EP3824216A1 - Installation de stockage de fluide - Google Patents

Installation de stockage de fluide

Info

Publication number
EP3824216A1
EP3824216A1 EP19756227.5A EP19756227A EP3824216A1 EP 3824216 A1 EP3824216 A1 EP 3824216A1 EP 19756227 A EP19756227 A EP 19756227A EP 3824216 A1 EP3824216 A1 EP 3824216A1
Authority
EP
European Patent Office
Prior art keywords
fixing
support structure
installation according
installation
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19756227.5A
Other languages
German (de)
English (en)
Inventor
Emmanuel HIVERT
Christophe LECONTE
Pierre Charbonnier
Mohammed OULALITE
Jean-Damien CAPDEVILLE
Geoffrey DETAILLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP3824216A1 publication Critical patent/EP3824216A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • B63B27/25Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines for fluidised bulk material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • F17C2203/0379Inert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0648Alloys or compositions of metals
    • F17C2203/0651Invar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of fluid storage installations comprising a sealed and thermally insulating tank with a membrane.
  • the invention relates in particular to installations for the storage and / or transport of liquefied gas at low temperature, such as Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50 ° C and 0 ° C, or Liquefied Natural Gas (LNG) at around -162 ° C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • Fluid storage installations are known for example in document WO2016 / 001 142.
  • Such a storage installation comprises a load-bearing structure, for example the internal hull of a ship, and a sealed and thermally insulating tank located at the inside of the supporting structure and fixed to it.
  • the waterproof and thermally insulating tank has a multilayer structure superimposed in a thickness direction comprising a waterproofing membrane and a thermally insulating barrier disposed between the waterproofing membrane and the support structure.
  • the elements of the tank directly in contact with the fluid like the sump structure are subjected to a strong temperature variation which has the consequence of contracting them thermally.
  • the sump structure is fixed to the supporting structure which is not in contact with the cryogenic fluid.
  • the fixing means making it possible to fix the sump structure to the support structure could therefore be subjected to high mechanical stresses which can accelerate the fatigue of the materials and limit the operating time of the tank.
  • An idea underlying the invention is to improve the fixing between the sump structure and the supporting structure to increase its service life and reliability.
  • the invention provides a fluid storage installation, the storage installation comprising a support structure and a sealed and thermally insulating tank, the tank comprising at least one bottom wall fixed to the support structure, in the bottom wall of which has a multilayer structure superimposed in a thickness direction including at least one waterproofing membrane and at least one thermal insulation barrier disposed between the waterproofing membrane and the support structure, in which the bottom wall comprises a sump structure locally interrupting the waterproofing membrane of the bottom wall, the sump structure comprising a rigid container having a side wall, the container being arranged through the thickness of the wall bottom, and the sump structure comprising at least one fixing means designed to fix the rigid container to the carrying structure at a fixing point of the side wall,
  • the at least one fixing means is configured to allow relative movement of the side wall of the container relative to the support structure in a transverse direction perpendicular to the side wall at the point of fixing of the container, the relative movement being greater than 1 mm, for example between 1 and 5 mm.
  • attachment point of the side wall refers, according to all the embodiments, to the location of attachment of the attachment means to the sump structure, at the level of the side wall of the latter.
  • the at least one fixing means makes it possible to fix the sump structure to the support structure while allowing the side wall of the container of the sump structure to be able to move relatively relative to the support structure in the transverse direction.
  • the sump structure can thus contract thermally while remaining fixed to the supporting structure and preventing the at least one fixing means from being subjected to excessive mechanical stresses.
  • such a storage installation may include one or more of the following characteristics.
  • the at least one fixing means comprises a first portion fixed, preferably welded, to the support structure and a second portion fixed, preferably welded to the side wall of the container.
  • the at least one fixing means is fixed directly, preferably welded directly, to the support structure. According to one embodiment, the at least one fixing means is fixed directly, preferably welded directly, to the side wall of the container.
  • the support structure is made of a metallic material.
  • the support structure is a portion of the hull of a floating structure.
  • the at least one fixing means is located between the sealing membrane and the support structure in the thickness direction.
  • the sump structure comprises a fixing wing fixed in a sealed manner, that is to say forming a closed surface that does not allow the fluid, for example welded, to pass to the sealing membrane.
  • the at least one fixing means is at least partially located under the fixing wing in the thickness direction.
  • the waterproofing membrane is a secondary waterproofing membrane
  • the thermally insulating barrier is a secondary thermally insulating barrier
  • the fixing wing is a second fixing wing
  • the bottom wall comprises a primary thermally insulating barrier located on the secondary sealing membrane and also comprises a primary sealing membrane located on the primary thermally insulating barrier
  • the sump structure comprises a first fixing wing fixed in a sealed manner, this is that is to say forming a closed surface which does not allow the fluid, for example welded, to pass to the primary sealing membrane.
  • the container is a second container
  • the sump structure comprises a first container, a lower part of which is located in the second container, the first fixing wing being an extension of the first container and the second fixing wing being an extension of the second container, and in which the at least one fixing means is located on the side wall of the second container.
  • the side wall has a cylindrical shape with an axis oriented in the direction of thickness.
  • the cylindrical side wall can have different shapes in section.
  • the rigid container has a circular section, the transverse direction being a radial direction.
  • the installation comprises at least one locking means configured to block the movement of the at least one fixing means in the thickness direction and in a tangent direction, the tangent direction being tangent to the side wall and orthogonal to the transverse direction and to the thickness direction.
  • the at least one fixing means comprises a fixing tab projecting from the rigid container in the transverse direction, the fixing tab having an orifice, and in which the installation comprises an anchoring device arranged in the hole to fix the fixing lug to the supporting structure in the thickness direction.
  • the anchoring device makes it possible to prevent the displacement of the sump structure in the thickness direction relative to the support structure.
  • the blocking means comprises the anchoring device.
  • the installation comprises two stops fixed to the support structure and located on either side of the at least one fixing lug in a tangent direction, the tangent direction being tangent to the lateral and orthogonal wall in the transverse direction and in the thickness direction, the stops being configured to block the movement of the fixing lug in the tangent direction.
  • the stops make it possible to prevent the displacement of the sump structure in the tangent direction relative to the support structure.
  • the blocking means is constituted by the combination of the stops and the anchoring device.
  • the orifice comprises an oblong orifice, the largest dimension of which is oriented in the transverse direction so as to allow the transverse movement of the fixing lug and of the side wall relative to the anchoring device and to the supporting structure.
  • the orifice comprises a circular orifice having a diameter greater than a diameter of the anchoring device so as to allow the transverse movement of the fixing lug and the side wall relative to the anchoring device and to the supporting structure.
  • the large dimension of the oblong hole or the diameter of the circular hole allows the fixing lug to move in the transverse direction relative to the anchoring device.
  • the side wall of the sump structure can move relative to the support structure in the transverse direction, which has the effect of allowing thermal contraction of the sump structure.
  • the installation comprises two perforated plates comprising a perforation, the perforated plates being located on either side of the at least one fixing lug in the thickness direction and the anchoring device passing through the through the perforation of each perforated plate, the perforated plates being made of a material whose coefficient of friction is less than 0.2, preferably between 0.05 and 0.2.
  • the perforated plates make it possible to tighten the fixing lug between the anchoring device and the support structure in the thickness direction while allowing the displacement of the fixing lug relative to the support structure in the direction cross.
  • the low coefficient of friction of the perforated plates makes it possible to minimize the friction force between the fixing lug and the supporting structure, which has the consequence of avoiding the degradation of the fixing lug and of facilitating the contraction of the sump structure.
  • the perforation of the perforated plate extends from an edge of the plate towards the center of the plate in the transverse direction so as to allow transverse positioning of the plate.
  • the perforated plates are made of polytetrafluoroethylene (PTFE) or high density polyethylene (HDPE).
  • the stops and / or the shims are made of metal, for example stainless steel.
  • the waterproofing membrane, one of the waterproofing membranes or the waterproofing membranes are made of a metal among stainless steel, aluminum, Invar®: ie an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10 6 and 2.10 6 K 1 , or an alloy of iron with a high manganese content whose coefficient of expansion is of the order of 7.10 6 K 1 .
  • the fixing lug, the reinforcing bracket, the container or containers are made of metal, for example in the same metal as the waterproofing membrane to which they are fixed.
  • the anchoring device comprises a threaded rod or a stud and a nut, the threaded rod being fixed to the support structure and according to one embodiment, the threaded rod passes through the perforations of the perforated plates and the orifice of the fixing lug, the nut being configured to exert a clamping force in the thickness direction on the perforated plates and the fixing lug using the support structure.
  • the nut is welded in the clamping position on the threaded rod so as to ensure that the nut does not accidentally unscrew during use.
  • the nut may be fixed by any other suitable locking means.
  • the installation comprises one or more shims disposed between the stops and the fixing lug in the tangent direction, the shims being configured to adjust the distance left free between a stop and a fixing lug in the tangent direction .
  • the fixing of the sump structure is adjustable so as to take account of positioning tolerances.
  • the installation comprises at least one slide fixed to the support structure and directed in the transverse direction and the at least one fixing means is a fixing lug projecting from the rigid container in the transverse direction, the fixing lug being mounted in the slide, and the fixing lug being movable in the slide in the transverse direction to obtain said relative movement.
  • the slide allows the side wall to move in the transverse direction so as to avoid subjecting the fastening to strong stresses during a thermal contraction.
  • the slide comprises a first portion projecting from the support structure in the thickness direction and a second portion connected to the first portion and directed in the tangent direction, so as to form a slide with shaped section. of the.
