EP3896235B1 - Hybridgebäude - Google Patents

Hybridgebäude Download PDF

Info

Publication number
EP3896235B1
EP3896235B1 EP21000101.2A EP21000101A EP3896235B1 EP 3896235 B1 EP3896235 B1 EP 3896235B1 EP 21000101 A EP21000101 A EP 21000101A EP 3896235 B1 EP3896235 B1 EP 3896235B1
Authority
EP
European Patent Office
Prior art keywords
rooms
fibers
hybrid
sandwich
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21000101.2A
Other languages
English (en)
French (fr)
Other versions
EP3896235C0 (de
EP3896235A1 (de
Inventor
Franz Leers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenker GmbH and Co KG
Original Assignee
Wenker GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenker GmbH and Co KG filed Critical Wenker GmbH and Co KG
Publication of EP3896235A1 publication Critical patent/EP3896235A1/de
Application granted granted Critical
Publication of EP3896235C0 publication Critical patent/EP3896235C0/de
Publication of EP3896235B1 publication Critical patent/EP3896235B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34823Elements not integrated in a skeleton the supporting structure consisting of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/296Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/36Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels
    • E04C2/365Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by transversely-placed strip material, e.g. honeycomb panels by honeycomb structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/384Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a metal frame
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7687Crumble resistant fibrous blankets or panels using adhesives or meltable fibres

