EP3906188B1 - Dispositif d'accueil pour un vehicule sous-marin - Google Patents

Dispositif d'accueil pour un vehicule sous-marin Download PDF

Info

Publication number
EP3906188B1
EP3906188B1 EP19829593.3A EP19829593A EP3906188B1 EP 3906188 B1 EP3906188 B1 EP 3906188B1 EP 19829593 A EP19829593 A EP 19829593A EP 3906188 B1 EP3906188 B1 EP 3906188B1
Authority
EP
European Patent Office
Prior art keywords
stop
axis
arm
auv
docking station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19829593.3A
Other languages
German (de)
English (en)
Other versions
EP3906188A1 (fr
EP3906188C0 (fr
Inventor
François CADALEN
Olivier Jezequel
Michaël JOURDAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3906188A1 publication Critical patent/EP3906188A1/fr
Application granted granted Critical
Publication of EP3906188B1 publication Critical patent/EP3906188B1/fr
Publication of EP3906188C0 publication Critical patent/EP3906188C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/42Towed underwater vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/16Arrangement of ship-based loading or unloading equipment for cargo or passengers of lifts or hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/56Towing or pushing equipment
    • B63B21/66Equipment specially adapted for towing underwater objects or vessels, e.g. fairings for tow-cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C7/00Salvaging of disabled, stranded, or sunken vessels; Salvaging of vessel parts or furnishings, e.g. of safes; Salvaging of other underwater objects
    • B63C7/16Apparatus engaging vessels or objects
    • B63C7/20Apparatus engaging vessels or objects using grabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/39Arrangements of sonic watch equipment, e.g. low-frequency, sonar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/16Arrangement of ship-based loading or unloading equipment for cargo or passengers of lifts or hoists
    • B63B2027/165Deployment or recovery of underwater vehicles using lifts or hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/008Docking stations for unmanned underwater vessels, or the like