  • the shape of the slide makes it possible to block the movement of the fixing lug and therefore of the sump structure in the thickness direction and at least partly in the tangent direction.
  • the blocking means comprises the slide.
  • the installation comprises two slides located on either side of the at least one fixing tab in the tangent direction, the slides being configured to block the movement of the fixing tab in the direction d 'thickness and in the tangent direction.
  • the slides make it possible to block the movement of the fixing lug and therefore of the sump structure in the thickness direction and in the tangent direction.
  • the locking means consists of two slides located on either side of the fixing lug.
  • the sump structure comprises at least one reinforcing bracket, a first side of the reinforcing bracket being fixed on the fixing lug and a second side of the reinforcing bracket perpendicular to the first side being fixed to the rigid container. Thanks to these characteristics, the fixing lug is reinforced thanks to the reinforcement bracket, in particular in bending in the thickness direction, making it possible to prevent the fixing lug from being damaged during the use of the installation.
  • the fixing tab comprises two reinforcing brackets, the first side of the brackets being fixed on an upper surface or on a lower surface of the fixing tab, the brackets being placed on either side of the orifice of the mounting bracket.
  • the sump structure comprises a plurality of fixing means distributed regularly or irregularly around the circumference of the container, for example three or four fixing means.
  • the sump structure is fixed around its entire circumference preventing it from moving as a whole while leaving the side wall free to contract or expand. This fixing can be carried out in a more or less uniform manner.
  • the at least one fixing means is an elastically deformable fastener comprising a first end welded to the support structure and a second end welded to the sump structure.
  • the fastener can deform elastically and therefore allow the sump structure to contract while still fixing it to the supporting structure.
  • the fastener is formed continuously around the sump structure.
  • the fastener is formed in a single piece fixing the sump structure to the support structure uniformly all around its circumference.
  • the fastener is perforated by days arranged all around the sump structure.
  • the installation comprises a plurality of elastically deformable fasteners distributed regularly or not all around the sump structure. Thanks to these characteristics, the fasteners make it possible to fix the sump structure to the supporting structure uniformly all around its circumference. Advantageously, the fasteners distributed non-periodically around the perimeter of the sump structure allow optimized fixing.
  • the section of the fastener in a normal vector plane directed in the tangent direction is straight or curved.
  • the fasteners may have shapes of different section.
  • the section of the fastener is curved and comprises a curvature of constant sign, the curvature having a small or a large variation in curvature.
  • the section of the fastener is curved and comprises a plurality of curvatures with variation of the sign of curvature, so as for example to form at least one undulation.
  • the section of the fastener comprises a point of support on the support structure between the first end of the fastener and the second end of the fastener.
  • Such an installation may be a terrestrial storage installation, for example for storing LNG or be installed in a floating structure, coastal or in deep water, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a unit floating production and remote storage (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO unit floating production and remote storage
  • Such a tank can also serve as a fuel tank in any type of ship.
  • a vessel for the transport of a cold liquid product comprises an external hull and an aforementioned fluid storage installation arranged in the external hull, in which the carrying structure is an internal hull of the vessel.
  • the invention also provides a method of loading or unloading such a ship, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel of the ship.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned ship, isolated pipes arranged so as to connect the tank installed in the hull of the ship to a floating storage installation. or terrestrial and a pump to drive a flow of cold liquid product through the insulated pipes from or to the floating or terrestrial storage facility to or from the vessel
  • FIG. 1 shows a perspective view of a sump structure attached to a support structure according to a first embodiment.
  • Figure 2 is a detail view of Figure 1.
  • FIG. 3 shows a partial perspective view of a sump structure attached to a support structure according to a second embodiment.
  • Figure 4 is a sectional view of Figure 3 along the section plane
  • Figure 5 is a sectional view of Figure 4 along the section plane
  • FIG. 6 shows a schematic sectional view of a sump structure attached to a support structure according to a third embodiment.
  • FIG. 7 in Figure 14 show different embodiments of fixing means arranged to fix the sump structure to the support structure.
  • FIG. 15 is a cutaway schematic representation of an LNG vessel comprising a storage installation and a loading / unloading terminal of this storage installation.
  • a storage installation 71 comprising a support structure 1, a sealed and thermally insulating tank and a sump structure 9 which can be used in the bottom wall 4 of a storage tank and / or LNG transport.
  • the bottom wall 4 designates a wall 4, preferably generally planar, located at the bottom of the tank relative to the earth's gravity field.
  • the general geometry of the tank can also be of different types. Polyhedral geometries are the most common. Cylindrical, spherical or other geometry is also possible.
  • the walls 4 of the tank are formed by a multilayer structure fixed on load-bearing walls 1 and including two waterproof membranes 5, 7 alternated with two thermally insulating barriers 6, 8. Since there are many known techniques for producing these structures multilayer, the description below will be limited to the sump structure 9 and the fixing thereof to the support structure 1 of the storage installation 71.
  • the vessel wall 4 is mounted on a support structure 1, made for example from thick sheet steel such as the inner hull of a double hull ship 70.
  • the tank wall 4 has a multilayer structure successively including a secondary thermal insulation barrier 8 fixed to the supporting structure 1, for example by means of mastic beads, a secondary sealing membrane 7 supported by the thermal insulation barrier secondary 8, a primary thermal insulation barrier 6 covering the secondary sealing membrane 7 and a primary sealing membrane 5 supported by the primary thermal insulation barrier 6.
  • FIG. 1 represents a sump structure 9 fixed to a support structure 1 according to a first embodiment.
  • the supporting structure has an opening 2, illustrated in FIG. 1, of circular shape, through which the sump structure 9 is engaged and which allows the sump structure 9 to protrude at the outside of the supporting structure 1 in the thickness direction of the tank wall 4.
  • a rigid cylindrical container 10, 1 1 is fixed on the support structure 1 by means of one or more fixing means 15, 32 around the opening 2 and protrudes towards the outside of the support structure 1 to form an extension structure which provides additional space for housing the sump structure 9.
  • the container 10, 11 has a cylindrical side wall 12, for example circular or other.
  • the container 10, 11 can be made of materials similar to the support structure 1 or to one of the sealing membranes 5, 7.
  • the sump structure 9 comprises a first container 10 in communication with the interior of the tank, and a second container 11 surrounding the lower part of the first container 10.
  • the first container 10 is continuously connected to the sealing membrane primary 5, which it thus completes in a sealed manner.
  • the second container 11 is connected continuously to the secondary sealing membrane 7, which it thus completes in a leaktight manner.
  • the first container 1 1 has a cylindrical side wall 12 whose axis is perpendicular to the support structure 1 and which has a first fixing wing located on an upper part of the side wall and essentially aligned with the membrane primary seal 5 and a lower part engaged in the opening 2 below the support structure.
  • a bottom wall parallel to the support structure 1 closes the cylindrical side wall at its lower part.
  • the first fixing wing is fixed at the edge of the upper part of the cylindrical side wall and projects radially outside of it all around the first container 10.
  • the primary sealing membrane 5 thus has an interruption in the form of a window, for example a circular or square window, the edge of which surrounds the sump structure 9 and is sealingly connected to the first fixing wing 13 , for example by welding or gluing, as visible in Figure 6.
  • the second container 11 has a cylindrical side wall 12 whose axis is perpendicular to the supporting structure 1 and which has a second fixing wing 14 essentially aligned with the membrane secondary seal 7 and a lower part engaged in the opening below the bottom wall of the first container 10.
  • a bottom wall parallel to the support structure closes the cylindrical side wall 12 of the second container 1 1 at its lower part.
  • the cylindrical side wall 12 of the second container 1 1 surrounds the cylindrical side wall of the first container 10 at a distance therefrom.
  • the second fixing wing 14 is fixed at the edge of the upper part of the cylindrical side wall 12 and projects radially outside of the latter all around the second container 11.
  • the secondary waterproofing membrane 7 also has an interruption in the form of a window, for example a circular or square window, the edge of which surrounds the sump structure 9 and is sealingly connected to the second fixing wing 14 , for example by welding or gluing, as visible in Figure 6.
  • a window for example a circular or square window, the edge of which surrounds the sump structure 9 and is sealingly connected to the second fixing wing 14 , for example by welding or gluing, as visible in Figure 6.
  • the space between the support structure 1 and the secondary sealing membrane 7 is a secondary space containing the secondary thermally insulating barrier 8 and in which it is possible to circulate a flow of nitrogen by security measure.
  • the space between the second container 1 1 and the support structure 1 is also a secondary space which communicates with the secondary space of the tank wall 4 in order to be able to receive this nitrogen sweep.
  • the secondary thermally insulating barrier 8 is for example formed from juxtaposed modular blocks for lining the support structure 1 relatively uniformly. These modular blocks stop at a certain distance from the sump structure 9, as visible in FIG. 6. Insulating blocks of suitable shape can be designed to approach relatively close to the sump structure 9 or to fit into it. and thus limit the gap remaining to be filled in the secondary insulation. Insulating materials are housed in the gap between the edge of the secondary thermally insulating barrier 8 and the second container, as well as in the secondary space of the sump structure 9 to complete the thermal insulation around the second container 11. Indeed, the secondary sealing membrane 7 and the second container 1 1 are likely to be in contact with the cryogenic fluid in the event of an accidental leak in the primary sealing membrane 5.
  • the space between the secondary sealing membrane 7 and the primary sealing membrane 5 is a primary space containing the primary thermally insulating barrier 6 and in which it is possible to circulate a nitrogen flow for safety.
  • the space between the first container 10 and the second container 11 is also a primary space which communicates with the primary space of the tank wall 4 in order to be able to receive this nitrogen sweep.