Definitions

  • the present invention relates to hybrid buildings that are ready for occupancy or can be set up immediately on site.
  • the present invention also relates to the use of hybrid buildings for the production of all types of buildings
  • each module is provided on the periphery of its base with a downwardly extending installation flange.
  • each module is also provided with an outer roof covering of load-bearing formwork which is lined with an edge of cold-formed lightweight steel to near, but not quite to, the outer perimeter of the top of the module.
  • the edge has a first portion that overlaps the top of the side and end walls of the module and a second portion that overlaps the outer edge of the formwork to form a surrounding deployment recess between the first and second portions of the edges , into which the installation flange of a vertically adjacent module can be inserted precisely.
  • a building module with a cuboid housing that forms a floor, a ceiling, two side walls and two end walls is known, with a door and a window being arranged in the housing.
  • the housing consists of a monolithic tubular body made of a concrete material.
  • the four pipe walls form the floor, ceiling and side walls.
  • the door and window are arranged in the end walls.
  • the concrete active substance contains pores and porous mineral material such as expanded clay or pumice stone distributed throughout the concrete active substance.
  • a modular building construction system which includes a plurality of modular building construction units with predetermined length, width and height, which essentially correspond to those of standard shipping containers.
  • the modular building construction units are configured to be placed on a foundation at specific distances from each other. They have external surfaces, some of which serve as hollow forms for poured concrete.
  • the building construction system also includes reinforcement between and above the modular building construction units.
  • the concrete poured over the reinforcing means forms some exterior surfaces of the modular building construction units, with the concrete and reinforcements forming a monolithic reinforced support structure for the modular building construction system.
  • the building system includes a building stack containing a modular instrumentation unit with an internal space configuration configured to accommodate electronic equipment, power distribution equipment, power filtering equipment, an uninterruptible power supply, a modular refrigeration unit including an air conditioner and a water cooling unit.
  • the structural units each include a horizontal upper exterior surface and a plurality of vertical wall surfaces, with at least some of the prefabricated structural units having at least one hollow column formwork structure.
  • the prefabricated units are lowered onto an existing base on a construction site.
  • a first floor of the building is created by arranging several prefabricated building units next to each other on the base.
  • Structural bearing material is applied to fill the hollow column formwork structures and create structural columns connected to the structural deck.
  • Structural bearing material is applied to the horizontal upper exterior surfaces of the adjacent prefabricated building units to create a single structural deck over the prefabricated building units.
  • the modular units have elongated hollow structural frame members at their vertical corners and four substantially vertical vertical side walls extending between the vertical corner members.
  • the vertical corner elements lie within the planes formed by the side walls of the modular units. Their vertical corner elements and their adjacent side walls lie against each other with no significant gap between them.
  • the modular units can be connected at their vertical corner elements with flat connecting plates. Threaded tie rods may extend through the hollow vertical corner members and may be coupled to tie rods extending through the hollow vertical corner members of vertically aligned modular units.
  • EP 3 034 707 A1 is a known modular building system that involves the horizontal or vertical coupling or superimposition of prefabricated reinforced concrete components to create living spaces.
  • the present invention was therefore based on the object of providing hybrid buildings that can be easily produced in series, are particularly light in comparison to the prior art and yet can be safely stacked up to several floors without any additional supporting structures in the long term, sound insulation at the highest level between the individual hybrid building sub-units and the floors, have a fire resistance rating of the highest standard, are particularly easy to maintain, allow for easy addition of air conditioning systems and are fully equipped or pre-installed from the factory with wiring, loose and fixed furniture, curtains, carpeting and fully equipped bathrooms Location can be set up directly.
  • hybrid building according to independent claim 1 was found, which is hereinafter referred to as the "hybrid building according to the invention".
  • hybrid building according to the invention is the subject of dependent claims 2 to 8.
  • hybrid buildings according to the invention could be easily manufactured in series, were particularly light compared to modules of the prior art and could still be constructed safely up to several floors without any additional supporting structures, and sound insulation at the highest level between the individual hybrid buildings -Subunits and floors and had a fire resistance class of the highest standard, were particularly easy to maintain, allowed easy installation of air conditioning, elevators and other building services and were fully equipped from the factory with wiring, loose and fixed furniture, curtains, carpeting and fully equipped bathrooms or could be set up directly on site.
  • the sandwich panel side walls and the associated upper and lower metal supports are covered with side wall cladding with a fire resistance class of at least 30, preferably at least 60 and in particular at least 90.
  • the front or entrance sides are covered with interior wall cladding with a fire resistance class of at least 30, preferably at least 60 and in particular at least 90, except for the recesses for the doors and the associated upper and lower metal supports.
  • the backs or window sides are covered with flame-retardant, decorative and weather-resistant external facades with a fire resistance class of at least 60, in particular at least 90.
  • the upper and lower metal beams have a U-profile.
  • the upper and lower metal beams each consist of a middle part and two shorter side parts, with the connections between the middle part and the side parts being at the points where the mechanical stress peaks would occur with a one-piece metal beam.
  • Corridor plate supports made of metal are attached to the lower perforated blocks on the front or entrance side, which serve to support corridor plates. Elastic parts to dampen footsteps can be arranged between the corridor plate supports and the corridor plates.
  • the corridor slabs abut flush against the horizontal floor slabs made of reinforced concrete in the area of the recesses for the entrance doors.
  • the impact surfaces can be provided with a cushioning, flexible covering.
  • the metal for the supporting basic structure is preferably selected from the group consisting of steel, chrome steel, molybdenum steel, V2 A steel and V4 A steel.
  • the hybrid buildings according to the invention are already equipped at the factory or on site with a sanitary area separated from the rest of the room by vertical sandwich panel walls.
  • the sanitary area preferably includes at least one sink, a shower cubicle, at least one toilet with a water tank and a supply and ventilation shaft with supply lines, in particular for electricity, fiber optic lines, telephone lines, drinking water and wastewater.
  • the horizontal floor plate is covered with a covering that dampens impact sound.
  • a covering is a carpet.
  • the other essential components of the hybrid buildings according to the invention are at least one type and in particular at least two types of sandwich panels.
  • the sandwich panels comprise at least a first and at least a second cover layer, between which at least one mineral fiber layer is arranged, which is made up of at least one type of mineral fibers.
  • the sandwich panels preferably have an impact sound insulation RW of 33 dB to 37 dB.
  • sandwich panels with fire resistance classes F30 (fire-retardant), F 60 (highly fire-retardant), F90 (fire-resistant) and F120 (highly fire-resistant) are used.
  • Their weight is 15 kg/m 2 to 40 kg/m 2 , preferably 20 kg/m 2 to 35 kg/m 2 and in particular 20 kg/m 2 to 30 kg per m 2 .
  • Its heat transfer coefficient U is 0.6 W/m 2 K to 0.5 W/m 2 K, preferably 0.7 W/m 2 K to 0.45 W/m 2 K and in particular 0.8 W/m 2 K to 0.42 W/m 2 K.
  • the mineral fibers in the mineral fiber layer can be web-oriented and have a specific weight of preferably 100 kg/m 3 to 200 kg/m 3 , preferably 110 kg/m 3 to 180 kg/m 3 and in particular 120 kg/m 3 to 180 kg/m have 3 .
  • the at least one mineral fiber layer is traversed by channels that run parallel to the cover layers. Alternatively or additionally, the mineral fiber layer is traversed by channels that run vertically to the cover layers. Alternatively or additionally, the at least one mineral fiber layer comprises depressions and/or troughs.
  • the at least one mineral fiber layer can be traversed by channels which run orthogonally to the parallel channels listed above.
  • the at least one mineral fiber layer can be made of mineral fibers selected from the group consisting of aluminum silicate wool, alkaline earth silicate wool, aluminum silicate zirconium wool, high-temperature glass wool, polycrystalline aluminum oxide wool, aluminum oxide ceramic fibers, mullite ceramic fibers , yttrium oxide ceramic fibers, silicon carbide, silicon carbide nitride, and silicon bororide nitride carbide fibers, alkali-resistant glass fibers, quartz fibers, silica fibers, basalt fibers, boron fibers, single crystal fibers (whiskers), polycrystalline fibers, slag fibers and nanotube fibers and mixtures thereof.
  • mineral fibers selected from the group consisting of aluminum silicate wool, alkaline earth silicate wool, aluminum silicate zirconium wool, high-temperature glass wool, polycrystalline aluminum oxide wool, aluminum oxide ceramic fibers, mullite ceramic fibers , yttrium oxide ceramic fibers, silicon carbide, silicon carbide nitride, and silicon
  • the mineral fibers are preferably in the form of wool, paper, fleeces, dry felting, wet felting, boards, filling materials and molding compounds.
  • the mineral fibers in the at least one mineral fiber layer can be connected to at least one high-temperature-resistant binder.
  • the at least one mineral fiber layer can be firmly bonded to the inside of at least one cover layer using at least one, in particular one, high-temperature-resistant binder or adhesive.
  • the at least one mineral fiber layer can be firmly bonded to at least one further mineral fiber layer using at least one, in particular one, high-temperature-resistant binder or adhesive.
  • the high-temperature-resistant binders are thermally stable at temperatures >300 °C, preferably >500 °C and in particular >800 °C and do not decompose and do not release toxic gases.
  • suitable high-temperature-resistant binders are lime, gypsum, clays, water glasses, cements and silicones filled with inorganic fillers such as cristobalite.
  • the at least one mineral fiber layer preferably has the shape of egg cartons, corrugated cardboard and folded papers. These can in turn be used in combination with papers, fleeces, panels and/or felts made from mineral fibers.
  • the thickness of the at least one mineral fiber layer depends primarily on the clear width between the cover layers.
  • the mineral fiber layer is preferably designed in such a way that it completely fills the clear width at least in places.
  • the at least one mineral fiber layer is formed by mixing isolated mineral fibers and/or filling materials with at least one, in particular one, dispersion, in particular an aqueous dispersion, at least one precursor of at least one, in particular one, of the above-mentioned binders or adhesives, forming the resulting mixtures and Hardening of the formed mixture produced.
  • the at least one mineral fiber layer is produced by impregnating papers, nonwovens, plates and/or felts made of mineral fibers with at least one, in particular one, of the above-mentioned dispersion and shaping the resulting impregnated papers, nonwovens, plates and/or felts .
  • the molding is carried out using the vacuum forming process or the compression molding process.
  • particularly large-area molding compounds can be produced using the compression molding process.
  • the curing of the molding compounds or the precursor of the binder can be carried out at room temperature in air or in circulating air ovens and drying tunnels with hot air, open flames and/or with IR radiation.
  • the sandwich panels according to the invention can have a 3-sided, 4-sided, 5-sided, 6-sided, 7-sided, 8-sided, trapezoidal or diamond-shaped shape or a 3-sided, 4-sided, 5-sided, 6 -angular, 7-sided, 8-sided, star-shaped, trapezoidal or diamond-shaped outline with at least one rounded corner and/or with at least one concave and/or convex edge or a circular, elliptical, oval or kidney-shaped outline.
  • the sandwich panels according to the invention preferably have a 4-sided and in particular a rectangular or square outline.
  • the sandwich panels can have an area of 10 cm 2 to 100 m 2 .
  • the 4-sided, in particular rectangular or square sandwich panels preferably have an area that corresponds to the area of a cabin wall or room wall.
  • At least one of the at least two cover surfaces can be covered with at least one, in particular one, full-surface or partial-surface decorative and/or functional coating, such as foils, wood, glass, varnishes, textiles and/or light-emitting plastic panels.
  • there are practically no limits to sandwich panels as long as their fire resistance is not compromised.
  • the external dimensions of the hybrid buildings according to the invention can vary widely and can be excellently adapted to the requirements of the individual case.
  • the respective hybrid buildings according to the invention or their subunits preferably have an external side length of 2 m to 25 m, preferably 2.5 to 20 m, particularly preferably 3 m to 20 m, very particularly preferably 3.5 m to 15 m and in particular 4 m up to 10 m.
  • the front sides or entrance sides and the back sides or window sides on the outside have a length of 2 m to 15 m, preferably from 2.5 m to 12 m, particularly preferably 3 m to 10 m, very particularly preferably 3.5 m to 8 m and in particular 3.5 m to 6 m.
  • they have an external height of 2.2 m to 4 m, preferably 2.3 to 3.5 m and in particular 2.3 to 3 m.
  • the floor area can also vary widely on the inside and be perfectly adapted to the requirements of the individual case.
  • the interior floor area is preferably 10 m 2 to 200 m 2 , preferably 12 m 2 to 100 m 2 , particularly preferably 14 m 2 to 50 m 2 and in particular 15 m 2 to 30 m 2 .
  • a particularly advantageous, because versatile, hybrid building according to the invention has an outside width of 3.5 m, an outside side length of 6 m, an outside height of 2.8 m and an inside floor area of 20 m 2 .
  • the hybrid buildings are used to construct above-ground and underground buildings.
  • the hybrid buildings can be hotels, motels, residential buildings, retirement homes, schools, lecture rooms, computer rooms, office buildings, restaurants, kitchens, shops of all kinds, Prisons, warehouses, hospitals and clinics with patient rooms, isolation wards, intensive care units, doctor's rooms, treatment rooms, operating rooms, diagnostic rooms with medical examination equipment, ward rooms, social rooms, storage rooms and rooms for medical and other waste, buildings for protection against electromagnetic radiation and magnetic fields as well as buildings for research and development deals with physical, chemical, biological and microbiological laboratories and clean rooms.
  • the hybrid buildings according to the invention have elevators, escalators, basement rooms, underground car parks, stairwells, locks, security doors, air conditioning systems, rooms and structures for building technology, vestibules, entrance halls, porter's boxes, sprinkler systems, transmission systems, fitness rooms, saunas and swimming pools can be equipped.
  • the hybrid buildings according to the invention are described below using the Figures 1 to 5 explained in more detail.
  • the Figures 1 to 5 show schematically the construction principle of the hybrid building according to the invention, which can be advantageously varied and expanded without leaving the scope of the invention. Because the construction principle and the functions of the components are explained schematically, they are Figures 1 to 5 not to scale and do not limit the invention.
  • the hybrid building 1 according to the invention had a rectangular base area of 21 m 2 with a 3.5 m wide front or entrance side V, a 3.5 m wide back or window side R and two 6 m long side walls S.
  • the dimensions given referred to the outside of the hybrid building 1.
  • the floor plate 5 consisted of reinforced concrete (StB concrete) and was anchored with suspensions 5.2 in the basic framework made of four 3-part lower horizontal metal beams 2, which were free of mechanical stress peaks.
  • the height of the hybrid building 1 according to the invention was 2.7 m on the outside.
  • the framework for the sandwich panel ceiling O was also formed by four 3-part upper metal supports 3 that are free of mechanical stress peaks.
  • a metal support 2 3 eight steel U-profile metal beams were used. They each consisted of a longer central part and two shorter side parts or arms, which were connected by plate-shaped flange connections 2.1; 3.1 were attached to the middle part.
  • the flange connections 2.1; 3.1 were in the area of the mechanical stress peaks that would occur with a one-piece metal beam of the same length. Through the flange connections 2.1; 3.1 caused such voltage peaks to be reduced or no longer occur.
  • the plate-shaped flanges 2.1; 3.1 were attached to each other by rivet connections.
  • each metal support 2; 3 were attached to a total of eight perforated blocks (four lower perforated blocks 4.1 and four upper perforated blocks 4.2).
  • the fastenings were made by rivet connections or screw connections between the plate-shaped flange connections 2.2; 3.2 at the ends of the metal supports 2; 3 and the respective associated vertical walls of the perforated cuboids 4.1; 4.2 with the assigned receiving holes 4.1.1; 4.2.1 made.
  • the perforated blocks 4.1; 4.2 were located at the top and bottom ends of the four square concrete columns 4. with a metal core. Their respective three further vertical walls 4.1; 4.2 had further receiving holes 4.1.1; 4.1.2 on. These served to connect to other hybrid buildings 1 according to the invention. There were also receiving holes 4.1.1 in the horizontal undersides of the four lower perforated blocks 4.1. These served to accommodate connection devices to underlying hybrid buildings 1 according to the invention on a lower floor in a building.
  • the connecting devices were equipped with shims 19 so that there was a space 18 between the floors.
  • In the horizontal tops of the four upper hole cuboids 4.2 there were also receiving holes 4.2.1, which were used to accommodate connecting devices to hybrid buildings 1 according to the invention located above them on a higher floor in a building.
  • These connecting devices were also equipped with shims 19, so that There was a space 18 between the floors. The spaces 18 had a ventilating and insulating effect.
  • Corridor plate supports 4.2.1 made of steel were attached to the two perforated blocks 4.1 on the front or entrance side V. These were equipped with impact dampers 4.1.3, which dampened vibrations in the corridor floor plate 9.
  • the corridor floor plate 9 abutted the horizontal floor plate 5 in the recess 5.1 for the entrance door along the abutment surface 9.1.
  • the abutment surface 9.1 was provided with a shock-absorbing, sealing, flexible pad.
  • the front V was covered with a vertical sandwich panel wall 6 with a recess 5.1 for the entrance door.
  • the back R was also closed with a vertical sandwich panel wall 6 with a recess 10.1 for the window 10.
  • the two side walls S were closed with full-surface vertical sandwich panel walls.
  • the horizontal ceiling O was formed by a horizontal sandwich panel ceiling 7.
  • the horizontal sandwich panel ceiling 7 rested on the support surfaces 6.2 on the upper ends of the vertical sandwich panel walls 6.
  • the vertical sandwich panel walls 6 hit the horizontal base plate 5 with their lower contact surfaces 6.1.
  • the sandwich panels 1P described below were preferably used as sandwich panels.
  • the side walls S were each covered with a vertical side wall cladding 8 made of rigid sheet steel, which served as a partition and fire protection wall to neighboring hybrid buildings 1 according to the invention (cf. Figure 4 ).
  • the back or window side R i.e. H.
  • the outside of the hybrid building 1 according to the invention was equipped with decorative, flame-retardant and weather-resistant external facades.
  • the front or entrance side V, i.e. H. the corridor side was covered with decorative, flame-retardant interior wall paneling 11.
  • the hybrid building 1 according to the invention could be expanded as desired due to its simple and standardized, particularly statically stable structure.
  • larger hybrid buildings 1 could be made possible by using additional square concrete columns 4 with a metal core and other multi-part, lower and upper columns that are free of mechanical stress peaks metal supports 2; 3 were produced, which could be used in many ways.
  • multi-story buildings could be constructed quickly and safely.
  • the hybrid buildings 1 according to the invention could be equipped ex works so that they could be set up without any problems or were even ready for occupancy.
  • the hybrid buildings 1 according to the invention shown in the floor plan were like those Figures 3 and 4 explained in more detail. They were each already equipped at the factory with a recess 5.1 for the entrance door and a recess 10.1 for a window 10, so that these standardized components could be easily inserted into the front V and the back R of the hybrid building 1. They were also factory-equipped with a sanitary area 12, which had a sink 15, a toilet 14 with a water tank 14.1, a supply and ventilation shaft 13 with supply lines 13.1, a shower cubicle 16 that could be closed with a folding door 16.1 and with the help of the folding door 17 from the living area or Functional area could be separated.
  • the walls of the sanitary area consisted of vertical sandwich panel walls 6. The outside sides were equipped with decorative, flame-retardant and weather-resistant external facades 11. On the front V, ie the entrance side towards Corridor 9, the interior walls were covered with decorative and flame-retardant interior wall cladding.
  • the two hybrid buildings 1 according to the invention were connected in the same way to other identical hybrid buildings 1 both horizontally and vertically.
  • an identical row of hybrid buildings 1 were also built. In this way, a three-story building could be constructed in a short time and furnished according to the desired function.
  • the hybrid buildings 1 according to the invention were set up as hotel rooms, hotel rooms, retirement home rooms, nursing rooms, sick rooms, treatment rooms, doctor's rooms, isolation rooms for quarantine purposes, security rooms, shelters, rooms shielded against electromagnetic radiation and magnetic fields, computer rooms or offices.
  • the safety concept for a two-story hybrid building according to the invention from four hybrid buildings 1 according to the invention included sandwich panel ceilings 7, vertical sandwich panel walls 6 with external facades 11 and floor panels 5 of fire resistance class F90 as well as adjacent vertical partition walls made of sandwich panel walls 6 and side wall cladding 8 of fire resistance class F30.
  • the floor panels and 5 sandwich panel ceilings were equipped with impact sound-absorbing coverings, so that the impact sound insulation RW was ⁇ 50 dB, preferably ⁇ 40 dB.
  • the sandwich panel ceilings 7 had a sound insulation of ⁇ 60 dB.
  • the safety concept could be strengthened by using identical components with higher fire resistance classes such as F120 and F180.
  • the sound insulation could also be increased by using appropriate sandwich panel walls 6, sandwich panel ceilings 7 and coverings. It was also easily possible to increase the protection against electromagnetic radiation and magnetic fields without changing the basic design of the hybrid buildings 1 according to the invention.
  • the sandwich panel 1P Figure 6 had dimensions of 2.5 mx 6 mx 30 mm.
  • the top layer 1.1P visible in the top view and the invisible top layer 1.2P consisted of 2.5 mm thick anodized aluminum sheet.
  • the top layers 1.1P; 1.2P had a full-surface colored paintwork 3P with a decorative element 3P.
  • the circumferential opening between the cover layers 1.1P; 1.2P was closed with a circumferential U-profile rail made of anodized aluminum, which consisted of four parts.
  • the four parts of the U-profile rail 1.3P had a T-shaped cross section, so that the arms 1.3.1P of the "T" were flush with the edges of the cover layers 1.1P; 1.2P struck.
  • the sandwich panel 1P Figure 7 had the shape of a disk with a diameter of 1 m and a total thickness of 30 mm.
  • the top layers 1.1P; 1.2P were also made of 2.5 mm thick anodized aluminum sheet.
  • the circumferential opening 1.4P was with two semicircular U-profile rails 1.3P; 1.3.1P made of anodized aluminum sheet sealed.
  • the Figure 8 shows a top view of the edge side of the embodiments of the sandwich panels 1P described above Figures 6 and 7 .
  • the sandwich panels 1P were excellently suited as walls, ceilings and doors in the hybrid buildings 1 according to the invention.
  • the production of the sandwich panel 1P according to Figure 9 was carried out by separating the fibers of high-temperature glass wool made from alkali-resistant AR glass containing zirconium dioxide and micronizing them by fine grinding in a ball mill.
  • the micronized AR glass fibers were pasted with an aqueous suspension 2.5.1P of slow-hardening cement, resulting in a dough-like mass with a solid composition of 80% by weight of AR glass fibers and 20% by weight of cement.
  • the dough-like mass was pressed in a molding press with gas outlets, stamps of appropriate profiling and a square stamp area of 1 m 2 at 50 ° C to form plate-shaped molding masses with an "egg carton" configuration.
  • the Pyramids 2.6.1P according to the Figure 13 had a square base area measuring 4 mm x 4 mm and a square contact surface 2.6.2P measuring 2 mm x 2 mm and were spaced 2 mm apart.
  • the thickness of the AR fiberglass layers bonded with cement was 2 mm.
  • the plate-shaped molding compounds 2P; 2.6P were fully cured in air at room temperature for several days.
  • U-profile rails 1.3P without a T-shaped cross section 1.3.1P were used, which were pushed over the circumferential edges 1.5P in the form of a clamp. This had the advantage that the mineral fiber layer 2P was no longer contacted at its edges.
  • these U-profile rails 1.3P were always used The U-profile rails 1.3P had openings for pressure equalization with the environment.
  • the 1P sandwich panels of this design were significantly lower in weight than identical sandwich panels that were completely filled with glass wool. In addition, they demonstrated excellent sound and thermal insulation. They were fire-retardant and were not destroyed even by red heat. They were therefore ideally suited as components for the hybrid buildings 1 according to the invention.
  • the production of the sandwich panel 1P Figure 10 was done by doing as in Figure 9 described square, 1 m 2 plate-shaped molding compounds with an "egg carton" configuration 2.6P.
  • the plate-shaped molding compounds 2.6P; 2.6.1P differed from those of the Figure 9 only because instead of the pyramids 2.6.P with a square floor plan according to the Figure 13 Pyramids 2.6.1P with a circular floor plan but comparable size according to the Figure 14 were used.
  • the four plate-shaped molding compounds 2.6P; 2.6.1P were like Figure 9 described with the surface of the two cover layers 1.1P; 1.2P firmly connected.
  • sandwich panel 1P with a mineral fiber layer 2P of a "double egg carton" configuration 2.6P with a thickness of about 6 mm, which was significantly lighter than a comparable sandwich panel whose gap was completely filled with glass wool.
  • the 1P sandwich panel had excellent sound and heat insulation and was still fire retardant even at red heat.
  • Sandwich panels 1P of this type were therefore ideally suited as components for the hybrid buildings 1 according to the invention.
  • the sandwich panel 1P Figure 11 was made by using as in Figure 9 described plate-shaped molding compounds 2.6P with an "egg carton" configuration. These differed from the plate-shaped molding compounds 2.6P Figure 9 and the Figure 10 only because pyramids 2.6.1P with a hexagonal floor plan and hexagonal contact surfaces 2.6.2P according to the Figure 15 were used. There were three layers of these plate-shaped molding compounds 2.6P in the Figure 11 as shown, so that a "triple egg carton" configuration 2.6cP resulted as a mineral fiber layer 2P.
  • the circumferential opening 1.5P was as in Figure 9 described closed with circumferential U-profile rails 1.3P.
  • the sandwich panel 1P had a total thickness of around 10 mm and was significantly lighter than a comparable sandwich panel whose gap was completely filled with rock wool. This 1P sandwich panel also had excellent sound and heat insulation and was fire retardant even at red heat after the coating had burned or charred. The sandwich panel 1P was therefore ideally suited as a component for the hybrid buildings 1 according to the invention.
  • the sandwich panel 1P Figure 12 became like that Figure 9 described by forming five layers of the plate-shaped molding compositions 2.6P with the "egg carton” configuration, as in the Figure 12 shown, superimposed, resulting in a "five-fold egg carton” configuration 2.6dP.
  • the sandwich panel 1P had a total thickness of around 14 mm and was significantly lighter than a comparable sandwich panel whose gap was completely filled with rock wool. This sandwich panel 1P also had excellent sound and heat insulation and was fire-retardant even at red heat and did not deform. The sandwich panel 1P was therefore ideally suited as a component for the hybrid buildings 1 according to the invention.
  • the sandwich panel 1P Figure 16 was made by first taking the at the Figure 9 dough-shaped mass described plate-shaped molding masses 2.8P with a "Corrugated iron" configuration.
  • the parallel webs 2.10.1P were spaced 4 mm apart and were 8 mm high. Their wall thickness was 2 mm.
  • the contact surfaces 2.6.2P were 4 mm wide.
  • the channels 2.2P in the webs had a maximum clear width of 6 mm.
  • a layer of the plate-shaped molding compounds 2.8P was bonded to the cover layers 1.1P and 1.2P with a high-temperature-resistant glass-metal adhesive on the contact surfaces 2.6.2P.
  • the circumferential opening 1.5P between the cover layers 1.1P; 1.2P was like that Figure 9 described closed with U-profile rails.
  • the resulting sandwich panel 1 had a total thickness of approximately 10 mm. It was significantly lighter than a comparable sandwich panel whose gap was completely filled with polycrystalline aluminum oxide wool. The sound insulation, thermal insulation and fire retardancy were excellent.
  • the sandwich panel 1P was therefore ideally suited as a component for the hybrid buildings 1 according to the invention.
  • the Figure 17 shows a mineral fiber layer 2P which contained differently shaped depressions and troughs 2.9P.
  • the mineral fiber layer 2P had a maximum layer thickness of 4 mm.
  • the maximum depth of the depressions and troughs 2.9P was 3 mm.
  • the mineral fiber layer 2P was made from the following by compression molding Figure 9 dough-shaped mass described.
  • a sandwich panel 1P produced with this mineral fiber layer 2 had the same excellent properties as described above.
  • the sandwich panel 1P Figure 18 was manufactured by combining paper sheets 2.7P made of high-temperature resistant polycrystalline alumina wool with the Figure 9 suspension 2.5.1P described, so that an aluminum oxide wool with a solids content of 90% by weight of aluminum oxide and 10% by weight of cement resulted.
  • the impregnated paper webs 2.7P were folded while wet so that the distance from the tips to the depressions in the folded paper webs 2.7.1P was 5 mm.
  • the folded impregnated paper webs 2.7.1P were cured in air at room temperature.
  • the sandwich panel 1P was about 20 mm thick and had a mineral fiber layer 2P with a "corrugated cardboard" configuration 2.8P, which was particularly mechanically stable.
  • the thermal insulation, sound insulation and fire retardancy were excellent.
  • This sandwich panel 1P was therefore also ideally suited as a component for the hybrid buildings 1 according to the invention.
  • the sandwich panel Figure 19 was manufactured by folding paper sheets 2.7P made of high-temperature-resistant alumina wool and bonding them to a 1.5 mm thick cover layer 1.1P or 1.2P made of stainless steel using a high-temperature-resistant inorganic glass-metal adhesive 2.5P.
  • the free sides of the folded paper strips 2.7.1P were glued with mineral fiber fleeces 2.11P made of aluminum silicate wool.
  • Folded paper webs 2.7.1P were again placed on the mineral fiber fleece 2.11P and glued so that their channels 2.3P were arranged orthogonally to the channels 2.2P of the first layer of folded paper webs 2.7.1P.
  • the free sides of these folded paper webs 2.7.1P were glued to the other cover layer 1.1P or 1.2P, and the circumferential opening 1.5P was closed all around with U-profile rails 1.3P as described above.
  • the sandwich panel 1P was approximately 22 mm thick and had a significant weight saving compared to a comparable sandwich panel whose gap was completely filled with high-temperature-resistant aluminum oxide wool.
  • the sandwich panel 1P was particularly mechanically stable and had excellent thermal insulation, Sound insulation and fire retardancy. This sandwich panel 1P was therefore also ideally suited as a component for the hybrid buildings 1 according to the invention.