Definitions

  • the field of the invention is that of devices and methods for handling an autonomous underwater vehicle or AUV (acronym for the Anglo-Saxon expression “Autonomous Underwater Vehicle”) in order to facilitate its recovery on board a supporting vessel, in heavy seas.
  • AUV autonomous underwater vehicle
  • the carrier vessel is, for example, a surface vessel or a submarine.
  • the carrier vessel and the AUV to be recovered on board the carrier vessel are subject to high amplitude movements unless they are equipped with expensive stabilizers.
  • the movements, linked to the swell, are random.
  • the maneuvering capabilities are limited:
  • the AUV has little power, especially at the end of the mission because its autonomy is optimized in relation to its energy carrying capacities.
  • the supporting vessel can maneuver but the maneuvers are heavy and long.
  • AUV recovery techniques on board a carrier vessel can be classified into 2 main families.
  • the AUV In direct capture and recovery solutions on board the carrier vessel, the AUV is “caught” directly from the carrier vessel using a cage, a landing net or pliers for example, or the AUV is positioned itself in a “zone” dedicated to recovery by the supporting building near the latter.
  • These solutions are relatively simple to implement in calm seas but the level of risk for the equipment, and even for the operators, is extremely high as soon as the sea is rough.
  • the AUV is captured by a capture station so that a link is created between the carrier vessel and the AUV then the capture station and the AUV are recovered on board the carrier vessel.
  • This solution is preferentially used in rough seas, because the risk of collision with the ship is greatly reduced or even eliminated.
  • the critical stages in the recovery of an AUV are the stage of creating a link between the carrying vessel and the AUV and the stage of boarding the AUV on board the vessel.
  • a lifting tool such as a crane, available on board for various lifting operations. This lifting tool simply allows the AUV linked to a capture station on board the carrier vessel to be raised from the water surface and then placed on the platform of the carrier vessel.
  • a solution of this type is disclosed in the patent application FR 2931792 , filed by the plaintiff.
  • This solution comprises a recovery pod connected to a ship by a flexible link and comprising a body comprising receiving means having a flared shape capable of receiving the nose of the underwater vehicle, and against which the nose of the AUV comes into abutment during a docking step.
  • the pod includes a spine beam extending above the AUV once the AUV docks.
  • the nacelle is intended to be suspended from a cable in a position in which the beam is horizontal at a predetermined depth for docking of the AUV.
  • the nacelle includes locking means making it possible to secure the AUV to the beam once the AUV has docked.
  • the dorsal beam moves away from the AUV after the effect of the shock.
  • the blocking of the AUV must therefore be carried out as soon as the axes of the AUV and the body are aligned to make the AUV integral with the body before the reception device resumes its initial inclination.
  • the probability of blocking failure is high.
  • the pinning of the dorsal beam on the vehicle is only obtained if the speed of the AUV is sufficiently high at the time of docking, which requires the AUV to retain sufficient energy for docking and therefore to limit the duration of his mission.
  • the space delimited by the reception means is limited and the AUV must be controlled very precisely so that it can position its nose in the reception means, which is a significant disadvantage in the event of large time.
  • An aim of the invention is to limit at least one of the aforementioned drawbacks.
  • the subject of the invention is a reception device for an underwater vehicle according to claim 1.
  • the docking station includes locking means making it possible to make the underwater vehicle, abutting against the stop, integral with the body.
  • At least one arm of the assembly is mounted sliding relative to the stop along the axis so that the arm undergoes a forward translation movement, relative to the stop, when switching from the deployed configuration to the collapsed configuration.
  • the proximal end of the arm is pivotally mounted on a slide mounted sliding relative to the stop so that the distal end is able to approach the axis x, by rotation of the arm relative to the slide, when the slide advances along the axis when switching from the deployed configuration to the folded configuration.
  • the proximal end of at least one arm of the assembly is fixed in translation along the longitudinal axis relative to the stop.
  • the proximal end of the arm is pivotally mounted relative to the stop so that the distal end is able to approach the x axis and advance along the x axis, by rotation of the proximal end by relative to the stop when switching from the deployed configuration to the folded configuration.
  • the body comprises slots elongated along the x axis receiving the distal ends of the arms in the folded configuration.
  • the body comprises a beam extending longitudinally parallel to the longitudinal axis moving away from the stop towards the rear.
  • FIG. 1 there is schematically represented a reception device 1 according to the invention approached by an autonomous underwater vehicle AUV 2 and towed by a carrier vessel 3 which can be a surface vessel, that is to say intended to navigate at the surface of the water, or a submarine.
  • This docking device 1 makes it possible to establish a link between the carrier building 3 and the AUV 2, via a cable 4 connecting the docking station 5 to the carrier building 3.
  • the cable 4 advantageously belongs to the docking device 1. It can be intended to be connected to the docking station 5.
  • the docking device 1 comprises a submersible docking station 5 intended to be mechanically connected to the carrier building 3 so that the carrier building 3 pulls the docking station 5 totally submerged from above the docking station.
  • the supporting building 3 is intended to be located at a shallower depth than the docking station 5 but this is not obligatory, the important thing being that the pulling point Tb of the cable on the supporting building 3 is at a depth less than the pulling point T of the cable on the docking station 5.
  • pulling point also called towing point or "tow point” in Anglo-Saxon terminology, we mean the point on which the cable is intended to exert a tensile force.
  • the docking device 1 comprises, for example, a connecting element 40 connected to the docking station 5 and capable of cooperating with the cable 4 so as to enable the docking station 5 to be connected to the supporting building 3 via the cable 4. Cable 4 is then fixed to the connecting element 40.
  • the connecting element 40 takes up the tensile force F exerted by the cable 4 on the body 7 of the docking station 5.
  • the AUV 2 extends longitudinally along a longitudinal axis x1 of the AUV from a rear part 2AR to a nose 2N comprising the front end 2AV of the AUV 2.
  • the AUV 2 is intended to move mainly along the axis x1, in the direction going from the rear part 2AR to the rear towards the front end 2AV of the underwater vehicle 2.
  • the nose 2N has a flared shape in the direction of the front end 2AV towards the rear part 2AR.
  • This shape is, for example, convex.
  • it has symmetry of revolution around its longitudinal axis x1. It is, for example, generally hemispherical.
  • the AUV 2 comprises a generally cylindrical central part 2C with cylinder axis x1 connecting the nose 2N to the rear part 2AR.
  • the 2AR rear part includes a 2P thruster intended to propel the AUV 2.
  • the body 7 of the docking station 5 extends longitudinally along a longitudinal axis x of the body 7 from a rear end AR to a front end AV.
  • the x axis extends in the direction from rear AR to front AV.
  • the body 7 comprises a beam 8 extending longitudinally parallel to the x axis.
  • front, front, back and back are defined in the direction of the x axis.
  • the top and bottom are defined along a vertical axis of a terrestrial reference frame.
  • the body 7 also includes a stop 9.
  • the beam 8 extends longitudinally from a rear end of the beam 8 towards the stop 9, for example up to the stop 9.
  • the stop 9 is integral with the beam 8.
  • the stop 9 has, for example, a concave shape so as to be able to receive the nose 2N of the AUV.
  • the shape of the stop 9 is, for example, complementary to that of a part of the nose 2N comprising the front end 2AV. This form is not restrictive, it can, by example, alternatively present a crown shape, a plate shape perpendicular to the x axis.
  • the stop 9 can extend continuously over its entire surface or it can have at least one opening (it can for example have the shape of a mesh), it can have a fixed shape or be deformable under the effect of the support of the AUV.
  • the stop 9 makes it possible to block the movement of the AUV relative to the body 7 along the axis x passing through the stop 9, in the direction defined by the axis x (that is to say towards the front AV of the docking station 5), when the nose 2N of the AUV comes to rest against the stop 9, during a docking phase shown on the Figure 3 .
  • the beam 8 moves away from the stop 9 towards the AR end of the body 7 of the docking station 5. In this way, the beam 8 extends facing the AUV 2 when the AUV 2 is in position. abutment against the abutment 9. More precisely, the beam 8 extends opposite a part of the AUV 2 located behind the nose 2N abutting against the abutment 9. The AUV 2 advances along the beam 8 towards the stop 9 to come to bear against the stop 9.
  • the beam 8 and the stop 9 are arranged relative to each other so that the beam 8 extends above the AUV 2 when the nose 2N of the AUV 2 is abutting against stop 9.
  • the buoyancy acting on a body is the result of the difference between the Archimedean thrust and the weight of the body. This force can be directed from bottom to top (positive buoyancy, weight less than Archimedes' thrust) or from top to bottom (negative buoyancy, weight greater than Archimedes' thrust).
  • the totally immersed docking station 5 advantageously has negative buoyancy in the liquid in which it evolves, for example, fresh water or sea water. The docking station 5 is then heavy.
  • the negative buoyancy of the docking station has a positive effect on obtaining a tackle of the docking station on the AUV which is desired and described in the rest of the text because the station has a tendency to sink.
  • This configuration has the advantage of avoiding having to provide means or a hydrodynamic configuration allowing the station to dive, such as for example means for adjusting the buoyancy of the station or adjustable orientation wings which are expensive means. and binding.
  • the docking station 5 has zero or positive buoyancy.
  • the docking station 5 is intended to be towed by the carrier building 3, in the direction from the rear AR to the front AV, when the AUV 2 approaches the stop.
  • the x axis has a preferred direction which allows the AUV to reach the stop more easily.
  • the docking station 5 is hydro-dynamically profiled, and has a center of gravity and a center of hull arranged in a particular way and the pulling point T is capable of occupying a position defined in a particular way so that the docking station 5 has a negative predetermined longitudinal docking attitude (front end AV located at a greater depth than the rear end AR), when the docking station 5 is completely submerged and towed by the supporting building 3 from above at a positive predetermined speed in the direction of the longitudinal axis x as shown in the figure 1, 2a And 2b and 3 .
  • the longitudinal position of the docking station 5 is the position of the body 7 of the docking station on which the traction of the cable is exerted.
  • the longitudinal reception attitude is fixed when the speed is fixed.
  • the position of the hull center of the totally submerged docking station 5 is defined by the shape of the docking station and the position of its center of gravity is defined by the distribution of the masses of the docking station 5.
  • the risk of collision of the beam 8 (in particular the rear end) by the AUV 2 during docking is low.
  • This solution makes it possible to avoid adjusting ballasts or docking with an ascending speed of the AUV 2 which adds complexity to the docking phase.
  • the proposed solution is therefore robust and economical.
  • the beam also has a guiding function for the AUV 2.
  • the pulling point T is able to occupy a reception position located behind the point on which applies the result of gravity, Archimedean thrust and hydrodynamic force.
  • the position of the pulling point T relative to the body 7 along the x axis can be fixed or variable as we will see later.
  • at least one of its positions along the x axis is defined so as to make it possible to obtain the reception position .
  • the docking station 5 is hydrodynamically profiled so that the result of the lift generated by the part of the docking station located behind the docking position of the pulling point is oriented downwards or is zero, when the totally submerged docking station is traced by a surface building in the direction from rear AR to front AV.
  • the docking station 5 is then also in a rolling equilibrium position (zero list).
  • the negative longitudinal reception attitude is obtained mainly by hydrostatic forces.
  • the pulling point is advantageously able to occupy a reception position located behind the point on which the result of gravity and Archimedes' thrust applies.
  • the draw point T is able to occupy a position of the draw point located behind the center of gravity.
  • the docking device is configured so that the pulling point T occupies its docking position when the totally submerged docking station is towed by the supporting building 3 before the AUV 2 comes into abutment against the stop.
  • the beam 8 comes to press against the AUV 2 during a pressing phase, as visible on the figure 4 , under the action of a dynamic effect due to the forward movement of the AUV abutting against the stop 9.
  • This plating is obtained by a rotational movement of the docking station 5 and the beam 8 in the vertical plane.
  • the reception device comprises locking means, for example a set of at least one lock, making it possible to make the body 7 integral with the AUV 2 when the beam 8 is supported against the AUV 2.
  • the AUV 2 is then connected to the supporting building 3 via the cable 4.
  • the locking takes place during a capture phase subsequent to the tackling phase.
  • the docking station is configured hydrodynamically and has a center of gravity and a center of hull arranged so that a first restoring torque is exerted on the totally submerged docking station 5 presenting the longitudinal docking trim.
  • a first restoring torque is exerted on the totally submerged docking station 5 presenting the longitudinal docking trim.
  • the longitudinal reception attitude is advantageously between -15° and -5°.
  • the dorsal beam 8 is pressed against the AUV, as shown in the figure 4 , in a sustainable way.
  • This durable plating provides sufficient time to secure the AUV 2 with the body 7 during a capture phase. The risk of failure to capture the AUV is thus limited.
  • This solution makes it possible to obtain a pinning of the dorsal beam 8 against the AUV 2 even if the speed of the AUV 2 is low at the time of docking, it is enough for the AUV 2 to go slightly faster than the station docking station 5 at the time of docking so as to drive the docking station 5 and relax the cable 4. Once the cable 4 is relaxed, the first hydrostatic torque ensures the pinning of the dorsal beam on the AUV 2.
  • This solution is advantageous since the AUV 2 generally has a limited energy reserve at the end of the mission, at the time of docking. A maximum quantity of energy can thus be used during the mission, the duration of which can thus be increased.
  • the durable tackling effect is obtained when the attitude of the AUV 2 is greater than that of the docking station 5.
  • the tackling effect is therefore obtained in particular when the AUV 2 docks on the docking station 5 with its longitudinal axis x1 horizontal, for example.
  • the docking station is configured so as to undergo a first restoring torque when its longitudinal attitude is zero (horizontal x axis) and the beam 8 is supported against the AUV 2 so as to tend to flatten the beam 8 on the AUV.
  • This provides a durable plating.
  • the balance of the moments applied to the docking station 5 is no longer in relation to the pulling point but is in relation to the point P of the stop 9, on which the AUV 2 is at a stop.
  • the first restoring torque is therefore exerted around a horizontal axis of rotation r represented on the figure 2b passing through the stop 9, for example through the fulcrum P of the AUV 2 on the stop 9 in the direction shown on the Figure 3 .
  • This point P is a point of the stop.
  • the point P is for example that on which the result of the support force of the vehicle on the stop 9 is intended to be exerted when the axes x and x1 are parallel.
  • the first return torque tends to rotate the beam 8 around the axis of rotation r so as to lower the rear end AR relative to the stop 9.
  • the reception position of pulling point T is advantageously behind the stop 9, preferably behind the point P.
  • This solution is simple and makes it possible to avoid having to provide complex means using hydrodynamics to obtain the first restoring torque.
  • the docking station is hydrodynamically profiled so that the effect of the hydrodynamic forces on the plating is negligible, that is to say that the resultant of the moments of the hydrodynamic forces relative to the stop is substantially zero when the station reception presents the reception longitudinal attitude and/or a zero attitude.
  • the first return torque is then substantially a first hydrostatic return torque.
  • the durable tackle is then independent of the speed (difference between the horizontal speed of the AUV and that at which the docking station is towed at the moment when the AUV comes to rest against the stop 9) and is obtained, even when the speed is high.
  • a negligible hydrodynamic effect can, for example, be obtained by providing a set of at least one rear tail arranged near the rear rear of the station configured to generate downward lift.
  • the tail must be sized for this purpose according to the rest of the docking station.
  • the docking station advantageously has a center of gravity and a center of hull arranged so that a first hydrostatic return torque is exerted on the totally submerged docking station 5 presenting the longitudinal attitude of reception when the AUV 2 is abutting against the stop 9, as shown on the Figure 3 , so as to press the dorsal beam 8 against the AUV 2, by rotation of the docking station 5 relative to the AUV 2 in a vertical plane defined in the terrestrial reference frame.
  • This ensures durable tackling at least at low speeds.
  • the first hydrostatic return torque experienced by the docking station 5 around the axis of rotation r passing through P is the sum of the torque linked to gravity exerted on the docking station 5 around the same axis and the torque linked to gravity to the Archimedean thrust exerted on the docking station 5 around the same axis.
  • the shape of the docking station 5 and the distribution of the masses of this docking station 5 are defined so that the positions of the center of gravity and the center of hull of the docking station 5 induces this first hydrostatic return couple.
  • the mass of the docking station 5 generates a downward force applied to the center of gravity and the volume generates an upward force (Archimedes' thrust) applied to the center of the hull.
  • This solution has the advantage of being simple, safe and inexpensive. Being passive, this solution does not require a balancing device with variable density of the ballast type to ensure alignment against the AUV.
  • the center of gravity and the center of the hull of the body 7 of the totally submerged docking station 5 occupy fixed positions.
  • One of the possibilities for obtaining the first hydrostatic torque which ensures the desired plating is to configure the docking station 5 so that the center of gravity of the docking station 5, and possibly that of the body 7, is placed behind the stop 9, or behind the point P.
  • the position of the center of the hull of the docking station 5, and possibly that of the body 7, can be placed in front of the stop 9, or in front of the point P, along the longitudinal axis x of the docking station 5
  • the position of the center of the hull has a significant effect only if the docking station is light.
  • the docking station is very heavy, we can consider a hull center located behind the stop or even behind the center of gravity.
  • the center of gravity and hull are arranged so that the docking station always undergoes the first hydrostatic return torque when its longitudinal attitude is zero (horizontal x axis) and the beam 8 is supported against the AUV 2 .
  • first return torque or the first hydrostatic return torque is exerted on the docking station when the cable does not exert traction on the docking station 5.
  • the docking station 5 is then pushed forward by the AUV.
  • the cable is relaxed.
  • the docking station 5 can undergo but no longer necessarily undergoes this first return torque or this first hydrostatic return torque once the cable tows the docking station 5 again.
  • the body 7 may include a tailplane 10 located behind the stop 9.
  • the tailplane 10 is arranged near the rear end of the beam 8 or at the end of the beam 8, near the rear AR of the body 7.
  • This tailplane is configured to generate downward lift. It is then possible to play on the density of the tail to influence the position of the center of gravity of the station.
  • the body 7 of the docking station 5 comprises an inverted V tailplane 10 comprising two individual tailplanes 10a, 10b each forming one of the branches of the inverted V.
  • the center of gravity and the center of hull of the docking station 5 or the body 7 are arranged so that the docking station 5 has a positive longitudinal attitude in equilibrium when subjected only to Archimedes' thrust and gravity. This helps promote tackling.
  • the longitudinal attitude at equilibrium is, for example, zero.
  • FIG 5 represents, schematically in view from behind the docking station and the AUV 2 in the configuration of the figure 4 .
  • the AUV 2 abuts against the stop 9, its longitudinal axis x1 being coincident with the axis x.
  • the longitudinal axis x passes through the point P. It is intended to carry the reaction of the stop 9 to the support of the AUV 2 on the stop 9.
  • the docking station 5 is configured so that its center of gravity and its center of hull are arranged so that when the AUV 2 abuts against the abutment 9 and the dorsal beam 8 is pressed against the AUV 2, the docking station 5 being completely submerged, a second hydrostatic return torque is exerted on the docking station 5 around the longitudinal axis x when the longitudinal axis x is horizontal so that the docking station 5 presents a stable equilibrium position in rotation around the longitudinal axis x relative to the AUV 2 as shown on the figures 4 and 5 .
  • the second hydrostatic return torque prevents the docking station 5 from tilting to the side statically, that is to say prevents the rotation of the docking station 5 relative to the AUV 2 around the longitudinal x axis.
  • the position of the docking station 5 shown on the figures 4 and 5 is stable in rotation around the longitudinal axis x.
  • the docking station 5 is configured so that its center of gravity and its center of hull are arranged so that when the AUV 2 abuts against the stop 9 and the totally submerged docking station 5 presents a zero trim and preferably when the trim is between a trim between the home trim and a zero trim, a second hydrostatic return is exerted on the docking station 5 around the longitudinal axis x so that the docking station 5 has a stable equilibrium position in rotation around the longitudinal axis x relative to the AUV 2 which makes it possible to avoid tilting of the docking station 5 before it comes to land on the AUV.
  • the stable equilibrium position is the rolling equilibrium position.
  • This position is for example a zero list position in which a vertical plane comprises the longitudinal axis x which is the roll axis and constitutes an axis of symmetry of the docking station 5.
  • a vertical plane comprises the longitudinal axis x which is the roll axis and constitutes an axis of symmetry of the docking station 5.
  • the center of gravity and the center of the hull belong to the same vertical plane containing the x axis.
  • the docking station 5 has a non-zero list of a few degrees in the rolling equilibrium position.
  • This rolling stability makes it easier to recover the AUV because the station also occupies this stable rolling position before the AUV docks.
  • the vertical plane is a plane of symmetry of the inverted V tail which sits astride the AUV when the docking station is pressed against the AUV as visible on the figure 5 .
  • the center of gravity of the docking station 5 is offset vertically relative to the hull center of the docking station 5, when the beam 8 is pressed against the AUV abuts against the stop 9 and the longitudinal attitude of the docking station is the zero trim and preferably when it is between the docking trim and the zero trim.
  • the center of gravity is located below the center of the hull when the trim of the docking station is zero and preferably when it is between the docking trim and the zero trim or at least when the base is zero. This makes it possible to obtain the equilibrium position in roll when the cable is slack.
  • the center of gravity is below the x axis, when the attitude of the docking station is between the docking attitude and zero attitude or at least when the base is zero.
  • the docking station 5 (or the body 7 of the docking station) comprises an upper part PS located above a horizontal plane H containing the horizontal x axis and a lower part PI located below the horizontal plane when the docking station 5 is in its stable equilibrium position.
  • the mass distribution of the docking station 5 is chosen so that the mass of the lower part PI is greater than that of the upper part PS.
  • the center of gravity is located under the x axis.
  • the shape of the dock is defined so that the hull center is located above the center of gravity.
