorithm 1490 for high-profile components 20 in the same quadrant, by way of non-limiting example.
- the sensor 100 may renew its viewing of the location of the bad off-center fiducial 22, send this data to the processing system 1312, and accordingly the processing system 1312, using application/program/algorithm 1490, may reassess the positions of each of the four identifiable quadrants (or halves, eighths, etc.) before executing a placement aspect of program 1490.
- quadrant identification using sensor tracking of the bad board marker, or other off-center fiducial 22 may also occur continuously, or may be performed only upon initial association of the circuit board 10 with the rotational table 12, such as for automated embodiments in which the rotational table 12 itself is capable of providing a refined indexing of the board's position at all times to the processing system 1312, and consequently to the pick and place robots 14 executing the placement aspects of program 1490.
- a machine vision sensor may, upon association of an approximately 1 m dia. circuit board with the rotational table in the disclosed system, assess the position of the board based on the location of that board's bad board marker, and consequently may allow for a processing system to generate a precise layout of X and Y coordinates for board locations along the four quadrants discussed herein. This coordinate grid may then be overlayed with a similar global coordinate grid by which the pick and place robots execute component placements.
- this initial machine vision sensing may be repeated each time the board is rotated, such as each time the board is rotated by 90°.
- this machine vision sensing may not be repeated, but instead the indexing of the board automatically by the rotational table may be employed by the processing system to continuously redefine the board quadrants' coordinates for the pick and place robot.
- the exemplary machine vision sensing may operate continuously, such as whether or not the board is continuously rotated, or when the board is discreetly rotated in 45° or 90° increments, by way of nonlimiting example.
- the embodiments may be operable for any rotational table that subjects a circuit board to a pick and place machine.
- manufacture of a series of circuit boards such as using the conveyer pick and place system discussed herein above, needn't be serially stopped if one board in the process needs to be checked and re-inserted. That is, in prior art embodiments, to the extent a board needed to be checked, such as manually or automatically, it has generally been the case that a checked board would often be misloaded back into the assembly-line, which could cause destruction of the board, destruction of components, a decrease in board yield rate, and/or a breakdown of the entire assembly-line.
- the embodiments allow for corrective action even in the event of a misloaded board, at least because the embodiments allow for a sensing of the bad board marker and a consequent reorienting of the component placement coordinates by the processing system each time the board is loaded or reloaded to a rotational table. Therefore, the embodiments ensure proper processing of each board and placement of the components for each board pursuant to corrected execution of the appropriate pick and place program unique to each quadrant of the board and unique to component types within each quadrant. This corrected program execution occurs at least pursuant to the reassessment of the position coordinates of the quadrants, based on sensing of an off-center fiducial, prior to execution of any pick and place programming.
- Figure 3 illustrates a particular exemplary circuit board 10 that may be associated with a rotational table and at least one pick and place robot 14 to which the board 10 is to be subjected. Also illustrated is the disclosed sensor 100 for sensing the off-center fiducial 22, and a processing system 1312 associated with the sensor, wherein the processing system has been preprogrammed with eight programs 300, i.e., two programs per quadrant, and one program for each type of component to be placed in each quadrant, to be executed by a pick and place machine that places the components in each of the four quadrants. More particularly, the illustration shows an execution by the processing system 1312 of distinct low-profile and high-profile placement programs 300 in each quadrant by a pick and place robot 14.
- the sensor 100 has located the bad board marker 22 in a position that the processing system 1312 has associated within its programming as quadrant "B".
- the processing system 1312 assigns its four quadrants in a clockwise fashion, and uses the sensor 100, such as machine vision, disclosed herein to assess into which quadrant the bad board marker 22 falls.
- the X-Y coordinates for placement within that quadrant can then be set by the program 300.
- the processing system 1312 could make this assessment in a different manner, such as always assigning the quadrant in which the bad board marker 22 resides as quadrant "A", by way of nonlimiting example, without departing from the disclosure.
- the program 300/1490 of the processing system 1312 may have multiple, such as two, distinct sub-programs assigned to run in each respective quadrant in order to properly place different component types, such as low-profile and high-profile components, in each distinct quadrant.
