EP3831970B1 - Acier à ressort présentant une durée de vie en fatigue supérieure, et son procédé de fabrication - Google Patents

Acier à ressort présentant une durée de vie en fatigue supérieure, et son procédé de fabrication Download PDF

Info

Publication number
EP3831970B1
EP3831970B1 EP19841872.5A EP19841872A EP3831970B1 EP 3831970 B1 EP3831970 B1 EP 3831970B1 EP 19841872 A EP19841872 A EP 19841872A EP 3831970 B1 EP3831970 B1 EP 3831970B1
Authority
EP
European Patent Office
Prior art keywords
steel
controlled
fatigue life
spring steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19841872.5A
Other languages
German (de)
English (en)
Other versions
EP3831970A4 (fr
EP3831970A1 (fr
Inventor
Zan YAO
Feng Jin
Genjie WAN
Yanfeng QI
Zhenping Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Publication of EP3831970A4 publication Critical patent/EP3831970A4/fr
Publication of EP3831970A1 publication Critical patent/EP3831970A1/fr
Application granted granted Critical
Publication of EP3831970B1 publication Critical patent/EP3831970B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a spring steel and a method for manufacturing the same, in particular to a spring steel having a superior fatigue life and a method for manufacturing the same, wherein the steel may be used to manufacture automotive springs having a machining strength of at least 2020 MPa, an area reduction rate ⁇ 40%, a fine structure, a high steel purity, as well as a low cost and a superior fatigue life.
  • springs are widely used in various aspects of social production and people's lives, such as transportation, machinery manufacturing, automobile industry, military industry and daily life.
  • the spring is used within its elastic range and should return to its original state after unloading. It is desired to have plastic deformation as small as possible.
  • steel wire should have high elastic limit, yield strength and tensile strength. The higher the yield ratio, the closer the elastic limit is to the tensile strength, and thus the higher the strength utilization rate, resulting in a spring having higher elastic force.
  • the spring relies on elastic deformation to absorb impact energy.
  • the spring steel wire does not have to have high plasticity, but it must at least have plasticity that can endure spring forming and sufficient toughness that can endure impact energy.
  • the spring usually works for a long time under alternating stress, so they must have high fatigue limit, and good creep and relaxation resistance.
  • the conventional Cr-V family, Cr-Mn family, and Si-Mn family spring steel materials cannot meet the requirements of the high-strength spring production.
  • the commonly used Si-Cr family spring steel with higher strength and better yield ratio has already reached the limits of the strength and fatigue life.
  • CN 101 787 493 B discloses a high-strength spring steel alloy comprising: 0.56%-0.64%C, 0.80%-1.10%Si, 0.80%-1.20%Mn, P ⁇ 0.035%, S ⁇ 0.03%, 0.80%-1.20%Cr , 0.60%-1.00% Mo, 0.20%-0.30% V, 0.05%-0.12% Nb, 0.01%-0.060% N, 0.02%-0.07% RE, and a balance of Fe.
  • Mn, Cr, Mo alloying elements are added to the above designed material in relatively high amounts, wherein Mo is mainly used to improve the tempering stability, long-lasting creep resistance and heat resistance of the steel.
  • CN 100 455 691 C discloses a spring steel alloy comprising 0.4-0.6% C, 1.7-2.5% Si, 0.1-0.4 Mn, 0.5-2.0% Cr, 0-0.006% N, and 0.021-0.07% Al.
  • a design route featuring a high-carbon, high-silicon and low-manganese alloy is adopted.
  • a main consideration is to control the amount, size and shape of the residual austenite to enhance the hydrogen embrittlement resistance of the steel. High requirements are imposed on the quenching and tempering process for the material.
  • the high content of alloying AL increases the difficulty in controlling the inclusions in smelting, and the hard and brittle alumina can easily lead to reduction of the fatigue life of the spring.
  • CN 1 279 204C discloses a spring steel alloy having a compositional design as follows: 0.30-0.50% C, 0.80-2.0% Si, 0.50-1.0% Mn, 0.40-1.0% Cr, 0.01-0.5% W, 0.08-0.30% V, 0.005-0.25% of rare earth elements, and optional 0.001-0.10% of B.