  • the volume of liquid displaced by the upper part PS can for example be equal to the volume of liquid displaced by the lower part.
  • each individual tailplane 10a, 10b extends from the beam 8 to a lower end of the individual tailplane 10a, 10b located in the lower part PI of station 5, that is to say say deeper than the x axis when the longitudinal axis is horizontal and the supporting structure 5 is in the stable equilibrium position.
  • This configuration allows the position of the center of gravity to be lowered. It is possible to adjust the mass of the tailplanes to place the center of gravity as low as possible. For example, we can consider placing ballast at the lower end of each individual empennage.
  • the reception device allows a simple, passive and robust capture process.
  • the beam 8 and the stop 9 are arranged relative to each other so that the dorsal beam extends below the AUV 2 when the nose of the AUV abuts against the stop 9.
  • the pulling point T is able to move along the longitudinal axis (x) relative to the body 7.
  • the mobility of the firing point makes it possible to adapt the attitude of the docking station according to its speed, its state (with or without AUV) or the phase of the mission (Capture of the AUV or recovery of the station on board the ship). This helps minimize the impact of ship movements linked to swell by releasing or regaining tension in the cable.
  • the pulling point T is able to slide along the axis x relative to the body 7.
  • the cable is for example fixed to a stirrup 40 pivotally mounted around an axis of rotation y relative to the body 7, the axis of rotation y being mounted sliding relative to the body 7 along an axis x2 parallel to the longitudinal axis x.
  • the body 7 comprises for example a guide groove 41 extending longitudinally parallel to the axis x and receiving the axis of rotation y.
  • An actuator for example a hydraulic cylinder, an electric cylinder or a rack system can make it possible to slide the axis y relative to the body 7. Note that, except very rapid dynamics, the traction force is always oriented in the same direction along the x axis.
  • a single-acting cylinder may be sufficient.
  • a double-acting cylinder can be interesting if rapid control is desired.
  • the cable 4 is connected to the body 7 of the docking station 5 so that the pulling point T advances along the axis x relative to the body 7, when the AUV 2 abuts against the stop 9, for example under the effect of the AUV pressing on the stop 9.
  • the adjustment means are configured to advance the firing point along the axis x relative to the body 7, when the AUV 2 abuts against the stop 9. This makes it possible to accelerate the plating of beam 8 on the AUV 2 and to minimize the power requirement of the AUV.
  • the cable 4 is connected to the body 7 of the docking station 5 so that the pulling point T is positioned along the axis x relative to the body 7 in a position for receiving the pulling point T such that the docking station 5 has a negative longitudinal attitude, when the totally submerged docking station is towed by the supporting building before the AUV comes into abutment against the AUV (before docking).
  • This firing point reception position is advantageously behind the stop 9.
  • the reception device 1 comprises adjustment means making it possible to adjust the position of the draw point T relative to the body 7 along the x axis.
  • the adjustment means can be passive (without control means of the type program) or active (controlled remotely by an operator or by station control means).
  • the passive adjustment means may include a spring located behind the draw point, linked to the beam and linked to the draw point which is in a slide.
  • the position of the draw point, compressed spring is maintained by a trigger which is linked to stop 9 which is triggered by the AUV pushing on stop 9: the spring then relaxes and pushes the draw point forward.
  • the docking station 5 comprises a guide device 50 comprising a set E of guide arms 51 arranged around the stop.
  • the assembly E of arms 51 capable of being in a deployed configuration shown on the figures 2a , 2b, 3 , 6a and 6b in which it makes it possible to guide the AUV 2 towards the stop 9.
  • the deployed configuration of the arms is stable in the absence of AUV resting on the guide structure.
  • the assembly of arms delimits a first volume capable of receiving the nose 2N of the AUV 2 and flaring away from the stop 9 along the axis x towards the rear so as to allow guide the AUV 2 towards stop 9 to switch from the configuration of the figure 1 to that of the Figure 3 during the docking phase during which the arm assembly E is in the deployed configuration.
  • each arm 51 of the arm assembly E has a distal end ED and a proximal end EP referenced on a single arm of the Figure 6 to clarify more.
  • Each arm 51 of the set of arms E is connected to the body 7 by its proximal end EP.
  • each arm 51 of the assembly E is located behind the proximal end EP.
  • the distal end ED is closer to the rear end AR of the body 7 than a proximal end EP of the arm by which the arm is connected to the body 7.
  • the set of arms E can be fixed or comprise a single stable configuration which is the deployed configuration.
  • the arm assembly 51 is capable of being in a folded configuration as visible in figures 7a and 7b .
  • the arms advantageously pass from the deployed configuration to the folded configuration, during a folding phase of the assembly E implemented after the docking phase and preferably after the tackling and/or capture phase of the AUV 2.
  • each distal end ED is closer to the x axis than in the deployed configuration.
  • the distal end ED of each arm 51 approaches the axis x from its position in the deployed configuration to its position in the folded configuration.
  • the folded configuration makes it possible to make the docking station 5 more compact outside of the docking and capture phases so as not to clutter the deck of the carrier vessel. It makes it possible to provide arms of significant length which can thus delimit, in the deployed configuration, a first volume of significant size, in a so-called transverse plane, perpendicular to the x axis which ensures guidance of the AUV towards the stop 9 with a large tolerance on the trajectory of the AUV. This also makes it possible to guide the AUV over a significant distance along the x axis.
  • the reception device comprises locking means capable of cooperating with the AUV to make the AUV integral with the body 7 of the reception structure 5 during a capture phase.
  • the locking means are configured to make it possible to make the body 7 integral with the AUV 2 when the arms are in the deployed configuration and/or when the arms are in the folded configuration.
  • These locking means can be present even in the absence of the guiding device.
  • the locking means may comprise at least one lock 43, an example of which is shown in figure 7c , comprising a hook 44 capable of being in a retracted position inside the body 7, for example inside the beam 8, and in an extended position shown in figure 7c , in which it is able to penetrate the body of the AUV so as to cooperate with a fastener 45 of the AUV to keep the body of the station fixed relative to the body of the AUV.
  • This type of locking means is absolutely not restrictive.
  • the docking station can for example include arms capable of surrounding the body of the AUV so as to block the body of the AUV relative to the body of the docking station 5.
  • the reception device advantageously forms part of a recovery device 100 comprising handling means 102 shown on the figure 8a comprising means for winding the cable 4, such as for example a winch, during a winding phase subsequent to capture until the capture station 5 comes to rest on a support 101 of the handling means 102.
  • the support 101 makes it possible to block the translation movement of the capture station and of the AUV secured to the body of the capture station upwards. It can also prevent the vehicle from pivoting around a vertical axis.
  • the handling means 102 further comprise movement means 103 making it possible to move the docking station 5 linked to the AUV and resting on the support 101 to place it on a support of the vehicle 104.
  • the movement means 103 include for example a crane from which the support 101 comprising articulated arms is suspended.
  • the movement means comprise drive means making it possible to pivot an arm 105 of the crane, from which the support 101 is suspended, around a horizontal axis to bring the AUV linked to the capture station 5 facing the support , as shown in figure 8b , and means for lowering the support 101 so as to place the AUV linked to the capture station on a support 106 of the AUV.
  • the support 106 has a support surface 107 of shape substantially complementary to the central part 2C of the AUV 2, that is to say of the shape of a portion of a cylinder.
  • the assembly E of arms 51 delimits a volume of reduced size in the transverse plane which makes it possible to facilitate the handling and storage of the capture station on board the carrier vessel 3.
  • Folding the arm assembly E 51 after capturing the AUV 2 makes it easier to handle. Indeed, it is possible to place the AUV 2 on a vehicle support having a simple shape complementary to that of the AUV 2, for example a shape of a portion of a cylinder by resting the whole or a large part of the length of the cylindrical part of the AUV on the vehicle support, while limiting the risks of tipping of the AUV likely to be induced by the docking station and thus improve its stability. Furthermore, it is possible to place the AUV on its support directly with the crane or gantry having lifted the reception device. It is not necessary to first separate the AUV from the body 7 of the docking station 5. Handling is thus greatly simplified compared to a cage or a landing net which requires a tedious step of extracting the 'AUV of the reception device before placing it on its support.
  • the folding of the arms is particularly advantageous in the case of a beam 8 extending on top of the AUV but can be advantageous in the case of a beam extending on the underside of the AUV.
  • each arm 51 of the arm assembly E or at least one arm of the arm assembly is folded against the body 7 in the folded configuration.
  • This configuration ensures good compactness in the folded configuration and improves the stability of the AUV on its support.
  • each arm 51 of the arm assembly E or at least one arm extends longitudinally substantially parallel to the longitudinal axis x in the folded configuration.
  • the assembly of arms delimits a volume having substantially the shape of a portion of a cylinder in the folded configuration. This configuration ensures good compactness in the folded configuration and further improves the stability of the AUV on its support.
  • each distal end ED In the folded configuration, each distal end ED is in front of the position it occupies in the deployed configuration. In other words, when folding the arms the distal end ED of each arm 51 advances, along the x axis and in the direction of the x axis, from its position in the deployed configuration to its position in the folded configuration .
  • the length, along the x axis, of the volume delimited by the set of arms E along the x axis behind the stop 9 is reduced or canceled if the arms 51 extend totally forward of stop 9 in the folded configuration.
  • This particular kinematics of the arms 51 makes it possible to at least partially release the perimeter of the AUV 2 after capture, by folding all of the arms.
  • This configuration is particularly advantageous in the case where the beam is arranged in relation to the stop so as to be intended to be above the AUV abutting against the stop 9. It makes it possible to reduce or avoid the masking of a sensor or antenna placed on the belly or sides of the AUV, for example, a sonar intended to image the seabed.
  • the AUV 2 can therefore continue its mission, for example a sonar imaging mission, even after docking. This characteristic is of interest when the AUV is attached to the docking station 5 only temporarily, for example, for the purpose of recharging its batteries and/or retrieving data.
  • This reasoning also applies in the case of a beam 8 arranged in relation to the stop 9 so as to be intended to be below the AUV abutting against the stop, for example to avoid masking sensors or antennas located on the top or sides of the AUV.
  • the distal end ED of each arm advances forward while remaining permanently behind the proximal end EP, when moving from the deployed configuration to the folded configuration.
  • each arm 51 of the assembly is mounted on the body 7 of the docking station so that the arm 51 advances forward, relative to the stop 9, when changing from the deployed configuration to the folded configuration .
  • each arm 51 is mounted sliding relative to the stop 9 along the x axis so that the arm 51 undergoes a forward translation movement, relative to the stop 9, when passing through the deployed configuration of the figure 9a to the folded configuration of the figure 9d passing through the successive intermediate configurations of successive figures 9b and 9c.
  • each arm 51 undergoes a forward translation movement along the x axis, relative to the body 7, when passing from the deployed configuration to the folded configuration.
  • the distal end ED of each arm 51 remains behind its proximal end EP when moving from the deployed configuration to the folded configuration
  • the proximal end EP of the arm 51 is pivotally mounted on a slide 52 mounted sliding relative to the stop 9 along the x axis so that the distal end ED is able to approach the x axis , by rotation relative to the slide 52, when the slide 52 advances along the axis x during the passage of the deployed configuration of the figure 9a to the folded configuration of the figure 9d .
  • the guide device advantageously comprises drive or coupling means making it possible to generate simultaneously with a movement of the slide 52 forward AV, the rotation of the arm around the axis of the pivot connection connecting the proximal end EP to the slide 52 in a defined direction so that the distal end ED of the arm 51 approaches the x axis and vice versa.
  • the proximal end EP of each arm 51 is mounted on a slide 52 mounted sliding relative to the body 7 of the docking station along the longitudinal axis x.
  • the proximal end EP of each arm 51 is mounted on the slide 52 by a pivot connection fixed relative to the slide 52 and the axis of rotation of the pivot connection substantially tangential to the x axis.
  • the drive means comprise forks 53 in the form of connecting arms distributed angularly around the longitudinal axis x. Each fork 53 is connected to one of the arms 51.
  • a first longitudinal end E1 of the fork 53 coupled to an arm 51 is connected to the arm 51 by a first pivot connection with an axis substantially tangential to the x axis disposed between the end proximal EP and the distal end ED of the arm 51.
  • a second longitudinal end E2 of the fork 53 is connected to the body 7 by a second pivot connection with an axis substantially tangential to the axis x.
  • the second end E2 of the fork is arranged behind the slide 52 along the x axis.
  • each of the arms is mounted on a connecting rod which causes it to move along a curved line when moving from the deployed position to the folded position.
  • Each arm advances forward relative to the stop, when moving from the deployed position to the folded position, but the movement of the proximal end is not a sliding movement along the x axis.
  • the arms have, for example, a variable length, they are mounted on the body 7 and controllable, and preferably, controlled so that the distal ends ED of the arms advance when passing from the deployed configuration to the folded configuration.
  • each arm is connected to the body by its proximal end EP.
  • the proximal end EP is fixed in translation along the longitudinal axis x, relative to the body, and pivotally mounted relative to the stop so that the distal end ED approaches the axis x by rotation of the end proximal to the stop, when moving from the deployed configuration to the folded configuration, and each arm is controlled so that its distal end ED advances when moving from the deployed configuration to the folded configuration.
  • each arm is controlled so that its length decreases as the distal end approaches the x axis.
  • each arm 151 is connected to the body 7 by its proximal end EPb.
  • the proximal end EPb is fixed in translation along the longitudinal axis x relative to the body 7.
  • the proximal end EPb of the arm 151 is pivotally mounted relative to the stop 9 so that the distal end EDb is able to approach or approach the x axis and to advance along the x axis, by rotation of the end proximal EPb relative to the stop 9 when passing the deployed configuration of the figure 10a to the folded configuration of Figure 10f.
  • each arm 151 is connected to the body 7 by a pivot connection with an axis of rotation fixed relative to the body 7 and arranged so that the rotation of the arm 151 around this axis of rotation causes the end to pass distal EDb from its position in the deployed configuration, in which the end EDb is behind the proximal end EPb and at a first distance from the x axis, to its position in the folded configuration in which it is located in front of the distal end EDb at a second distance from the x axis less than the first distance.
  • the proximal end EPb is located between the position of the distal end EDb in the deployed configuration and the position of the distal end EDb in the folded configuration along the x axis.
  • the arms 151 turn around.
  • the assembly E' of arms 151 passes from the deployed configuration, in which the arms 151 delimit a volume flaring towards the rear of the body 7 to an intermediate configuration in which they delimit a volume flaring towards the front AV , the distal ends EDb of the arms 151 then approaching the x axis to reach the folded configuration.
  • the guiding device comprises drive means making it possible to ensure the folding of the arm assembly from its deployed configuration and vice versa.
  • the axis of rotation is, for example, tangential to the x axis.
  • the drive means comprise a slide 152 slidably mounted on the body 7 along the longitudinal axis x and forks 153, in the form of connecting arms, distributed angularly around the axis x.
  • Each fork is connected to one of the arms.
  • a first longitudinal end E1b of the fork 153 is connected to one of the arms 151 by a pivot connection with an axis substantially tangential to the axis x disposed between the proximal end EPb and the distal end EDb of the arm 151.
  • a second end longitudinal E2b of the fork 153 is connected to the slide 152 by a pivot connection with an axis substantially tangential to the x axis.
  • the slide 152 is arranged in front of the proximal end EPb of the arm 151 along the x axis. In this way, when the set of arms is in the deployed configuration, a translation of the slide 152 towards the front of the body 7 causes, through the articulations of the fork 153 to the slide 152 and to the arms 151, the rotation of the arms around of their respective axes of rotation relative to the body 7 from their respective positions in the folded configuration to their respective positions in the folded configuration.
  • the drive means comprise an actuator configured to drive the nut 52 or 152 in translation along the x axis relative to the body 7 so as to pass all of the arms from the folded configuration to the deployed configuration.
  • the actuator is for example of the hydraulic or electric cylinder type or of the torque motor type.
  • the slide 52, 152 has, for example, substantially the shape of a circular ring arranged in a plane perpendicular to the axis x, the axis x passing through the center of the ring, the proximal ends EP, EPb are by example distributed on the circle perpendicular to the x axis and centered on the x axis.
  • the forks 53, 153 all have the same length and the first ends of the forks are distributed over a circle perpendicular to the axis x passing through the center of the circle and the second ends of the forks are distributed over another circle perpendicular to the axis x passing through the center of the circle.
  • the arms are all the same length.
  • the arms and/or forks may have different lengths, the proximal ends and forks are not necessarily distributed over circles, the nut does not necessarily have the shape of a ring and the axes of the pivot connections are not not necessarily tangential to the x axis.
  • Different arms can also be connected differently to the body 7 and driven by different drive means.
  • the body 7 comprises slots F visible in figures 10c And 10d extending longitudinally parallel to the x axis in which the distal ends EDb of the arms are housed, 151 in the folded configuration.
  • This makes it possible to promote the compactness of the assembly, to improve the balance of the AUV on a support of complementary shape and it makes it possible to protect the arms 151 from shocks during the recovery of the guiding device by a crane-type device and when placing the AUV on a support.
  • Slots may also be present in the embodiment of the figures 9a to 9d .
  • the arms 151 are entirely housed in the slots in the folded configuration.
  • the arms 51, 151 are mounted on the body 7 so as to extend essentially in front of the stop 9 in the folded configuration of the figure 9d , 10th .
  • the arms 51, 151 extend essentially behind the stop 9 in the deployed configuration of the figure 9a , 10a .
  • the first embodiment is particularly advantageous. It consumes little energy because, when moving from the deployed configuration to the folded configuration, the arms do not pass through an intermediate position in which they are substantially perpendicular to the x axis and therefore to the flow of the water around the station. However, this position is the one where the drag is the greatest.
  • This solution also makes it possible to limit the instabilities of the recovery station after recovery of the underwater vehicle and during the folding and deployment phases of the arms. Furthermore, this solution limits the risk of marine bodies getting caught on the arm. These bodies could weaken the arms, prevent the passage and recovery of an underwater vehicle between the arms or destabilize the recovery station before and after recovery of the underwater vehicle. This solution is therefore robust.
  • This solution also has the advantage of being compact. It can be operated in a compact manner, for example, during testing or maintenance phases, when the docking station is on board the carrier vehicle or in a workshop.
  • the assembly E of arms 51 comprises a set of at least one lower arm BI belonging to the lower part PI in the deployed configuration and having a density greater than 1 kg/m3. This feature helps limit the risk of the docking station tipping over.
  • the set of arms 51 comprises a set of at least one upper arm BS belonging to the upper part PS in the deployed configuration
  • the average density of each arm of the set of at least one lower arm is greater than the average density of each arm of the set of at least one upper arm. This feature further limits the risk of the docking station tipping over.
  • the arms have a fixed length.
  • the arms have a variable length.
  • the length of each arm is adjustable independently of the inclination of the arm relative to the x axis, that is to say independently of the distance separating the distal end of the arm from the x axis, and the assembly is capable of being in several deployed configurations. This allows you to choose the opening and the length, along the x axis, of the volume delimited by the arms depending on the sea state. In rough seas, it is possible to increase the length of this volume.
  • the arms are, for example, telescopic.
  • the arm assembly may comprise at least one arm whose kinematics conform to the first embodiment and/or at least one arm whose kinematics conform to the second embodiment.
  • the guiding device may include only the arm assembly capable of being in the deployed configuration and in the folded configuration.
  • the guiding device may comprise another set of at least one fixed guide arm making it possible to guide the underwater vehicle towards the stop.
  • the invention also relates to an underwater assembly comprising the AUV and the docking device.
  • the docking station advantageously has a length similar to or greater than that of the AUV.
  • the mass of the AUV is preferably higher than that of the docking station.
  • the docking station shown in the figures is towed by the supporting building 3 via a cable 4.
  • the docking station is fixed to the hull of the supporting building or connected to the supporting building via an arm.
  • the underwater vehicle comprises one or more sonar antennas.
  • the underwater vehicle may comprise at least one sonar antenna for receiving acoustic signals and/or at least one sonar antenna for transmitting acoustic signals.
  • At least one sonar antenna is arranged so that the arms of the set of arms are unable to be located in a coverage zone of the antenna, that is to say facing the antenna, when the antenna abuts against the stop, the arm assembly being in the folded configuration.
  • coverage area we mean an area in which the antenna is intended to transmit or receive acoustic signals.
  • the sonar antenna considered is arranged so as to be able to be located facing at least one of the arms of the assembly, when the underwater vehicle abuts against the abutment, when the arms are located in the deployed configuration.
  • This ability may depend on the heel of the underwater vehicle and the docking station when the underwater vehicle is abutting against the stop.
  • at least one of the arms is facing the sonar antenna, that is to say in a coverage zone of the sonar antenna, when the set of arms is in deployed configuration, the vehicle under sailor being abutted against the abutment, the underwater vehicle and the docking station each having a predetermined list, each arm being located outside the coverage zone of the antenna when the set of arms is in configuration folded, the underwater vehicle being abutting against the stop, the underwater vehicle and the docking station each having the predetermined list
  • the kinematics of the arms according to the invention are particularly adapted to this configuration.
  • the invention then makes it possible to continue the sonar mission using the sonar antenna even when the arms are in the folded configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Electric Cable Installation (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