- the processing system 1312 may assess the presence of, or the need to move, a particular quadrant to be proximate to and underneath the at least one pick and place robot 14.
- the X-Y placement coordinates may be set for the pick and place robot 14 on the board 10, and the robot 14 may begin execution of one of its programs (or sub-programs) 300/1490 for association with that quadrant, such as executing the low-profile component placement program for that quadrant.
- the entire quadrant may be in position for the pick and place robot to execute the entirety of either or both of its programs for a given quadrant in the foregoing illustration, this may not be the case in some cases. That is, in circumstances where the pick and place robot cannot "reach" certain aspects of a given quadrant, the subject circuit board may be manually or automatically reoriented, such as under the direction of the processing system and such as based on the placement program selected for execution, to place previously unavailable aspects of a given quadrant within reach of the proper pick and place robot--which thus allows for completion of the execution of the given program.
- the subject circuit board may be substantially continuously reoriented, such as at a predetermined rate elected by and/or otherwise known to the processing system, such that new aspects of a given quadrant are substantially continuously moved to within reach of the one or more pick and place robots as components are being placed.
- FIG. 4 depicts an exemplary computer processing system 1312 for use in association with the embodiments, by way of non-limiting example.
- Processing system 1312 is capable of executing software, such as an operating system (OS), applications, user interface, and/or one or more other computing algorithms/applications 1490, such as the recipes, programs and subprograms discussed herein.
- the operation of exemplary processing system 1312 is controlled primarily by these computer readable instructions/code 1490, such as instructions stored in a computer readable storage medium, such as hard disk drive (HDD) 1415, optical disk (not shown) such as a CD or DVD, solid state drive (not shown) such as a USB "thumb drive,” or the like.
- Such instructions may be executed within central processing unit (CPU) 1410 to cause system 1312 to perform the disclosed operations, comparisons and calculations.
- CPU 1410 is implemented in an integrated circuit called a processor.
- processing system 1312 may exploit the resources of remote CPUs (not shown) through communications network 1470 or some other data communications means 1480, as discussed throughout.
- CPU 1410 fetches, decodes, and executes instructions from a computer readable storage medium, such as HDD 1415. Such instructions may be included in software 1490.
- Information, such as computer instructions and other computer readable data, is transferred between components of system 1312 via the system's main data-transfer path.
- the main data-transfer path may use a system bus architecture 1405, although other computer architectures (not shown) can be used.
- Memory devices coupled to system bus 1405 may include random access memory (RAM) 1425 and/or read only memory (ROM) 1430, by way of example. Such memories include circuitry that allows information to be stored and retrieved. ROMs 1430 generally contain stored data that cannot be modified. Data stored in RAM 1425 can be read or changed by CPU 1410 or other hardware devices. Access to RAM 1425 and/or ROM 1430 may be controlled by memory controller 1420.
- RAM random access memory
- ROM read only memory
- Such memories include circuitry that allows information to be stored and retrieved.
- ROMs 1430 generally contain stored data that cannot be modified. Data stored in RAM 1425 can be read or changed by CPU 1410 or other hardware devices. Access to RAM 1425 and/or ROM 1430 may be controlled by memory controller 1420.
- processing system 1312 may contain peripheral communications controller and bus 1435, which is responsible for communicating instructions from CPU 1410 to, and/or receiving data from, peripherals, such as peripherals 1440, 1445, and 1450, which may include printers, keyboards, and/or the operator interaction elements discussed herein throughout.
- peripherals such as peripherals 1440, 1445, and 1450
- PCI Peripheral Component Interconnect
- Operator display 1460 which is controlled by display controller 1455, may be used to display visual output and/or presentation data generated by or at the request of processing system 1312, such as responsive to operation of the aforementioned computing programs/applications 1490.
- visual output may include text, graphics, animated graphics, and/or video, for example.
- Display 1460 may be implemented with a CRT-based video display, an LCD or LED-based display, a gas plasma-based flat-panel display, a touch-panel display, or the like.
- Display controller 1455 includes electronic components required to generate a video signal that is sent to display 1460.
- processing system 1312 may contain network adapter 1465 which may be used to couple to external communication network 1470, which may include or provide access to the Internet, an intranet, an extranet, or the like.