  • a design featuring low carbon is mainly adopted for this alloy.
  • the content of the Si element is increased to enhance the strength.
  • the W element is used to improve the hardenability of the steel, improve deformation resistance and prevent decarburization.
  • CN 1 039 725C discloses a low-decarburized, high-toughness spring steel for automobile suspension springs.
  • the steel comprises 0.5-0.7% C, 1.0-3.5% Si, 0.3-1.5% Mn, 0.3-1.0% Cr, 0.05-0.5% V and/orNb, less than 0.02% of P, less than 0.02% of S, 0.5-5.0% Ni and other unavoidable impurities, the remainder being Fe.
  • a relatively large amount of the Ni element is added, and thus the alloy cost is high.
  • EP 2 096 184 A1 teaches a spring steel wire wherein the contents of C, Si, Mn, Cr, Ti, B, and other elements are specified; the contents (mass%) of B, Ti, and N satisfy the expression (1) below; the amount of solid solute B is in the range of 0.0005% to 0.0040%; the remainder in the spring steel wire is composed of Fe and unavoidable impurities; and the solid solute B concentrates at the grain boundaries of pearlite nodules, 0.03 ⁇ B / Ti / 3.43 - N ⁇ 5.0.
  • EP 2 543 747 A1 teaches a seamless steel pipe for a high-strength hollow spring, which comprises 0.20 to 0.70 mass% of C, 0.5 to 3.0 mass% of Si, 0.1 to 3.0 mass% of Mn, 0.030 mass% or less (including 0%) of P, 0.030 mass% or less (including 0%) of S, 0.02 mass% or less (including 0%) of N, and the remainder made up by Fe and unavoidable impurities, and which is characterized in that carbide has an equivalent circle diameter of 1.00 ⁇ m or less.
  • the existing technical solutions involving alloying mainly increase material strength by adjustment of the C, Si and Mn elements. If the Si content is too low, the elastic limit of the material will be reduced, and the elasticity attenuation resistance will become poor. If the Si content is too high, the plasticity of the material will be deteriorated; at the same time, the difficulty in controlling decarburization will be increased, affecting the fatigue life of the spring. The addition of alloying elements in excessively high amounts will lead to higher material costs and affect the precipitation size at the same time, resulting in degraded fatigue performance of the material. The designed strength of the material is still low, and the fatigue life of the spring is not considered much.
  • One object of the present invention is to provide a spring steel having a superior fatigue life and a method for manufacturing the same.
  • the spring steel has a machining strength ⁇ 2020 MPa, good plastic toughness, an area reduction rate ⁇ 40%, and a fatigue life ⁇ 800000 cycles. It can meet the application requirements of high-stress springs in the industries such as automobiles and machinery.
  • the spring steel of the present invention is defined in claim 1 and the method of manufacturing the same is defined in claim 4.Further improvements are subject to the dependent claims.
  • the microstructure of the spring steel according to the present invention is a tempered troostite + sorbite structure.
  • the original austenite grain size is ⁇ 80 ⁇ m; the size of alloying nitride and carbide precipitates is 5-60 nm; and the maximum width of a monoparticle inclusion is ⁇ 30 ⁇ m.
  • C is an essential component for ensuring the room temperature strength and hardenability of the spring steel, and it is also an element for the spring steel to achieve a high elastic limit and good elasticity attenuation resistance.
  • the C content is less than 0.52%, the strength of the alloy spring steel cannot be guaranteed to achieve 2020 MPa or higher, and it is also undesirable for precipitation of carbides/nitrides of microalloying elements.
  • the C content is too high, the carbide size will be too large in the tempering process, and the plasticity of the material deteriorates, which is undesirable for maintaining good plastic toughness under high strength, and thus affects the fatigue life of the material.
  • the content of the C element must be less than 0.62%.