  • Le domaine de l'invention est celui des dispositifs et des procédés de manutention d'un véhicule sous-marin autonome ou AUV (acronyme de l'expression anglo-saxonne « Autonomous Underwater Vehicle ») afin de faciliter sa récupération à bord d'un bâtiment porteur, par mer formée. Le bâtiment porteur est, par exemple, un bâtiment de surface ou un sous-marin.
  • Par mer formée, le bâtiment porteur et l'AUV devant être récupéré à bord du bâtiment porteur sont animés de mouvements de forte amplitude à moins d'être équipés de stabilisateurs coûteux. Les mouvements, liés à la houle, sont aléatoires.
  • Par ailleurs, les capacités de manoeuvre sont limitées : L'AUV dispose de peu de puissance, surtout en fin de mission car son autonomie est optimisée en regard de ses capacités d'emport d'énergie. Le bâtiment porteur peut manoeuvrer mais les manoeuvres sont lourdes et longues. Les techniques de récupération d'AUV à bord d'un bâtiment porteur peuvent être classées dans 2 grandes familles.
  • Dans des solutions de capture et récupération directes à bord du bâtiment porteur, l'AUV est « attrapé » directement depuis le bâtiment porteur à l'aide d'une cage, une épuisette ou une pince par exemple, ou bien l'AUV se positionne lui-même dans une « zone » dédiée à la récupération par le bâtiment porteur à proximité de ce dernier. Ces solutions sont relativement simples à mettre en oeuvre par mer calme mais le niveau de risque pour le matériel, voire pour les opérateurs est extrêmement élevé dès que la mer est formée.
  • Dans des solutions de capture préalable, l'AUV est capturé par une station de capture de sorte qu'un lien est créé entre le bâtiment porteur et l'AUV puis la station de capture et l'AUV sont récupérés à bord du bâtiment porteur. Cette solution est utilisée préférentiellement par mer formée, car le risque de collision avec le navire est largement réduit voir annulé.
  • Les étapes critiques de la récupération d'un AUV sont l'étape de création d'un lien entre le bâtiment porteur et l'AUV et l'étape d'embarquement de l'AUV à bord du navire. On utilise généralement un outil de levage, de type grue, disponible à bord pour des opérations de levages diverses. Cet outil de levage permet simplement de remonter l'AUV lié à une station de capture à bord du bâtiment porteur depuis la surface de l'eau puis de le déposer sur la plateforme du bâtiment porteur.
  • On connaît des solutions dans lesquelles on vient établir le lien physique entre l'AUV et le bâtiment porteur au moyen d'un lien souple que l'on attache sur le dessus de l'AUV afin de permettre, ensuite, sa récupération par le dessus par un dispositif de type grue ou portique.
  • Une solution de ce type est divulguée dans la demande de brevet FR 2931792 , déposée par le demandeur. Cette solution comprend une nacelle de récupération reliée à un navire par un lien souple et comprenant un corps comprenant des moyens de réception présentant une forme évasée aptes à recevoir le nez de l'engin sous-marin, et contre lesquels le nez de l'AUV vient en butée lors d'une étape d'accostage. La nacelle comprend une poutre dorsale s'étendant au-dessus de l'AUV une fois que l'AUV a accosté. La nacelle est destinée à être suspendue à un câble dans une position dans laquelle la poutre est horizontale à une profondeur prédéterminée en vue de l'accostage de l'AUV. La nacelle comprend des moyens de blocage permettant de rendre l'AUV solidaire de la poutre une fois que l'AUV a accosté.
  • Cette solution permet d'éviter l'intervention, pouvant s'avérer délicate par gros temps, d'un opérateur pour établir le lien entre le navire et le véhicule sous-marin autonome.
  • Lorsque le nez est logé dans les moyens de réception et en butée contre ces moyens, sous l'action du mouvement imprimé par l'AUV et de l'inertie de la nacelle cette dernière prend un mouvement de rotation dans le plan horizontal et le plan vertical, mouvement qui a pour effet d'aligner l'axe de la poutre sur l'axe de l'AUV et de rapprocher la poutre de la paroi de l'AUV. Le plaquage de la poutre dorsale sur la paroi de l'AUV est ainsi obtenu par un effet dynamique de l'impact entre l'AUV et les moyens de réception. Il nécessite le maintien en mouvement de l'AUV au moment de l'impact. Cela signifie que ce plaquage est transitoire. La nacelle revient à sa position horizontale à la même profondeur après l'effet du choc. Or, comme l'AUV doit présenter une assiette longitudinale (appelée « pitch » en terminologie anglo-saxonne) positive pour pouvoir venir en butée contre les moyens de réception sans être gêné par la poutre dorsale, la poutre dorsale s'éloigne de l'AUV après l'effet du choc. Le blocage de l'AUV doit donc être réalisé sitôt les axes de l'AUV et du corps alignés pour venir rendre l'AUV solidaire du corps avant que le dispositif d'accueil ne reprenne son inclinaison initiale. La probabilité d'échec du blocage est élevée. Par ailleurs, le plaquage de la poutre dorsale sur le véhicule n'est obtenu que si la vitesse de l'AUV est suffisamment élevée au moment de l'accostage ce qui oblige l'AUV à conserver une énergie suffisante pour l'accostage et donc à limiter la durée de sa mission.
  • Par ailleurs, l'espace délimité par les moyens de réception est limité et l'AUV doit être commandé de façon très précise pour qu'il puisse venir positionner son nez dans les moyens de réception ce qui est un inconvénient non négligeable en cas de gros temps.
  • Le document US 2014/331910 A1 décrit une station de capture installée sur la coque d'un véhicule sous-marin.
  • Un but de l'invention est de limiter au moins un des inconvénients précités.
  • A cet effet, l'invention a pour objet un dispositif d'accueil pour véhicule sous-marin selon la revendication 1.
  • Avantageusement, la station d'accueil comprend des moyens de verrouillage permettant de rendre le véhicule sous-marin, en butée contre la butée, solidaire du corps.
  • Dans un premier mode de réalisation revendiqué, au moins un bras de l'ensemble est monté coulissant par rapport à la butée selon l'axe de sorte que le bras subisse un mouvement de translation vers l'avant, par rapport à la butée, lors du passage de la configuration déployée à la configuration repliée.
  • Avantageusement, l'extrémité proximale du bras est montée pivotante sur un coulisseau monté coulissant par rapport à la butée selon de sorte que l'extrémité distale soit apte à se rapprocher de l'axe x, par rotation du bras par rapport au coulisseau, lorsque le coulisseau avance selon l'axe lors du passage de la configuration déployée à la configuration repliée.
  • Dans un deuxième mode de réalisation non revendiqué, l'extrémité proximale d'au moins un bras de l'ensemble est fixe en translation selon l'axe longitudinal par rapport à la butée.
  • Avantageusement, l'extrémité proximale du bras est montée pivotante par rapport à la butée de sorte que l'extrémité distale soit apte à se rapprocher de l'axe x et à avancer selon l'axe x, par rotation de l'extrémité proximale par rapport à la butée lors du passage de la configuration déployée à la configuration repliée.
  • Avantageusement, le corps comprend des fentes allongées selon l'axe x recevant les extrémités distales des bras dans la configuration repliée.
  • Avantageusement, le corps comprend une poutre s'étendant longitudinalement parallèlement à l'axe longitudinal en s'éloignant de la butée vers l'arrière.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit, faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
    • la figure 1 représente schématiquement un dispositif d'accueil selon l'invention tracté par un bâtiment porteur et approché par un AUV,
    • la figure 2a représente schématiquement en vue de côté une station d'accueil présentant une assiette négative d'accueil, étant approchée par l'AUV et présentant un ensemble de bras dans une configuration déployée,
    • la figure 2b représente schématiquement en vue de derrière la station d'accueil dans la configuration de la figure 2a,
    • la figure 3 représente schématiquement en perspective une phase d'accostage de l'AUV sur la station d'accueil 5,
    • la figure 4 représente schématiquement en perspective une phase de plaquage de la station d'accueil sur l'AUV en butée contre une butée de la station d'accueil,
    • la figure 5 représente schématiquement en vue de derrière la station d'accueil 5 plaquée contre l'AUV en butée contre la butée,
    • la figure 6 représenté schématiquement en vue de dessus une vue partielle de la figure 5,
    • la figure 7a représente schématiquement en vue de côté la station d'accueil 5 plaquée contre l'AUV en butée contre la butée avec l'ensemble des bras en configuration repliée,
    • la figure 7b représente schématiquement une vue de dessus de la figure 7a,
    • la figure 7c représente schématiquement un exemple de moyens de verrouillage,
    • la figure 8a représente schématiquement des moyens de manutention, la station d'accueil étant en appui contre un support des moyens de manutention,
    • la figure 8b représente schématiquement les moyens de manutention après pivotement par rapport à la figure 8a,
    • les figures 9a à 9d représentent schématiquement une suite d'étapes par lesquelles passe le dispositif de guidage selon un exemple d'un premier mode de réalisation revendiqué, pour aller de la configuration déployée à la configuration repliée,
    • les figures 10a à 10e représentent schématiquement une suite d'étapes par lesquelles passe le dispositif de guidage selon un deuxième mode de réalisation non revendiqué, pour aller de la configuration déployée à la configuration repliée.
    • la figure 11 représente schématiquement un exemple de liaison entre le câble et le corps de la station d'accueil.
  • D'une figure à l'autre, les mêmes éléments sont repérés par les mêmes références.
  • Sur la figure 1, on a représenté schématiquement un dispositif d'accueil 1 selon l'invention approché par un véhicule sous-marin autonome AUV 2 et remorqué par un bâtiment porteur 3 pouvant être un navire de surface, c'est-à-dire destiné à naviguer à la surface de l'eau, ou un sous-marin. Ce dispositif d'accueil 1 permet d'établir un lien entre le bâtiment porteur 3 et l'AUV 2, par l'intermédiaire d'un câble 4 reliant la station d'accueil 5 au bâtiment porteur 3.
  • Le câble 4 appartient avantageusement au dispositif d'accueil 1. Il peut être destiné à être relié à la station d'accueil 5.
  • Le dispositif d'accueil 1 comprend une station d'accueil 5 submersible destinée à être reliée mécaniquement au bâtiment porteur 3 de sorte que le bâtiment porteur 3 tire la station d'accueil 5 totalement immergée par le dessus de la station d'accueil.
  • Par exemple, le bâtiment porteur 3 est destiné à être situé à une profondeur moins importante que la station d'accueil 5 mais ce n'est pas obligatoire, l'important étant que le point de tire Tb du câble sur le bâtiment porteur 3 soit à une profondeur moins importante que le point de tire T du câble sur la station d'accueil 5. Par point de tire aussi appelé point de remorquage ou « tow point » en terminologie anglo-saxonne, on entend le point sur lequel le câble est destiné à exercer un effort de traction.
  • Le dispositif d'accueil 1 comprend, par exemple, un élément de liaison 40 relié à la station d'accueil 5 et apte à coopérer avec le câble 4 de sorte à permettre de relier la station d'accueil 5 au bâtiment porteur 3 via le câble 4. Le câble 4 est alors fixé à l'élément de liaison 40. L'élément de liaison 40 reprend l'effort de traction F exercé par le câble 4 sur le corps 7 de la station d'accueil 5.
  • Comme visible sur la figure 2a, l'AUV 2 s'étend longitudinalement selon un axe longitudinal x1 de l'AUV depuis une partie arrière 2AR jusqu'à un nez 2N comprenant l'extrémité avant 2AV de l'AUV 2. L'AUV 2 est destiné à se déplacer principalement selon l'axe x1, dans le sens allant de la partie arrière 2AR l'arrière vers l'extrémité avant 2AV du véhicule sous-marin 2.
  • Le nez 2N présente une forme évasée dans le sens de l'extrémité avant 2AV vers la partie arrière 2AR. Cette forme est, par exemple, convexe. Elle est par exemple de symétrie de révolution autour de son axe longitudinal x1. Elle est, par exemple, globalement hémisphérique.
  • L'AUV 2 comprend une partie centrale 2C globalement cylindrique d'axe du cylindre x1 reliant le nez 2N à la partie arrière 2AR. La partie arrière 2AR comprend un propulseur 2P destiné à propulser l'AUV 2.
  • Le corps 7 de la station d'accueil 5 s'étend longitudinalement selon un axe longitudinal x du corps 7 depuis une extrémité arrière AR jusqu'à une extrémité avant AV. L'axe x s'étend dans le sens de l'arrière AR vers l'avant AV. Le corps 7 comprend une poutre 8 s'étendant longitudinalement parallèlement à l'axe x.
  • Dans la suite du texte, les termes avant, devant, arrière et derrière sont définis dans le sens de l'axe x. Le dessus et le dessous sont définis selon un axe vertical d'un référentiel terrestre.
  • Le corps 7 comprend également une butée 9. La poutre 8 s'étend longitudinalement depuis une extrémité arrière de la poutre 8 vers la butée 9, par exemple jusqu'à la butée 9. La butée 9 est solidaire de la poutre 8.
  • Comme visible sur la figure 2b représentant une vue de derrière de la station d'accueil 5 dans la position de la figure 2a, la butée 9 présente, par exemple, une forme concave de sorte à pouvoir recevoir le nez 2N de l'AUV. La forme de la butée 9 est, par exemple, complémentaire de celle d'une partie du nez 2N comprenant l'extrémité avant 2AV. Cette forme n'est pas limitative, elle peut, par exemple, en variante présenter une forme de couronne, une forme de plaque perpendiculaire à l'axe x. La butée 9 peut s'étendre continûment sur toute sa surface ou bien elle peut présenter au moins une ouverture (elle peut par exemple présenter une forme de grillage), elle peut présenter une forme fixe ou être déformable sous l'effet de l'appui de l'AUV.
  • La butée 9 permet de bloquer le mouvement de l'AUV par rapport au corps 7 le long de l'axe x passant par la butée 9, dans le sens défini par l'axe x (c'est-à-dire vers l'avant AV de la station d'accueil 5), lorsque le nez 2N de l'AUV vient en appui contre la butée 9, lors d'une phase d'accostage représentée sur la figure 3.
  • La poutre 8 s'éloigne de la butée 9 vers l'extrémité AR du corps 7 de la station d'accueil 5. De la sorte, la poutre 8 s'étend en regard de l'AUV 2 lorsque l'AUV 2 est en butée contre la butée 9. Plus précisément, la poutre 8 s'étend en regard d'une partie de l'AUV 2 située derrière le nez 2N en butée contre la butée 9. L'AUV 2 avance le long de la poutre 8 vers la butée 9 pour venir en appui contre la butée 9.
  • Sur la réalisation des figures, la poutre 8 et la butée 9 sont agencées l'une par rapport à l'autre de sorte que la poutre 8 s'étende au-dessus de l'AUV 2 lorsque le nez 2N de l'AUV 2 est en butée contre la butée 9.
  • La flottabilité agissant sur un corps est la résultante de la différence entre la poussée d'Archimède et le poids du corps. Cette force peut être dirigée de bas en haut (flottabilité positive, poids inférieur à la poussée d'Archimède) ou de haut en bas (flottabilité négative, poids supérieur à la poussée d'Archimède). La station d'accueil 5 totalement immergée présente avantageusement une flottabilité négative dans le liquide dans lequel il évolue, par exemple, l'eau douce ou l'eau de mer. La station d'accueil 5 est alors pesante. La flottabilité négative de la station d'accueil a un effet positif sur l'obtention d'un plaquage de la station d'accueil sur l'AUV qui est souhaité et décrit dans la suite du texte car la station a tendance à couler. Cette configuration présente l'avantage d'éviter d'avoir à prévoir des moyens ou une configuration hydrodynamique permettant de faire plonger la station comme par exemple des moyens pour régler la flottabilité de la station ou des ailes d'orientation réglables qui sont des moyens coûteux et contraignants.
  • En variante, la station d'accueil 5 présente une flottabilité nulle ou positive.
  • II est à noter que la station d'accueil 5 est destinée à être tractée par le bâtiment porteur 3, dans le sens de l'arrière AR vers l'avant AV, lorsque l'AUV 2 s'approche de la butée. Ainsi l'axe x présente une direction privilégiée ce qui permet à l'AUV de rejoindre plus facilement la butée.
  • Avantageusement, la station d'accueil 5 est profilée hydro-dynamiquement, et présente un centre de gravité et un centre de carène disposés de façon particulière et le point de tire T est apte à occuper une position définie d'une façon particulière de sorte que la station d'accueil 5 présente une assiette longitudinale d'accueil prédéterminée négative (extrémité avant AV située à une profondeur plus importante que l'extrémité arrière AR), lorsque la station d'accueil 5 est totalement immergée et tractée par le bâtiment porteur 3 par le dessus à une vitesse prédéterminée positive dans le sens de l'axe longitudinal x comme représenté sur la figure 1, 2a et 2b et 3. L'assiette longitudinale de la station d'accueil 5 est l'assiette du corps 7 de la station d'accueil sur lequel est exercée la traction du câble.
  • L'assiette longitudinale d'accueil est fixe lorsque la vitesse est fixe.
  • La position du centre de carène de la station d'accueil 5 totalement immergée est définie par la forme de la station d'accueil et la position de son centre de gravité est définie par la répartition des masses de la station d'accueil 5.
  • En figures 1, 2a, 2b et 3, on constate qu'avec une assiette longitudinale négative, la station d'accueil 5 est dans une position favorable à l'accostage qui permet à l'AUV 2 de venir en butée contre la butée 9 avec une grande tolérance sur la trajectoire de l'AUV 2.
  • Les risques de heurt de la poutre 8 (notamment de l'extrémité AR) par l'AUV 2 pendant l'accostage sont faibles. Cette solution permet d'éviter le réglage de ballasts ou l'accostage avec une vitesse ascendante de l'AUV 2 qui ajoute de la complexité à la phase d'accostage. La solution proposée est donc robuste et économique. La poutre présente aussi une fonction de guidage de l'AUV 2.
  • Afin d'obtenir l'assiette longitudinale négative d'accueil, le point de tire T est apte à occuper une position d'accueil située derrière le point sur lequel s'applique la résultante de la gravité, de la poussée d'Archimède et de la force hydrodynamique.
  • La position du point de tire T par rapport au corps 7 selon l'axe x peut être fixe ou variable comme nous le verrons par la suite. Dans le cas d'une position variable du point de tire T par rapport au corps 7 selon l'axe x, au moins une de ses positions selon l'axe x est définie de sorte à permettre d'obtenir l'assiette d'accueil.
  • Avantageusement, la station d'accueil 5 est profilée hydrodynamiquement de façon que la résultante de la portance générée par la partie de la station d'accueil située derrière la position d'accueil du point de tire est orientée vers le bas ou est nulle, lorsque la station d'accueil totalement immergée est tracée par un bâtiment de surface dans le sens de l'arrière AR vers l'avant AV. La station d'accueil 5 est alors aussi dans une position d'équilibre en roulis (gîte nulle). Ainsi, l'assiette longitudinale négative d'accueil est obtenue principalement par les efforts hydrostatiques. Ainsi, le point de tire est avantageusement apte à occuper une position d'accueil située derrière le point sur lequel s'applique la résultante de la gravité et de la poussée d'Archimède.
  • De préférence, le point de tire T est apte à occuper une position du point de tire située derrière le centre de gravité.
  • Avantageusement, le dispositif d'accueil est configuré de sorte que le point de tire T occupe sa position d'accueil lorsque la station d'accueil totalement immergée est tractée par le bâtiment porteur 3 avant que l'AUV 2 ne vienne en butée contre la butée.
  • Lorsque l'AUV 2 vient en butée contre la butée 9, comme visible sur la figure 3, la poutre 8, vient se plaquer contre l'AUV 2 lors d'une phase de plaquage, comme visible sur la figure 4, sous l'action d'un effet dynamique dû au mouvement imprimé vers l'avant par l'AUV en butée contre la butée 9. Ce plaquage est obtenu par un mouvement de rotation de la station d'accueil 5 et de la poutre 8 dans le plan vertical.
  • Le dispositif d'accueil comprend des moyens de verrouillage, par exemple un ensemble d'au moins un verrou, permettant de rendre le corps 7 solidaire de l'AUV 2 lorsque la poutre 8 est en appui contre l'AUV 2. L'AUV 2 est alors relié au bâtiment porteur 3 par l'intermédiaire du câble 4.
  • Le verrouillage a lieu lors d'une phase de capture ultérieure à la phase de plaquage.
  • Lorsque l'AUV 2 vient en butée contre la butée 9, la station d'accueil 5 est entraînée par l'AUV 2 vers l'avant, selon l'axe x, ce qui a pour effet de détendre le câble 4 qui ne tire plus sur la station d'accueil 5.
  • Avantageusement, la station d'accueil est configurée hydrodynamiquement et présente un centre de gravité et un centre de carène disposés de façon qu'un premier couple de rappel est exercé sur la station d'accueil 5 totalement immergée présentant l'assiette longitudinale d'accueil lorsque l'AUV 2 est en butée contre un point P de la butée 9, comme représenté sur la figure 3, de sorte à venir plaquer la poutre dorsale 8 contre l'AUV 2, par rotation de la station d'accueil 5 par rapport à l'AUV 2 dans un plan vertical défini dans le référentiel terrestre.
  • L'assiette longitudinale d'accueil est avantageusement comprise entre - 15° et -5°.
  • Ainsi, la poutre dorsale 8 vient se plaquer contre l'AUV, comme représenté sur la figure 4, de façon durable. Ce plaquage durable permet de disposer d'un délai suffisant pour venir solidariser l'AUV 2 avec le corps 7 lors d'une phase de capture. Le risque d'échec de la capture de l'AUV est ainsi limité. Cette solution permet d'obtenir un plaquage de la poutre dorsale 8 contre l'AUV 2 même si la vitesse de l'AUV 2 est faible au moment de l'accostage, il suffit que l'AUV 2 aille légèrement plus vite que la station d'accueil 5 au moment de l'accostage de façon à entraîner la station d'accueil 5 et détendre le câble 4. Une fois le câble 4 détendu, le premier couple hydrostatique assure le plaquage de la poutre dorsale sur l'AUV 2. Cette solution est avantageuse puisque l'AUV 2 dispose, généralement, d'une réserve limitée en énergie en fin de mission, au moment de l'accostage. Une quantité maximale d'énergie peut ainsi être utilisée pendant la mission dont la durée peut ainsi être augmentée.