- Communications network 1470 may provide access for processing system 1312 with means of communicating and transferring software and information electronically. Additionally, communications network 1470 may provide for distributed processing, which involves several computers and the sharing of workloads or cooperative efforts in performing a task, as discussed above.
- Network adaptor 1465 may communicate to and from network 1470 using any available wired or wireless technologies. Such technologies may include, by way of non-limiting example, cellular, Wi-Fi, Bluetooth, infrared, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Operations Research (AREA)
- Supply And Installment Of Electrical Components (AREA)
Claims (15)
- Système de placement de composants sur une carte de circuit imprimé circulaire (10) comprenant :une machine de saisie et de placement (14) configurée pour placer des composants sur la carte de circuit imprimé circulaire (10) ;une table rotative (12) configurée pour recevoir et maintenir la carte de circuit imprimé circulaire (10) pour la machine de saisie et de placement (14), où un diamètre de la carte de circuit imprimé circulaire (10) est d'au moins 1 m ;au moins un capteur (100) capable de détecter un repère décentré (22) sur la carte de circuit imprimé circulaire (10) après association avec la table rotative (12) ;au moins un processeur (1410) connecté à au moins une mémoire informatique (1425, 1430) comprenant un code informatique non transitoire qui, lorsqu'il est exécuté par le processeur (1410), est capable d'effectuer les opérations suivantes :réceptionner les données de capteur (102) dudit au moins un capteur (100) indiquant au moins un emplacement physique du repère décentré (22) ;diviser la carte de circuit imprimé circulaire (10) en au moins deux sections radiales (10a) sur la base des données de capteur (102) ;accéder à au moins un programme de placement (1490) pour le placement au moins des premiers composants (20) par la machine de saisie et de placement (14) dans une première desdites au moins deux sections radiales (10a) en fonction de l'emplacement physique du repère décentré (22) ;surveiller toute modification de l'emplacement d'une deuxième desdites au moins deux sections radiales (10a) en fonction des données de capteur (102) de sorte que la deuxième desdites au moins deux sections radiales (10a) se trouve à proximité et sous la machine de saisie et de placement (14) sur la base de la rotation de la table rotative (12) ; etaccéder à au moins un deuxième programme de placement (1490) pour le placement des deuxièmes composants (20) par la machine de saisie et de placement (14) dans la deuxième desdites au moins deux sections radiales (10a) en cas de modification de l'emplacement physique du repère décentré (22).
- Système selon l'une quelconque des revendications précédentes, où le repère décentré (22) comprend un mauvais marqueur de carte.
- Système selon l'une quelconque des revendications précédentes, où ledit au moins un capteur (100) comprend une caméra optique.
- Système selon l'une quelconque des revendications précédentes, où les sections radiales (10a) comprennent des quadrants circulaires.
- Système selon l'une quelconque des revendications précédentes, où la machine de saisie et de placement (14) est configurée pour placer un des composants à profil bas (20a) ou à profil haut (20b) dans la première desdites au moins deux sections radiales (10a).
- Système selon l'une quelconque des revendications précédentes, où ledit au moins un capteur (100) est configuré pour générer en continu les données de capteur (102) ou pour générer les données de capteur (102) uniquement en cas de rotation de la table rotative (12).
- Système selon l'une quelconque des revendications précédentes, où la table rotative (12) comprend en outre un capteur d'indexation, et où le capteur d'indexation indique également l'emplacement physique.
- Système selon l'une quelconque des revendications précédentes, où les placements sont effectués par au moins un robot de la machine de saisie et de placement (14).
- Système selon la revendication 8, où ledit au moins un robot est deux robots.
- Système selon la revendication 9, où les deux robots fonctionnent simultanément ou en décalage.
- Système selon l'une quelconque des revendications précédentes, où ledit au moins un capteur (100) comprend une vision artificielle.
- Système selon l'une quelconque des revendications précédentes, où l'emplacement physique comprend un modèle de coordonnées X et Y
- Système selon l'une quelconque des revendications précédentes, où la table rotative (12) est configurée pour faire pivoter la carte de circuit imprimé circulaire (10) de 90° à chaque rotation.