  • Si is a non-carbide forming element. It is mainly solid-dissolved in the ferrite phase to play a strengthening role. Increasing the alloying silicon content is desirable for improving the elastic limit and elasticity attenuation resistance of the material, thereby optimizing the spring performances. However, if the Si content is too high, the plasticity of the material will be deteriorated, which is undesirable for spring forming, and affects the life of the finished spring. At the same time, the high content of Si will increase the tendency of decarburization during the production and heat treatment of the material, resulting in increased processing cost. Upon comprehensive consideration, the Si content in the present material is controlled in the range of 1.2-1.45%.
  • Mn is an additive element commonly used in steel. It can effectively improve hardenability and strength while having little influence on the plasticity of the steel. To ensure the strength and hardenability of the alloy, the Mn content cannot be less than 0.25%. When the Mn content is too high, it will cause serious segregation, and at the same time, it will cause grain growth. Hence, Mn in the steel needs to be controlled, and the allowable range is 0.25-0.75%.
  • Cr has the effect of improving the hardenability of the spring steel, and allows for precipitation of alloy cementite in the tempering process to increase the strength of the material.
  • the Cr element also has the effect of refining the structure. Therefore, in order to utilize the effect of Cr on solid solution strengthening and precipitation strengthening while improving the material structure, the Cr content should be controlled within 0.30-0.80% in the design of the present material.
  • V and Nb elements are commonly added to steel as microalloying elements. These two types of elements have a strong tendency to form nitrides and carbides, thereby increasing the precipitation and nucleation rate of carbides/nitrides during tempering, and refining the structure.
  • the carbides/nitrides of V and Nb are precipitated during the wire rod rolling process, which is desirable for reducing the austenite grain size in the material, and improving the strength and plasticity of the material. Nano-sized precipitates are beneficial to the improvement of the material strength, plasticity and fatigue life. When the contents of V and Nb in the alloy are too high, the size of the precipitates will increase.
  • (2Nb+V)/(20N+C) in the steel is in the range of 0.15-0.37.
  • the original austenite grain size in the material is ⁇ 80 ⁇ m after quenching and tempering treatment, and the size of the precipitates in the steel is controlled in the range of 5-60 nm.
  • Al mainly has a deoxygenation effect in the steel.
  • alumina formed by deoxygenation with Al is a hard and brittle phase which has a significant influence on the fatigue life of the spring.
  • Large brittle inclusions are one of the main factors that cause abnormal spring fracture.
  • the Al content is controlled to be ⁇ 0.0045% in the steel, and the oxygen content is controlled in the range of 0.0005-0.0040%.
  • the width of a monoparticle inclusion in the steel needs to be controlled at ⁇ 30 ⁇ m.
  • the contents of the harmful P and S elements in the steel are controlled at 0.015% or less and 0.015% or less respectively to increase the purity of the steel.
  • the beneficial effects of the present invention include:
  • the strength of the spring steel produced using the steel composition and manufacturing method according to the present invention can reach 2020 MPa or higher.
  • the cost of this alloy is low.
  • the material strengthened by the nano-sized precipitates has good plastic toughness and good spring formability at the same time, and cracking during the processing is prevented.
  • the finished spring has a high fatigue life, which can meet the requirements of automotive lightweight as well as high strength and long service life in the machinery industry. This is desirable for promoting the technical level of the industry, and brings about favorable economic benefits.