  • L'effet de plaquage durable est obtenu lorsque l'assiette de l'AUV 2 est supérieure à celle de la station d'accueil 5. L'effet de plaquage est donc obtenu notamment lorsque l'AUV 2 vient accoster sur la station d'accueil 5 avec son axe longitudinal x1 horizontal, par exemple.
  • Avantageusement, la station d'accueil est configurée de sorte à subir un premier couple de rappel lorsque son assiette longitudinale est nulle (axe x horizontal) et la poutre 8 est en appui contre l'AUV 2 de sorte à tendre à plaquer la poutre 8 sur l'AUV. Cela permet d'obtenir un plaquage durable.
  • Une fois que l'AUV est en appui contre la butée, l'équilibre des moments appliqués sur la station d'accueil 5 ne se fait plus par rapport au point de tire mais se fait par rapport au point P de la butée 9, sur lequel l'AUV 2 se trouve en butée. Le premier couple de rappel s'exerce donc autour d'un axe de rotation horizontal r représenté sur la figure 2b passant par la butée 9, par exemple par le point d'appui P de l'AUV 2 sur la butée 9 dans le sens représenté sur la figure 3. Ce point P est un point de la buté.
  • Le point P est par exemple celui sur lequel est destiné à s'exercer la résultante de l'effort d'appui du véhicule sur la butée 9 lorsque les axes x et x1 sont parallèles.
  • Le premier couple de rappel a tendance à faire tourner la poutre 8 autour de l'axe de rotation r de sorte à abaisser l'extrémité arrière AR par rapport à la butée 9.
  • Afin d'obtenir le couple de rappel assurant le plaquage durable, la position d'accueil de point de tire T est avantageusement en arrière de la butée 9, de préférence en arrière du point P. Cette solution est simple et permet d'éviter d'avoir à prévoir des moyens complexes utilisant l'hydrodynamique pour obtenir le premier couple de rappel.
  • Avantageusement la station d'accueil est profilée hydrodynamiquement de sorte que l'effet des efforts hydrodynamiques sur le plaquage est négligeable, c'est-à-dire que la résultante des moments des forces hydrodynamiques par rapport à la butée est sensiblement nulle lorsque la station d'accueil présente l'assiette longitudinale d'accueil et/ou une assiette nulle. Le premier couple de rappel est alors sensiblement un premier couple de rappel hydrostatique. Dans ces cas, le plaquage durable est alors indépendant de la vitesse (différence entre la vitesse horizontale de l'AUV et celle à laquelle est tractée la station d'accueil au moment où l'AUV vient en appui contre la butée 9) et est obtenu, même lorsque la vitesse est élevée.
  • Un effet hydrodynamique négligeable peut, par exemple, être obtenu en prévoyant un ensemble d'au moins un empennage arrière disposé à proximité de l'arrière AR de la station configuré pour générer une portance vers le bas. L'empennage doit être dimensionné à cet effet en fonction du reste de la station d'accueil.
  • Dans tous les cas, la station d'accueil présente avantageusement un centre de gravité et un centre de carène disposés de façon qu'un premier couple de rappel hydrostatique est exercé sur la station d'accueil 5 totalement immergée présentant l'assiette longitudinale d'accueil lorsque l'AUV 2 est en butée contre la butée 9, comme représenté sur la figure 3, de sorte à venir plaquer la poutre dorsale 8 contre l'AUV 2, par rotation de la station d'accueil 5 par rapport à l'AUV 2 dans un plan vertical défini dans le référentiel terrestre. Cela permet de garantir le plaquage durable au moins à faible vitesse.
  • Le premier couple de rappel hydrostatique subi par la station d'accueil 5 autour de l'axe de rotation r passant par P est la somme du couple lié à la gravité exercé sur la station d'accueil 5 autour du même axe et du couple lié à la poussée d'Archimède exercé sur la station d'accueil 5 autour du même axe. Ainsi, afin d'obtenir l'effet de plaquage, la forme de la station d'accueil 5 et la répartition des masses de cette station d'accueil 5 sont définies de sorte que les positions du centre de gravité et du centre de carène de la station d'accueil 5 induisent ce premier couple de rappel hydrostatique. La masse de la station d'accueil 5 génère une force vers le bas appliquée au centre de gravité et le volume génère une force vers le haut (la poussée d'Archimède) appliquée au centre de carène. Cette solution présente l'avantage d'être simple, sûre et bon marché. Etant passive, cette solution ne nécessite pas de dispositif d'équilibrage à masse volumique variable du type ballast pour assurer le plaquage contre l'AUV.
  • Avantageusement, le centre de gravité et le centre de carène du corps 7 de la station d'accueil 5 totalement immergée occupent des positions fixes.
  • Une des possibilités pour obtenir le premier couple hydrostatique qui assure le plaquage souhaité, est de configurer la station d'accueil 5 de sorte que le centre de gravité de la station d'accueil 5, et éventuellement celui du corps 7, soit disposé derrière la butée 9, ou derrière le point P.
  • La position du centre de carène de la station d'accueil 5, et éventuellement celui du corps 7, peut être placé devant la butée 9, ou devant le point P, le long de l'axe longitudinal x de la station d'accueil 5. Toutefois, la position du centre de carène a un effet significatif seulement si la station d'accueil est peu pesante. Lorsque la station d'accueil est très pesante, on peut envisager un centre de carène situé derrière la butée ou même derrière le centre de gravité.
  • Avantageusement, le centre de gravité et de carène sont disposés de sorte que la station d'accueil subisse toujours le premier couple de rappel hydrostatique lorsque son assiette longitudinale est nulle (axe x horizontal) et la poutre 8 est en appui contre l'AUV 2.
  • Il est à noter que le premier couple de rappel ou le premier couple de rappel hydrostatique est exercé sur la station d'accueil lorsque le câble n'exerce pas de traction sur la station d'accueil 5. La station d'accueil 5 est alors poussée vers l'avant par l'AUV. Le câble est détendu. La station d'accueil 5 peut subir mais ne subit plus forcément ce premier couple de rappel ou ce premier couple de rappel hydrostatique une fois que le câble tracte à nouveau la station d'accueil 5.
  • Comme visible en figures 3 et 5, le corps 7, peut comprendre un empennage 10 situé derrière la butée 9. L'empennage 10 est disposé à proximité de l'extrémité arrière de la poutre 8 ou en extrémité de la poutre 8, à proximité de l'arrière AR du corps 7. Cet empennage est configuré pour générer une portance vers le bas. Il est alors possible de jouer sur la densité de l'empennage pour jouer sur la position du centre de gravité de la station.
  • Dans les réalisations non limitatives des figures, le corps 7 de la station d'accueil 5 comprend un empennage 10 en V inversé comprenant deux empennages 10a, 10b individuels formant chacun une des branches du V inversé.
  • Avantageusement mais non nécessairement, le centre de gravité et le centre de carène de la station d'accueil 5 ou du corps 7 sont disposés de sorte que la station d'accueil 5 présente une assiette longitudinale positive à l'équilibre lorsqu'elle est soumise uniquement à la poussée d'Archimède et à la gravité. Cela permet de favoriser le plaquage.
  • En variante, l'assiette longitudinale à l'équilibre est, par exemple, nulle.
  • La figure 5 représente, schématiquement en vue de derrière la station d'accueil et l'AUV 2 dans la configuration de la figure 4. Dans cette configuration, l'AUV 2 est en butée contre la butée 9, son axe longitudinal x1 étant confondu avec l'axe x. L'axe longitudinal x passe par le point P. Il est destiné à porter la réaction de la buté 9 à l'appui de l'AUV 2 sur la butée 9.
  • Avantageusement, la station d'accueil 5 est configurée de sorte que son centre de gravité et son centre de carène soient disposés de sorte que lorsque l'AUV 2 est en butée contre la butée 9 et la poutre dorsale 8 est plaquée contre l'AUV 2, la station d'accueil 5 étant totalement immergée, un deuxième couple de rappel hydrostatique est exercé sur la station d'accueil 5 autour de l'axe longitudinal x lorsque l'axe longitudinal x est horizontal de sorte que la station d'accueil 5 présente une position d'équilibre stable en rotation autour de l'axe longitudinal x par rapport à l'AUV 2 telle que représentée sur les figures 4 et 5. Le deuxième couple de rappel hydrostatique empêche le basculement de la station d'accueil 5 sur le côté en statique, c'est-à-dire empêche la rotation de la station d'accueil 5 par rapport à l'AUV 2 autour de l'axe longitudinal x. La position de la station d'accueil 5 représentée sur les figures 4 et 5 est stable en rotation autour de l'axe longitudinal x.
  • Avantageusement, la station d'accueil 5 est configurée de sorte que son centre de gravité et son centre de carène soient disposés de sorte que lorsque l'AUV 2 est en butée contre la butée 9 et la station d'accueil 5 totalement immergée présente une assiette nulle et de préférence lorsque l'assiette est comprise entre une assiette comprise entre l'assiette d'accueil et une assiette nulle, un deuxième de rappel hydrostatique est exercé sur la station d'accueil 5 autour de l'axe longitudinal x de sorte que la station d'accueil 5 présente une position d'équilibre stable en rotation autour de l'axe longitudinal x par rapport à l'AUV 2 ce qui permet d'éviter un basculement de la station d'accueil 5 avant qu'elle ne vienne se plaquer sur l'AUV.
  • Avantageusement, la position d'équilibre stable est la position d'équilibre en roulis.
  • Cette position est par exemple une position de gîte nulle dans laquelle un plan vertical comprend l'axe longitudinal x qui est l'axe de roulis et constitue un axe de symétrie de la station d'accueil 5. Dans la position d'équilibre en roulis, le centre de gravité et le centre de carène appartiennent à un même plan vertical contenant l'axe x.
  • En variante, la station d'accueil 5 présente une gîte non nulle de quelques degrés dans la position d'équilibre en roulis.
  • Cette stabilité en roulis permet de faciliter la récupération de l'AUV car la station occupe aussi cette position stable en roulis avant l'accostage de l'AUV.
  • Dans la réalisation non limitative de la figure 1, le plan vertical est un plan de symétrie de l'empennage en V inversé qui se trouve à cheval sur l'AUV lorsque la station d'accueil est plaquée contre l'AUV comme visible sur la figure 5.
  • Pour éviter le basculement de la station d'accueil 5 sur le côté, le centre de gravité de la station d'accueil 5 est décalé verticalement par rapport au centre de carène de la station d'accueil 5, lorsque la poutre 8 est plaquée sur l'AUV en butée contre la butée 9 et l'assiette longitudinale de la station d'accueil est l'assiette nulle et de préférence lorsqu'elle est comprise entre l'assiette d'accueil et l'assiette nulle.
  • A cet effet, le centre de gravité est situé en-dessous du centre de carène lorsque l'assiette de la station d'accueil est nulle et de préférence lorsqu'elle est comprise entre l'assiette d'accueil et l'assiette nulle ou au moins lorsque l'assiette est nulle. Cela permet d'obtenir la position d'équilibre en roulis lorsque le câble est mou.
  • Dans une réalisation de l'invention, le centre de gravité se trouve en-dessous de l'axe x, lorsque l'assiette de la station d'accueil est comprise entre l'assiette d'accueil et l'assiette nulle ou au moins lorsque l'assiette est nulle. Cette solution est simple, elle permet d'éviter d'avoir à prévoir un centre de carène très haut. Le centre de carène peut même être lui aussi sous l'axe x (notamment pour une configuration station pesante).
  • A cet effet, la station d'accueil 5 (ou alors le corps 7 de la station d'accueil) comprend une partie supérieure PS située au-dessus d'un plan horizontal H contenant l'axe x horizontal et une partie inférieure PI située en-dessous du plan horizontal lorsque la station d'accueil 5 est dans sa position d'équilibre stable. La répartition des masses de la station d'accueil 5 est choisie de façon que la masse de la partie inférieure PI soit supérieure à celle de la partie supérieure PS. De la sorte, le centre de gravité se trouve sous l'axe x. La forme de la station d'accueil est définie de sorte que le centre de carène soit situé au-dessus du centre de gravité. Le volume du liquidé déplacé par la partie supérieure PS peut par exemple être égal au volume de liquidé déplacé par la partie inférieure.
  • Dans la réalisation non limitative des figures, chaque empennage individuel 10a, 10b s'étend depuis la poutre 8 jusqu'une extrémité inférieure de l'empennage individuel 10a, 10b située dans la partie inférieure PI de la station 5, c'est-à-dire plus profonde que l'axe x lorsque l'axe longitudinal est horizontal et la structure porteuse 5 est dans la position d'équilibre stable. Cette configuration permet d'abaisser la position du centre de gravité. Il est possible de jouer sur la masse des empennages pour placer le centre de gravité au plus bas. On peut par exemple envisager de disposer des lests au niveau de l'extrémité inférieure de chaque empennage individuel.
  • Le dispositif d'accueil selon l'invention permet un processus de capture simple, passif et robuste.
  • Dans une variante, la poutre 8 et la butée 9 sont agencées l'une par rapport à l'autre de sorte que la poutre dorsale s'étende en-dessous de l'AUV 2 lorsque le nez de l'AUV est en butée contre la butée 9.
  • Avantageusement, comme visible en figure 2a, le point de tire T est apte à se déplacer le long de l'axe longitudinal (x) par rapport au corps 7.
  • La mobilité du point de tire permet d'adapter l'assiette de la station d'accueil en fonction de sa vitesse, de son état (avec ou sans AUV) ou de la phase de la mission (Capture de l'AUV ou récupération de la station à bord du navire). Cela permet de minimiser l'impact des mouvements du navire lié à la houle en relâchant ou en reprenant la tension dans le câble.
  • Par exemple, comme visible en figure 11, le point de tire T est apte à coulisser le long de l'axe x par rapport au corps 7.
  • Le câble est par exemple fixé à un étrier 40 monté pivotant autour d'un axe de rotation y par rapport au corps 7, l'axe de rotation y étant monté coulissant par rapport au corps 7 selon un axe x2 parallèle à l'axe longitudinal x. A cet effet, le corps 7 comprend par exemple une rainure 41 de guidage s'étendant longitudinalement parallèlement à l'axe x et recevant l'axe de rotation y.
  • Un actionneur, par exemple un vérin hydraulique, un vérin électrique ou un système à crémaillère peut permettre de faire coulisser l'axe y par rapport au corps 7. A noter que, sauf dynamique très rapide, l'effort de traction est toujours orienté dans le même sens selon l'axe x. Un vérin simple effet peut être suffisant. Un vérin double effet peut être intéressant si un asservissement rapide est souhaité.
  • Avantageusement, le câble 4 est relié au corps 7 de la station d'accueil 5 de sorte que le point de tire T avance le long de l'axe x par rapport au corps 7, lorsque l'AUV 2 vient en butée contre la butée 9, par exemple sous l'effet de l'appui de l'AUV sur la butée 9. Autrement dit, les moyens de réglage sont configurés pour avancer le point de tire le long de l'axe x par rapport au corps 7, lorsque l'AUV 2 vient en butée contre la butée 9. Cela permet d'accélérer le plaquage de poutre 8 sur l'AUV 2 et de minimiser le besoin en puissance de l'AUV.
  • Avantageusement, le câble 4 est relié au corps 7 de la station d'accueil 5 de sorte que le point de tire T soit positionné le long de l'axe x par rapport au corps 7 dans une position d'accueil du point de tire T telle que la station d'accueil 5 présente une assiette longitudinale négative, lorsque la station d'accueil totalement immergée est tractée par le bâtiment porteur avant que l'AUV ne vienne en butée contre l'AUV (avant accostage).
  • Cette position d'accueil du point de tire est avantageusement derrière la butée 9.
  • Le dispositif d'accueil 1 comprend des moyens de réglage permettant de régler la position du point de tire T par rapport au corps 7 selon l'axe x. Les moyens de réglage peuvent être passifs (sans moyens de commande du type programme) ou actifs (pilotés à distance par un opérateur ou par des moyens de commande de la station).
  • Les moyens de réglage passifs peuvent comprendre un ressort situé en arrière du point de tire, lié à la poutre et lié au point de tire qui est dans une glissière. La position du point de tire, ressort comprimé est maintenu par une gâchette qui lié à la butée 9 qui est déclenché par l'AUV poussant sur la butée 9 : le ressort se détend alors et pousse le point de tire vers l'avant.
  • Avantageusement, comme visible en figure 6, la station d'accueil 5 comprend un dispositif de guidage 50 comprenant un ensemble E de bras de guidage 51 disposés autour de la butée. L'ensemble E de bras 51 apte à être dans une configuration déployée représentée sur les figures 2a, 2b, 3, 6a et 6b dans laquelle il permet de guider l'AUV 2 vers la butée 9. La configuration déployée des bras est stable en l'absence d'AUV en appui sur la structure de guidage.
  • Dans la configuration déployée l'ensemble de bras délimite un premier volume apte à recevoir le nez 2N de l'AUV 2 et s'évasant en s'éloignant de la butée 9 selon l'axe x vers l'arrière de sorte à permettre de guider l'AUV 2 vers la butée 9 pour passer de la configuration de la figure 1 à celle de la figure 3 lors de la phase d'accostage lors de laquelle l'ensemble E de bras est dans la configuration déployée.
  • Comme visible en figures 2a, 2b et 3, les bras 51 sont disposés autour de la butée 9 et répartis angulairement autour de l'axe x. Chaque bras 51 de l'ensemble E de bras présente une extrémité distale ED et une extrémité proximale EP référencées sur un unique bras de la figure 6 pour plus de clarté. Chaque bras 51 de l'ensemble de bras E est relié au corps 7 par son extrémité proximale EP.
  • Dans la configuration déployée visible en figure 6, l'extrémité distale ED de chaque bras 51 de l'ensemble E est située derrière l'extrémité proximale EP. Autrement dit, l'extrémité distale ED est plus proche de l'extrémité arrière AR du corps 7 qu'une extrémité proximale EP du bras par laquelle le bras est relié au corps 7.
  • L'ensemble des bras E peut être fixe ou comprendre une seule configuration stable qui est la configuration déployée.
  • Avantageusement, l'ensemble de bras 51 est apte à être dans une configuration repliée telle que visible en figures 7a et 7b. Les bras passent avantageusement de la configuration déployée à la configuration repliée, lors d'une phase de repliement de l'ensemble E mise en oeuvre après la phase d'accostage et de préférence après la phase de plaquage et/ou de capture de l'AUV 2.
  • Comme visible en figures 7a et 7b, dans la configuration repliée, chaque extrémité distale ED est plus proche de l'axe x que dans la configuration déployée. Autrement dit, lors du repliement des bras l'extrémité distale ED de chaque bras 51 se rapproche de l'axe x depuis sa position dans la configuration déployée jusqu'à sa position dans la configuration repliée.
  • La configuration repliée permet de rendre la station d'accueil 5 plus compacte en dehors des phases d'accostage et de capture afin de ne pas encombrer le pont du navire porteur. Elle permet de prévoir des bras de longueur importante qui peuvent ainsi délimiter, dans la configuration déployée, un premier volume de taille importante, dans un plan dit transversal, perpendiculaire à l'axe x ce qui assure un guidage de l'AUV vers la butée 9 avec une grande tolérance sur la trajectoire de l'AUV. Cela permet par ailleurs de guider l'AUV sur une distance importante selon l'axe x.
  • Le dispositif d'accueil comprend des moyens de verrouillage aptes à coopérer avec l'AUV pour rendre l'AUV solidaire du corps 7 de la structure d'accueil 5 lors d'une phase de capture. Avantageusement, les moyens de verrouillage sont configurés pour permettre de rendre le corps 7 solidaire de l'AUV 2 lorsque les bras sont dans la configuration déployée et/ou lorsque les bras sont dans la configuration repliée.
  • Ces moyens de verrouillage peuvent être présents même en l'absence du dispositif de guidage.
  • Les moyens de verrouillage peuvent comprendre au moins un verrou 43, dont un exemple est représenté en figure 7c, comprenant un crochet 44 apte à être dans une position rentrée à l'intérieur du corps 7, par exemple à l'intérieur de la poutre 8, et dans une position sortie représentée en figure 7c, dans laquelle elle apte à pénétrer dans le corps de l'AUV de sorte à coopérer avec une attache 45 de l'AUV pour maintenir le corps de la station fixe par rapport au corps de l'AUV. Ce type de moyens de verrouillage n'est absolument pas limitatif. La station d'accueil peut par exemple comprendre des bras aptes à venir entourer le corps de l'AUV de sorte à bloquer le corps de l'AUV par rapport au corps de la station d'accueil 5.
  • Le dispositif d'accueil fait avantageusement partie d'un dispositif de récupération 100 comprenant des moyens de manutention 102 représentés sur la figure 8a comprenant des moyens permettant d'enrouler le câble 4, comme par exemple un treuil, lors d'une phase d'enroulement ultérieure à la capture jusqu'à ce que la station de capture 5 vienne en appui sur un support 101 des moyens de manutention 102. Le support 101 permet de bloquer le mouvement de translation de la station de capture et de l'AUV solidaire du corps de la station de capture vers le haut. Il peut aussi permettre d'empêcher le pivotement du véhicule autour d'un axe vertical. Les moyens de manutention 102 comprennent en outre des moyens de déplacement 103 permettant de déplacer la station d'accueil 5 liée à l'AUV et en appui sur le support 101 pour venir le déposer sur un support du véhicule 104. Les moyens de déplacement 103 comprennent par exemple une grue à laquelle est suspendu le support 101 comprenant des bras articulés. Les moyens de déplacement comprennent des moyens d'entrainement permettant de faire pivoter un bras 105 de la grue, auquel est suspendu le support 101, autour d'un axe horizontal pour amener l'AUV lié à la station de capture 5 en regard du support, comme représenté en figure 8b, et des moyens pour abaisser le support 101 de sorte à venir poser l'AUV lié à la station de capture sur un support 106 de l'AUV. Dans la réalisation non limitative de la figure 8b, le support 106 présente une surface d'appui 107 de forme sensiblement complémentaire de la partie centrale 2C de l'AUV 2, c'est-à-dire de forme d'une portion de cylindre.