  • the primary thermally insulating barrier 6 is for example formed of juxtaposed modular blocks for lining the secondary sealing membrane 7 relatively uniformly. These modular blocks stop at a certain distance from the sump structure 9. Shaped insulating blocks adapted can be designed to approach relatively close to the sump structure 9 or fit into it and thus limit the gap remaining to be filled in the primary insulation. Insulating materials are housed in the gap between the edge of the primary insulating barrier 6 and the first container 10, as well as in the primary space of the sump structure 9 to complete the thermal insulation around the first container 10. In Indeed, the primary membrane 5 and the first container 10 are in contact with the LNG during use.
  • Different insulating materials may be suitable to complete the primary and secondary thermal insulation, for example glass or rock wool, polymer foams, in particular polyurethane or PVC, balsa wood, plywood, aerogels, and others.
  • the first container 10 In service, due to its position below the primary sealing membrane 5, the first container 10 receives by gravity any liquid residue present in the tank, in the manner of a sump.
  • the first container 10 has sufficient capacity to keep the suction head of the pump immersed in the liquid and thus maximizes the operating efficiency of the tank.
  • the first container 10 and the second container 11 are made of a more rigid material than the waterproof membranes, for example with a metal sheet of the order of 6 to 20 mm thick.
  • the sump structure comprises on the cylindrical side wall 12 of the second container 1 1 fixing means 15 in the form of fixing lugs 15.
  • the fixing lugs 15 allow the fixing from the sump structure 9 to the supporting structure 1.
  • the fixing lugs 15 protrude from the second container 1 1 in the radial direction and are distributed regularly all around the side wall 12, for example as illustrated in FIG. 1 the fixing lugs 15 are three in number and are located at 120 ° from each other.
  • the sump structure 9 comprises two reinforcing brackets 16 on each fixing lug 15.
  • the reinforcing brackets 16 have a first side 20 fixed on an upper surface of a fixing lug 15 and a second side 21 perpendicular to the first side 20 fixed to the side wall 12 of the second container 11.
  • the support structure 1 comprises near the opening 2 of the slides 17.
  • the slides 17 are formed by a first portion 18 projecting from the support structure 1 in the thickness direction and by a second portion 19 connected to the first portion 18 directed in the tangent direction so as to form L-shaped section slides.
  • each fixing lug 15 is sandwiched between two slides 17 so that a part of the second portion 19 of each slide 17 is placed above the fixing lug in the thickness direction.
  • the slides 17 make it possible to block the movement of the fixing lugs 15 and therefore of the sump structure in the thickness direction and in the tangent direction.
  • each fixing lug 15 to retain a degree of freedom, namely the translation in the radial direction of so as to allow the contraction or thermal expansion of the sump structure 9.
  • FIGS. 3 to 5 show a second embodiment of the attachment of a sump structure 9 to a support structure 1.
  • This embodiment differs from the first embodiment by the locking system of the fixing lugs 15.
  • the fixing lugs 15 of the second embodiment are similar to those of the first embodiment, they nevertheless include in the second embodiment an orifice 22 with an orifice diameter 23 .
  • no slide 17 is used to block certain degrees of freedom of the fixing lugs 15 on the support structure 1.
  • stops 28 are fixed on the support structure 1 near the opening 2.
  • the stops 28 are placed on the supporting structure 1 so as to frame each fixing lug 15 of the sump structure 9 in the tangent direction.
  • An anchoring device 24 composed of a threaded rod 25 with a diameter
  • the anchoring device 24 is fixed in the support structure 1 by one of its ends, the nut 26 being placed at the other of its ends so as to sandwich the fixing lug 15 with the support structure in the direction thick.
  • the anchoring device 24 thus blocks in the thickness direction the fixing lug 15 by clamping against the support structure 1.
  • the nut 26 is welded to the threaded rod 25 in the tightening position so as to prevent the nut from loosening when using the storage installation 71.
  • the orifice 22 is a circular orifice whose diameter 23 is greater than the diameter 27 of the threaded rod 25 so as to leave the fixing lug 15 in particular in the radial direction a some travel so that the sump structure 9 can contract or expand.
  • the orifice 22 is an oblong orifice whose large dimension is located in the radial direction.
  • perforated plates 29 comprising a perforation 30 and made of a material having a low coefficient of friction such as PTFE are arranged on either side of the fixing lug 15 so as to be interposed between the nut 26 and the support structure 1, as visible in the figure 5 in particular.
  • the threaded rod 25 of the anchoring device 24 also passes through the perforations 30 of the perforated plates 29.
  • the friction force between the perforated plates and the fixing lug 15 is minimized allowing the fixing lug 15 and therefore the sump structure to contract or expand in the radial direction.
  • shims 31 are interposed between each stop 28 and the fixing lug 15 so as to ensure that the movement of the fixing lug 15 in the tangent direction is not too important.
  • Figures 6 to 14 show a plurality of variants for fixing the sump structure 9 to the support structure according to a third embodiment.
  • this embodiment unlike the previous embodiments, there is no longer any question of leaving the fixing means free in the radial direction but rather of using an elastically deformable fixing means, making it possible, using its deformation, to compensate for the thermal contraction of the sump structure 9.
  • the sump structure 9 is fixed to the support structure 1 by means of at least one clip 32 which is elastically deformable.
  • the fastener 32 comprises a first end welded to the support structure 1 while a second end opposite the first end is welded to the sump structure 9, for example on the side wall 12 of the second container 1 1 or on the second fixing wing 14.
  • the section of the fastener 32 is defined by its height 33, namely its dimension in the thickness direction, its wheelbase 34, namely its dimension in the radial direction and its thickness 35 , as shown in figure 7.
  • the section of the fastener 32 may, according to a plurality of variants, be of different shapes thus influencing its stiffness in the radial direction so as to deform more or less easily under the effect of the contraction or expansion of the structure of sump 9.
  • the section of the fastener is rectilinear.
  • FIG. 7 represents a curved fastening section whose curvature is of constant sign, the curvature varying slightly.
  • FIG. 8 represents a curved attachment section whose curvature is of constant sign, the curvature varying greatly.
  • FIG. 9 represents a curved attachment section whose curvature includes a change of sign, therefore a point of inflection, so that the attachment section is slightly wavy.
  • FIG. 10 represents a curved attachment section whose curvature comprises a plurality of changes of signs so as to form a ripple 37.
  • Figure 1 1 shows a curved attachment section whose curvature comprises a plurality of change of signs, the curvature varying abruptly at a plurality of points.
  • the fastener 32 in this variant comprises a point of support 38 on the support structure 1 between the first end and the second end of the fastener 32 so as to reinforce its stiffness in the thickness direction.
  • FIG. 12 represents a variant of the third embodiment in which the storage installation 71 comprises a plurality of fasteners 32 distributed regularly or not over the circumference of the second container 1 1.
  • the sump structure 9 is therefore fixed to the support structure 1 in a discrete manner by a plurality of fasteners 32.
  • Figure 13 shows a variant in which the storage installation 71 comprises a single clip 32, one edge of which matches the shape of the side wall 12 of the second container 11 and is welded around the entire circumference of that -this, while an opposite edge is welded to the structure carrier 1.
  • the sump structure 9 is therefore fixed to the carrier structure 1 continuously by a single clip 32.
  • FIG. 14 shows another variant of the third embodiment.
  • the fastener 32 is of the same shape as that illustrated in FIG. 12.
  • the fastener 32 in FIG. 14 includes days 36 distributed periodically over the entire surface of the fastener 32.
  • the days 36 allow in particular to vary the stiffness of the fastener 32 so that it can deform elastically under the effect of the contraction or expansion of the sump structure 9.
  • the days 36 are oblong and are located between the two edges of the fastener 32.
  • the days 36 are located on one or each of the edges of the fastener 32 so as to interrupt the fixing of the 'attaches 32 periodically or not.
  • the days can be of variable shapes, for example polygonal or circular.
  • the technique described above for making a storage installation can be used in different types of tanks, for example an LNG tank in a land installation or in a floating structure such as an LNG tanker or other.
  • a cutaway view of an LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the tank, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double shell 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 15 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and a installation on land 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising a mobile arm 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connect to the loading / unloading lines 73.
  • the movable arm 74 can be adjusted to suit all sizes of LNG carriers.
  • a connection pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the subsea pipe 76 to the loading or unloading station 75.
  • the subsea pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a long distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une installation de stockage de fluide, l'installation de stockage comprenant une structure porteuse (1) et une cuve, la cuve comportant au moins une paroi de fond de cuve fixée à la structure porteuse (1), dans laquelle la paroi de fond comporte une structure à couches multiples superposées dans une direction d'épaisseur incluant au moins une membrane d'étanchéité et au moins une barrière d'isolation thermique disposée entre la membrane d'étanchéité et la structure porteuse (1), dans laquelle la paroi de fond comporte une structure de puisard (9) comportant un récipient rigide (10, 11) comprenant une paroi latérale (12), le récipient (10, 11) étant agencé à travers l'épaisseur de la paroi de fond, et la structure de puisard (9) comprenant au moins un moyen de fixation (15) agencé pour fixer le récipient rigide (11) à la structure porteuse (1) en un point de fixation, et dans laquelle l'au moins un moyen de fixation (15) est configuré pour autoriser le déplacement relatif de la paroi latérale (12) du récipient (11) par rapport à la structure porteuse (1) dans une direction transversale perpendiculaire à la paroi latérale (12) au point de fixation du récipient (11).