Description

  • Die vorliegende Erfindung betrifft Hybridgebäude, die bezugsfertig sind oder vor Ort sofort eingerichtet werden können.
  • Außerdem betrifft die vorliegende Erfindung die Verwendung der Hybridgebäude zur Herstellung von Gebäuden aller Art
  • Stand der Technik
  • Aus der amerikanischen Patentanmeldung US 2001/0047628 A1 sind transportable Moduleinheiten aus Stahl und ein Verfahren zum Zusammenbau dieser Einheiten zu Strukturen vor Ort bekannt, um damit Gebäude mit Wohn- und Arbeitsräumen zu schaffen, die nicht brennbar und resistent gegen ungesunde Verunreinigungen sowie starken Wind und andere Umgebungsbedingungen sind. Dabei ist jede Moduleinheit im Wesentlichen vollständig vorgefertigt und fertig, um eine sofortige Belegung und vorbestimmte Verwendung zu ermöglichen.
  • Aus der Übersetzung DE 603 14 454 T2 der europäischen Patentschrift 1 579 087 B1 ist eine modulare Baueinheit mit einer Skelettschale bekannt, die so ausgerichtet ist, dass sie die Wände eines Raums oder von Räumen definiert. Dabei bilden die Baueinheiten die miteinander verbundenen Räume eines Gebäudes, wenn sie in einer vertikalen und horizontalen Reihe aufgestapelt sind. Wesentlich ist, dass zur präzisen Lokalisierung eines Moduls oder eines Teils hiervon vertikal über einem anderen Modul, jedes Module am Umfang seiner Basis mit einem sich nach unten erstreckenden Aufstellungsflansch versehen ist. Außerdem ist jedes Modul auch mit einer äußeren Dachbedeckung einer lasttragenden Schalung versehen, die sich bis nahe an jedoch nicht ganz zu dem äußeren Umfang der Oberseite des Moduls mit einer Kante eines kaltgeformten Leichtgewichtstahls kaschiert ist. Die Kante weist einen ersten Abschnitt auf, der über die Oberseite der Seiten- und Endwände des Moduls überlappt, und einen zweiten Abschnitt, der über den äußeren Rand der Schalung überlappt, sodass zwischen dem ersten und dem zweiten Abschnitt der Kanten eine umgebende Aufstellungsausnehmung gebildet wird, in die der Aufstellungsflansch eines vertikal benachbarten Moduls genau eingesetzt werden kann.
  • Aus der deutschen Gebrauchsmusterschrift DE 20 2017 107 660 U1 ist ein Gebäudemodul mit einem quaderförmigen Gehäuse, das einen Boden, eine Decke, zwei Seitenwände und zwei Stirnwände bildet, bekannt, wobei in dem Gehäuse eine Tür und ein Fenster angeordnet ist. Das Gehäuse besteht aus einem monolithischen Rohrkörper aus einem Betonwerkstoff. Die vier Rohrwandungen bilden den Boden, die Decke und die Seitenwände. Die Tür und das Fenster sind in den Stirnwänden angeordnet. Der Betonwirkstoff enthält Poren sowie in dem Betonwirkstoff verteilt angeordnetes poröses mineralisches Material wie Blähton oder Bimsstein.
  • Aus der internationalen Patentanmeldung WO 2009/061702 A1 ist ein modulares Baukonstruktionssystem bekannt, das mehrere modulare Baukonstruktionseinheiten mit vorbestimmter Länge, Breite und Höhe, die im Wesentlichen denjenigen von Standardversandcontainern entsprechen, umfasst. Die modularen Baukonstruktionseinheiten sind so konfiguriert, dass sie in spezifischen Abständen voneinander auf einem Fundament platziert werden können. Sie weisen äußeren Oberflächen auf, von denen einige als Hohlformen für gegossenen Beton dienenden. Das Baukonstruktionssystem weist außerdem Bewehrungen zwischen und über den modularen Baukonstruktionseinheiten auf. Der Beton, der über die Verstärkungsmittel gegossen wird, bildet einige Außenflächen der modularen Baukonstruktionseinheiten, wobei der Beton und die Bewehrungen eine monolithische verstärkte Tragstruktur für das modulare Baukonstruktionssystem bilden.
  • Aus der amerikanischen Patentanmeldung US 2012/2255710 ist ein Gebäudesystem zur Unterbringung elektronischer Geräte bekannt. Das Gebäudesystem umfasst ein Gebäudestapel, der eine modulare Instrumentenbaueinheit mit einer internen Raumkonfiguration enthält, die zur Unterbringung elektronischer Geräte, einer Stromverteilungsausrüstung, einer Stromfilterausrüstung, einer unterbrechungsfreien Stromversorgung, einer modularen Kühleinheit, die eine Klimaanlage und eine Wasserkühleinheit umfasst, konfiguriert ist.
  • Aus den amerikanischen Patenten US 9,068,340 B2 und US 9,593,478 B2 sind Verfahren und Vorrichtungen bekannt, die den Bau eines Gebäudes unter Verwendung vorgefertigter Baueinheiten erleichtern. Die Baueinheiten umfassen jeweils eine horizontale obere Außenfläche und mehrere vertikale Wandflächen, wobei mindestens einige der vorgefertigten Baueinheiten mindestens eine hohle Säulenschalungsstruktur aufweisen. Die vorgefertigten Baueinheiten werden auf einer Baustelle auf eine bereits vorhandene Basis abgesenkt. Eine erste Etage des Gebäudes wird erstellt, indem mehrere vorgefertigte Gebäudeeinheiten nebeneinander auf der Basis angeordnet werden. Strukturelles Lagermaterial wird angewendet, um die Hohlsäulenschalungsstrukturen zu füllen und strukturelle Säulen zu erzeugen, die mit dem strukturellen Deck verbunden sind. Strukturelles Lagermaterial wird auf die horizontalen oberen Außenflächen der angrenzenden vorgefertigten Gebäudeeinheiten aufgebracht, um ein einzelnes strukturelles Deck über den vorgefertigten Gebäudeeinheiten zu erzeugen.
  • Aus dem amerikanischen Patent US 9,366,020 B2 ist ein modulares Einheitsverbindungssystem zum Zusammenfügen mehrerer kastenförmigem modularer Einheiten zu einem ein- oder mehrstöckigen Gehäuse bekannt. Die modularen Baueinheiten haben an ihren vertikalen Ecken längliche hohle strukturelle Rahmenelemente und vier im Wesentlichen senkrechte vertikale Seitenwände, die sich zwischen den vertikalen Eckelementen erstrecken. Die vertikalen Eckelemente liegen innerhalb der Ebenen, die durch die Seitenwände der modularen Einheiten gebildet werden. Ihre vertikalen Eckelemente und ihre angrenzenden Seitenwände liegen ohne signifikanten Abstand zwischen ihnen an. Die modularen Einheiten können an ihren vertikalen Eckelementen mit flachen Verbindungsplatten verbunden sein. Zugstangen mit Gewinde können sich durch die hohlen vertikalen Eckelemente erstrecken und können mit Zugstangen gekoppelt sein, die durch die hohlen vertikalen Eckelemente vertikal ausgerichteter modularer Einheiten verlaufen.
  • Aus der europäischen Patentanmeldung EP 3 034 707 A1 ist ein modulares Gebäudesystem bekannt, dass die horizontale oder vertikale Kopplung oder Überlagerung von vorgefertigten Bauteilen aus Stahlbeton umfasst, um Wohnräume zu schaffen.
  • US 2014/298745 A1 offenbart ein gattungsgemäßes Hybridgebäude.
  • Die bisher bekannten Gebäudemodule und die hieraus hergestellten Gebäude lassen jedoch hinsichtlich der Flexibilität und Variabilität ihrer Anwendung, ihres Gewichts, das ein stark einschränkender Faktor ist, der sicheren Statik, des Brandschutzes, des Schallschutzes, der Wartungsfreundlichkeit, der Möglichkeit, eine Klimaanlage hinzuzufügen und der vollständigen Ausstattung ab Werk zu wünschen übrig.
  • Aufgabe der vorliegenden Erfindung
  • Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, Hybridgebäude bereitzustellen, die einfach in Serie hergestellt werden können, im Vergleich zum Stand der Technik besonders leicht und dennoch bis zu mehreren Stockwerken ohne weitere tragenden Konstruktionen auf Dauer sicher stapelbar sind, einen Schallschutz auf höchstem Niveau zwischen den einzelnen Hybridgebäude-Untereinheiten und den Stockwerken haben, eine Feuerwiderstandsklasse mit höchstem Standard aufweisen, besonders wartungsfreundlich sind, eine einfache Hinzufügung von Klimaanlagen ermöglichen und ab Werk vollständig mit Verkabelungen, losen und fixierten Möbeln, Vorhängen, Teppichböden und voll ausgestatteten Badezimmern ausgerüstet oder vor Ort direkt eingerichtet werden können.
  • Erfindungsgemäße Lösung
  • Demgemäß wurde das Hybridgebäude gemäß dem unabhängigen Anspruch 1 gefunden, das im Folgenden als "erfindungsgemäßes Hybridgebäude" bezeichnet wird. Vorteilhafte Ausführungsformen des erfindungsgemäßen Hybridgebäudes sind Gegenstand der abhängigen Ansprüche 2 bis 8.
  • Außerdem wurde die Verwendung des erfindungsgemäßen Hybridgebäudes gemäß dem eingeben Anspruch 9 gefunden, die im Folgenden als »erfindungsgemäße Verwendung" bezeichnet wird. Vorteilhafte erfindungsgemäße Verwendungen sind Gegenstand des abhängigen Anspruchs 10.
  • Vorteile der Erfindung
  • Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden Erfindung zu Grunde lag, mithilfe des erfindungsgemäßen Hybridgebäudes und seiner erfindungsgemäßen Verwendung gelöst werden konnte.
  • Insbesondere überraschte, dass die erfindungsgemäßen Hybridgebäude einfach in Serie hergestellt werden konnten, im Vergleich zu Modulen des Standes der Technik besonders leicht und dennoch bis zu mehreren Stockwerken ohne weitere tragenden Konstruktionen auf Dauer sicher aufgebaut werden konnten, einen Schallschutz auf höchstem Niveau zwischen den einzelnen Hybridgebäuden-Untereinheiten und den Stockwerken und eine Feuerwiderstandsklasse auf höchstem Standard aufwiesen, besonders wartungsfreundlich waren, eine einfache Ausrüstung mit Klimaanlagen, Aufzügen und anderen gebäudetechnischen Einrichtungen ermöglichten und ab Werk vollständig mit Verkabelungen, losen und fixierten Möbeln, Vorhängen, Teppichböden und voll ausgestatteten Badezimmern ausgerüstet oder vor Ort direkt eingerichtet werden konnten.
  • Weitere Vorteile gehen aus der nachfolgenden Beschreibung hervor.
  • Ausführliche Beschreibung der Erfindung
  • Das erfindungsgemäße Hybridgebäude ist zumindest aus Stahlteilen, Stahlbetonteilen, Leichtbetonteilen und flammhemmenden, schall- und wärmedämmenden Sandwichpaneelen aufgebaut und umfasst zumindest
    • mindestens eine horizontale Sandwichpaneel-Decke einer Feuerwiderstandsklasse von mindestens 30, vorzugsweise mindestens 60 und insbesondere mindestens 90,
    • mindestens eine Rückseite oder Fensterseite aus mindestens einer vertikalen Sandwichpaneel-Wand einer Feuerwiderstandsklasse von mindestens 30, vorzugsweise mindestens 60 und insbesondere mindestens 90 mit mindestens einer Aussparung für mindestens ein Fenster,
    • mindestens zwei vertikale Sandwichpaneel-Seitenwände einer Feuerwiderstandsklasse von mindestens 30, vorzugsweise mindestens 60 und insbesondere mindestens 90,
    • mindestens eine horizontale Bodenplatte aus bewehrtem Beton, insbesondere mit Stahl bewehrtem StB-Beton, die mit Aufhängungen, die vorzugsweise aus Metall bestehen, mit den nachstehend beschriebenen unteren Metallträgern verbunden ist,
    • mindestens eine Vorderseite oder Eingangsseite aus mindestens einer vertikalen Sandwichpaneel-Wand einer Feuerwiderstandsklasse von mindestens 30 vorzugsweise mindestens 60 und insbesondere mindestens 90 mit mindestens einer Aussparung für mindestens eine Eingangstür und
    • mindestens einem tragenden Grundgerüst, das den gedachten Kanten mindestens eines rechteckigen Quaders folgt.
  • Das mindestens eine tragende Grundgerüst umfasst zumindest
    • mindestens vier vertikale Betonsäulen mit jeweils mindestens einem Metallkern und an den Enden (i) mit jeweils einem unteren Lochquader aus Metall mit jeweils mindestens einem Aufnahmeloch in jeder der vier vertikalen Wände und einem Aufnahmeloch in der unteren horizontalen Wand und (ii) mit jeweils einem oberen Lochquader aus Metall mit jeweils mindestens einem Aufnahmeloch in jeder der vier vertikalen Wände und einem Aufnahmeloch in der oberen horizontalen Wand sowie
    • mindestens vier in mindestens einem Rechteck oder Quadrat angeordneten, mit den unteren Lochquadern verbundenen, von mechanischen Spannungsspitzen freien, mehrteiligen, unteren horizontalen Metallträgern und
    • mindestens vier in mindestens einem deckungsgleichen Rechteck oder Quadrat angeordneten, mit den oberen Lochquadern verbundenen, von mechanischen Spannungsspitzen freien, mehrteiligen, oberen horizontalen Metallträgern.
  • In den erfindungsgemäßen Hybridgebäuden sind die die Sandwichpaneel-Seitenwände sowie die zugeordneten oberen und unteren Metallträger mit einer Seitenwandverkleidung einer Feuerwiderstandsklasse von mindestens 30, vorzugsweise mindestens 60 und insbesondere mindestens 90 verkleidet. Außerdem sind die Vorderseiten oder Eingangsseiten bis auf die Aussparungen für die Türen sowie die zugeordneten oberen und unteren Metallträger mit Innenwandverkleidungen einer Feuerwiderstandsklasse von mindestens 30, vorzugsweise mindestens 60 und insbesondere mindestens 90 verkleidet. Des Weiteren sind die Rückseiten oder Fensterseiten bis auf die Aussparungen für die Fenster sowie die zugeordneten oberen und unteren Metallträger mit flammhemmenden, dekorativen und witterungsbeständigen Außenfassaden einer Feuerwiderstandsklasse von mindestens 60, insbesondere mindestens 90, bedeckt.
  • Die oberen und unteren Metallträger haben ein U-Profil.
  • Die oberen und unteren Metallträger bestehen jeweils aus einem Mittelteil und zwei kürzeren Seitenteilen, wobei die Verbindungen zwischen dem Mittelteil und den Seitenteilen an den Stellen liegen, an denen bei einem einteiligen Metallträger die mechanischen Spannungsspitzen auftreten würden.
  • An den unteren Lochquadern der Vorderseite oder Eingangsseite sind Korridorplattenauflagen aus Metall befestigt, die der Auflage von Korridorplatten dienen. Zwischen den Korridorplattenauflagen und den Korridorplatten können elastische Teile zur Dämpfung von Tritten angeordnet sein. Die Korridorplatten stoßen im Bereich der Aussparungen für die Eingangstüren bündig an die horizontalen Bodenplatten aus bewehrtem Beton an. Dabei können die Stoßflächen mit einem dämpfenden flexiblen Belag versehen werden.
  • Vorzugsweise wird das Metall für die tragende Grundstruktur aus der Gruppe, bestehend aus Stahl, Chromstahl, Molybdänstahl, V2 A-Stahl und V4 A-Stahl ausgewählt.