  • Dans la configuration repliée, l'ensemble E de bras 51 délimite un volume de taille réduite dans le plan transversal ce qui permet de faciliter la manutention et le rangement de la station de capture à bord du navire porteur 3.
  • Le fait de replier l'ensemble E de bras 51 après la capture de l'AUV 2 permet de faciliter sa manutention. En effet, il est possible de poser l'AUV 2 sur un support du véhicule présentant une forme simple complémentaire de celle de l'AUV 2, par exemple une forme d'une portion de cylindre en faisant reposer la totalité ou une grande partie de la longueur de la partie cylindrique de l'AUV sur le support du véhicule, tout en limitant les risques de basculement de l'AUV susceptible d'être induits par la station d'accueil et ainsi améliorer sa stabilité. Par ailleurs, il est possible de venir poser l'AUV sur son support directement avec la grue ou le portique ayant soulevé le dispositif d'accueil. Il n'est pas nécessaire de désolidariser, au préalable, l'AUV du corps 7 de la station d'accueil 5. La manutention est ainsi grandement simplifiée par rapport à une cage ou une épuisette qui nécessite une étape fastidieuse d'extraction de l'AUV du dispositif d'accueil avant de venir le poser sur son support.
  • Le repliement des bras est particulièrement avantageux dans le cas d'une poutre 8 s'étendant sur le dessus de l'AUV mais peut être avantageux dans le cas d'une poutre s'étendant sur le dessous de l'AUV.
  • Avantageusement, chaque bras 51 de l'ensemble E de bras ou au moins un bras de l'ensemble de bras est replié contre le corps 7 dans la configuration repliée. Cette configuration assure une bonne compacité en configuration repliée et permet d'améliorer sa stabilité de l'AUV sur son support.
  • Avantageusement, chaque bras 51 de l'ensemble E de bras ou au moins un bras s'étend longitudinalement sensiblement parallèlement à l'axe longitudinal x dans la configuration repliée. Autrement dit, l'ensemble de bras délimite un volume présentant sensiblement la forme d'une portion de cylindre dans la configuration repliée. Cette configuration assure une bonne compacité en configuration repliée et améliore encore la stabilité de l'AUV sur son support.
  • Dans l'exemple non limitatif des figures 6 à 7a, 7b, les extrémités distales ED des bras 51 sont libres.
  • Dans la configuration repliée, chaque extrémité distale ED est devant la position qu'elle occupe dans la configuration déployée. Autrement dit, lors du repliement des bras l'extrémité distale ED de chaque bras 51 avance, selon l'axe x et dans le sens de l'axe x, depuis sa position dans la configuration déployée jusqu'à sa position dans la configuration repliée.
  • Ainsi, la longueur, selon l'axe x, du volume délimité par l'ensemble de bras E selon l'axe x derrière la butée 9 se réduit ou s'annule si les bras 51 s'étendent totalement en avant de la butée 9 dans la configuration repliée. Cette cinématique particulière des bras 51 permet de libérer au moins partiellement le pourtour de l'AUV 2 après la capture, par le repliement de l'ensemble des bras.
  • Cette configuration est particulièrement avantageuse dans le cas où la poutre est agencée par rapport à la butée de sorte à être destinée à se trouver au-dessus de l'AUV en butée contre la butée 9. Elle permet de réduire ou éviter le masquage d'un capteur ou d'une antenne disposé sur le ventre ou les flancs de l'AUV, par exemple, un sonar destiné à imager le fond marin. L'AUV 2 peut donc poursuivre sa mission, par exemple une mission d'imagerie sonar, même après accostage. Cette caractéristique présente un intérêt lorsque l'AUV est rendu solidaire de la station d'accueil 5 uniquement de façon temporaire, par exemple, dans le but de recharger ses batteries et/ou de récupérer des données.
  • Ce raisonnement s'applique également dans le cas d'une poutre 8 agencée par rapport à la butée 9 de sorte à être destinée à se trouver en-dessous de l'AUV en butée contre la butée, par exemple pour éviter le masquage de capteurs ou d'antennes situés sur le dessus ou sur les flancs de l'AUV.
  • Deux modes de réalisation de dispositifs de guidage sont représentés sur les figures 9a à 9d et 10a à 10e.
  • Dans un premier mode de réalisation, dont un exemple est représenté sur les figures 9a à 9d, l'extrémité distale ED de chaque bras avance vers l'avant tout en restant en permanence derrière l'extrémité proximale EP, lors du passage de la configuration déployée à la configuration repliée.
  • Dans l'exemple non limitatif des figures 9a à 9d, chaque bras 51 de l'ensemble est monté sur le corps 7 de la station d'accueil de sorte que le bras 51 avance vers l'avant, par rapport à la butée 9, lors du passage de la configuration déployée à la configuration repliée.
  • Dans l'exemple non limitatif des figures 9a à 9d, chaque bras 51 est monté coulissant par rapport à la butée 9 selon l'axe x de sorte que le bras 51 subisse un mouvement de translation vers l'avant, par rapport à la butée 9, lors du passage de la configuration déployée de la figure 9a à la configuration repliée de la figure 9d en passant par les configurations intermédiaires successives des figures successives 9b et 9c.
  • Ainsi, chaque bras 51, dans son ensemble, subit un mouvement de translation vers l'avant selon l'axe x, par rapport au corps 7, lors du passage de la configuration déployée à la configuration repliée. L'extrémité distale ED de chaque bras 51 reste derrière son extrémité proximale EP lors du passage de la configuration déployée à la configuration repliée
  • A cet effet, l'extrémité proximale EP du bras 51 est montée pivotante sur un coulisseau 52 monté coulissant par rapport à la butée 9 selon l'axe x de sorte que l'extrémité distale ED soit apte à se rapprocher de l'axe x, par rotation par rapport au coulisseau 52, lorsque le coulisseau 52 avance selon l'axe x lors du passage de la configuration déployée de la figure 9a à la configuration repliée de la figure 9d.
  • Afin que l'extrémité distale ED se rapproche de l'axe x par rotation par rapport au coulisseau 52, lorsque le coulisseau 52 avance selon l'axe x lors du passage de la configuration déployée à la configuration repliée, le dispositif de guidage comprend avantageusement des moyens d'entraînement ou de couplage permettant de générer simultanément à un mouvement du coulisseau 52 vers l'avant AV, la rotation du bras autour de l'axe de la liaison pivot reliant l'extrémité proximale EP au coulisseau 52 dans un sens défini de sorte que l'extrémité distale ED du bras 51 se rapproche de l'axe x et inversement.
  • Dans l'exemple particulier des figures 9a à 9d, l'extrémité proximale EP de chaque bras 51 est montée sur un coulisseau 52 monté coulissant par rapport au corps 7 de la station d'accueil selon l'axe longitudinal x. L'extrémité proximale EP de chaque bras 51 est montée sur le coulisseau 52 par une liaison pivot fixe par rapport au coulisseau 52 et d'axe de rotation de la liaison pivot sensiblement tangentiel à l'axe x. Les moyens d'entraînement comprennent des fourchettes 53 sous forme de bras de liaison répartis angulairement autour de l'axe longitudinal x. Chaque fourchette 53 est reliée à un des bras 51. Une première extrémité longitudinale E1 de la fourchette 53 couplée à un bras 51 est reliée au bras 51 par une première liaison pivot d'axe sensiblement tangentiel à l'axe x disposée entre l'extrémité proximale EP et l'extrémité distale ED du bras 51. Une deuxième extrémité longitudinale E2 de la fourchette 53 est reliée au corps 7 par une deuxième liaison pivot d'axe sensiblement tangentiel à l'axe x. La deuxième extrémité E2 de la fourchette est disposée derrière le coulisseau 52 selon l'axe x. De cette façon, lorsque l'ensemble E de bras 51 est en configuration déployée, une translation du coulisseau 52 par rapport au corps 7 vers l'avant AV selon l'axe x provoque, par les articulations des fourchettes aux bras, une translation des bras 51 vers l'avant combiné à un rapprochement des extrémités distales de chaque bras 51 de l'ensemble de l'axe x.
  • En variante, l'extrémité proximale de chacun des bras est montée sur une bielle qui lui fait subir un mouvement selon une ligne courbe lors du passage de la position déployée à la position repliée. Chaque bras avance vers l'avant par rapport à la butée, lors du passage de la position déployée à la position repliée mais le mouvement de l'extrémité proximale n'est pas un mouvement de coulissement selon l'axe x.
  • Dans une autre variante, les bras présentent, par exemple, une longueur variable, ils sont montés sur le corps 7 et commandables, et de préférence, commandés de sorte que les extrémités distales ED des bras avancent lors du passage de la configuration déployée à la configuration repliée.
  • Par exemple, chaque bras est relié au corps par son extrémité proximale EP. L'extrémité proximale EP est fixe en translation selon l'axe longitudinal x, par rapport au corps, et montée pivotante par rapport à la butée de sorte que l'extrémité distale ED se rapproche de l'axe x par rotation de l'extrémité proximale par rapport à la butée, lors du passage de la configuration déployée à la configuration repliée, et chaque bras est commandé de sorte que son extrémité distale ED avance lors du passage de la configuration déployée à la configuration repliée. Ainsi, chaque bras est commandé de sorte que sa longueur diminue lorsque l'extrémité distale se rapproche de l'axe x.
  • Dans un autre mode de réalisation représenté sur les figues 10a à 10e, chaque bras 151 est relié au corps 7 par son extrémité proximale EPb. L'extrémité proximale EPb est fixe en translation selon l'axe longitudinal x par rapport au corps 7.
  • L'extrémité proximale EPb du bras 151 est montée pivotante par rapport à la butée 9 de sorte que l'extrémité distale EDb soit apte à se rapprocher ou se rapproche de l'axe x et à avancer selon l'axe x, par rotation de l'extrémité proximale EPb par rapport à la butée 9 lors du passage de la configuration déployée de la figure 10a à la configuration repliée de la figure 10f.
  • L'extrémité proximale EPb de chaque bras 151 est reliée au corps 7 par une liaison pivot d'axe de rotation fixe par rapport au corps 7 et disposé de sorte que la rotation du bras 151 autour de cet axe de rotation fasse passer l'extrémité distale EDb de sa position dans la configuration déployée, dans laquelle l'extrémité EDb se trouve en arrière de l'extrémité proximale EPb et à une première distance de l'axe x, jusqu'à sa position dans la configuration repliée dans laquelle elle se trouve devant l'extrémité distale EDb à une deuxième distance de l'axe x inférieure à la première distance. L'extrémité proximale EPb est située entre la position de l'extrémité distale EDb dans la configuration déployée et la position de l'extrémité distale EDb dans la configuration repliée selon l'axe x. Autrement dit, lors du passage de la configuration déployée à la configuration repliée et inversement, les bras 151 se retournent. L'ensemble E' de bras 151 passe de la configuration déployée, dans laquelle les bras 151 délimitent un volume s'évasant vers l'arrière du corps 7 à une configuration intermédiaire dans laquelle ils délimitent un volume s'évasant vers l'avant AV, les extrémités distales EDb des bras 151 se rapprochant ensuite de l'axe x pour atteindre la configuration repliée.
  • Le dispositif de guidage comprend des moyens d'entraînement permettant d'assurer le repliement de l'ensemble de bras depuis sa configuration déployée et inversement.
  • L'axe de rotation est, par exemple, tangentiel à l'axe x.
  • Dans l'exemple particulier des figures 10a à 10e, les moyens d'entraînement comprennent un coulisseau 152 monté coulissant sur le corps 7 le long de l'axe longitudinal x et des fourchettes 153, sous forme de bras de liaison, réparties angulairement autour de l'axe x. Chaque fourchette est reliée à un des bras. Une première extrémité longitudinale E1b de la fourchette 153 est reliée à un des bras 151 par une liaison pivot d'axe sensiblement tangentiel à l'axe x disposée entre l'extrémité proximale EPb et l'extrémité distale EDb du bras 151. Une deuxième extrémité longitudinale E2b de la fourchette 153 est reliée au coulisseau 152 par une liaison pivot d'axe sensiblement tangentiel l'axe x. Le coulisseau 152 est disposé devant l'extrémité proximale EPb du bras 151 selon l'axe x. De la sorte, lorsque l'ensemble de bras est dans la configuration déployée, une translation du coulisseau 152 vers l'avant du corps 7 provoque, par les articulations de la fourchette 153 au coulisseau 152 et aux bras 151, la rotation des bras autour de leurs axes de rotation respectifs par rapport au corps 7 depuis leurs positions respectives dans la configuration repliée jusqu'à leurs positions respectives dans la configuration repliée.
  • Dans les deux réalisations des figures, les moyens d'entraînement comprennent un actionneur configuré pour entraîner la noix 52 ou 152 en translation selon l'axe x par rapport au corps 7 de sorte à faire passer l'ensemble des bras de la configuration repliée à la configuration déployée. L'actionneur est par exemple du type vérin hydraulique, électrique ou du type moteur couple.
  • Le coulisseau 52, 152 présente, par exemple, sensiblement une forme d'un anneau circulaire disposé dans un plan perpendiculaire à l'axe x, l'axe x passant par le centre de l'anneau, les extrémités proximales EP, EPb sont par exemple réparties sur le cercle perpendiculaire à l'axe x et centré sur l'axe x. Les fourchettes 53, 153 présentent toutes la même longueur et les premières extrémités des fourchettes sont réparties sur un cercle perpendiculaire à l'axe x passant par le centre du cercle et les deuxièmes extrémités des fourchettes sont réparties sur un autre cercle perpendiculaire à l'axe x passant par le centre du cercle. Les bras présentent tous la même longueur. En variante, les bras et/ou les fourchettes peuvent présenter des longueurs différentes, les extrémités proximales et des fourchettes ne sont pas forcément réparties sur des cercles, la noix ne présente pas forcément la forme d'anneau et les axes des liaisons pivots ne sont pas forcément tangentiels à l'axe x. Différents bras peuvent aussi être reliés différemment au corps 7 et entraînés par des moyens d'entraînement différents.
  • Avantageusement, le corps 7 comprend des fentes F visibles en figures 10c et 10d s'étendant longitudinalement parallèlement à l'axe x dans lesquelles sont logées les extrémités distales EDb des bras, 151 dans la configuration repliée. Cela permet de favoriser la compacité de l'ensemble, d'améliorer l'équilibre de l'AUV sur un support de forme complémentaire et cela permet de protéger les bras 151 de chocs lors de la récupération du dispositif de guidage par un dispositif de type grue et lors de la pose de l'AUV sur un support. Des fentes peuvent aussi être présentes dans le mode de réalisation des figures 9a à 9d.
  • Avantageusement, les bras 151 sont entièrement logés dans les fentes dans la configuration repliée.
  • Avantageusement, les bras 51, 151 sont montés sur le corps 7 de sorte à s'étendre essentiellement devant la butée 9 dans la configuration repliée de la figure 9d, 10e.
  • Avantageusement, les bras 51, 151 s'étendent essentiellement derrière la butée 9 dans la configuration déployée de la figure 9a, 10a.
  • Le premier mode de réalisation est particulièrement avantageux. Il est peu consommateur d'énergie car, lors du passage de la configuration déployée à la configuration repliée, les bras ne passent pas par une position intermédiaire dans laquelle ils sont sensiblement perpendiculaires à l'axe x et donc à l'écoulement de l'eau autour de la station. Or, cette position est celle où la trainée est la plus importante. Cette solution permet également de limiter les instabilités de la station de récupération après récupération du véhicule sous-marin et pendant les phases de repliement et de déploiement des bras. Par ailleurs, cette solution limite les risques d'accrochage de corps marins au bras. Ces corps seraient susceptibles de fragiliser les bras, d'empêcher le passage et la récupération d'un véhicule sous-marin entre les bras ou de déstabiliser la station de récupération avant et après récupération du véhicule sous-marin. Cette solution est donc robuste Cette solution présente également l'avantage d'être compacte. Elle est actionnable de façon compacte, par exemple, lors de phases de test ou de maintenance, lorsque la station d'accueil se trouve à bord du véhicule porteur ou au sein d'un atelier.
  • Avantageusement, comme visible en figure 5, l'ensemble E de bras 51 comprend un ensemble d'au moins un bras inférieur BI appartenant à la partie inférieure PI dans la configuration déployée et présentant une masse volumique supérieure à 1 kg/m3. Cette caractéristique permet de limiter les risques de basculement de la station d'accueil.
  • Dans le cas non limitatif où l'ensemble de bras 51 comprend un ensemble d'au moins un bras supérieur BS appartenant à la partie supérieure PS dans la configuration déployée, la densité moyenne de chaque bras de l'ensemble d'au moins un bras inférieur est supérieure à la densité moyenne de chaque bras de l'ensemble d'au moins un bras supérieur. Cette caractéristique permet de limiter encore les risques de basculement de la station d'accueil.
  • Dans les réalisations des figures, les bras présentent une longueur fixe.
  • En variante, les bras présentent une longueur variable. Avantageusement, la longueur de chaque bras est réglable de façon indépendante de l'inclinaison du bras par rapport à l'axe x, c'est-à-dire indépendamment de la distance séparant l'extrémité distale du bras de l'axe x, et l'ensemble est apte à être dans plusieurs configurations déployées. Cela permet de choisir l'ouverture et la longueur, selon l'axe x, du volume délimité par les bras en fonction de l'état de mer. Par mer agitée, il est possible d'augmenter la longueur de ce volume.
  • Les bras sont, par exemple, télescopiques.
  • Cette variante, est applicable au premier et au deuxième mode de réalisation.
  • L'ensemble de bras peut comprendre au moins un bras dont la cinématique est conforme au premier mode de réalisation et/ou au moins un bras dont la cinématique est conforme au deuxième mode de réalisation.
  • Le dispositif de guidage peut comprendre uniquement l'ensemble de bras apte à être dans la configuration déployée et dans la configuration repliée. En variante, le dispositif de guidage peut comprendre un autre ensemble d'au moins un bras de guidage fixe permettant de guider le véhicule sous-marin vers la butée.
  • L'invention se rapporte également à un ensemble sous-marin comprenant l'AUV et le dispositif d'accueil.
  • La station d'accueil présente avantageusement une longueur similaire ou plus élevée que celle de l'AUV.
  • La masse de l'AUV est de préférence plus élevée que celle de la station d'accueil.
  • La station d'accueil représentée sur les figures est tractée par le bâtiment porteur 3 par l'intermédiaire d'un câble 4.
  • En variante, la station d'accueil est fixée à la coque du bâtiment porteur ou reliée au bâtiment porteur par l'intermédiaire d'un bras.
  • Dans un mode de réalisation de l'invention, le véhicule sous-marin comprend une ou plusieurs antennes sonar. Le véhicule sous-marin peut comprendre au moins une antenne sonar de réception de signaux acoustique et/ou au moins une antenne sonar d'émission de signaux acoustiques.
  • Avantageusement, au moins une antenne sonar est disposée de façon que les bras de l'ensemble de bras soient inaptes à être situés dans une zone de couverture de l'antenne, c'est-à-dire en regard de l'antenne, lorsque l'antenne est en butée contre la butée, l'ensemble de bras étant dans la configuration repliée. Par zone de couverture, on entend une zone dans laquelle l'antenne est destinée à émettre ou recevoir des signaux acoustiques.
  • En revanche, l'antenne sonar considérée est disposée de façon à être apte à être située en regard d'au moins un des bras de l'ensemble, lorsque le véhicule sous-marin est en butée contre la butée, lorsque les bras sont situés dans la configuration déployée.
  • Cette aptitude peut dépendre de la gîte du véhicule sous-marin et de la station d'accueil lorsque le véhicule sous-marin est en butée contre la butée. Par exemple, au moins un des bras est en regard de l'antenne sonar, c'est-à-dire dans une zone de couverture de l'antenne sonar, lorsque l'ensemble de bras est en configuration déployée, le véhicule sous-marin se trouvant en butée contre la butée, le véhicule sous-marin et la station d'accueil présentant chacun une gîte prédéterminée, chaque bras étant situé en dehors de la zone de couverture de l'antenne lorsque l'ensemble de bras est en configuration repliée, le véhicule sous-marin se trouvant en butée contre la butée, le véhicule sous-marin et la station d'accueil présentant chacun la gîte prédéterminée
  • La cinématique des bras selon l'invention est particulièrement adaptée à cette configuration.
  • L'invention permet alors de poursuivre la mission sonar utilisant l'antenne sonar même lorsque les bras sont en configuration repliée.
  • Cela est particulièrement vrai lorsque la station d'accueil est tractée par un bâtiment porteur par l'intermédiaire du câble 4.
  • Cela est également vrai, lorsque la station d'accueil est fixée au bâtiment porteur. 1