Description

Installation de stockage de fluide
Domaine technique
L’invention se rapporte au domaine des installations de stockage de fluide comprenant une cuve étanche et thermiquement isolante, à membrane. En particulier, l’invention se rapporte notamment aux installations pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que du Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou du Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces installations peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve de l’installation de stockage peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Arrière-plan technologique
Il est connu des installations de stockage de fluide par exemple dans le document WO2016/001 142. Une telle installation de stockage comprend une structure porteuse, par exemple la coque interne d’un navire, et une cuve étanche et thermiquement isolante située à l’intérieur de la structure porteuse et fixée à celle-ci. La cuve étanche et thermiquement isolante comporte une structure à couches multiples superposées dans une direction d’épaisseur comprenant une membrane d’étanchéité et une barrière thermiquement isolante disposée entre la membrane d’étanchéité et la structure porteuse.
Afin de maximiser le rendement d’exploitation d’une telle cuve, il est souhaitable d’optimiser le volume utile de cargaison qu’il est possible de charger dans la cuve et de décharger depuis la cuve. L’utilisation d’une pompe de déchargement aspirant le liquide vers le haut de la cuve oblige à conserver une certaine hauteur de liquide en fond de cuve, faute de quoi l’organe d’aspiration de la pompe entre en communication avec la phase gazeuse, ce qui désamorce et/ou dégrade la pompe. C’est pourquoi il est connu de réaliser une structure de puisard sur la paroi de fond d’une telle cuve interrompant localement la membrane d’étanchéité, la structure de puisard comprenant un récipient s’enfonçant à travers la paroi de fond de la cuve de manière à ce que le liquide dans le récipient soit au niveau le plus bas de la cuve. La pompe de déchargement est donc placée dans une telle structure de puisard ce qui permet de maximiser le rendement d’exploitation de la cuve.
Cependant, lors du chargement de la cuve avec un fluide cryogénique tel que le GNL, les éléments de la cuve directement en contact avec le fluide comme la structure de puisard sont soumis à une forte variation de température ce qui a pour conséquence de les contracter thermiquement. Or la structure de puisard est fixée à la structure porteuse qui n’est pas en contact avec le fluide cryogénique. Le moyen de fixation permettant de fixer la structure de puisard à la structure porteuse pourrait donc subir alors de fortes contraintes mécaniques pouvant accélérer la fatigue des matériaux et limiter la durée d’exploitation de la cuve.
Il est également connu, notamment du document JP2000168885, d’utiliser une structure de puisard dans des installations de stockage terrestres de type enterré dont la structure porteuse est en béton. Dans ce type d’installation, la structure de puisard n’est pas fixée à la structure porteuse mais simplement posée sur la structure porteuse. En effet, dans ce genre d’installation, aucun mouvement de fluide n’est à prévoir contrairement à du stockage dans des structures flottantes, il est donc possible de ne pas fixer la structure de puisard. Toutefois, cette conception n’est pas compatible avec toutes les applications.
Par ailleurs, des sollicitations mécaniques liées à cette application consistant en la réalisation d’un puisard dans la cuve étanche et thermiquement isolante sont à prendre en compte par l’homme du métier.
Résumé
Une idée à la base de l’invention est d’améliorer la fixation entre la structure de puisard et la structure porteuse pour accroître sa durée de service et sa fiabilité.
Selon un mode de réalisation, l’invention fournit une installation de stockage de fluide, l’installation de stockage comprenant une structure porteuse et une cuve étanche et thermiquement isolante, la cuve comportant au moins une paroi de fond fixée à la structure porteuse, dans laquelle la paroi de fond comporte une structure à couches multiples superposées dans une direction d’épaisseur incluant au moins une membrane d’étanchéité et au moins une barrière d’isolation thermique disposée entre la membrane d’étanchéité et la structure porteuse, dans laquelle la paroi de fond comporte une structure de puisard interrompant localement la membrane d’étanchéité de la paroi de fond, la structure de puisard comportant un récipient rigide comportant une paroi latérale, le récipient étant agencé à travers l’épaisseur de la paroi de fond, et la structure de puisard comprenant au moins un moyen de fixation agencé pourfixer le récipient rigide à la structure porteuse en un point de fixation de la paroi latérale,
et dans laquelle l’au moins un moyen de fixation est configuré pour autoriser un déplacement relatif de la paroi latérale du récipient par rapport à la structure porteuse dans une direction transversale perpendiculaire à la paroi latérale au point de fixation du récipient, le déplacement relatif étant supérieur à 1 mm, par exemple compris entre 1 et 5 mm.
On entend par l’expression « dans une direction transversale perpendiculaire à la paroi latérale au point de fixation », la direction orthogonale au plan tangent de la paroi latérale au niveau du point de fixation.
Egalement, l’expression « point de fixation de la paroi latérale » se rapporte, selon tous les modes de réalisation, à l’emplacement de fixation du moyen de fixation sur la structure de puisard, au niveau de la paroi latérale de ce dernier.
Ainsi, l’au moins un moyen de fixation permet de fixer la structure de puisard à la structure porteuse tout en permettant à la paroi latérale du récipient de la structure de puisard de pouvoir se déplacer de manière relative par rapport à la structure porteuse dans la direction transversale. La structure de puisard peut ainsi se contracter thermiquement tout en restant fixer à la structure porteuse et en évitant que l’au moins un moyen de fixation subisse des contraintes mécaniques trop importantes.
Selon des modes de réalisation, une telle installation de stockage peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, l’au moins un moyen de fixation comprend une première portion fixée, de préférence soudée, à la structure porteuse et une deuxième portion fixée, de préférence soudée à la paroi latérale du récipient.
Selon un mode de réalisation, l’au moins un moyen de fixation est fixé directement, de préférence soudé directement, à la structure porteuse. Selon un mode de réalisation, l’au moins un moyen de fixation est fixé directement, de préférence soudé directement, à la paroi latérale du récipient.
Selon un mode de réalisation, la structure porteuse est réalisée dans un matériau métallique.
Selon un mode de réalisation, la structure porteuse est une portion de la coque d’une structure flottante.
Selon un mode de réalisation, l’au moins un moyen de fixation est situé entre la membrane d’étanchéité et la structure porteuse dans la direction d’épaisseur.
Selon un mode de réalisation, la structure de puisard comprend une aile de fixation fixée de manière étanche, c’est-à-dire formant une surface fermée ne laissant pas passer le fluide, par exemple soudée, à la membrane d’étanchéité.
Selon un mode de réalisation, l’au moins un moyen de fixation est au moins partiellement situé sous l’aile de fixation dans la direction d’épaisseur.
Selon un mode de réalisation, la membrane d’étanchéité est une membrane d’étanchéité secondaire, la barrière thermiquement isolante est une barrière thermiquement isolante secondaire, l’aile de fixation est une deuxième aile de fixation, dans laquelle la paroi de fond comprend une barrière thermiquement isolante primaire située sur la membrane d’étanchéité secondaire et comprend également une membrane d’étanchéité primaire située sur la barrière thermiquement isolante primaire, et dans laquelle la structure de puisard comprend une première aile de fixation fixée de manière étanche, c’est-à-dire formant une surface fermée ne laissant pas passer le fluide, par exemple soudée, à la membrane d’étanchéité primaire.
Selon un mode de réalisation, le récipient est un deuxième récipient, la structure de puisard comprend un premier récipient dont une partie inférieure est situé dans le deuxième récipient, la première aile de fixation étant un prolongement du premier récipient et la deuxième aile de fixation étant un prolongement du deuxième récipient, et dans laquelle l’au moins un moyen de fixation est situé sur la paroi latérale du deuxième récipient.
Selon un mode de réalisation, la paroi latérale présente une forme cylindrique d’axe orienté selon la direction d’épaisseur. La paroi latérale cylindrique peut présenter différentes formes en section.
Selon un mode de réalisation, le récipient rigide présente une section circulaire, la direction transversale étant une direction radiale.
Selon un mode de réalisation de l’invention, présenté ci-après en lien avec les figures annexées 1 à 5, l’installation comprend au moins un moyen de blocage configuré pour bloquer le déplacement de l’au moins un moyen de fixation dans la direction d’épaisseur et dans une direction tangente, la direction tangente étant tangente à la paroi latérale et orthogonale à la direction transversale et à la direction d’épaisseur.
Selon un mode de réalisation, l’au moins un moyen de fixation comporte une patte de fixation faisant saillie du récipient rigide dans la direction transversale, la patte de fixation comportant un orifice, et dans laquelle l’installation comprend un dispositif d’ancrage disposé dans l’orifice pour fixer la patte de fixation à la structure porteuse dans la direction d’épaisseur.
Grâce à ces caractéristiques, le dispositif d’ancrage permet d’empêcher le déplacement de la structure de puisard dans la direction d’épaisseur par rapport à la structure porteuse.
Selon un mode de réalisation, le moyen de blocage comprend le dispositif d’ancrage.
Selon un mode de réalisation, l’installation comprend deux butées fixées à la structure porteuse et situées de part et d’autre de l’au moins une patte de fixation dans une direction tangente, la direction tangente étant tangente à la paroi latérale et orthogonale à la direction transversale et à la direction d’épaisseur, les butées étant configurées pour bloquer le déplacement de la patte de fixation dans la direction tangente.
Grâce à ces caractéristiques, les butées permettent d’empêcher le déplacement de la structure de puisard dans la direction tangente par rapport à la structure porteuse.
Selon un mode de réalisation, le moyen de blocage est constitué par la combinaison des butées et du dispositif d’ancrage. Selon un mode de réalisation, l’orifice comporte un orifice oblong dont la plus grande dimension est orientée dans la direction transversale de manière à autoriser le déplacement transversal de la patte de fixation et de la paroi latérale par rapport au dispositif d’ancrage et à la structure porteuse.