- Système selon l'une quelconque des revendications précédentes, où la machine de saisie et de placement est adaptée pour acheminer la carte de circuit imprimé circulaire (10) en tant qu'ensemble dans une série d'une pluralité de cartes de circuit imprimé circulaires à travers la machine de saisie et de placement (14).
- Système selon l'une quelconque des revendications précédentes, où ledit au moins un capteur (100) est dirigé uniquement vers une section radiale (10a) desdites au moins deux sections radiales.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962793711P | 2019-01-17 | 2019-01-17 | |
PCT/US2020/013992 WO2020150549A1 (fr) | 2019-01-17 | 2020-01-17 | Appareil, système et procédé de fourniture d'identification de section radiale pour la saisie et la mise en place |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3912442A1 EP3912442A1 (fr) | 2021-11-24 |
EP3912442A4 EP3912442A4 (fr) | 2022-03-09 |
EP3912442B1 true EP3912442B1 (fr) | 2024-04-24 |
Family
ID=71614504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20741857.5A Active EP3912442B1 (fr) | 2019-01-17 | 2020-01-17 | Appareil, système et procédé de fourniture d'identification de section radiale pour la saisie et la mise en place |
Country Status (4)
Country | Link |
---|---|
US (1) | US12004300B2 (fr) |
EP (1) | EP3912442B1 (fr) |
CN (1) | CN113455118B (fr) |
WO (1) | WO2020150549A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116538899B (zh) * | 2023-07-07 | 2023-09-15 | 中国汽车技术研究中心有限公司 | 汽车碰撞假人大腿骨垂直度和角度测量工装及测量方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4080730A (en) * | 1976-09-07 | 1978-03-28 | Usm Corporation | Machine for assembling components |
US5240746A (en) * | 1991-02-25 | 1993-08-31 | Delco Electronics Corporation | System for performing related operations on workpieces |
KR0155793B1 (ko) | 1994-12-28 | 1998-12-15 | 김광호 | 백업핀 설치위치 생성방법 |
JPH0918195A (ja) | 1995-06-30 | 1997-01-17 | Toshiba Corp | 部品装着装置 |
JP2707440B2 (ja) * | 1996-10-07 | 1998-01-28 | 北陸電気工業株式会社 | チップ状絶縁基板の製造方法と装置 |
JP4456738B2 (ja) * | 1999-08-18 | 2010-04-28 | 富士機械製造株式会社 | 電気部品装着位置補正方法および装置 |
US6591219B1 (en) | 1999-08-18 | 2003-07-08 | Fuji Machine Mfg. Co., Ltd. | Method and apparatus for correcting electric-component-mount position |
US6634091B1 (en) * | 2000-02-15 | 2003-10-21 | Samsung Techwin Co., Ltd. | Part mounter |
JP4514322B2 (ja) * | 2000-12-08 | 2010-07-28 | パナソニック株式会社 | 部品実装方法、及び部品実装装置 |
JP4689934B2 (ja) * | 2002-09-03 | 2011-06-01 | 富士機械製造株式会社 | 対基板作業システム |
JP2004281958A (ja) * | 2003-03-19 | 2004-10-07 | Juki Corp | 部品実装方法及び装置 |
JP2005228909A (ja) * | 2004-02-13 | 2005-08-25 | Alps Electric Co Ltd | セラミック基板の製造方法 |
JP4111160B2 (ja) * | 2004-03-26 | 2008-07-02 | 松下電器産業株式会社 | 電子部品搭載装置および電子部品搭載方法 |
US7949425B2 (en) * | 2006-12-06 | 2011-05-24 | Axcelis Technologies, Inc. | High throughput wafer notch aligner |
JP5753021B2 (ja) * | 2011-08-09 | 2015-07-22 | ヤマハ発動機株式会社 | 基板表面実装ライン、および、基板表面実装ラインにおけるバッドマーク検出方法 |
JP6022763B2 (ja) * | 2011-12-07 | 2016-11-09 | 富士機械製造株式会社 | 対回路基板作業機 |
EP3171685B1 (fr) * | 2014-07-18 | 2023-03-15 | FUJI Corporation | Dispositif de montage de composants |
KR20160147481A (ko) * | 2015-06-15 | 2016-12-23 | 한화테크윈 주식회사 | 백업핀 제어 장치 및 방법 |
WO2017122281A1 (fr) | 2016-01-12 | 2017-07-20 | ヤマハ発動機株式会社 | Dispositif de travail de corps de montage |
CN105609496A (zh) * | 2016-03-23 | 2016-05-25 | 天津大学 | 高功率密度cob封装白光led模块及其封装方法 |