Claims (13)

  1. Dispositif d'accueil pour véhicule sous-marin, le dispositif d'accueil comprenant une station d'accueil (5) apte à être reliée à un bâtiment porteur (3), la station d'accueil (5) comprenant un corps (7) comprenant une butée (9) permettant de bloquer un mouvement du véhicule sous-marin (2) par rapport au corps (7) selon un axe longitudinal (x) passant par la butée (9), dans un sens de l'arrière vers l'avant défini par l'axe longitudinal (x), la station d'accueil (5) comprenant un dispositif de guidage comprenant un ensemble (E) de bras (51) reliés au corps (7) et comprenant chacun une extrémité distale (ED) et une extrémité proximale (EP), les bras (51) étant répartis autour de la butée (9), l'ensemble (E) de bras (51) étant apte à être dans une configuration déployée dans laquelle il délimite un volume s'évasant vers l'arrière de sorte à permettre de guider le véhicule sous-marin vers la butée (9), l'extrémité distale (ED) de chaque bras (51) étant située derrière l'extrémité proximale (EP) du bras (51) dans la configuration déployée, l'ensemble (E) de bras étant apte à être dans une configuration repliée dans laquelle une extrémité distale (ED) de chaque bras (51) de l'ensemble (E) de bras est plus proche de l'axe longitudinal (x) que dans la configuration déployée et dans laquelle l'extrémité distale (ED) se trouve devant la position occupée par l'extrémité distale (ED) dans la configuration déployée de sorte qu'une longueur, selon l'axe x, d'un volume délimité par l'ensemble (E) de bras (51) derrière de la butée (9) est plus faible dans la configuration repliée que dans la configuration déployée, au moins un bras (51) de l'ensemble étant monté sur le corps (7) et configuré et/ou commandé de sorte que l'extrémité distale (ED) du bras avance vers l'avant tout en restant en permanence derrière l'extrémité proximale (EP), lors du passage de la configuration déployée à la configuration repliée.
  2. Dispositif d'accueil selon la revendication 1, dans lequel la station d'accueil (5) comprend des moyens de verrouillage permettant de rendre le véhicule sous-marin, en butée contre la butée (9), solidaire du corps (7).
  3. Dispositif d'accueil selon l'une des revendications précédentes, dans lequel le bras (51) est monté sur le corps (7) de sorte que le bras (51) avance vers l'avant, par rapport à la butée (9), lors du passage de la configuration déployée à la configuration repliée.
  4. Dispositif d'accueil selon la revendication précédente, dans lequel au moins un bras de l'ensemble (E) est monté coulissant par rapport à la butée (9) selon l'axe (x) de sorte que le bras (51) subisse un mouvement de translation vers l'avant, par rapport à la butée (9), lors du passage de la configuration déployée à la configuration repliée.
  5. Dispositif d'accueil selon la revendication précédente, dans lequel l'extrémité proximale (EP) du bras est montée pivotante sur un coulisseau (52) monté coulissant par rapport à la butée (9) selon l'axe (x) de sorte que l'extrémité distale (ED) soit apte à se rapprocher de l'axe x, par rotation du bras (51) par rapport au coulisseau (52), lorsque le coulisseau (52) avance selon l'axe (x) lors du passage de la configuration déployée à la configuration repliée.
  6. Dispositif d'accueil selon l'une quelconque des revendications précédentes, dans lequel l'extrémité proximale (EPb) d'au moins un bras de l'ensemble est fixe en translation selon l'axe longitudinal par rapport à la butée (9).
  7. Dispositif d'accueil selon la revendication précédente, dans lequel l'extrémité proximale (EPb) du bras est montée pivotante par rapport à la butée (9) de sorte que l'extrémité distale (EDb) soit apte à se rapprocher de l'axe x et à avancer selon l'axe x, par rotation de l'extrémité proximale (EPb) par rapport à la butée (9) lors du passage de la configuration déployée à la configuration repliée.
  8. Dispositif d'accueil selon l'une quelconque des revendications précédentes, dans lequel le corps comprend des fentes allongées selon l'axe x recevant les extrémités distales (ED) des bras dans la configuration repliée.
  9. Dispositif d'accueil selon l'une quelconque des revendications précédentes, dans lequel le corps comprend une poutre (8) s'étendant longitudinalement parallèlement à l'axe longitudinal (x) en s'éloignant de la butée (9) vers l'arrière.
  10. Dispositif d'accueil selon l'une quelconque des revendications précédentes, dans lequel au moins un bras présente une longueur variable indépendamment d'une inclinaison du bras par rapport à l'axe x.
  11. Dispositif d'accueil selon l'une quelconque des revendications précédentes, comprenant un câble (4) relié la station d'accueil et destiné à relier la station d'accueil au bâtiment porteur.
  12. Ensemble d'accueil comprenant un dispositif d'accueil selon la revendication précédente et un bâtiment porteur, le câble reliant la station d'accueil au bâtiment porteur de façon à permettre au bâtiment porteur de tracter la station d'accueil totalement immergée.
  13. Ensemble sous-marin comprenant un dispositif d'accueil selon l'une quelconque des revendications 1 à 12 et le véhicule sous-marin, le véhicule sous-marin comprenant une antenne sonar disposée de façon qu'au moins un bras de l'ensemble est apte à être dans une zone de couverture de l'antenne sonar, lorsque le véhicule sous-marin se trouve en butée contre la butée, l'ensemble de bras étant dans la configuration déployée ; les bras de l'ensemble de bras étant inaptes à être dans la zone de couverture de l'antenne sonar lorsque l'ensemble de bras est dans la configuration repliée.
EP19829593.3A 2018-12-28 2019-12-20 Dispositif d'accueil pour un vehicule sous-marin Active EP3906188B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874296A FR3091258B1 (fr) 2018-12-28 2018-12-28 Dispositif d’accueil pour un véhicule sous-marin
PCT/EP2019/086621 WO2020136114A1 (fr) 2018-12-28 2019-12-20 Dispositif d'accueil pour un vehicule sous-marin