  • Examples A1-10# according to the present invention and three Comparative Steel Grades B1-3# are shown in Table 1 below, and the specific manufacturing methods are as follows: Examples A1-5# according to the present invention, and Comparative Steel Grades B1 and B2 alloys were smelted with the use of an electric furnace, and Example A6-10# and Comparative Steel Grade B3 alloys were smelted with the use of a converter. Then, secondary refining was performed, wherein Examples A1-3#, A6-8#, and Comparative Steel Grade B1 alloys were treated with an LF furnace plus VD refining, while Examples A4-5#, A9-10#, Comparative Steel Grade B2, and B3 alloys were treated with LF plus RH.
  • A1-6#, and B1 were vacuum degassed for 30 minutes, and A7-10#, B2, and B3 were vacuum degassed for 35 minutes.
  • the final O content was controlled at 0.0005-0.0040%, the N content was 0.001-0.009%, and the H content was less than 2 ppm.
  • A1-4# and B1 were cast into 300 mm round billets, A5-6# were cast into 450 mm round billets, A7-9# and B2 were cast into 320*420 mm square billets, and A10# and B3 were cast into 500mm square billets.
  • a tundish covering agent and a casting mold with good sealing performance were used to protect the slag in the casting process.
  • the blooming temperature for the A1-5# and B1 continuously cast billets was 1050 °C, and the end face size of the rolled small square blanks was 115 mm.
  • the heating temperature for A6-7# and B2 square billets was 1270 °C, and the size of the rolled blanks was 125 mm.
  • the heating temperature for A8-10# and B3 square billets was 1100 °C, and the size of the rolled blanks was 170 mm.
  • the furnace temperature of the heating furnace for A1-4# and B1 was controlled at 920 °C, and the holding time was 1.0 h.
  • the temperature of the heating furnace for A5-10#, B2 and B3 was controlled at 1150 °C, and the holding time was 3.0 h.
  • the rolling speed was controlled to be 15-115 m/s.
  • the online temperature control scheme for the A1-6# and B1 alloys, the inlet temperature of the finishing rolling unit was 880-950 °C, the inlet temperature of the reducing and sizing unit was 840-950 °C, and the silking temperature was 800-890 °C; for the A7-10#, B2 and B3 alloys, the inlet temperature of the finishing rolling unit was 950-1050 °C, the inlet temperature of the reducing and sizing unit was 940-970 °C, and the silking temperature was 870-950 °C.
  • the dimensions of the A1-5#, B1 and B2 alloy rolled wire rods were ⁇ 5-15mm respectively, and the rolling specifications of the A6-10# and B3 alloy wire rods were ⁇ 16-28mm.
  • the Stelmor cooling process was: the air volume was 40% for fans F1-F4, 10% for fans F5-F7, 5% for fans F8-F12, and 40% for fans F13-F14.
  • the Stelmor cooling process was: the air volume was 50% for fans F1-F4, 20% for fans F5-F7, 15% for fans F8-F12, and 35% for fans F13-F14.
  • the structure of the wire rods after the Stelmor cooling was sorbite plus a very small amount of ferrite.
  • the wire rods were drawn prior to heat treatment.
  • the quenching and tempering treatment temperatures for the drawn steel wires were divided into three groups, wherein the heating temperature was 850 °C and the tempering temperature was 550 °C for A1-2# and B1; the heating temperature was 980 °C and the tempering temperature was 470 °C for A3-7# and B2; and the heating temperature was 1100 °C and the tempering temperature was 370 °C for A8-10# and B3.
  • the mechanical properties of the high-strength springs of Examples A1-A10 and the Comparative Steel Grades B1-B3 are shown in Table 2 below. As can be seen from the table, the strength of the alloys all reach 2020 MPa or higher, higher than that of the samples of Comparative Examples B1-B3. At the same time, the area reduction rate of the materials can still reach 40% or higher. A good combination of plasticity and toughness is obtained.
  • the high-strength springs according to the present invention and the comparative alloys were made into the same type of helical springs, and the fatigue life of the helical springs was measured using a spring fatigue testing machine according to GBT16947-2009 "Helical Spring Fatigue Testing Standard". The results are shown in Table 3.