Selon un mode de réalisation, l’orifice comporte un orifice circulaire ayant un diamètre supérieur à un diamètre du dispositif d’ancrage de manière à autoriser le déplacement transversal de la patte de fixation et de la paroi latérale par rapport au dispositif d’ancrage et à la structure porteuse.
Grâce à ces caractéristiques, la grande dimension du trou oblong ou le diamètre de l’orifice circulaire permet à la patte de fixation de se déplacer dans la direction transversale par rapport au dispositif d’ancrage. Ainsi, la paroi latérale de la structure de puisard peut se déplacer par rapport à la structure porteuse dans la direction transversale ce qui a pour conséquence de permettre la contraction thermique de la structure de puisard.
Selon un mode de réalisation, l’installation comprend deux plaques perforées comportant une perforation, les plaques perforées étant situées de part et d’autre de la au moins une patte de fixation dans la direction d’épaisseur et le dispositif d’ancrage passant au travers de la perforation de chaque plaque perforée, les plaques perforées étant réalisées dans un matériau dont le coefficient de frottement est inférieur à 0,2, de préférence compris entre 0,05 et 0,2.
Grâce à ces caractéristiques, les plaques perforées permettent de serrer la patte de fixation entre le dispositif d’ancrage et la structure porteuse dans la direction d’épaisseur tout en autorisant le déplacement de la patte de fixation par rapport à la structure porteuse dans la direction transversale. En effet, le faible coefficient de frottement des plaques perforées permet de minimiser l’effort de frottement entre la patte de fixation et la structure porteuse ce qui a pour conséquence d’éviter la dégradation de la patte de fixation et de faciliter la contraction de la structure de puisard.
Selon un mode de réalisation, la perforation de la plaque perforée s’étend d’un bord de la plaque vers le centre de la plaque dans la direction transversale de manière à permettre un positionnement transversal de la plaque. Selon un mode de réalisation, les plaques perforées sont réalisées en polytétrafluoroéthylène (PTFE) ou en polyéthylène haute densité (PEHD).
Selon un mode de réalisation, les butées et/ou les cales sont en métal, par exemple de l’acier inoxydable.
Selon un mode de réalisation, la membrane d’étanchéité, l’une des membranes d’étanchéités ou les membranes d’étanchéité sont réalisées dans un métal parmi l’acier inoxydable, l’aluminium, l’Invar ® : c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10 6 et 2.10 6 K 1, ou un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est de l’ordre de 7.106 K 1.
Selon un mode de réalisation, la patte de fixation, l’équerre de renfort, le ou les récipients sont en métal, par exemple dans le même métal que la membrane d’étanchéité à laquelle ils sont fixés.
Selon un mode de réalisation, le dispositif d’ancrage comporte une tige filetée ou un goujon et un écrou, la tige filetée étant fixée à la structure porteuse et selon un mode de réalisation, la tige filetée traverse les perforations des plaques perforées et l’orifice de la patte de fixation, l’écrou étant configuré pour exercer un effort de serrage dans la direction d’épaisseur sur les plaques perforées et la patte de fixation à l’aide de la structure porteuse.
Selon un mode de réalisation, l’écrou est soudé en position de serrage sur la tige fileté de manière à s’assurer que l’écrou ne se dévisse pas accidentellement durant l’utilisation. L’écrou pourra être fixé par tout autre moyen de blocage adapté.
Selon un mode de réalisation, l’installation comprend une ou des cales disposées entre les butées et la patte de fixation dans la direction tangente, les cales étant configurées pour ajuster la distance laissée libre entre une butée et une patte de fixation dans la direction tangente.
Grâce à ces caractéristiques, la fixation de la structure de puisard est ajustable de manière à prendre en compte des tolérances de positionnement.
Selon un mode de réalisation, l’installation comporte au moins une glissière fixée à la structure porteuse et dirigée dans la direction transversale et l’au moins un moyen de fixation est une patte de fixation faisant saillie du récipient rigide dans la direction transversale, la patte de fixation étant montée dans la glissière, et la patte de fixation étant déplaçable dans la glissière dans la direction transversale pour obtenir ledit déplacement relatif.
Grâce à ces caractéristiques, la glissière permet à la paroi latérale de se déplacer dans la direction transversale de manière à éviter de soumettre la fixation à de fortes contraintes lors d’une contraction thermique.
Selon un mode de réalisation, la glissière comporte une première portion faisant saillie de la structure porteuse dans la direction d’épaisseur et une deuxième portion reliée à la première portion et dirigée dans la direction tangente, de manière à former une glissière à section en forme de L.
Grâce à ces caractéristiques, la forme de la glissière permet de bloquer le déplacement de la patte de fixation et donc de la structure de puisard dans la direction d’épaisseur et au moins en partie dans la direction tangente.
Selon un mode de réalisation, le moyen de blocage comprend la glissière.
Selon un mode de réalisation, l’installation comporte deux glissières situées de part et d’autre de l’au moins une patte de fixation dans la direction tangente, les glissières étant configurés pour bloquer le déplacement de la patte de fixation dans la direction d’épaisseur et dans la direction tangente.
Grâce à ces caractéristiques, les glissières permettent de bloquer le déplacement de la patte de fixation et donc de la structure de puisard dans la direction d’épaisseur et dans la direction tangente.
Selon un mode de réalisation, le moyen de blocage est constitué des deux glissières situées de part et d’autre de la patte de fixation.
Selon un mode de réalisation, la structure de puisard comprend au moins une équerre de renfort, un premier côté de l’équerre de renfort étant fixé sur la patte de fixation et un deuxième côté de l’équerre de renfort perpendiculaire au premier côté étant fixé au récipient rigide. Grâce à ces caractéristiques, la patte de fixation est renforcée grâce à l’équerre de renfort notamment en flexion dans la direction d’épaisseur permettant d’éviter que la patte de fixation soit endommagée lors de l’utilisation de l’installation.
Selon un mode de réalisation, la patte de fixation comprend deux équerres de renfort, le premier côté des équerres étant fixé sur une surface supérieure ou sur une surface inférieure de la patte de fixation, les équerres étant placées de part et d’autre de l’orifice de la patte de fixation.
Selon un mode de réalisation, la structure de puisard comprend une pluralité de moyens de fixation répartis régulièrement ou irrégulièrement sur la circonférence du récipient, par exemple trois ou quatre moyens de fixation.
Grâce à ces caractéristiques, la structure de puisard est fixée sur toute sa circonférence l’empêchant de se déplacer dans son ensemble tout en laissant la liberté à la paroi latérale de se contracter ou se dilater. Cette fixation peut être réalisée de manière plus ou moins uniforme.
Selon un mode de réalisation, l’au moins un moyen de fixation est une attache déformable élastiquement comportant une première extrémité soudée à la structure porteuse et une deuxième extrémité soudée à la structure de puisard.
Grâce à ces caractéristiques, l’attache peut se déformer élastiquement et donc permettre la contraction de la structure de puisard tout en maintenant fixer celle- ci à la structure porteuse.
Selon un mode de réalisation, l’attache est formée de manière continue tout autour de la structure de puisard.
Grâce à ces caractéristiques, l’attache est formée d’une seule pièce fixant la structure de puisard à la structure porteuse uniformément tout autour de sa circonférence.
Selon un mode de réalisation, l’attache est ajourée par des jours disposés tout autour de la structure de puisard.
Selon un mode de réalisation, l’installation comprend une pluralité d’attaches déformables élastiquement réparties régulièrement ou non tout autour de la structure de puisard. Grâce à ces caractéristiques, les attaches permettent de fixer la structure de puisard à la structure porteuse uniformément tout autour de sa circonférence. Avantageusement, les attaches réparties de manière non périodique sur le pourtour de la structure de puisard permettent une fixation optimisée.
Selon un mode de réalisation, la section de l’attache dans un plan de vecteur normal dirigé dans la direction tangente est rectiligne ou courbée. Bien entendu, les attaches peuvent présenter des formes de section différente.
Selon un mode de réalisation, la section de l’attache est courbée et comprend une courbure de signe constant, la courbure ayant une faible ou une forte variation de courbure.
Selon un mode de réalisation, la section de l’attache est courbée et comprend une pluralité de courbures avec variation du signe de courbure, de manière à par exemple former au moins une ondulation.
Selon un mode de réalisation, la section de l’attache comprend un point d’appui sur la structure porteuse entre la première extrémité de l’attache et la deuxième extrémité de l’attache.
Une telle installation peut être une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire.
Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une coque externe et une installation de stockage de fluide précitée disposée dans la coque externe, dans lequel la structure porteuse est une coque interne du navire.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La figure 1 représente une vue en perspective d’une structure de puisard fixée à une structure porteuse selon un premier mode de réalisation.
- La figure 2 est une vue de détail de la figure 1.
- La figure 3 représente une vue en perspective partielle d’une structure de puisard fixée à une structure porteuse selon un deuxième mode de réalisation.
- La figure 4 est une vue en coupe de la figure 3 selon le plan de coupe
IV-IV.
- La figure 5 est une vue en coupe de la figure 4 selon le plan de coupe
V-V.
- La figure 6 représente une vue schématique en coupe d’une structure de puisard fixée à une structure porteuse selon un troisième mode de réalisation.
- La figure 7 à la figure 14 représentent différents modes de réalisation de moyens de fixation agencé pour fixer la structure de puisard à la structure porteuse.
- La figure 15 est une représentation schématique écorchée d’un navire méthanier comportant une installation de stockage et d’un terminal de chargement/déchargement de cette installation de stockage.