  • In einer bevorzugten Ausführungsform werden die erfindungsgemäßen Hybridgebäude bereits werkseitig oder vor Ort mit einem durch vertikale Sandwichpaneel-Wände vom übrigen Raum abgetrennten Sanitärbereich ausgerüstet. Der Sanitärbereich umfasst vorzugsweise mindestens ein Waschbecken, eine Duschkabine, mindestens eine Toilette mit einem Wasserkasten und einen Versorgungs- und Belüftungsschacht mit Versorgungsleitungen, insbesondere für Elektrizität, Glasfaserleitungen, Telefonleitungen, Trinkwasser und Abwasser.
  • Diehorizontale Bodenplatte ist mit einem Belag, der den Trittschall dämpft, bedeckt. Ein Beispiel für einen solchen Belag ist ein Teppichboden. Es ist ein besonderer Vorteil der erfindungsgemäßen Hybridgebäude, dass sie mittels üblicher und bekannter Verbindungvorrichtungen, die in die Aufnahmelöcher der Lochquader eingesteckt sind, horizontal und/oder vertikal zusammengefügt werden können. Solche Verbindungvorrichtungen werden beispielsweise zum sicheren Zusammenfügen von Schiffscontainern verwendet.
  • Die weiteren wesentlichen Bauteile der erfindungsgemäßen Hybridgebäude sind mindestens ein Typ und insbesondere mindestens zwei Typen von Sandwichpaneelen.
  • Im Allgemeinen umfassen die Sandwichpaneele aus mindestens einer ersten und mindestens einer zweiten Deckschicht, zwischen denen mindestens eine Mineralfaserschicht angeordnet ist, die aus mindestens einer Art von Mineralfasern aufgebaut ist.
  • Vorzugsweise weisen die Sandwichpaneele eine Trittschalldämmung RW von 33 dB bis 37 dB auf. Je nach Einsatzort werden Sandwichpaneele der Feuerwiderstandsklassen F30 (feuerhemmend), F 60 (hoch feuerhemmend), F90 (feuerbeständig) und F120 (hoch feuerbeständig) verwendet. Ihr Gewicht liegt bei 15 kg/m2 bis 40 kg/m2, bevorzugt 20 kg/m2 bis 35 kg/m2 und insbesondere 20 kg/m2 bis 30 kg pro m2. Ihr Wärmedurchgangskoeffizient U liegt bei 0,6 W/m2K bis 0,5 W/m2K, bevorzugt 0,7 W/m2K bis 0,45 W/m2K und insbesondere 0,8 W/m2K bis 0,42 W/m2K.
  • Die Mineralfasern in der Mineralfaserschicht können steggerichtet sein und ein spezifisches Gewicht von vorzugsweise 100 kg/m3 bis 200 kg/m3, bevorzugt 110 kg/m3 bis 180 kg/m3 und insbesondere 120 kg/m3 bis 180 kg/m3 haben.
  • Die mindestens eine Mineralfaserschicht ist von Kanälen, die parallel zu den Deckschichten verlaufen, durchzogen. Alternativ oder zusätzlich ist die Mineralfaserschicht von Kanälen, die vertikal zu den Deckschichten verlaufen, durchzogen. Alternativ oder zusätzlich umfasst die mindestens eine Mineralfaserschicht Vertiefungen und/oder Mulden.
  • In einer weiteren Ausführungsform kann die mindestens eine Mineralfaserschicht von Kanälen durchzogen sein, die orthogonal zu den vorstehend aufgeführten parallelen Kanälen verlaufen.
  • Vorzugsweise kann die mindestens eine Mineralfaserschicht aus Mineralfasern, ausgewählt aus der Gruppe, bestehend aus Aluminiumsilikat-Wolle, Erdalkali-Silikat-Wolle, Aluminium-Silikat-Zirkon-Wolle, Hochtemperatur-Glaswolle, polykristalliner Aluminiumoxid-Wolle, Aluminiumoxid-Keramikfasern, Mullit-Keramikfasern, Yttriumoxid-Keramikfasern, Siliziumcarbid-, Siliziumcarbidnitrid-, und Siliziumboridnitridcarbid-Fasern, alkalibeständigen Glasfasern, Quarzfasern, Kieselsäurefasern Basaltfasern, Borfasern, Einkristallfasern (Whisker), polykristallinen Fasern, Schlackenfasern und Nanotubefasern sowie deren Gemischen, aufgebaut sein.
  • Bevorzugt liegen die Mineralfasern in der Form von Wollen, Papieren, Vliesen, Trockenfilzen, Nassfilzen, Platten, Füllmaterialien und Formmassen vor.
  • In einer bevorzugten Ausführungsform können die Mineralfasern in der mindestens einen Mineralfaserschicht mit mindestens einem hochtemperaturbeständigen Bindemittel verbunden sein. Alternativ oder zusätzlich kann die mindestens eine Mineralfaserschicht mit mindestens einem, insbesondere einem, hochtemperaturbeständigen Bindemittel oder Kleber mit der Innenseite mindestens einer Deckschicht haftfest verbunden werden. Alternativ oder zusätzlich kann die mindestens eine Mineralfaserschicht mit mindestens einer weiteren Mineralfaserschicht mit mindestens einem, insbesondere einem, hochtemperaturbeständigen Bindemittel oder Kleber haftfest verbunden werden.
  • Die hochtemperaturbeständigen Bindemittel sind bei Temperaturen >300 °C, vorzugsweise >500 °C und insbesondere >800 °C thermisch stabil und zersetzen sich nicht und gasen auch keine toxischen Gase aus. Beispiele geeigneter hochtemperaturbeständiger Bindemittel sind Kalk, Gips, Tone, Wassergläser, Zemente und mit anorganischen Füllstoffen wie Cristobalit gefüllte Silicone.
  • Die mindestens eine Mineralfaserschicht hat als Formmasse vorzugsweise die Form von Eierkartons, Wellpappen und gefalteten Papieren. Diese können wiederum in Kombination mit Papieren, Vliesen, Platten und/oder Filzen aus Mineralfasern angewandt werden.
  • Die Stärke der mindestens eine Mineralfaserschicht richtet sich vor allem nach der lichten Weite zwischen den Deckschichten. Vorzugsweise ist die Mineralfaserschicht so ausgestaltet, dass sie die lichte Weite zumindest stellenweise vollständig ausfüllt.
  • Vorzugsweise wird die mindestens eine Mineralfaserschicht durch Vermischen von vereinzelten Mineralfasern und/oder Füllmaterialien mit mindestens einer, insbesondere einer, Dispersion, insbesondere eine wässrige Dispersion, mindestens einer Vorstufe mindestens eines, insbesondere eines, der vorstehend genannten Bindemittel oder Kleber, Formen der resultierenden Mischungen und Härten der geformten Mischung hergestellt.
  • Gemäß einer weiteren Ausführungsform wird die mindestens eine Mineralfaserschicht durch das Imprägnieren von Papieren, Vliesen, Platten und/oder Filzen aus Mineralfasern mit mindestens einer, insbesondere einer, der vorstehend genannten Dispersion und Formen der resultierenden imprägnierten Papiere, Vliese, Platten und/oder Filze hergestellt.
  • Vorzugsweise wird das Formen mithilfe des Vakuumformverfahrens oder des Formpressverfahrens durchgeführt. Insbesondere können mithilfe des Formpressverfahrens besonders großflächige Formmassen hergestellt werden.
  • Das Aushärten der Formmassen bzw. der Vorstufe des Bindemittels kann bei Raumtemperatur an der Luft oder in Umluftöfen und Trockentunneln mit Heißluft, offenen Flammen und/oder mit IR-Strahlung durchgeführt werden.
  • Die erfindungsgemäßen Sandwichpaneele können einen 3-eckigen, 4-eckigen, 5-eckigen, 6-eckigen, 7-eckigen, 8-eckigen, trapezförmigen oder rautenförmigen Umr Spatz iss oder einen 3-eckigen, 4-eckigen, 5-eckigen, 6-eckigen, 7-eckigen, 8-eckigen, sternförmigen, trapezförmigen oder rautenförmigen Umriss mit mindestens einer abgerundeten Ecke und/oder mit mindestens einer konkaven und/oder konvexen Kante oder einen kreisförmigen, elliptischen, ovalen oder nierenförmigen Umriss haben. Vorzugsweise haben die erfindungsgemäßen Sandwichpaneele einen 4-eckigen und insbesondere einen rechteckigen oder quadratischen Umriss.
  • Je nach Verwendungszweck können die Sandwichpaneele eine Fläche von 10 cm2 bis 100 m2 haben. Bevorzugt haben die 4-eckigen, insbesondere rechteckigen oder quadratischen Sandwichpaneele eine Fläche, die der Fläche einer Kabinenwand oder Zimmerwand entspricht. Mindestens eine der mindestens zwei Deckflächen kann mit mindestens einer, insbesondere einer, vollflächigen oder teilflächigen dekorativen und/oder funktionellen Beschichtung, wie Folien, Hölzer, Glas, Lacke, Textilien und/oder Licht emittierende Kunststoffplatten, bedeckt sein. In dieser Hinsicht sind den Sandwichpaneelen praktisch keine Grenzen gesetzt, solange die Feuerbeständigkeit nicht darunter leidet.
  • Besonders bevorzugt werden die Paneelsysteme der Firma Wenker GmbH & Co. KG, Ahaus, Deutschland, verwendet.
  • Die Außenmaße der erfindungsgemäßen Hybridgebäude können breit variieren und den Erfordernissen des Einzelfalls hervorragend angepasst werden. Vorzugsweise weisen die jeweiligen erfindungsgemäßen Hybridgebäude oder ihre Untereinheiten außen eine Seitenlänge von 2 m bis 25 m, bevorzugt 2,5 bis 20 m, besonders bevorzugt 3 m bis 20 m, ganz besonders bevorzugt von 3,5 m bis 15 m und insbesondere 4 m bis 10 m auf. Vorzugsweise weisen die Vorderseiten oder Eingangsseiten und die Rückseiten oder Fensterseiten außen eine Länge von 2 m bis 15 m, bevorzugt von 2,5 m bis 12 m, besonders bevorzugt 3 m bis 10 m, ganz besonders bevorzugt 3,5 m bis 8 m und insbesondere 3,5 m bis 6 m auf. Vorzugsweise weisen sie außen eine Höhe von 2,2 m bis 4 m, bevorzugt 2,3 bis 3,5 m und insbesondere 2,3 bis 3 m auf.
  • Ebenso kann die die Bodenfläche innen breit variieren und den Erfordernissen des Einzelfalls hervorragend angepasst werden. Vorzugsweise liegt die Bodenfläche innen bei 10 m2 bis 200 m2, bevorzugt 12 m2 bis 100 m2, besonders bevorzugt 14 m2 bis 50 m2 und insbesondere 15 m2 bis 30 m2.
  • Ein besonders vorteilhaftes, weil vielseitig verwendbares, erfindungsgemäßes Hybridgebäude hat eine Breite außen von 3,5 m, eine Seitenlänge außen von 6 m, eine Außenhöhe von 2,8 m und eine Bodenfläche innen von 20 m2.
  • Erfindungsgemäß werden die Hybridgebäude zur Errichtung von oberirdischen und unterirdischen Gebäuden verwendet.
  • Bei den Hybridgebäuden kann es sich um Hotels, Motels, Wohngebäude, Altenheime, Schule, Vortragsräume, Computerräume, Bürogebäude, Gaststätten, Küchen, Geschäfte aller Art, Gefängnisse, Lagerhallen, Krankenhäusern und Kliniken mit Patientenzimmern, Isolierstationen, Intensivstationen, Arztzimmern, Behandlungsräumen, Operationsräumen, Diagnoseräumen mit medizinischen Untersuchungsgeräten, Stationszimmern, Sozialräumen, Vorratsräumen sowie Räumen für medizinische und andere Abfälle, Gebäude für den Schutz vor elektromagnetischer Strahlung und Magnetfeldern sowie Gebäude für die Forschung und Entwicklung mit physikalischen, chemischen, biologischen und mikrobiologischen Laboren und Reinräumen handeln.
  • Diese Aufzählung soll die Vielzahl der Möglichkeiten der erfindungsgemäßen Verwendung verdeutlichen und grenzt die erfindungsgemäße Verwendung nicht ein.
  • Es ist ein besonderer Vorteil der erfindungsgemäßen Verwendung, dass die erfindungsgemäßen Hybridgebäude mit Aufzügen, Rolltreppen, Kellerräumen, Tiefgaragen, Treppenhäusern, Schleusen, Sicherheitstüren, Klimaanlagen, Räumen und Aufbauten für die Gebäudetechnik, Vorräumen, Eingangshallen, Portierlogen, Sprinkleranlagen, Sendeanlagen, Fitnessräumen, Saunen und Schwimmbädern ausgerüstet werden können.
  • Im Folgenden werden die erfindungsgemäßen Hybridgebäude anhand der Figuren 1 bis 5 näher erläutert. Die Figuren 1 bis 5 zeigen schematisch das Bauprinzip der erfindungsgemäßen Hybridgebäude, das sich in vorteilhafterweise variieren und erweitern lässt, ohne den Rahmen der Erfindung zu verlassen. Weil das Bauprinzip und die Funktionen der Bauteile schematisch erläutert werden, sind die Figuren 1 bis 5 nicht maßstabsgetreu und grenzen auch nicht die Erfindung ein.
  • Es zeigen
  • Figur 1
    die Draufsicht auf das Grundgerüst eines erfindungsgemäßen Hybridgebäudes 1 von dessen Vorderseite V oder Rückseite R her gesehen;
    Figur 2
    die Draufsicht auf die mit dem Sandwichpaneel 6 verschlossene Seitenwand S des erfindungsgemäßen Hybridgebäudes 1;
    Figur 3
    die Draufsicht auf die Oberseite O des erfindungsgemäßen Hybridgebäudes 1 mit der Decke aus einem Sandwichpaneel 7;
    Figur 4
    die Draufsicht auf den Grundriss zweier seitlich aneinandergrenzender erfindungsgemäßer Hybridgebäude 1 und
    Figur 5
    die Draufsicht auf den Querschnitt eines zweistöckigen Gebäudes aus vier miteinander verbundenen erfindungsgemäßen Hybridgebäuden 1 mit den Angaben der Brandschutzklassen und der Trittschalldämpfung.
  • In den Figuren 1 bis 5 haben die Bezugszeichen die folgende Bedeutung:
  • F30
    Feuerwiderstandsklasse "feuerhemmend"
    F90
    Feuerwiderstandsklasse "feuerbeständig"
    O
    Ansicht von oben, Sandwichpaneel-Decke
    R
    Ansicht von der offenen Rückseite (Fensterseite)
    S
    Seitenansicht, Sandwichpaneel-Seitenwand
    TS
    Trittschalldämmung RW
    V
    Ansicht von der offenen Vorderseite (Eingangsseite)
    1
    Hybridgebäude
    2
    Von mechanischen Spannungsspitzen freier, mehrteiliger, unterer horizontaler Metallträger
    2.1
    Plattenförmige Flanschverbindung im Metallträger 2
    2.2
    Plattenförmige Flanschverbindung eines Endes des Metallträgers 2 mit dem unteren Lochquader 4.1.1
    3
    Von mechanischen Spannungsspitzen freier, mehrteiliger, oberer horizontaler Metallträger
    3.1
    Plattenförmige Flanschverbindung im Metallträger 3
    3.2
    plattenförmige Flanschverbindung eines Endes des Metallträgers 3 mit dem oberen Lochquader 4.2.1
    4
    Viereckige Betonsäule mit Metallkern
    4.1
    Unterer Lochquader mit jeweils einem Aufnahmeloch 4.1.1 in jeder der vier vertikalen Wände und einem Aufnahmeloch in der unteren horizontalen Wand (verdeckt)
    4.1.1
    Aufnahmeloch in einer vertikalen Wand von 4.1
    4.1.2
    Korridorplattenauflage
    4.1.3
    Trittdämpfung
    4.2
    Oberer Lochquader mit jeweils einem Aufnahmeloch 4.1.2 in jeder der vier vertikalen Wände und einem Aufnahmeloch in der oberen horizontalen Wand
    4.2.1
    Aufnahmeloch in einer vertikalen Wand von 4.2
    4.2.2
    Aufnahmeloch in der oberen horizontalen Wand von 4.2
    5
    Horizontale Bodenplatte aus bewehrtem Beton (StB-Beton)
    5.1
    Aussparung für die Eingangstür in das Hybridgebäude 1
    5.2
    Aufhängung für die Bodenplatte 5
    6
    Vertikale Sandwichpaneel-Wand
    6.1
    Untere Auflagefläche der vertikalen Sandwichpaneel-Wand 6 auf der horizontalen Bodenplatte 5
    6.2
    Auflagefläche der horizontalen Sandwichpaneel-Decke 7 auf dem oberen Ende der vertikalen Sandwichpaneel-Wand 6
    7
    Horizontale Sandwichpaneel-Decke
    8
    Seitenwandverkleidung
    9
    Korridorbodenplatte, Korridor
    9.1
    Stoßfläche Korridorbodenplatte 9/horizontale Bodenplatte 5
    10
    Fenster
    10.1
    Aussparung für das Fenster 10
    11
    Außenfassade, Innenwandverkleidungen
    12
    Sanitärbereich
    13
    Versorgungs- und Belüftungsschacht
    13.1
    Versorgungsleitungen
    14
    Toilette
    14.1
    Wasserkasten