Claims (5)

  1. Acier à ressort ayant une durée de vie en fatigue supérieure, dans lequel sa composition chimique sur la base du pourcentage en masse est :
    C : 0,52-0,62 % ;
    Si : 1,20-1,45 % ;
    Mn : 0,25-0,75 % ;
    Cr : 0,30-0,80 % ;
    V : 0,01-0,15 % ;
    Nb : 0,001-0,05 % ;
    N : 0,001-0,009 % ;
    O : 0,0005-0,0040 % ;
    P : ≤0,015 % ;
    S : ≤0,015 % ;
    Al : ≤0,0045 % ;
    un reste de Fe et d'impuretés inévitables, dans lequel la relation suivante est satisfaite : 0,02≤(2Nb+V)/(20N+C)≤0,40 ;
    l'acier à ressort présente une résistance à la traction ≥ 2020 MPa, un taux de réduction de surface ≥ 40 %, et une durée de vie en fatigue
    ≥ 800 000 cycles selon GBT16947-2009 "norme de test à la fatigue de ressort hélicoïdal" ;
    l'acier à ressort présente une microstructure qui est une structure de troostite + sorbite revenue, une taille d'origine de grain d'austénite
    ≤ 80 µm, une taille de précipités de nitrure et carbure d'alliage dans l'intervalle de 5-60 nm, et une largeur maximale d'inclusions de monoparticules ≤ 30 µm.
  2. Acier à ressort ayant une durée de vue en fatigue supérieure selon la revendication 1, dans lequel 0,045 2 Nb + V / 20 N + C 0,37 .
    Figure imgb0005
  3. Acier à ressort ayant une durée de vie en fatigue selon la revendication 2, dans lequel 0,15 2 Nb + V / 20 N + C 0,37 .
    Figure imgb0006
  4. Procédé pour la fabrication de l'acier à ressort ayant une durée de vie en fatigue supérieure selon la revendication 1 ou 2 ou 3, comprenant : fusion, coulée continue, laminage grossier, laminage de fil à vitesse élevée, refroidissement contrôlé Stelmor, tréfilage de fil machine, et traitement de trempe et revenu, dans lequel
    un four électrique ou un convertisseur est utilisé pour la fusion ; après la fusion, un raffinage secondaire est réalisé avec l'utilisation d'un four LF plus traitement de dégazage VD ou RH ; pendant le raffinage LF, les composition et basicité d'un laitier synthétique sont ajustées pour contrôler les teneurs en les éléments P et S dans l'acier pour être inférieures à 0,015 % et 0,015 % ; une agitation en présence d'argon est réalisée pour permettre une réaction complète entre un laitier de raffinage et des inclusions dans l'acier fondu pour réaliser une dénaturation et élimination des inclusions ; la durée de dégazage sous vide VD ou RH est supérieure à 30 minutes pour contrôler une teneur en O finale à 0,0005-0,0040 %, une teneur en N finale à 0,0010-0,0090 %, et une teneur en H inférieure à 2 ppm ; une durée de neutralisation de la poche de coulée est supérieure à 15 min à la fin du raffinage pour faciliter la flottaison d'inclusions de grandes particules, de sorte que la taille des inclusions dans l'acier fondu est inférieure à 30 µm ;
    le laminage grossier adopte un procédé de production de chauffage double, dans lequel une billette de coulée est transformée en bloom en une ébauche carrée ou ronde de 115-170 mm à une température de 1 050-1 270°C, et une réduction de laminage totale est supérieure à 40 % ;
    dans le laminage de fil à vitesse élevée, le chauffage d'un four de chauffage est contrôlé à 920-1 150°C, et la durée de maintien est de 1,0-3,0 h ; une vitesse de laminage est contrôlée à 15-115 m/s dans le procédé de laminage de fil machine à vitesse élevée ; un schéma de contrôle de température en ligne est le suivant : une température d'entrée d'une unité de laminage de finition est de 880-1 050°C, une température d'entrée d'une unité de réduction-équilibrage est de 840-970°C, et une température de silking est de 800-950°C ;
    dans le refroidissement contrôlé Stelmor, les volumes d'air de 14 soufflantes sur une ligne Stelmor sont ajustés dans les intervalles suivants : les soufflantes F1-F7 présentent un volume d'air de 10-100 %, les soufflantes F8-F12 présentent un volume d'air de 0-50 %, et les soufflantes F13-F14 présentent un volume d'air de 0-50 % ;
    lorsque le fil machine est tréfilé, une vitesse de tréfilage n'est pas supérieure à 3,5 m/min ;
    dans le traitement de trempe et revenu, une température de chauffage avant le traitement de trempe et revenu du fil en acier tréfilé est contrôlée dans l'intervalle de 850-1 100°C ; de l'huile ou de l'eau est utilisée comme milieu de trempe ; une température du milieu de trempe est contrôlée à 15-40°C ; et une température de revenu est contrôlée à 370-550°C, de sorte qu'une taille des précipités de nitrure et carbure dans un fil d'acier fini est contrôlée dans l'intervalle de 5-60 nm.
  5. Procédé pour la fabrication de l'acier à ressort ayant une durée de vie en fatigue supérieure selon la revendication 4, dans lequel une machine de coulée continue est utilisée pour couler une billette ronde ou carrée ayant une dimension de 320-500 mm ; pendant le procédé de coulée continue, une vitesse de tréfilage est contrôlée dans l'intervalle de 0,5-0,8 m/min, et une réduction légère de queue est contrôlée pour être supérieure à 10 mm, afin de contrôler une ségrégation du carbone dans un noyau de la billette pour atteindre une cible inférieure à 1,08.
EP19841872.5A 2018-07-27 2019-07-19 Acier à ressort présentant une durée de vie en fatigue supérieure, et son procédé de fabrication Active EP3831970B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810842312.5A CN110760748B (zh) 2018-07-27 2018-07-27 一种疲劳寿命优良的弹簧钢及其制造方法
PCT/CN2019/096726 WO2020020066A1 (fr) 2018-07-27 2019-07-19 Acier à ressort présentant une durée de vie en fatigue supérieure, et son procédé de fabrication