Publications (3)

Publication Number Publication Date
EP3906188A1 EP3906188A1 (fr) 2021-11-10
EP3906188B1 true EP3906188B1 (fr) 2024-02-28
EP3906188C0 EP3906188C0 (fr) 2024-02-28

Family

ID=67262416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19829593.3A Active EP3906188B1 (fr) 2018-12-28 2019-12-20 Dispositif d'accueil pour un vehicule sous-marin

Country Status (8)

Country Link
US (1) US12012191B2 (fr)
EP (1) EP3906188B1 (fr)
JP (1) JP7418436B2 (fr)
AU (1) AU2019416005A1 (fr)
CA (1) CA3124900A1 (fr)
FR (1) FR3091258B1 (fr)
SG (1) SG11202106211WA (fr)
WO (1) WO2020136114A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112278197A (zh) * 2020-10-22 2021-01-29 吴凯忠 一种海洋工程水下航行器的马鞍式捕获装置及捕获方法
CN112407191B (zh) * 2020-11-04 2023-01-24 吴凯忠 一种海洋工程勘探用水下机器人面域打捞捕获装置及方法
CN115009473B (zh) * 2022-05-10 2024-06-07 哈尔滨工程大学 一种基于缆绳捕捉的欠驱动auv水下自动回收装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1346551A (en) * 1918-03-20 1920-07-13 Masters Vere Hammond Torpedo-trap
US3137264A (en) * 1961-11-15 1964-06-16 Braincon Corp Underwater towed vehicle
FR2931792B1 (fr) * 2008-06-03 2010-11-12 Thales Sa Systeme pour la mise a l'eau et la recuperation automatiques d'un drone sous-marin
KR101561163B1 (ko) 2009-05-08 2015-10-19 대우조선해양 주식회사 잠수정의 도킹 스테이션 장치
DE102011121854A1 (de) * 2011-12-21 2013-06-27 Atlas Elektronik Gmbh Einrichtung und Verfahren zum Einholen eines unbemannten Unterwasserfahrzeugs
DE102012008074A1 (de) * 2012-04-20 2013-10-24 Atlas Elektronik Gmbh Bergeverfahren zum Bergen eines Unterwasserfahrzeugs, Bergevorrichtung, U-Boot mit Bergevorrichtung, Unterwasserfahrzeug dafür und System damit
FR3002916B1 (fr) * 2013-03-05 2015-03-06 Thales Sa Systeme et procede de recuperation d'un engin sous-marin autonome
FR3091256B1 (fr) * 2018-12-28 2021-06-25 Thales Sa Dispositif d’accueil pour un vehicule sous-marin

Also Published As

Publication number Publication date
JP2022515065A (ja) 2022-02-17
FR3091258B1 (fr) 2021-04-09
US20220161913A1 (en) 2022-05-26
JP7418436B2 (ja) 2024-01-19
EP3906188A1 (fr) 2021-11-10
EP3906188C0 (fr) 2024-02-28
CA3124900A1 (fr) 2020-07-02
AU2019416005A1 (en) 2021-07-22
SG11202106211WA (en) 2021-07-29
US12012191B2 (en) 2024-06-18
WO2020136114A1 (fr) 2020-07-02
FR3091258A1 (fr) 2020-07-03

Similar Documents

Publication Publication Date Title
EP3902742B1 (fr) Dispositif d'accueil pour un vehicule sous-marin
EP2043913B1 (fr) Appareil de recuperation d'un engin sous-marin ou marin
EP3906188B1 (fr) Dispositif d'accueil pour un vehicule sous-marin
EP2043911B1 (fr) Installation et procede de recuperation d'un engin sous-marin ou marin
EP2155543B1 (fr) Sous-marin equipe d'un dispositif de largage et de recuperation d'un engin sous-marin secondaire
EP2468620B1 (fr) Dispositif de mise à l'eau et de récupération d'un engin marin, et procédé de mise à l'eau et de récupération associé
CA2875597C (fr) Systeme de mise a l'eau et de recuperation d'engins sous-marins, notamment d'engins sous-marins tractes
EP3209546B1 (fr) Système de mise a l'eau et de récuperation d'engin marin et sous-marin assisté par des protections inclinables
WO2020212269A1 (fr) Système de récupération d'un engin marin de surface depuis un navire porteur
EP3976461B1 (fr) Dispositif sous-marin et systeme sous-marin
EP0347288B1 (fr) Véhicule sous-marin autopropulsé pour la détection d'objets immergés
EP3871000A1 (fr) Systeme sonar
WO2012004478A1 (fr) Gréement de chalut et chalut
WO2023117564A1 (fr) Systeme pour la manœuvre d'un engin marin
EP4452742A1 (fr) Systeme pour la manouvre d'un engin marin
FR2549803A1 (fr) Bossoir a longue portee pour embarcation de sauvetage
BE666687A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019047455

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

U01 Request for unitary effect filed

Effective date: 20240318

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240228