    15
    Waschbecken
    16
    Duschkabine
    16.1
    Falttür (Duschkabine 16)
    17
    Falttür (Sanitärbereich 12)
    18
    Zwischenraum zwischen zwei Stockwerken
    19
    Unterlegplatte
    Ausführliche Erläuterung der Figuren 1 bis 5 Figuren 1 bis 3
  • Das erfindungsgemäße Hybridgebäude 1 besaß eine rechteckige Grundfläche von 21 m2 mit einer 3,5 m breiten Vorderseite oder Eingangsseite V, einer 3,5 m breiten Rückseite oder Fensterseite R und zwei 6 m langen Seitenwänden S. Die angegebenen Maße bezogen sich auf die Außenseiten des Hybridgebäudes 1. Die Bodenplatte 5 bestand aus bewehrtem Beton (StB-Beton) und war mit Aufhängungen 5.2 in dem Grundgerüst aus vier von mechanischen Spannungsspitzen freien, 3-teiligen unteren horizontalen Metallträgern 2 verankert. Die Höhe des erfindungsgemäßen Hybridgebäudes 1 betrug an den Außenseiten 2,7 m. Das Gerüst für die Sandwichpaneel-Decke O wurde ebenfalls von vier von mechanischen Spannungsspitzen freien, 3-teiligen oberen Metallträgern 3 gebildet.
  • Als Metallträger 2; 3 wurden acht U-Profil-Metallträger aus Stahl verwendet. Sie bestanden jeweils aus einem längeren mittleren Teil und zwei kürzeren seitlichen Teilen oder Arme, die durch plattenförmige Flanschverbindungen 2.1; 3.1 an den mittleren Teil befestigt waren. Die Flanschverbindungen 2.1; 3.1 befanden sich im Bereich der mechanischen Spannungsspitzen, die bei einem einteiligen Metallträger gleicher Länge auftreten würden. Durch die Flanschverbindungen 2.1; 3.1 wurde bewirkt, dass solche Spannungsspitzen vermindert wurden oder nicht mehr auftraten. Die plattenförmigen Flansche 2.1; 3.1 waren durch Nietverbindungen aneinander befestigt.
  • Die beiden Enden jedes Metallträgers 2; 3 waren an insgesamt acht Lochquadern (vier untere Lochquader 4.1 und vier obere Lochquader 4.2) befestigt. Die Befestigungen wurden durch Nietverbindungen oder Schraubverbindungen zwischen den plattenförmigen Flanschverbindungen 2.2; 3.2 an den Enden der Metallträger 2; 3 und den jeweiligen zugeordneten vertikalen Wänden der Lochquader 4.1; 4.2 mit den zugeordneten Aufnahmelöchern 4.1.1; 4.2.1 hergestellt.
  • Die Lochquader 4.1; 4.2 befanden sich an den oberen und den unteren Enden der vier viereckigen Betonsäulen 4. mit Metallkern. Ihre jeweiligen drei weiteren vertikalen Wände 4.1; 4.2 wiesen weitere Aufnahmelöchern 4.1.1; 4.1.2 auf. Diese dienten der Verbindung mit weiteren erfindungsgemäßen Hybridgebäuden 1. In den horizontalen Unterseiten der vier unteren Lochquader 4.1 befanden sich ebenfalls Aufnahmelöcher 4.1.1. Diese dienten der Aufnahme von Verbindungsvorrichtungen zu darunterliegenden erfindungsgemäßen Hybridgebäuden 1 eines tieferen Stockwerks in einem Gebäude. Die Verbindungsvorrichtungen waren mit Unterlegplatten 19 ausgerüstet, sodass sich zwischen den Stockwerken ein Zwischenraum 18 befand. In den horizontalen Oberseiten der vier oberen Lochquader 4.2 befanden sich ebenfalls Aufnahmelöcher 4.2.1, die der Aufnahme von Verbindungsvorrichtungen zu darüber liegenden erfindungsgemäßen Hybridgebäuden 1 eines höheren Stockwerks in einem Gebäude dienten. Auch diese Verbindungsvorrichtungen waren mit Unterlegplatten 19 ausgerüstet, sodass sich zwischen den Stockwerken ein Zwischenraum 18 befand. Die Zwischenräume 18 wirkten belüftend und isolierend.
  • An den beiden Lochquadern 4.1 der Vorderseite oder Eingangsseite V waren Korridorplattenauflagen 4.2.1 aus Stahl befestigt. Diese waren mit Trittdämpfungen 4.1.3 ausgerüstet, die Schwingungen der Korridorbodenplatte 9 dämpften. Die Korridorbodenplatte 9 stieß in der Aussparung 5.1 für die Eingangstür längs der Stoßfläche 9.1 an die horizontale Bodenplatte 5. Die Stoßfläche 9.1 war mit einer stoßdämpfenden, abdichtenden, flexiblen Auflage versehen.
  • Die Vorderseite V war mit einer vertikalen Sandwichpaneel-Wand 6 mit einer Aussparung 5.1 für die Eingangstür verkleidet. Die Rückseite R war ebenfalls mit einer vertikalen Sandwichpaneel-Wand 6 mit einer Aussparung 10.1 für das Fenster 10 verschlossen. Die beiden Seitenwände S waren mit vollflächigen vertikalen Sandwichpaneel-Wänden verschlossen. Die horizontale Decke O wurde von einer horizontalen Sandwichpaneel-Decke 7 gebildet. Die horizontale Sandwichpaneel-Decke 7 lag auf den Auflageflächen 6.2 auf den oberen Enden der vertikalen Sandwichpaneel-Wände 6 auf. Die vertikalen Sandwichpaneel-Wände 6 stießen mit ihren unteren Auflageflächen 6.1 auf die horizontale Bodenplatte 5 auf.
  • Als Sandwichpaneele wurden bevorzugt die nachstehend beschriebenen Sandwichpaneele 1P verwendet. Besonders bevorzugt wurden die Paneelsysteme der Firma Wenker GmbH & Co. KG, Ahaus, Deutschland, verwendet.
  • Die Seitenwände S waren mit jeweils einer vertikalen Seitenwandverkleidung 8 aus starrem Stahlblech bedeckt, die als Trennwand und Feuerschutzwand zu benachbarten erfindungsgemäßen Hybridgebäuden 1 diente (vgl. Figur 4).
  • Die Rückseite oder Fensterseite R, d. h. die Außenseite des erfindungsgemäßen Hybridgebäudes 1, wurde mit dekorativen, flammhemmenden und witterungsbeständigen Außenfassaden ausgerüstet. Die Vorderseite oder Eingangsseite V, d. h. die Seite zum Korridor, wurde mit dekorativen, flammhemmenden Innenwandverkleidungen 11 bedeckt.
  • Das erfindungsgemäße Hybridgebäude 1 konnte aufgrund seines einfachen und genormten, statisch besonders stabilen Aufbaus beliebig erweitert werden. Beispielsweise konnten größere Hybridgebäude 1 durch die Verwendung weiterer viereckiger Betonsäulen 4 mit Metallkern und weiterer von mechanischen Spannungsspitzen freien, mehrteiligen, unteren und oberen Metallträgern 2; 3 hergestellt werden, die in vielfacher Weise verwendbar waren. Insbesondere konnten mehrstöckige Gebäude rasch und sicher aufgebaut werden. Ein weiterer besonderer Vorteil war, dass die erfindungsgemäßen Hybridgebäude 1 schon ab Werk so ausgerüstet werden konnten, dass sie problemlos eingerichtet werden konnten oder sogar bezugsfertig waren.
  • In dieser Weise war es nicht nur möglich, Hotels, Motels, Wohngebäude, Altenheime, Schulen, Bürogebäude, Gefängnisse und Lagerhallen mit und ohne Aufzugsschächte zu errichten, sondern auch Krankenhäuser mit Patientenzimmern, Isolierstationen, Intensivstationen, Arztzimmern, Behandlungsräumen, Diagnoseräumen mit medizinischen Untersuchungsgeräten wie Röntgengeräte und CT- und MRT-Geräten, Stationszimmern, Sozialräumen, Vorratsräumen, Räumen für medizinische und andere Abfälle sowie Gebäude für die Forschung und Entwicklung mit physikalischen, chemischen, biologischen und mikrobiologischen Laboren und Reinräumen etc. in kürzester Zeit aufzubauen.
  • Figur 4
  • Die im Grundriss dargestellten erfindungsgemäßen Hybridgebäude 1 waren wie bei den Figuren 3 und 4 näher erläutert aufgebaut. Sie waren werkseitig jeweils bereits mit einer Aussparung 5.1 für die Eingangstür und einer Aussparung 10.1 für ein Fenster 10 ausgerüstet, sodass diese genormten Bauteile in einfacher Weise in die Vorderseite V und die Rückseite R der Hybridgebäude 1 eingesetzt werden konnten. Außerdem waren sie werkseitig mit einem Sanitärbereich 12 ausgerüstet, der ein Waschbecken 15, eine Toilette 14 mit einem Wasserkasten 14.1, einen Versorgungs- und Belüftungsschacht 13 mit Versorgungsleitungen 13.1, eine mit einer Falttür 16.1 verschließbare Duschkabine 16 aufwies und mithilfe der Falttür 17 vom Wohnbereich oder Funktionsbereich abgetrennt werden konnte. Die Wände des Sanitärbereichs bestanden aus vertikalen Sandwichpaneel-Wänden 6. Die Außenseiten wurden mit dekorativen, flammhemmenden und witterungsbeständigen Außenfassaden 11 ausgerüstet. Auf der Vorderseite V, d. h. die Eingangsseite zum Korridor 9 hin, wurden die Innenwände mit dekorativen und flammhemmenden Innenwandverkleidungen bedeckt.
  • Die beiden erfindungsgemäßen Hybridgebäude 1 waren in gleicher Weise mit weiteren baugleichen Hybridgebäuden 1 sowohl horizontal als auch vertikal verbunden. Auf der gegenüberliegenden Seite des Korridors 9 wurden ebenfalls eine baugleiche Reihe der Hybridgebäude 1 errichtet. In dieser Weise konnte ein dreistöckiges Gebäude in kurzer Zeit aufgebaut und je nach der gewünschten Funktion eingerichtet werden.
  • So wurden die erfindungsgemäßen Hybridgebäude 1 als Hotelzimmer, Hotelzimmer, Altenheimzimmer, Pflegezimmer, Krankenzimmer, Behandlungsräume, Arztzimmer, Isolierzimmer für Quarantänezwecke, Sicherheitsräume, Schutzräume, gegen elektromagnetische Strahlung und Magnetfelder abgeschirmte Räume, Computerräume oder Büros eingerichtet.
  • Figur 5
  • Das Sicherheitskonzept für ein zweistöckiges erfindungsgemäßes Hybridgebäude aus vier erfindungsgemäßen Hybridgebäuden 1 umfasste Sandwichpaneel-Decken 7, vertikale Sandwichpaneel-Wände 6 mit Außenfassaden 11 und Bodenplatten 5 der Feuerwiderstandsklasse F90 sowie benachbarte vertikale Zwischenwände aus Sandwichpaneel-Wänden 6 und Seitenwandverkleidungen 8 der Feuerwiderstandsklasse F30. Die Bodenplatten 5 Sandwichpaneel-Decken waren mit trittschalldämpfenden Belägen ausgerüstet, sodass die Trittschalldämmung RW ≤50 dB, vorzugsweise ≤ 40 dB, war. Die Sandwichpaneel-Decken 7 wiesen eine Schalldämmung von ≤ 60 dB, auf.
  • Das Sicherheitskonzept konnte bei Bedarf durch die Verwendung baugleicher Bauteile mit höheren Feuerwiderstandsklassen wie F120 und F180 verstärkt werden. Ebenso konnte die Schalldämmung durch die Verwendung entsprechender Sandwichpaneel-Wände 6, Sandwichpaneel-Decken 7 und Belägen verstärkt werden. Es war auch ohne weiteres möglich, den Schutz vor elektromagnetischer Strahlung und Magnetfeldern zu verstärken, ohne die grundlegende Bauweise der erfindungsgemäßen Hybridgebäude 1 zu ändern.
  • Ausführliche Beschreibung erfindungsgemäß verwendbarer Sandwichpaneele
  • Im Folgenden werden die bevorzugt verwendeten Sandwichpaneele 1P anhand der Figuren 6 bis 19 näher erläutert. Die Figuren 6 bis 19 sollen schematisch verschiedene Möglichkeiten des Aufbaus von Sandwichpaneelen veranschaulichen. Die Figuren 6 bis 19 brauchen daher nicht maßstabsgetreu zu sein und grenzen auch die Erfindung nicht ein. Es zeigen die
  • Figur 6
    die Draufsicht auf die Oberfläche eines rechteckigen Sandwichpaneels 1P;
    Figur 7
    die Draufsicht auf die Oberfläche eines scheibenförmigen Sandwichpaneels 1P;
    Figur 8
    die Draufsicht auf die Kanten 1.5P der Deckschichten 1.1P; 1.2P mit der umlaufenden Profilschiene 1.3P;
    Figur 9
    die Draufsicht auf einen Ausschnitt eines Querschnitts durch ein Sandwichpaneel 1P, worin die Mineralfaserschicht 2P eine "einfache Eierkarton"-Konfiguration 2.6aP hat;
    Figur 10
    die Draufsicht auf einen Ausschnitt eines Querschnitts durch ein Sandwichpaneel 1P, worin die Mineralfaserschicht 2P eine "doppelte Eierkarton" Konfiguration 2.6bP hat, wobei sich zwischen den "Eierkartons" 2.6P ein Mineralfaserpapier 2.7P befindet;
    Figur 11
    die Draufsicht auf einen Ausschnitt eines Querschnitts durch ein Sandwichpaneel 1P, worin die Mineralfaserschicht 2P eine "dreifache Eierkarton"-Konfiguration 2.6cP hat und die Deckschichten 1.1P; 1.2P eine vollflächige Beschichtung 3P haben;
    Figur 12
    die Draufsicht auf einen Ausschnitt eines Querschnitts durch ein Sandwichpaneel 1P, worin die Mineralfaserschicht 2P eine "fünffache Eierkarton"-Konfiguration 2.6dP hat;
    Figur 13
    die Draufsicht von oben auf eine "Eierkarton"-Konfiguration 2.6P mit 4-eckigen Pyramiden 2.6.1P und Auflageflächen 2.6.2P;
    Figur 14
    die Draufsicht auf eine "Eierkarton"-Konfiguration mit kegelstumpfförmigen Pyramiden 2.6.1P und Auflageflächen 2.6.2P mit kreisrundem Umriss;
    Figur 15
    Die Draufsicht auf eine "Eierkarton"-Konfiguration 2.6P mit Pyramiden 2.6.1P mit 6-eckigem Grundriss und 6-eckigen Auflageflächen 2.6.2P;
    Figur 16
    die perspektivische Darstellung eines Ausschnitts aus einer "Wellblech"-Konfiguration 2.6P; 2.8P der Mineralfaserschicht 2P; 2.1P;
    Figur 17
    Draufsicht auf eine Mineralfaserschicht 2P mit unterschiedlich geformten Vertiefungen und Mulden 2.9P;
    Figur 18
    die Draufsicht auf einen Ausschnitt eines Querschnitts durch ein Sandwichpaneel 1P, worin die Mineralfaserschicht 2P; 2.1P drei Lagen von gefaltetem Mineralfaserpapier 2.7P; 2.7.1P mit zwei Zwischenlagen Mineralfaserpapier 2.7P; 2.7.1P und jeweils einer Lage Mineralfaserpapier 2.7P; 2.7.1P auf der Innenseite der Deckschichten 1.1P; 1.2P hat;
    Figur 19
    die Draufsicht auf einen Ausschnitt eines Querschnitts durch ein Sandwichpaneel 1P mit zwei Lagen von speziell gefaltetem Mineralfaserpapier 2.7P; 2.7.1P, die durch ein Mineralfaservlies 2.11P voneinander getrennt sind, wobei die zwei Lagen 2.7P; 2.71P orthogonal zueinander angeordnet sind.
  • Im Folgenden werden die Figuren 6 bis 19 im Einzelnen beispielhaft beschrieben. In den Figuren 6 bis 19 haben die Bezugszeichen die folgende Bedeutung:
  • P
    "Zum Sandwichpaneel gehörend"
    1P
    Sandwichpaneel
    1.1P
    Erste Deckschicht
    1.2P
    Zweite Deckschicht
    1.3P
    Umlaufende U-Profilschiene mit T-förmigem Querschnitt
    1.3.1P
    Arme des "T"
    1.4P
    Umlaufende Öffnung zwischen den Deckschichten 1.1P; 1.2P
    1.5P
    Kanten der Deckschichten 1.1P; 1.2P
    2P
    Mineralfaserschicht
    2.1P
    Mineralfasern
    2.2P
    Kanäle, die parallel zu den Deckschichten 1.1; 1.2 verlaufen
    2.3P
    Kanäle, die orthogonal zu den parallelen Kanälen 2.2 verlaufen
    2.4P
    Kanäle, die vertikal zu den Deckschichten 1.1; 1.2 verlaufen
    2.5P
    Hochtemperaturbeständiges Bindemittel, hochtemperaturbeständiger Kleber
    2.5.1P
    Vorstufe des Bindemittels 2.5
    2.6P
    "Eierkarton"-Konfiguration
    2.6aP
    "einfache Eierkarton"-Konfiguration
    2.6bP
    "doppelte Eierkarton"-Konfiguration
    2.6cP
    "dreifache Eierkarton"-Konfiguration
    2.6dP
    "fünffache Eierkarton"-Konfiguration
    2.6.1P
    Pyramide
    2.6.2P
    Auflagefläche, Kontaktfläche
    2.7P
    Mineralfaserpapier
    2.7.1P
    Gefaltetes Mineralfaserpapier 2.7
    2.8P