Publications (3)

Publication Number Publication Date
EP3831970A4 EP3831970A4 (fr) 2021-06-09
EP3831970A1 EP3831970A1 (fr) 2021-06-09
EP3831970B1 true EP3831970B1 (fr) 2023-05-10

Family

ID=69182026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19841872.5A Active EP3831970B1 (fr) 2018-07-27 2019-07-19 Acier à ressort présentant une durée de vie en fatigue supérieure, et son procédé de fabrication

Country Status (6)

Country Link
US (1) US20210164078A1 (fr)
EP (1) EP3831970B1 (fr)
JP (1) JP7110480B2 (fr)
KR (1) KR20210036916A (fr)
CN (1) CN110760748B (fr)
WO (1) WO2020020066A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416811B1 (ko) * 2012-12-28 2014-08-06 비나텍주식회사 슈퍼 커패시터용 전극 부착 장치 및 그를 이용한 슈퍼 커패시터의 제조 방법
CN113322410B (zh) * 2020-02-28 2022-06-28 宝山钢铁股份有限公司 一种耐延迟断裂性能优异的高强度螺栓用钢及其制备方法
CN111763892A (zh) * 2020-07-31 2020-10-13 南京钢铁股份有限公司 一种高强韧弹簧钢盘条及其制备方法
CN112792122A (zh) * 2020-11-23 2021-05-14 邯郸钢铁集团有限责任公司 低成本综合性能优良的直接冷拉拔弹簧钢线材的生产方法
KR102531464B1 (ko) * 2020-12-18 2023-05-12 주식회사 포스코 초고강도 스프링용 선재, 강선 및 그 제조방법
KR20220163153A (ko) * 2021-06-02 2022-12-09 주식회사 포스코 강도 및 피로한도가 향상된 스프링용 선재, 강선, 스프링 및 그 제조방법
CN115433871B (zh) * 2021-06-02 2023-07-07 宝山钢铁股份有限公司 一种耐氢脆延迟断裂的高强度钢及其制造方法
CN113881897A (zh) * 2021-09-29 2022-01-04 东莞市锦中秀寝具用品有限公司 一种弹簧用高强度合金材料及高强度弹簧
CN113969375B (zh) * 2021-10-29 2022-04-26 建龙北满特殊钢有限责任公司 一种含硫含铝钢的制备方法
CN114150107A (zh) * 2021-11-26 2022-03-08 南京钢铁股份有限公司 一种超高强工程机械用弹簧钢冶炼方法
CN114622126A (zh) * 2022-03-11 2022-06-14 江阴兴澄合金材料有限公司 超高强度钢丝用弹簧钢盘条及其制造方法
CN114807552B (zh) * 2022-03-21 2023-09-15 江阴兴澄合金材料有限公司 一种弹簧钢热轧盘条的生产方法
CN114921709A (zh) * 2022-03-24 2022-08-19 南京钢铁股份有限公司 一种高强韧性弹簧钢盘条的制备方法
CN114769351A (zh) * 2022-03-30 2022-07-22 厦门立洲五金弹簧有限公司 一种高应力弹簧制造工艺
CN115125446A (zh) * 2022-06-28 2022-09-30 浙江伊思灵双第弹簧有限公司 一种汽车用高疲劳性能弹簧及其制备方法
CN114807728B (zh) * 2022-06-30 2022-11-18 江苏省沙钢钢铁研究院有限公司 2100MPa级弹簧钢丝及其生产方法
CN115141978A (zh) * 2022-07-26 2022-10-04 常熟市龙腾特种钢有限公司 一种船用柴油机连杆锻件用钢锭及其生产方法
CN115386680B (zh) * 2022-08-15 2023-09-12 马鞍山钢铁股份有限公司 一种精确控制LF炉终点钢水[Al]含量的方法
CN116516267B (zh) * 2023-03-21 2024-03-29 王平 经过固溶和纳米强化的索氏体高强不锈结构钢及制备方法
CN117230376B (zh) * 2023-11-10 2024-03-05 钢铁研究总院有限公司 一种用于生产300m钢的电极及其制备方法和应用