Description détaillée de modes de réalisation Dans la description ci-dessous, on va décrire une installation de stockage 71 comprenant une structure porteuse 1 , une cuve étanche et thermiquement isolante et une structure de puisard 9 pouvant être employée dans la paroi de fond 4 d’une cuve de stockage et/ou de transport de GNL. La paroi de fond 4 désigne une paroi 4, de préférence globalement plane, située dans le bas de la cuve par rapport au champ de gravité terrestre. La géométrie générale de la cuve peut par ailleurs être de différents types. Les géométries polyédriques sont les plus courantes. Une géométrie cylindrique, sphérique ou autre est aussi possible.
Les parois 4 de la cuve sont formées par une structure multicouche fixée sur des parois porteuses 1 et incluant deux membranes étanches 5, 7 alternées avec deux barrières thermiquement isolantes 6, 8. Etant donné qu’il existe de nombreuses techniques connues pour réaliser ces structures multicouches, la description ci- dessous se limitera à la structure de puisard 9 et la fixation de celle-ci à la structure porteuse 1 de l’installation de stockage 71 .
La paroi de cuve 4 est montée sur une structure porteuse 1 , réalisée par exemple en tôle d’acier épaisse telle que la coque interne d’un navire 70 à double coque. La paroi de cuve 4 présente une structure multicouche incluant successivement une barrière d’isolation thermique secondaire 8 fixée sur la structure porteuse 1 , par exemple au moyen de cordons de mastic, une membrane d’étanchéité secondaire 7 supportée par la barrière d’isolation thermique secondaire 8, une barrière d’isolation thermique primaire 6 recouvrant la membrane d’étanchéité secondaire 7 et une membrane d’étanchéité primaire 5 supportée par la barrière d’isolation thermique primaire 6.
La figure 1 représente une structure de puisard 9 fixée à une structure porteuse 1 selon un premier mode de réalisation.
A l’emplacement de la structure de puisard 9, la structure porteuse comporte une ouverture 2, illustrée figure 1 de forme circulaire, à travers laquelle la structure de puisard 9 est engagée et qui permet à la structure de puisard 9 de dépasser à l’extérieur de la structure porteuse 1 dans la direction d’épaisseur de la paroi de cuve 4. Un récipient rigide cylindrique 10, 1 1 est fixé sur la structure porteuse 1 à l’aide d’un ou plusieurs moyens de fixation 15, 32 autour de l’ouverture 2 et fait saillie vers l’extérieur de la structure porteuse 1 pour former une structure d’extension qui fournit un espace supplémentaire pour loger la structure de puisard 9. Plus précisément, le récipient 10, 11 comporte une paroi latérale cylindrique 12, par exemple circulaire ou autre. Le récipient 10, 11 peut être réalisé dans des matériaux similaires à la structure porteuse 1 ou à l’une des membranes d’étanchéité 5, 7.
La structure de puisard 9 comporte un premier récipient 10 en communication avec l’intérieur de la cuve, et un deuxième récipient 1 1 entourant la partie inférieure du premier récipient 10. Le premier récipient 10 est raccordé de manière continue à la membrane d’étanchéité primaire 5, qu’il complète ainsi de manière étanche. De même, le deuxième récipient 11 est raccordé de manière continue à la membrane d’étanchéité secondaire 7, qu’il complète ainsi de manière étanche.
Plus précisément, le premier récipient 1 1 comporte une paroi latérale cylindrique 12 dont l’axe est perpendiculaire à la structure porteuse 1 et qui présente une première aile de fixation située sur une partie supérieure de la paroi latérale et essentiellement aligné avec la membrane d’étanchéité primaire 5 et une partie inférieure engagée dans l’ouverture 2 en dessous de la structure porteuse. Une paroi de fond parallèle à la structure porteuse 1 ferme la paroi latérale cylindrique au niveau de sa partie inférieure. La première aile de fixation est fixée au niveau du bord de la partie supérieure de la paroi latérale cylindrique et fait saillie radialement à l’extérieur de celle-ci tout autour du premier récipient 10.
La membrane d’étanchéité primaire 5 présente ainsi une interruption sous la forme d’une fenêtre, par exemple une fenêtre circulaire ou carrée, dont le bord entoure la structure de puisard 9 et se trouve raccordé de manière étanche à la première aile de fixation 13, par exemple par soudure ou collage, comme visible sur la figure 6.
Similairement, le deuxième récipient 11 comporte une paroi latérale cylindrique 12 dont l’axe est perpendiculaire à la structure porteuse 1 et qui présente une deuxième aile de fixation 14 essentiellement alignée avec la membrane d’étanchéité secondaire 7 et une partie inférieure engagée dans l’ouverture en dessous de la paroi de fond du premier récipient 10. Une paroi de fond parallèle à la structure porteuse ferme la paroi latérale cylindrique 12 du deuxième récipient 1 1 au niveau de sa partie inférieure. La paroi latérale cylindrique 12 du deuxième récipient 1 1 entoure la paroi latérale cylindrique du premier récipient 10 à distance de celle-ci. La deuxième aile de fixation 14 est fixée au niveau du bord de la partie supérieure de la paroi latérale cylindrique 12 et fait saillie radialement à l’extérieur de celle-ci tout autour du deuxième récipient 1 1.
La membrane d’étanchéité secondaire 7 présente aussi une interruption sous la forme d’une fenêtre, par exemple une fenêtre circulaire ou carrée, dont le bord entoure la structure de puisard 9 et se trouve raccordé de manière étanche à la deuxième aile de fixation 14, par exemple par soudure ou collage, comme visible sur la figure 6.
Dans la paroi de cuve 4, l’espace compris entre la structure porteuse 1 et la membrane d’étanchéité secondaire 7 est un espace secondaire contenant la barrière thermiquement isolante secondaire 8 et dans lequel il est possible de faire circuler un flux d’azote par mesure de sécurité. Dans la structure de puisard 9, l’espace compris entre le deuxième récipient 1 1 et la structure porteuse 1 est aussi un espace secondaire qui communique avec l’espace secondaire de la paroi de cuve 4 pour pouvoir recevoir ce balayage d’azote.
La barrière thermiquement isolante secondaire 8 est par exemple formée de blocs modulaires juxtaposés pour tapisser de manière relativement uniforme la structure porteuse 1 . Ces blocs modulaires s’arrêtent à une certaine distance de la structure de puisard 9, comme visible sur la figure 6. Des blocs isolants de forme adaptée peuvent être conçus pour approcher relativement près la structure de puisard 9 ou s’emboîter dans celle-ci et ainsi limiter l’interstice restant à combler dans l’isolation secondaire. Des matières isolantes sont logées dans l’interstice entre le bord de la barrière thermiquement isolante secondaire 8 et le deuxième récipient, ainsi que dans l’espace secondaire de la structure de puisard 9 pour compléter l’isolation thermique autour du deuxième récipient 1 1 . En effet, la membrane d’étanchéité secondaire 7 et le deuxième récipient 1 1 sont susceptibles d’être en contact avec le fluide cryogénique en cas de fuite accidentelle dans la membrane d’étanchéité primaire 5.
Similairement, dans la paroi de cuve 4, l’espace compris entre la membrane d’étanchéité secondaire 7 et la membrane d’étanchéité primaire 5 est un espace primaire contenant la barrière thermiquement isolante primaire 6 et dans lequel il est possible de faire circuler un flux d’azote par mesure de sécurité. Dans la structure de puisard 9, l’espace compris entre le premier récipient 10 et le deuxième récipient 1 1 est aussi un espace primaire qui communique avec l’espace primaire de la paroi de cuve 4 pour pouvoir recevoir ce balayage d’azote.
La barrière thermiquement isolante primaire 6 est par exemple formée de blocs modulaires juxtaposés pour tapisser de manière relativement uniforme la membrane d’étanchéité secondaire 7. Ces blocs modulaires s’arrêtent à une certaine distance de la structure de puisard 9. Des blocs isolants de forme adaptée peuvent être conçus pour approcher relativement près la structure de puisard 9 ou s’emboîter dans celle-ci et ainsi limiter l’interstice restant à combler dans l’isolation primaire. Des matières isolantes sont logées dans l’interstice entre le bord de la barrière isolante primaire 6 et le premier récipient 10, ainsi que dans l’espace primaire de la structure de puisard 9 pour compléter l’isolation thermique autour du premier récipient 10. En effet, la membrane primaire 5 et le premier récipient 10 sont en contact avec le GNL lors de l’utilisation.
Différentes matières isolantes peuvent convenir pour compléter ainsi l’isolation thermique primaire et secondaire, par exemple laine de verre ou de roche, mousses polymères, notamment polyuréthane ou PVC, balsa, bois contreplaqué, aérogels, et autres.
En service, du fait de sa position en dessous de la membrane d’étanchéité primaire 5, le premier récipient 10 reçoit par gravité tout résidu de liquide se trouvant dans la cuve, à la manière d’un puisard. Le premier récipient 10 offre une capacité suffisante pour garder la tête d’aspiration de la pompe immergée dans le liquide et maximise ainsi le rendement d’exploitation de la cuve. Pour avoir une bonne stabilité structurelle, le premier récipient 10 et le deuxième récipient 1 1 sont réalisés dans une matière plus rigide que les membranes étanches, par exemple avec une tôle métallique de l’ordre de 6 à 20 mm d’épaisseur.
D’autres modes de réalisation d’une structure de puisard 9 sont par exemple décrits dans le document W02016/001 142.
Dans le premier mode de réalisation illustré aux figures 1 et 2, la structure de puisard comprend sur la paroi latérale cylindrique 12 du deuxième récipient 1 1 des moyens de fixation 15 en forme de pattes de fixation 15. Les pattes de fixation 15 permettent la fixation de la structure de puisard 9 à la structure porteuse 1.