    "Wellblech"-Konfiguration
    2.9P
    Vertiefung, Mulde
    2.10P
    "Wellpappe" Konfiguration
    2.10.1P
    Hohlsteg
    2.11P
    Mineralfaservlies
    3P
    Vollflächige oder teilflächige Beschichtung
    Ausführliche Erläuterung der Figuren 6 bis 19 Figuren 6, 7 und 8
  • Das Sandwichpaneel 1P der Figur 6 wies die Abmessungen 2,5 m x 6 m x 30 mm auf. Die in der Draufsicht sichtbare Deckschicht 1.1P und die nicht sichtbare Deckschicht 1.2P bestanden aus 2,5 mm dickem, eloxiertem Aluminiumblech. Die Deckschichten 1.1P; 1.2P wiesen eine vollflächige farbige Lackierung 3P mit einem dekorativen Element 3P auf. Die umlaufende Öffnung zwischen den Deckschichten 1.1P; 1.2P wurde mit einer umlaufenden U-Profilschiene aus eloxiertem Aluminium, die aus vier Teilen bestand, geschlossen. In einer vorteilhaften Ausführungsform wiesen die vier Teile der U-Profilschiene 1.3P einen T-förmigen Querschnitt auf, sodass die Arme 1.3.1P des "T" bündig an die Kanten der Deckschichten 1.1P; 1.2P anschlugen.
  • Das Sandwichpaneel 1P der Figur 7 wies die Form einer Scheibe mit einem Durchmesser von 1 m und einer Gesamtdicke von 30 mm auf. Die Deckschichten 1.1P; 1.2P bestanden ebenfalls aus 2,5 mm dickem, eloxiertem Aluminiumblech. Die umlaufende Öffnung 1.4P war mit zwei halbkreisförmigem U-Profilschienen 1.3P; 1.3.1P aus eloxiertem Aluminiumblech verschlossen.
  • Die Figur 8 zeigt eine Draufsicht auf Kantenseite der vorstehend beschriebenen Ausführungsformen der Sandwichpaneele 1P der Figuren 6 und 7.
  • Die Sandwichpaneele 1P waren hervorragend als Wände, Decken und Türen in den erfindungsgemäßen Hybridgebäuden 1 geeignet.
  • Figuren 9 und 13
  • Die Herstellung des Sandwichpaneels 1P gemäß der Figur 9 erfolgte, indem man die Fasern von Hochtemperaturglaswolle aus Zirconiumdioxid enthaltendem, alkalibeständigem AR-Glas vereinzelte und durch eine Feinvermahlung in einer Kugelmühle mikronisierte. Die mikronisierten AR-Glasfasern wurden mit einer wässrigen Suspension 2.5.1P von langsam härtendem Zement angeteigt, sodass eine teigförmige Masse mit einer Feststoffzusammensetzung von 80 Gew.-% AR-Glasfasern und 20 Gew.-% Zement resultierte. Die teigförmige Masse wurde in einer Formpresse mit Gasauslässen, Stempeln einer entsprechenden Profilierung und einer quadratischen Stempelfläche von 1 m2 bei 50 °C zu plattenförmigen Formmassen mit einer "Eierkarton"-Konfiguration gepresst. Die Pyramiden 2.6.1P gemäß der Figur 13 wiesen eine 4-eckige Grundfläche einer Abmessung von 4 mm x 4 mm und eine 4-eckige Kontaktfläche 2.6.2P einer Abmessung von 2 mm x 2 mm auf und waren 2 mm voneinander beabstandet. Die Dicke der mit Zement gebundenen AR-Glasfaser-Schichten betrug 2 mm. Die plattenförmigen Formmassen 2P; 2.6P wurden während mehrerer Tage an der Luft bei Raumtemperatur vollständig ausgehärtet.
  • Es wurde zwei quadratische Deckschichten 1.1P; 1.2P einer Fläche von 8 m2 aus 1 mm dickem, entfettetem, feueraluminiertem Blech bereitgestellt. Die Kontaktflächen 2.6.2P von vier AR-Glasfaser-Schichten 2P; 2.6P wurden mit einem hochtemperaturbeständigen, bei Raumtemperatur härtenden Glas-Metall-Kleber 2.5P auf Keramikbasis bestrichen und zunächst auf die quadratische Deckschicht 1.1P aufgelegt, wonach die Deckschicht 1.2P auf die 4 AR-Glasfaser-Schichten deckungsgleich aufgelegt wurde. Dadurch resultierten in der Mineralfaserschicht 2; 2.6aP ("einfache Eierkarton"-Konfiguration) Kanäle 2.2P, die parallel zu den Deckschichten 1.1P; 1.2P verliefen und Kanäle 2.3P, die orthogonal zu den parallelen Kanälen 2.2P verliefen.
  • Nach der vollständigen Aushärtung des hochtemperaturbeständigen Bindemittels oder Klebers 2.5P wurde die umlaufende Öffnung 1.4P zwischen den Deckschichten 1.1P; 1.2P umlaufend mit vier entsprechend dimensionierten U-Profilschienen 1.3P; 1.3.1P mit T-förmigem Querschnitt (vgl. die Figuren 6 bis 8) verschlossen, indem man das U-Profile in die umlaufende Öffnung 1.4P einschob, bis die Arme des "T" bündig mit den Kanten 1.5P Deckschichten 1.1P; 1.2P abschlossen.
  • In einer weiteren Ausführung wurden entsprechend dimensionierten U-Profilschienen 1.3P ohne T-förmigen Querschnitt 1.3.1P verwendet, die klammerförmig über die umlaufenden Kanten 1.5P geschoben wurden. Dies hatte den Vorteil, dass die Mineralfaserschicht 2P nicht mehr an ihren Rändern kontaktiert wurde. Im Folgenden wurden stets diese U-Profilschienen 1.3P verwendet Die U-Profilschienen 1.3P wiesen Öffnungen für den Druckausgleich mit der Umgebung auf.
  • Die Sandwichpaneele 1P dieser Bauart wiesen ein deutlich geringeres Gewicht als baugleiche Sandwichpaneele, die vollständig mit Glaswolle gefüllt waren, auf. Darüber hinaus zeigten sie eine hervorragende Schall- und Wärmedämmung. Sie waren brandhemmend und wurden auch bei Rotglut nicht zerstört. Somit waren sie hervorragend als Bauteile für die erfindungsgemäßen Hybridgebäude 1 geeignet.
  • Figur 10 und 14
  • Die Herstellung des Sandwichpaneels 1P der Figur 10 erfolgte, indem man wie bei Figur 9 beschrieben quadratische, 1 m2 große plattenförmige Formmassen mit einer "Eierkarton"-Konfiguration 2.6P herstellte. Die plattenförmigen Formmassen 2.6P; 2.6.1P unterschieden sich von denen der Figur 9 nur dadurch, dass anstelle der Pyramiden 2.6.P mit quadratischem Grundriss gemäß der Figur 13 Pyramiden 2.6.1P mit kreisförmigem Grundriss aber vergleichbarer Größe gemäß der Figur 14 verwendet wurden. Die jeweils vier plattenförmigen Formmassen 2.6P; 2.6.1P wurden wie bei Figur 9 beschrieben mit der Oberfläche der beiden Deckschichten 1.1P; 1.2P haftfest verbunden. Anschließend wurden auf die freien Kontaktflächen 2.6.2P der plattenförmigen Formmassen 2.6P; 2.6.1P Vliese 2.7P aus polykristalliner Aluminiumoxid-Wolle mit einem hochtemperaturbeständigen anorganischen Glaskleber 2.5P aufgeklebt. Anschließend wurde die andere Deckschicht 1.1P oder 1.2P mit den vier weiteren plattenförmigen Formmassen 2.6P; 2.6.1P auf der anderen Seite der Vliese 2.7P so aufgeklebt, dass die erhabenen Kontaktflächen 2.6.2P der plattenförmigen Formmassen 2.6P; 2.6.1P einander gegenüberlagen. Zuletzt wurde die umlaufende Öffnung 1.4P zwischen den Kanten 1.5P der Deckschichten 1.1P; 1.2P wie bei Beispiel 9 mit U-Profilschienen verschlossen.
  • Es resultierte ein Sandwichpaneel 1P mit einer Mineralfaserschicht 2P einer "doppelten Eierkarton"-Konfiguration 2.6P mit einer Dicke von etwa 6 mm, das deutlich leichter war als ein vergleichbares Sandwichpaneel, dessen Zwischenraum vollständig mit Glaswolle gefüllt war. Das Sandwichpaneel 1P wies eine hervorragende Schall- und Wärmedämmung auf und war auch bei Rotglut noch brandhemmend. Sandwichpaneele 1P dieser Bauart waren somit hervorragend als Bauteile für die erfindungsgemäßen Hybridgebäude 1 geeignet.
  • Figuren 11 und 15
  • Das Sandwichpaneel 1P der Figur 11 wurde hergestellt, indem man wie bei Figur 9 beschrieben plattenförmige Formmassen 2.6P mit einer "Eierkarton"-Konfiguration herstellte. Diese unterschieden sich von den plattenförmigen Formmassen 2.6P der Figur 9 und der Figur 10 nur dadurch, dass Pyramiden 2.6.1P mit einem 6-eckigen Grundriss und 6-eckigen Kontaktflächen 2.6.2P gemäß der Figur 15 verwendet wurden. Es wurden drei Lagen dieser plattenförmigen Formmassen 2.6P in der in der Figur 11 gezeigten Weise übereinandergelegt, sodass eine "dreifache Eierkarton"-Konfiguration 2.6cP als Mineralfaserschicht 2P resultierte. Die umlaufende Öffnung 1.5P wurde wie bei Figur 9 beschrieben mit umlaufenden U-Profilschienen 1.3P verschlossen. Anschließend wurden die äußeren Oberflächen der Deckschichten 1.1P; 1.2P mit einer Beschichtung 3P aus einem bis 250 °C hitzestabilen Pulverlack beschichtet.
  • Das Sandwichpaneel 1P wies eine Gesamtdicke von etwa 10 mm auf und war deutlich leichter als ein vergleichbares Sandwichpaneel, dessen Zwischenraum vollständig mit Steinwolle gefüllt war. Auch dieses Sandwichpaneel 1P wies eine hervorragende Schall- und Wärmedämmung auf und war nach dem Abbrand oder dem Verkohlen der Beschichtung auch bei Rotglut brandhemmend. Somit war das Sandwichpaneel 1P hervorragend als Bauteil für die erfindungsgemäßen Hybridgebäude 1 geeignet.
  • Figuren 12 und 15
  • Das Sandwichpaneel 1P der Figur 12 wurde wie bei der Figur 9 beschrieben hergestellt, indem man fünf Lagen der plattenförmigen Formmassen 2.6P mit der "Eierkarton"-Konfiguration, wie in der Figur 12 gezeigt, übereinanderlegte, sodass eine "fünffache Eierkarton"-Konfiguration 2.6dP resultierte.
  • Das Sandwichpaneel 1P wies eine Gesamtdicke von etwa 14 mm auf und war deutlich leichter als ein vergleichbares Sandwichpaneel, dessen Zwischenraum vollständig mit Steinwolle gefüllt war. Auch dieses Sandwichpaneel 1P wies eine hervorragende Schall- und Wärmedämmung auf und war auch bei Rotglut brandhemmend und verformte sich nicht. Somit war das Sandwichpaneel 1P hervorragend als Bauteil für die erfindungsgemäßen Hybridgebäude 1 geeignet.
  • Figur 16
  • Das Sandwichpaneel 1P der Figur 16 wurde hergestellt, indem man zunächst aus der bei der Figur 9 beschriebenen teigförmigen Masse plattenförmige Formmassen 2.8P mit einer "Wellblech"-Konfiguration herstellte. Die parallelen angeordneten Stege 2.10.1P waren 4 mm voneinander beabstandet und waren 8 mm hoch. Ihre Wandstärke lag bei 2 mm. Die Kontaktflächen 2.6.2P waren 4 mm breit. Die Kanäle 2.2P in den Stegen wiesen eine maximale lichte Weite von 6 mm auf.
  • Eine Lage der plattenförmigen Formmassen 2.8P wurden mit den Deckschichten 1.1P und 1.2P mit einem hochtemperaturbeständigen Glas-Metall-Kleber an den Kontaktflächen 2.6.2P verklebt. Die umlaufende Öffnung 1.5P zwischen den Deckschichten 1.1P; 1.2P wurde wie bei der Figur 9 beschrieben mit U-Profilschienen verschlossen.
  • Das resultierende Sandwichpaneel 1 wies eine Gesamtdicke von etwa 10 mm auf. Es war deutlich leichter als ein vergleichbares Sandwichpaneel, dessen Zwischenraum vollständig mit polykristalliner Aluminiumoxidwolle gefüllt war. Die Schalldämmung, Wärmedämmung und Brandhemmung waren hervorragend. Somit war das Sandwichpaneel 1P hervorragend als Bauteil für die erfindungsgemäßen Hybridgebäude 1 geeignet.
  • Figur 17
  • Die Figur 17 zeigt eine Mineralfaserschicht 2P, die unterschiedlich geformte Vertiefungen und Mulden 2.9P enthielt. Die Mineralfaserschicht 2P wies eine maximale Schichtdicke von 4 mm auf. Die maximale Tiefe der Vertiefungen und Mulden 2.9P lag bei 3 mm. Die Mineralfaserschicht 2P wurde durch Formpressen aus der bei Figur 9 beschriebenen teigförmigen Masse hergestellt.
  • Ein mit dieser Mineralfaserschicht 2 hergestelltes Sandwichpaneel 1P wies sie gleichen hervorragenden Eigenschaften, wie sie vorstehend beschrieben werden, auf.
  • Figur 18
  • Das Sandwichpaneel 1P der Figur 18 wurde hergestellt, indem man Papierbahnen 2.7P aus hochtemperaturbeständiger polykristalliner Aluminiumoxidwolle mit der bei der Figur 9 beschriebenen Suspension 2.5.1P imprägnierte, sodass eine Aluminiumoxidwolle mit einem Feststoffgehalt von 90 Gew.-% Aluminiumoxid und 10 Gew.-% Zement resultierte. Die imprägnierten Papierbahnen 2.7P wurden im nassen Zustand gefaltet, sodass der Abstand von den Spitzen zu den Vertiefungen in den gefalteten Papierbahnen 2.7.1P bei 5 mm lag. Die gefalteten imprägnierten Papierbahnen 2.7.1P wurden an der Luft bei Raumtemperatur gehärtet.
  • Zwei quadratische, 4 m2 messende Deckschichten 1.1P; 1.2P aus 1,5 mm starkem Edelstahl wurden vollflächig mit den Papierbahnen 2.7P verklebt. Anschließend wurde auf die Papierbahnen 2.7P auf einer Deckschicht 1.1P oder 1.2P eine Lage der gehärteten, gefalteten Papierbahnen 2.7.1P aufgeklebt. Darüber wurden wieder Papierbahnen 2.7P und eine weitere Lage der gehärteten, gefalteten Papierbahnen 2.7.1P fixiert. Anschließend wurden erneut Papierbahnen 2.7P aufgelegt und eine dritte Lage der gehärteten gefalteten Papierbahnen 2.7.1P fixiert. Deren Spitzen wurden mit den Papierbahnen 2.7P auf der anderen Deckschicht 1.1P oder 1.2P verklebt. Es wurde für die Verklebung ein hochtemperaturbeständiger anorganischer Glaskleber 2.5P verwendet.
  • Das Sandwichpaneel 1P war etwa 20 mm dick und wies eine Mineralfaserschicht 2P mit einer "Wellpappe"-Konfiguration 2.8P auf, die mechanisch besonders stabil war. Die Gewichtsersparnis gegenüber einem vergleichbaren Sandwichpaneel, dessen Zwischenraum vollständig mit hochtemperaturbeständigen Aluminiumoxidwolle gefüllt war, war erheblich. Die Wärmedämmung, die Schalldämmung und die Brandhemmung waren hervorragend. Somit war auch dieses Sandwichpaneel 1P hervorragend als Bauteil für die erfindungsgemäßen Hybridgebäude 1 geeignet.
  • Figur 19
  • Das Sandwichpaneel der Figur 19 wurde hergestellt, indem man Papierbahnen 2.7P aus hochtemperaturbeständiger Aluminiumoxidwolle faltete und mit einer 1,5 mm starken Deckschicht 1.1P oder 1.2P aus Edelstahl mittels eines hochtemperaturbeständigen anorganischen Glas-Metall-Klebers 2.5P verklebte. Die freien Seiten der gefalteten Papierbahnen 2.7.1P wurden mit Mineralfaservliesen 2.11P aus Aluminiumsilikatwolle verklebt. Auf die Mineralfaservliesn 2.11P wurde erneut gefaltete Papierbahnen 2.7.1P gelegt und verklebt, sodass deren Kanäle 2.3P orthogonal zu den Kanälen 2.2P der ersten Lage aus gefalteten Papierbahnen 2.7.1P angeordnet waren. Zuletzt wurden die freien Seiten dieser gefalteten Papierbahnen 2.7.1P mit der anderen Deckschicht 1.1P oder 1.2P verklebt, und die umlaufende Öffnung 1.5P wurde wie vorstehend beschrieben mit U-Profilschienen 1.3P umlaufend verschlossen.
  • Das Sandwichpaneel 1P war etwa 22 mm dick und wies gegenüber einem vergleichbaren Sandwichpaneel, dessen Zwischenraum vollständig mit hochtemperaturbeständigen Aluminiumoxidwolle gefüllt war, eine erhebliche Gewichtsersparnis auf. Das Sandwichpaneel 1P war mechanisch besonders stabil und wies eine hervorragende Wärmedämmung, Schalldämmung und Brandhemmung auf. Somit war auch dieses Sandwichpaneel 1P hervorragend als Bauteil für die erfindungsgemäßen Hybridgebäude 1 geeignet.