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711675A (en) * 1981-08-11 1987-12-08 Aichi Steel Works, Ltd. Process for improving the sag-resistance and hardenability of a spring steel
JPS60116720A (ja) * 1983-11-28 1985-06-24 Sumitomo Metal Ind Ltd 耐へたり性の優れたばねの製造方法
KR960005230B1 (ko) * 1993-12-29 1996-04-23 포항종합제철주식회사 고강도 고인성 스프링용강의 제조방법
JP3595901B2 (ja) * 1998-10-01 2004-12-02 鈴木金属工業株式会社 高強度ばね用鋼線およびその製造方法
JP3601388B2 (ja) * 1999-12-17 2004-12-15 住友金属工業株式会社 鋼線材及び鋼線材用鋼の製造方法
JP3971571B2 (ja) * 2000-12-20 2007-09-05 新日本製鐵株式会社 高強度ばね用鋼線
EP1347069B1 (fr) * 2000-12-20 2007-11-07 Nippon Steel Corporation Acier ressorts haute r sistance et fil d'acier ressorts
JP3633866B2 (ja) * 2000-12-28 2005-03-30 住友電工スチールワイヤー株式会社 ばね用鋼線、ばね及びその製造方法
JP3763573B2 (ja) * 2002-11-21 2006-04-05 三菱製鋼株式会社 焼入れ性と耐孔食性を改善したばね用鋼
KR20050103981A (ko) * 2003-03-28 2005-11-01 가부시키가이샤 고베 세이코쇼 내 셋팅성 및 피로특성이 우수한 스프링용 강
CN1279204C (zh) 2003-08-27 2006-10-11 宝山钢铁股份有限公司 汽车用高使用应力弹簧钢
JP4423254B2 (ja) 2005-12-02 2010-03-03 株式会社神戸製鋼所 コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
JP4027956B2 (ja) * 2006-01-23 2007-12-26 株式会社神戸製鋼所 耐脆性破壊特性に優れた高強度ばね鋼およびその製造方法
JP4310359B2 (ja) * 2006-10-31 2009-08-05 株式会社神戸製鋼所 疲労特性と伸線性に優れた硬引きばね用鋼線
JP4163239B1 (ja) * 2007-05-25 2008-10-08 株式会社神戸製鋼所 疲労特性に優れた高清浄度ばね用鋼および高清浄度ばね
CN101397629B (zh) * 2007-09-26 2010-09-08 南京依维柯汽车有限公司 承受高应力的高强度变截面簧片及其制造方法
CN101717893B (zh) * 2009-12-15 2012-08-22 南京钢铁股份有限公司 一种55Si2MnVNbN弹簧钢及其生产工艺
CN101717894A (zh) * 2009-12-15 2010-06-02 南京钢铁股份有限公司 一种40Si2MnCrNiMoVNbN弹簧钢及其生产工艺
CN101787493B (zh) 2010-01-25 2011-07-20 广州市奥赛钢线科技有限公司 一种新型高强度耐疲劳无脱碳合金弹簧钢及其钢丝制备方法
JP5476597B2 (ja) * 2010-03-04 2014-04-23 株式会社神戸製鋼所 高強度中空ばね用シームレス鋼管
KR101357846B1 (ko) * 2011-03-01 2014-02-05 신닛테츠스미킨 카부시키카이샤 신선성 및 신선 후의 피로 특성이 우수한 고탄소강 선재
EP2746420B1 (fr) * 2011-08-18 2016-06-01 Nippon Steel & Sumitomo Metal Corporation Acier à ressort, et ressort
CN102634730B (zh) * 2012-04-28 2014-10-29 宝山钢铁股份有限公司 一种1860MPa级桥梁缆索镀锌钢丝用盘条及其制造方法
KR101449111B1 (ko) * 2012-08-09 2014-10-08 주식회사 포스코 강도와 연성이 우수한 강선재 및 그 제조방법
AT512399B1 (de) * 2012-09-10 2013-08-15 Siemens Vai Metals Tech Gmbh Verfahren zum Herstellen eines mikrolegierten Röhrenstahls in einer Gieß-Walz-Verbundanlage und mikrolegierter Röhrenstahl
CN103045935B (zh) * 2012-12-14 2014-12-03 天津钢铁集团有限公司 一种弹簧钢盘条表面脱碳和铁素体分布的控制方法
JP6036997B2 (ja) * 2013-04-23 2016-11-30 新日鐵住金株式会社 耐疲労特性に優れたばね鋼及びその製造方法
CN103484781B (zh) * 2013-09-26 2016-06-01 宝山钢铁股份有限公司 一种高强高韧性弹簧钢及其制造方法
CN104046903B (zh) * 2014-06-30 2017-01-11 宝山钢铁股份有限公司 13.9级和14.9级耐延迟断裂高强度紧固件用盘条及其制造方法
JP6354481B2 (ja) * 2014-09-12 2018-07-11 新日鐵住金株式会社 鋼線材及び鋼線材の製造方法
KR101745191B1 (ko) * 2015-12-04 2017-06-09 현대자동차주식회사 초고강도 스프링강
KR101745196B1 (ko) * 2015-12-07 2017-06-09 현대자동차주식회사 초고강도 스프링강
CN105648338A (zh) * 2016-01-27 2016-06-08 太仓捷公精密金属材料有限公司 一种车用高性能弹簧钢
CN105886930B (zh) * 2016-04-26 2017-12-26 宝山钢铁股份有限公司 一种高强度耐蚀弹簧钢及其制造方法
KR20180074008A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수소취성 저항성이 우수한 고강도 스프링용 강재 및 그 제조방법
CN107747060A (zh) * 2017-11-12 2018-03-02 湖南华菱湘潭钢铁有限公司 高强度高疲劳寿命弹簧钢的生产方法