Les pattes de fixation 15 font saillie du deuxième récipient 1 1 dans la direction radiale et sont réparties régulièrement tout autour de la paroi latérale 12, par exemple comme illustrée sur la figure 1 les pattes de fixation 15 sont au nombre de trois et sont situées à 120° les unes des autres.
De manière à rigidifier chaque patte de fixation 15, la structure de puisard 9 comprend deux équerres de renfort 16 sur chaque patte de fixation 15. Les équerres de renfort 16 comportent un premier côté 20 fixé sur une surface supérieure d’une patte de fixation 15 et un deuxième côté 21 perpendiculaire au premier côté 20 fixé à la paroi latérale 12 du deuxième récipient 1 1 .
La structure porteuse 1 comprend à proximité de l’ouverture 2 des glissières 17. Les glissières 17 sont formées d’une première portion 18 faisant saillie de la structure porteuse 1 dans la direction d’épaisseur et d’une deuxième portion 19 reliée à la première portion 18 dirigée dans la direction tangente de manière à former des glissières à section en forme de L. Comme illustrée sur les figures 1 et 2, chaque patte de fixation 15 est prise en sandwich entre deux glissières 17 de manière à ce qu’une partie de la deuxième portion 19 de chaque glissière 17 soit placée au-dessus de la patte de fixation dans la direction d’épaisseur. Ainsi placées, les glissières 17 permettent de bloquer le déplacement des pattes de fixation 15 et donc de la structure de puisard dans la direction d’épaisseur et dans la direction tangente.
De plus, les glissières 17 permettent à chaque patte de fixation 15 de conserver un degré de liberté à savoir la translation dans la direction radiale de manière à autoriser la contraction ou la dilatation thermique de la structure de puisard 9.
Les figures 3 à 5 représentent un deuxième mode de réalisation de la fixation d’une structure de puisard 9 à une structure porteuse 1. Ce mode de réalisation diffère du premier mode de réalisation par le système de blocage des pattes de fixation 15. En effet, comme visible sur les figures 3 à 5, les pattes de fixation 15 du deuxième mode de réalisation sont similaires à celles du premier mode de réalisation, elles comprennent néanmoins dans le deuxième mode de réalisation un orifice 22 d’un diamètre 23 d’orifice. Cependant il n’est pas fait usage de glissière 17 pour bloquer certains degrés de liberté des pattes de fixation 15 à la structure porteuse 1. A la place des glissières 17, des butées 28 sont fixées sur la structure porteuse 1 à proximité de l’ouverture 2. Les butées 28 sont placées sur la structure porteuse 1 de manière à encadrer chaque patte de fixation 15 de la structure de puisard 9 dans la direction tangente.
Un dispositif d’ancrage 24 composé d’une tige filetée 25 avec un diamètre
27 de tige filetée et d’un écrou 26 est inséré dans l’orifice 22 de chaque patte de fixation 15 dans la direction d’épaisseur. Le dispositif d’ancrage 24 est fixé dans la structure porteuse 1 par une de ses extrémités, l’écrou 26 étant placé à l’autre de ses extrémités de manière à prendre en sandwich la patte de fixation 15 avec la structure porteuse dans la direction d’épaisseur. Le dispositif d’ancrage 24 bloque ainsi dans la direction d’épaisseur la patte de fixation 15 par serrage contre la structure porteuse 1 . L’écrou 26 est soudé sur la tige filetée 25 dans la position de serrage de manière à éviter que l’écrou ne se desserre lors de l’utilisation de l’installation de stockage 71.
Comme on peut le voir sur les figures 4 et 5, l’orifice 22 est un orifice circulaire dont le diamètre 23 est supérieur au diamètre 27 de la tige filetée 25 de manière à laisser à la patte de fixation 15 notamment dans la direction radiale un certain débattement pour que la structure de puisard 9 puisse se contracter ou dilater. Dans un autre mode de réalisation non représenté, l’orifice 22 est un orifice oblong dont la grande dimension est située dans la direction radiale.
Afin que le serrage de la patte de fixation 15 par le dispositif d’ancrage 24 ne nuise pas au déplacement potentiel de la structure de puisard 9 sous l’effet de la contraction thermique, des plaques perforées 29 comprenant une perforation 30 et réalisées dans un matériau ayant un faible coefficient de frottement tel que le PTFE sont disposées de part et d’autre de la patte de fixation 15 de manière à s’interposer entre l’écrou 26 et la structure porteuse 1 , comme visible sur la figure 5 notamment. La tige fileté 25 du dispositif d’ancrage 24 passe également au travers des perforations 30 des plaques perforées 29.
Grâce au faible coefficient de frottement des plaques perforées 29, l’effort de frottement entre les plaques perforées et la patte de fixation 15 est minimisée permettant à la patte de fixation 15 et donc à la structure de puisard de se contracter ou se dilater dans la direction radiale.
De manière à ajuster la distance entre les butées 28 et la patte de fixation 15 dans la direction tangente, des cales 31 sont interposées entre chaque butée 28 et la patte de fixation 15 de manière à assurer que le débattement de la patte de fixation 15 dans la direction tangente ne soit pas trop important.
Les figures 6 à 14 représentent une pluralité de variantes de fixation de la structure de puisard 9 sur la structure porteuse selon un troisième mode de réalisation. Dans ce mode de réalisation contrairement aux modes de réalisation précédents, il n’est plus question de laisser libre dans la direction radiale le moyen de fixation mais plutôt d’utiliser un moyen de fixation déformable élastiquement, permettant à l’aide de sa déformation de compenser la contraction thermique de la structure de puisard 9.
Comme illustré sur la figure 6, la structure de puisard 9 est fixée à la structure porteuse 1 à l’aide d’au moins une attache 32 déformable élastiquement. L’attache 32 comprend une première extrémité soudée à la structure porteuse 1 tandis qu’une deuxième extrémité opposée à la première extrémité est soudée à la structure de puisard 9, par exemple sur la paroi latérale 12 du deuxième récipient 1 1 ou sur la deuxième aile de fixation 14.
Dans un plan de vecteur normal selon la direction tangente, la section de l’attache 32 est définie par sa hauteur 33 à savoir sa dimension dans la direction d’épaisseur, son empattement 34 à savoir sa dimension dans la direction radiale et son épaisseur 35, comme visible sur la figure 7. La section de l’attache 32 peut selon une pluralité de variantes être de formes différentes influant ainsi sur sa raideur dans la direction radiale de manière à se déformer plus ou moins facilement sous l’effet de la contraction ou de la dilatation de la structure de puisard 9. En effet, dans le mode illustré figure 6, la section de l’attache est rectiligne.
La figure 7 représente une section d’attache courbée dont la courbure est de signe constant, la courbure variant de manière faible.
La figure 8 représente une section d’attache courbée dont la courbure est de signe constant, la courbure variant de manière forte.
La figure 9 représente une section d’attache courbée dont la courbure comprend un changement de signe, donc un point d’inflexion, de manière à ce que la section d’attache soit légèrement ondulée.
La figure 10 représente une section d’attache courbée dont la courbure comprend une pluralité de changement de signes de manière à former une ondulation 37.
La figure 1 1 représente une section d’attache courbée dont la courbure comprend une pluralité de changement de signes, la courbure variant de manière brutale en une pluralité de points. De plus, l’attache 32 dans cette variante comprend un point d’appui 38 sur la structure porteuse 1 entre la première extrémité et la deuxième extrémité de l’attache 32 de manière à renforcer sa raideur dans la direction d’épaisseur.
La figure 12 représente une variante du troisième mode de réalisation dans laquelle l’installation de stockage 71 comprend une pluralité d’attaches 32 réparties régulièrement ou non sur la circonférence du deuxième récipient 1 1. Dans cette variante, la structure de puisard 9 est donc fixée à la structure porteuse 1 de manière discrète par une pluralité d’attaches 32.
Contrairement à la figure 12, la figure 13 représente une variante dans laquelle l’installation de stockage 71 comprend une unique attache 32 dont un bord épouse la forme de la paroi latérale 12 du deuxième récipient 1 1 et est soudé sur toute la circonférence de celle-ci, tandis qu’un bord opposé est soudé sur la structure porteuse 1. Dans cette variante, la structure de puisard 9 est donc fixée à la structure porteuse 1 de manière continue par une unique attache 32.
La figure 14 représente une autre variante du troisième mode de réalisation. Dans cette variante, l’attache 32 est de la même forme que celle illustrée à la figure 12. Toutefois, l’attache 32 de la figure 14 comprend des jours 36 répartis de manière périodique toute la surface de l’attache 32. Les jours 36 permettent notamment de faire varier la raideur de l’attache 32 afin que celle-ci puisse se déformer élastiquement sous l’effet de la contraction ou dilatation de la structure de puisard 9. Dans le mode de réalisation présenté, les jours 36 sont de forme oblongue et sont situés entre les deux bords de l’attache 32. Dans d’autres variantes non représentées, les jours 36 sont situés sur l’un des ou chacun des bords de l’attache 32 de manière à interrompre la fixation de l’attache 32 périodiquement ou non. De plus, les jours peuvent être de formes variables, par exemple polygonale ou circulaire.