Claims (10)

  1. Hybridgebäude (1) zumindest aufgebaut aus Stahlteilen, Stahlbetonteilen, Leichtbetonteilen und flammhemmenden, schall- und wärmedämmenden Sandwichpaneelen, zumindest umfassend
    - mindestens eine horizontale Sandwichpaneel-Decke (U; 7; 1P) einer Feuerwiderstandsklasse von mindestens 30 und einer Schalldämmung von ≤60 dB,
    - mindestens eine Rückseite oder Fensterseite (R; 6; 1P) aus mindestens einer vertikalen Sandwichpaneel-Wand (6; 1P) einer Feuerwiderstandsklasse von mindestens 30 mit mindestens einer Aussparung (10.1) für mindestens ein Fenster (10),
    - mindestens zwei vertikale Sandwichpaneel-Seitenwände (S; 6; 1P) einer Feuerwiderstandsklasse von mindestens 30, die an eine Seitenwandverkleidung einer Feuerwiderstandsklasse von mindestens 30 angrenzen,
    - obere und untere Metallträger (3; 2), bestehend aus jeweils einem Mittelteil und zwei kürzeren Seitenteilen, wobei die Verbindungen zwischen den Mittelteilen und den Seitenteilen an den Stellen liegen, an denen bei einem einteiligen Metallträger die mechanischen Spannungsspitzen auftreten würden,
    - mindestens eine horizontale Bodenplatte (5) einer Trittschalldämmung RW ≤50 dB aus bewehrtem Beton, die mit einem Trittschall dämpfenden Belag versehen ist und mit Aufhägungen (5.2) mit den unteren Metallträgern (2) verbunden ist mindestens eine Vorderseite oder Eingangsseite (O; 6; 1P) aus mindestens einer vertikalen Sandwichpaneel-Wand (6; 1P) einer Feuerwiderstandsklasse von mindestens 30 mit mindestens einer Aussparung (5.1) für mindestens eine Eingangstür und
    - mindestens ein tragendes Grundgerüst, das den gedachten Kanten mindestens eines rechteckigen Quaders folgt, zumindest umfassend
    - mindestens vier vertikale Betonsäulen (4) mit jeweils mindestens einem Metallkern und an den Enden (i) mit jeweils einem unteren Lochquader (4.1) aus Metall mit jeweils mindestens einem Aufnahmeloch (4.1.1) in jeder der vier vertikalen Wände und einem Aufnahmeloch (4.1.3) in der unteren horizontalen Wand und (ii) mit jeweils einem oberen Lochquader (4.2) aus Metall mit jeweils mindestens einem Aufnahmeloch (4.2.1) in jeder der vier vertikalen Wände und einem Aufnahmeloch (4.2.2) in der oberen horizontalen Wand sowie
    - mindestens vier in mindestens einem Rechteck oder Quadrat angeordneten, mit den unteren Lochquadern (4.1) verbundenen, von mechanischen Spannungsspitzen freien, mehrteiligen, unteren horizontalen Metallträgern (2) und
    - mindestens vier in mindestens einem deckungsgleichen Rechteck oder Quadrat angeordneten, mit den oberen Lochquadern (4.2) verbundenen, von mechanischen Spannungsspitzen freien, mehrteiligen, oberen horizontalen Metallträgern (3),
    wobei
    - jede Sandwichpaneel-Seitenwand (S; 6; 1P) und jede Sandwichpaneel-Decke (O; 7; 1P) ein Gewicht von 15 kg/m2 bis 40 kg/m2, einen Wärmedurchgangskoeffizient U von 0,6 W/m2K bis 0,5 W/m2K aufweisen und jeweils mindestens eine erste und mindestens eine zweite flammhemmende Deckschicht (1.1P) und (1.2P), die in einem Abstand voneinander parallel zueinander angeordnet sind, sowie mindestens eine Mineralfaserschicht (2P) aus mindestens einer Art von Mineralfasern (2.1P) zwischen mindestens zwei der Deckschichten (1.1P; 1.2P) umfassen, wobei die mindestens eine Mineralfaserschicht (2P) der Sandwichpaneele (1P) von Kanälen (2.2P), die parallel zu den Deckschichten (1.1P; 1.2P) verlaufen, und/oder von Kanälen (2.4P), die vertikal zu den Deckschichten (1.1P; 1.2P) verlaufen, durchzogen ist, und/oder Vertiefungen und/oder Mulden (2.9P) umfasst,
    - die Sandwichpaneele (1P) jeweils eine umlaufende U-Profilschiene (1.3P) zur Abdeckung der umlaufenden Öffnung (1.4P) zwischen den Kanten (1.5P) der Deckschichten (1.1P; 1.2P) aufweisen,
    - die umlaufende U-Profilschiene (1.3P) mindestens eine Öffnung (1.3.1P) für den Druckausgleich mit der Umgebung aufweist.
    - die Sandwichpaneel-Seitenwände (S; 6) sowie die zugeordneten oberen und unteren Metallträger (3; 2) mit einer Seitenwandverkleidung (8) einer Feuerwiderstandsklasse von mindestens 30 verkleidet sind,
    - die Vorderseiten oder Eingangsseiten (V; 6) bis auf die Aussparungen (5.1) für die Türen sowie die zugeordneten oberen und unteren Metallträger (3; 2) mit Innenwandverkleidungen (11) einer Feuerwiderstandsklasse von mindestens 30 verkleidet sind,
    - die Rückseiten oder Fensterseiten (R; 6) bis auf die Aussparungen (10.1) für die Fenster (10) sowie die zugeordneten oberen und unteren Metallträger (3; 2) mit Außenfassaden (11) einer Feuerwiderstandsklasse von mindestens 60 bedeckt sind und
    - an den unteren Lochquadern (4.1) der Vorderseite oder Eingangsseite (V; 6) Korridorplattenauflagen (4.1.2) aus Metall befestigt sind.
  2. Hybridgebäude (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Seitenwandverkleidungen (8) Stahlbleche sind.
  3. Hybridgebäude (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die oberen und unteren Metallträger (3; 2) ein U-Profil haben.
  4. Hybridgebäude (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Metall aus der Gruppe, bestehend aus Stahl, Chromstahl, Molybdänstahl, V2 A-Stahl und V4 A-Stahl ausgewählt ist.
  5. Hybridgebäude (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es werkseitig mit einem durch vertikale Sandwichpaneel-Wände (6) vom übrigen Raum abgetrennten Sanitärbereich (12) ausgerüstet ist.
  6. Hybridgebäude (1) nach Anspruch 5, dadurch gekennzeichnet, dass der Sanitärbereich (12) zumindest mindestens ein Waschbecken (15), eine Duschkabine, mindestens eine Toilette (14) mit einem Wasserkasten (14.1) und einen Versorgungs- und Belüftungsschacht (13) mit Versorgungsleitungen (13.1) umfasst.
  7. Hybridgebäude (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es mit mindestens einem weiteren Hybridgebäude (1) mittels Verbindungvorrichtungen, die in die Aufnahmelöcher (4.1.1; 4.1.3; 4.2.1; 4.2.2) der Lochquader (4.1; 4.2) eingesteckt sind, horizontal und/oder vertikal zu einem größeren Hybridgebäude (1) zusammengefügt ist.
  8. Hybridgebäude (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens eine Mineralfaserschicht (2P) aus Mineralfasern (2.1P), ausgewählt aus der Gruppe, bestehend aus Aluminiumsilikat-Wolle, Erdalkali-Silikat-Wolle, Aluminium-Silikat-Zirkon-Wolle, Hochtemperatur-Glaswolle, polykristalline Aluminiumoxid-Wolle, Aluminiumoxid-Keramikfasern, Mullit-Keramikfasern, Yttriumoxid-Keramikfasern, Siliziumcarbid-, Siliziumcarbidnitrid-, und Siliziumboridnitridcarbid-Fasern, alkalibeständige Glasfasern, Quarzfasern, Kieselsäurefasern Basaltfasern, Borfasern, Einkristallfasern (Whisker), polykristalline Fasern, Schlackenfasern und Nanotubefasern, aufgebaut ist.
  9. Verwendung der Hybridgebäuden (1) gemäß einem der Ansprüche 1 bis 8 als Hotels, Motels, Wohngebäude, Altenheime, Schulen, Vortragsräume, Computerräume, Bürogebäude, Gaststätten, Küchen, Geschäfte aller Art, Gefängnisse, Lagerhallen, Krankenhäuser und Kliniken mit Patientenzimmern, Isolierstationen, Intensivstationen, Arztzimmer, Behandlungsräume, Operationsräume, Diagnoseräume mit medizinischen Untersuchungsgeräten, Stationszimmer, Sozialräume, Vorratsräume, Räume für medizinische und andere Abfälle, Gebäude für den Schutz vor elektromagnetischer Strahlung und Magnetfeldern sowie Gebäude für die Forschung und Entwicklung mit physikalischen, chemischen, biologischen und mikrobiologischen Laboren und Reinräumen.
  10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass die Hybridgebäude (1) mit Aufzügen, Rolltreppen, Kellerräumen, Tiefgaragen, Treppenhäusern, Schleusen, Sicherheitstüren, Klimaanlagen, Räumen und Aufbauten für die Gebäudetechnik, Vorräumen, Eingangshallen, Portierlogen, Sprinkleranlagen, Sendeanlagen, Fitnessräumen, Saunen und Schwimmbädern ausgerüstet sind.
EP21000101.2A 2020-04-14 2021-04-12 Hybridgebäude Active EP3896235B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020002272.3A DE102020002272A1 (de) 2020-04-14 2020-04-14 Hybridgebäude