Also Published As

Publication number Publication date
JP7110480B2 (ja) 2022-08-01
JP2021530623A (ja) 2021-11-11
EP3831970A4 (fr) 2021-06-09
WO2020020066A1 (fr) 2020-01-30
KR20210036916A (ko) 2021-04-05
US20210164078A1 (en) 2021-06-03
CN110760748B (zh) 2021-05-14
EP3831970A1 (fr) 2021-06-09
CN110760748A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
EP3831970B1 (fr) Acier à ressort présentant une durée de vie en fatigue supérieure, et son procédé de fabrication
JP4381355B2 (ja) 耐遅れ破壊特性に優れた引張強さ1600MPa級以上の鋼およびその成型品の製造方法
KR20180008798A (ko) 미세 합금화 승용차 탄소 타이어 휠 베어링용 강철 및 그 제조방법
CN110184532B (zh) 一种具有优良-60℃超低温冲击韧性的耐磨钢板及其生产方法
CN109161803B (zh) 一种1550MPa级弹簧扁钢及其生产方法
CN106978571A (zh) 一种微合金化的第三代汽车用弹簧扁钢及制备方法
CN105063492A (zh) 汽车摩擦片的热轧钢材及其制备方法
CN103510020A (zh) 一种弹簧钢盘条及其夹杂物控制方法
CN102618791A (zh) 耐硫化氢腐蚀的高强韧性石油套管及其制造方法
EP3885462A1 (fr) Acier à deux phases laminé à froid à rendement élevé et son procédé de fabrication
CN113737087A (zh) 一种超高强双相钢及其制造方法
CN112981239A (zh) 一种调质低碳合金钢及其制造方法
US5415711A (en) High-strength spring steels and method of producing the same
CN111850399B (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
CN112575242B (zh) 一种合金结构用钢及其制造方法
JPH076037B2 (ja) 疲労強度の優れたばね鋼
JPH062904B2 (ja) 高強度低合金鋼極厚鋼材の製造方法
CN111876679B (zh) 铬钒系热轧钢盘条及其制备方法、以及钢丝和手工具的制备方法
CN113462985B (zh) 免退火折弯性能优异的低成本高表面硬度工具钢
CN114351060A (zh) 热轧钢带及其制备方法和在双金属带锯背材中的应用
JP3644217B2 (ja) 高周波焼入部品およびその製造方法
JP7274062B1 (ja) 高強度ステンレス鋼線およびばね
JP2003055743A (ja) 被削性にすぐれた冷間ダイス金型用鋼
CN115558854B (zh) 一种高抗变形屈曲圆盘锯用热轧带钢及其制备方法
CN115386791B (zh) 一种微合金化高强度可焊接复合稳定杆扭簧用扁钢及其制造方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210122

A4 Supplementary search report drawn up and despatched

Effective date: 20210413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602019028890

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038000000

Ipc: C21D0008060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21C 7/072 20060101ALI20221014BHEP

Ipc: B22D 11/20 20060101ALI20221014BHEP

Ipc: B22D 11/12 20060101ALI20221014BHEP

Ipc: C21D 1/60 20060101ALI20221014BHEP

Ipc: C21D 1/58 20060101ALI20221014BHEP

Ipc: C21D 9/52 20060101ALI20221014BHEP

Ipc: C21D 8/06 20060101ALI20221014BHEP

Ipc: B22D 11/00 20060101ALI20221014BHEP

Ipc: C21D 1/25 20060101ALI20221014BHEP

Ipc: C22C 38/02 20060101ALI20221014BHEP

Ipc: B21C 37/04 20060101ALI20221014BHEP

Ipc: C22C 38/26 20060101ALI20221014BHEP

Ipc: C21C 7/10 20060101ALI20221014BHEP

Ipc: B21B 1/16 20060101ALI20221014BHEP

Ipc: C21D 9/02 20060101ALI20221014BHEP

Ipc: C21D 7/06 20060101ALI20221014BHEP

Ipc: B21C 1/00 20060101ALI20221014BHEP

Ipc: C22C 38/24 20060101ALI20221014BHEP

Ipc: C22C 38/00 20060101ALI20221014BHEP

Ipc: C22C 38/04 20060101AFI20221014BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/60 20060101ALI20221025BHEP

Ipc: C21D 1/25 20060101ALI20221025BHEP

Ipc: C21D 1/58 20060101ALI20221025BHEP

Ipc: C22C 38/26 20060101ALI20221025BHEP

Ipc: C22C 38/24 20060101ALI20221025BHEP

Ipc: C22C 38/04 20060101ALI20221025BHEP

Ipc: C22C 38/02 20060101ALI20221025BHEP

Ipc: C22C 38/00 20060101ALI20221025BHEP

Ipc: C21D 9/02 20060101ALI20221025BHEP

Ipc: B21C 1/00 20060101ALI20221025BHEP

Ipc: C21C 7/10 20060101ALI20221025BHEP

Ipc: B22D 11/12 20060101ALI20221025BHEP

Ipc: B22D 11/20 20060101ALI20221025BHEP

Ipc: C21C 7/072 20060101ALI20221025BHEP

Ipc: C21D 9/52 20060101ALI20221025BHEP

Ipc: C21D 8/06 20060101AFI20221025BHEP

INTG Intention to grant announced

Effective date: 20221123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1566726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019028890

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230630

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230510

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1566726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230630

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602019028890

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230719

26N No opposition filed

Effective date: 20240213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510