JP6527108B2 (ja) * | 2016-05-19 | 2019-06-05 | ファナック株式会社 | 物品搬送装置 |
CN108617164B (zh) * | 2018-04-16 | 2019-08-20 | 上海望友信息科技有限公司 | 光学基准点的挑选方法、系统、可读存储介质及电子设备 |
-
2020
- 2020-01-17 US US17/423,822 patent/US12004300B2/en active Active
- 2020-01-17 WO PCT/US2020/013992 patent/WO2020150549A1/fr unknown
- 2020-01-17 EP EP20741857.5A patent/EP3912442B1/fr active Active
- 2020-01-17 CN CN202080014677.4A patent/CN113455118B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
EP3912442A1 (fr) | 2021-11-24 |
CN113455118A (zh) | 2021-09-28 |
EP3912442A4 (fr) | 2022-03-09 |
CN113455118B (zh) | 2022-07-29 |
US12004300B2 (en) | 2024-06-04 |
US20220117125A1 (en) | 2022-04-14 |
WO2020150549A1 (fr) | 2020-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107160240B (zh) | 机床的机械精度的测定方法和装置 | |
EP3912442B1 (fr) | Appareil, système et procédé de fourniture d'identification de section radiale pour la saisie et la mise en place | |
US10182520B2 (en) | Mounting management device, mounting process device, mounting system, mounting management method, and mounting process method | |
JP6841206B2 (ja) | ロボットシステム及びロボットの制御方法 | |
US20190124807A1 (en) | Assembly System And Assembling Method | |
WO2017196540A1 (fr) | Tranche à auto-étalonnage faisant appel à un capteur | |
US10458772B2 (en) | CMM apparatus for identifying and confirming the stylus | |
CN108292623A (zh) | 晶圆对准方法以及使用该方法的对准设备 | |
EP3906763B1 (fr) | Appareil, système et procédé de fourniture d'un support de carte de circuit imprimé pour un système de saisie et de placement | |
US9880544B2 (en) | Locating a workpiece using a measurement of a workpiece feature | |
CN202634896U (zh) | 视觉辨识组装设备 | |
EP3906760B1 (fr) | Appareil, système, et procédé de fourniture d'un support de carte de circuit imprimé pour système de remplissage sous-jacent | |
US10879096B2 (en) | Die component supply device | |
JP2006237174A (ja) | 部品実装方法 | |
CN113836770B (zh) | 刀具断点恢复加工的方法、装置、计算机设备和计算机可读存储介质 | |
JP6952276B2 (ja) | 電子部品の実装方法 | |
US11321550B2 (en) | Processing apparatus and chuck table | |
US20220087083A1 (en) | Apparatus, system, and method of providing a dispenser of circuit board component underfill | |
JP2023160270A (ja) | 部品実装機、リード部品の位置算出方法およびリード部品の位置算出プログラム | |
JP2017130602A (ja) | 容器方向決定装置、実装機、及び容器方向決定方法 | |
US20220087084A1 (en) | Apparatus, system, and method of providing underfill on a circuit board | |
JP2023172215A (ja) | ロボットシステム、ロボットシステムの制御方法、情報処理装置、情報処理方法、画像処理装置、画像処理方法、物品の製造方法、プログラム、及び記録媒体 | |
WO2019102688A1 (fr) | Procédé de surveillance | |
KR101649424B1 (ko) | 위치 제어 시스템 및 방법 | |
JPS622691A (ja) | 印刷回路板位置決め方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210813 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20220208 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H05K 13/00 20060101ALI20220202BHEP Ipc: H05K 13/04 20060101ALI20220202BHEP Ipc: H05K 13/08 20060101AFI20220202BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231103 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240102 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020029620 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240423 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240424 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1681005 Country of ref document: AT Kind code of ref document: T Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240826 |