Publications (3)

Publication Number Publication Date
EP3896235A1 EP3896235A1 (de) 2021-10-20
EP3896235C0 EP3896235C0 (de) 2023-11-22
EP3896235B1 true EP3896235B1 (de) 2023-11-22

Family

ID=75529714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21000101.2A Active EP3896235B1 (de) 2020-04-14 2021-04-12 Hybridgebäude

Country Status (2)

Country Link
EP (1) EP3896235B1 (de)
DE (1) DE102020002272A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103303A1 (de) 2022-02-11 2023-08-17 Wenker Gmbh & Co. Kg Gebäudemodul und Verfahren zum Herstellen eines Gebäudemoduls

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7211388A (de) * 1972-08-21 1974-02-25
US20010047628A1 (en) 1999-12-21 2001-12-06 Roy Mouton Relocatable fire, storm and contaminant resistant modular building structures
GB0228173D0 (en) 2002-12-03 2003-01-08 Window John Vertical alignment and levelling of modular building units
US7827738B2 (en) 2006-08-26 2010-11-09 Alexander Abrams System for modular building construction
WO2009061702A1 (en) 2007-11-06 2009-05-14 Framemax, Inc. Modular building construction unit, system, and method
US9945142B2 (en) 2011-04-06 2018-04-17 Fmr Llc Modular data center
US9068340B2 (en) 2011-11-18 2015-06-30 Pre-Form Systems LLC Non-bearing modular construction system
EP2790883A4 (de) 2011-12-14 2015-07-22 Marion Invest Ltd Vorrichtungen, systeme und verfahren für eine modulare konstruktion
US9366020B2 (en) 2012-11-06 2016-06-14 Fc Modular, Llc Modular building unit connection system
JP2016532030A (ja) 2013-08-16 2016-10-13 パリス,ジョセ フランシスコ ペドラザ モジュール式建物システム
DE102015015633A1 (de) 2014-12-08 2016-06-09 Wenker Gmbh & Co. Kg Paneelsystem für die Erstellung von Räumen
DE202017107660U1 (de) 2017-12-15 2018-03-06 CasaPor GmbH Gebäudemodul und daraus hergestelltes Gebäude

Also Published As

Publication number Publication date
EP3896235C0 (de) 2023-11-22
EP3896235A1 (de) 2021-10-20
DE102020002272A1 (de) 2021-10-14

Similar Documents

Publication Publication Date Title
DE102012224201A1 (de) Vakuumisolierende Fassadenplatte mit verbesserter Handhabbarkeit
EP3808553A1 (de) Fassadenelemente und verfahren zur energetischen sanierung von gebäuden
DE102016120554A1 (de) Multifunktionale Deckenkonstruktion
EP0639677B1 (de) Gebäude, bestehend aus Modulen vorgefertigter Bauzellen
EP3896235B1 (de) Hybridgebäude
EP2169132A2 (de) Tafelförmiges Bauelement
EP2181227A2 (de) Vorgefertigtes transportables verbundwandelement aus schalungssteinen
DE212009000162U1 (de) Außenwand für ein Niedrigenergiebauwerk
EP3543416B1 (de) Betonholzdeckenelement
DE102020120983A1 (de) Raumteil-Modul, insbesondere Gewerbe-Modul daraus hergestelltes Gebäude, sowie jeweils ein Herstellverfahren hierfür
DE19836942B4 (de) Raumzelle aus Holz und Holzwerkstoffen
DE102004018850A1 (de) Anbringung von Vakuumdämmplatten ohne Unterkonstruktion als Direktverklebung auf neuem oder bestehendem Untergrund
DE102016117032A1 (de) Deckschichtbauelement und Trockenbausystem
EP1582645B1 (de) Abgehängte Decke
DE202014002800U1 (de) Hochbau mit verstellbaren oder abnehmbaren Scheidewänden
AT5634U1 (de) Wärmedämmung von wänden und/oder decken von gebäuden
DE2037472C3 (de) Gebäude in Raumzellenbauweise mit einem sechseckigen Raster
DE4403242C2 (de) Wände für ein mehrgeschossiges Bauwerk
DE202014103095U1 (de) Trockenbautrennwand
DE3021537A1 (de) Isolierung fuer den hoch- und tiefbau
AT500597B1 (de) Bauwerksmodul
AT13709U1 (de) Holzbaustein als Vollholzhausbausystem
DE10030729A1 (de) Plattenelement zur Erstellung von Wand,Decke oder Dach eines Bauwerks
DE102010011081A1 (de) Akustikplatten
DE102021100317A1 (de) Nichttragende, raumabschließende Außenwand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210907

17P Request for examination filed

Effective date: 20211012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/76 20060101ALN20230608BHEP

Ipc: E04C 2/292 20060101ALI20230608BHEP

Ipc: E04C 2/38 20060101ALI20230608BHEP

Ipc: E04C 2/36 20060101ALI20230608BHEP

Ipc: E04C 2/296 20060101ALI20230608BHEP

Ipc: E04B 1/348 20060101AFI20230608BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230707

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230705

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/76 20060101ALN20230713BHEP

Ipc: E04C 2/292 20060101ALI20230713BHEP

Ipc: E04C 2/38 20060101ALI20230713BHEP

Ipc: E04C 2/36 20060101ALI20230713BHEP

Ipc: E04C 2/296 20060101ALI20230713BHEP

Ipc: E04B 1/348 20060101AFI20230713BHEP

INTG Intention to grant announced

Effective date: 20230731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001987

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240102

U01 Request for unitary effect filed

Effective date: 20231218

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240105

U20 Renewal fee paid [unitary effect]

Year of fee payment: 4

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122