La technique décrite ci-dessus pour réaliser une installation de stockage peut être utilisée dans différents types de réservoirs, par exemple un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 15, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 15 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1 . Installation de stockage (71 ) de fluide, l’installation de stockage (71 ) comprenant une structure porteuse (1 ) et une cuve étanche et thermiquement isolante, la cuve comportant au moins une paroi de fond (4) fixée à la structure porteuse (1 ), dans laquelle la paroi de fond (4) comporte une structure à couches multiples superposées dans une direction d’épaisseur incluant au moins une membrane d’étanchéité (5, 7) et au moins une barrière d’isolation thermique (6, 8) disposée entre la membrane d’étanchéité (5, 7) et la structure porteuse (1 ), dans laquelle la paroi de fond (4) comporte une structure de puisard (9) interrompant localement la membrane d’étanchéité (5, 7) de la paroi de fond (4), la structure de puisard (9) comportant un récipient rigide (10, 1 1 ) comportant une paroi latérale (12), le récipient (10, 1 1 ) étant agencé à travers l’épaisseur de la paroi de fond (4), et la structure de puisard (9) comprenant au moins un moyen de fixation (15, 32) agencé pour fixer le récipient rigide (10, 1 1 ) à la structure porteuse (1 ) en un point de fixation de la paroi latérale (12),
et dans laquelle l’au moins un moyen de fixation (15, 32) est configuré pour autoriser un déplacement relatif de la paroi latérale (12) du récipient (10, 1 1 ) par rapport à la structure porteuse (1 ) dans une direction transversale perpendiculaire à la paroi latérale (12) au point de fixation du récipient (10, 1 1 ), le déplacement relatif étant supérieur à 1 mm.
2. Installation selon la revendication 1 , dans laquelle la paroi latérale (12) présente une forme cylindrique d’axe orienté selon la direction d’épaisseur.
3. Installation selon la revendication 1 ou 2, dans laquelle le récipient rigide (10, 1 1 ) présente une section circulaire, la direction transversale étant une direction radiale.
4. Installation selon l’une des revendications précédentes, dans laquelle l’installation comprend au moins un moyen de blocage (17, 26/28) configuré pour bloquer le déplacement de l’au moins un moyen de fixation dans la direction d’épaisseur et dans une direction tangente, la direction tangente étant tangente à la paroi latérale (12) et orthogonale à la direction transversale et à la direction d’épaisseur.
5. Installation selon l’une des revendications 1 à 4, dans laquelle l’au moins un moyen de fixation (15) comporte une patte de fixation (15) faisant saillie du récipient rigide dans la direction transversale, la patte de fixation (15) comportant un orifice (22), et dans laquelle l’installation comprend un dispositif d’ancrage (24) disposé dans l’orifice (22) pour fixer la patte de fixation (15) à la structure porteuse (1 ) dans la direction d’épaisseur.
6. Installation selon la revendication 5, dans laquelle l’installation comprend deux butées (28) fixées à la structure porteuse (1 ) et situées de part et d’autre de l’au moins une patte de fixation (15) dans une direction tangente, la direction tangente étant tangente à la paroi latérale (12) et orthogonale à la direction transversale et à la direction d’épaisseur, les butées (28) étant configurées pour bloquer le déplacement de la patte de fixation (15) dans la direction tangente.
7. Installation selon la revendication 5 ou la revendication 6, dans laquelle l’orifice (22) comporte un orifice (22) oblong dont la plus grande dimension est orientée dans la direction transversale de manière à autoriser le déplacement transversal de la patte de fixation (15) et de la paroi latérale (12) par rapport au dispositif d’ancrage (24) et à la structure porteuse (1 ).
8. Installation selon l’une des revendications 5 à 7, dans laquelle l’installation comprend deux plaques perforées (29) comportant une perforation (30), les plaques perforées (29) étant situées de part et d’autre de la au moins une patte de fixation (15) dans la direction d’épaisseur et le dispositif d’ancrage (24) passant au travers de la perforation (30) de chaque plaque perforée (29), et dans laquelle les plaques perforées (29) sont réalisées dans un matériau dont le coefficient de frottement est inférieur à 0,2.
9. Installation de stockage selon la revendication 8, dans laquelle le dispositif d’ancrage (24) comporte une tige filetée (25) et un écrou (26), la tige filetée (25) étant fixée à la structure porteuse (1 ) et traversant les perforations (30) des plaques perforées (29) et l’orifice (22) de la patte de fixation (15), l’écrou (26) étant configuré pour exercer un effort de serrage dans la direction d’épaisseur sur les plaques perforées (29) et la patte de fixation (15) à l’aide de la structure porteuse (1 ).
10. Installation selon la revendication 6 ou l’une des revendications 7 à 9 prise dans sa dépendance avec la revendication 6, dans laquelle l'installation comprend des cales (31 ) disposées entre les butées (28) et la patte de fixation (15) dans la direction tangente, les cales (31 ) étant configurées pour ajuster la distance laissée libre entre une butée (28) et une patte de fixation (15) dans la direction tangente.
1 1 . Installation selon l’une des revendications 1 à 4, dans laquelle l’installation comporte au moins une glissière (17) fixée à la structure porteuse (1 ) et dirigée dans la direction transversale et l’au moins un moyen de fixation est une patte de fixation (15) faisant saillie du récipient rigide (10, 1 1 ) dans la direction transversale, la patte de fixation (15) étant montée dans la glissière (17), et la patte de fixation (15) étant déplaçable dans la glissière (17) dans la direction transversale pour obtenir ledit déplacement relatif.
12. Installation selon la revendication 1 1 , dans laquelle la glissière (17) comporte une première portion (18) faisant saillie de la structure porteuse (1 ) dans la direction d’épaisseur et une deuxième portion (19) reliée à la première portion (18) et dirigée dans une direction tangente orthogonale à la direction transversale, de manière à former une glissière à section en forme de L.
13. Installation selon la revendication 1 1 ou la revendication 12, dans laquelle l’installation comporte deux glissières (17) situées de part et d’autre de l‘au moins une patte de fixation (15) dans une direction tangente orthogonale à la direction transversale, les glissières (17) étant configurés pour bloquer le déplacement de la patte de fixation (15) dans la direction d’épaisseur et dans la direction tangente
14. Installation selon l’une des revendications 1 à 13, dans laquelle la structure de puisard (9) comprend au moins une équerre de renfort (16), un premier côté de l’équerre de renfort (16) étant fixé sur la patte de fixation (15) et un deuxième côté de l’équerre de renfort (15) perpendiculaire au premier côté étant fixé au récipient rigide (10, 1 1 ).
15. Installation selon l’une des revendications 1 à 14, dans laquelle la structure de puisard (9) comprend une pluralité de moyens de fixation (15, 32) répartis régulièrement sur la circonférence du récipient (10, 1 1 ).
16. Installation selon l’une des revendications 1 à 3, dans laquelle l’au moins un moyen de fixation est une attache (32) déformable élastiquement comportant une première extrémité soudée à la structure porteuse (1 ) et une deuxième extrémité soudée à la structure de puisard (9).
17. Installation selon la revendication 16, dans laquelle l’attache (32) est formée de manière continue tout autour de la structure de puisard (9).
18. Installation selon la revendication 16 ou la revendication 17, dans laquelle l’attache (32) est ajourée par des jours (36) disposés de manière périodique tout autour de la structure de puisard (9).
19. Installation selon la revendication 16, dans laquelle l’installation comprend une pluralité d’attaches (32) déformables élastiquement réparties régulièrement tout autour de la structure de puisard (9).
20. Installation selon l’une des revendications 16 à 19, dans laquelle la section de l’attache (32) dans un plan de vecteur normal dirigé dans une direction tangente orthogonale à la direction transversale, est rectiligne ou courbée.
21 . Navire (70) pour le transport d’un produit liquide froid, le navire comportant une coque externe (72) et une installation de stockage de fluide selon l’une des revendications 1 à 20 disposée dans la coque externe (72), dans lequel la structure porteuse (1 ) est une coque interne du navire (70).
22. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 21 , dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
23. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 21 , des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
EP19756227.5A 2018-07-16 2019-07-12 Installation de stockage de fluide Pending EP3824216A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856563A FR3083843B1 (fr) 2018-07-16 2018-07-16 Installation de stockage de fluide
PCT/FR2019/051758 WO2020016509A1 (fr) 2018-07-16 2019-07-12 Installation de stockage de fluide

Publications (1)

Publication Number Publication Date
EP3824216A1 true EP3824216A1 (fr) 2021-05-26

Family

ID=63834200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19756227.5A Pending EP3824216A1 (fr) 2018-07-16 2019-07-12 Installation de stockage de fluide

Country Status (8)

Country Link
US (1) US11649930B2 (fr)
EP (1) EP3824216A1 (fr)
JP (1) JP7419338B2 (fr)
KR (1) KR20210031950A (fr)
CN (1) CN112424525B (fr)
FR (1) FR3083843B1 (fr)
SG (1) SG11202100409QA (fr)
WO (1) WO2020016509A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3117993A1 (fr) * 2020-12-22 2022-06-24 Gaztransport Et Technigaz Navire comprenant une cuve
FR3146189A1 (fr) * 2023-02-28 2024-08-30 Gaztransport Et Technigaz Installation de stockage pour gaz liquéfié

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170952A (en) * 1976-03-09 1979-10-16 Mcdonnell Douglas Corporation Cryogenic insulation system
JPH0585590A (ja) * 1991-09-25 1993-04-06 Ngk Insulators Ltd 缶体のラグ支持構造
JP2838274B2 (ja) 1993-03-18 1998-12-16 株式会社国元商会 梯 子
US5641974A (en) * 1995-06-06 1997-06-24 Ois Optical Imaging Systems, Inc. LCD with bus lines overlapped by pixel electrodes and photo-imageable insulating layer therebetween
US5870871A (en) * 1997-03-04 1999-02-16 Total Containment, Inc. Sump liner and method of installation
US6036422A (en) * 1998-07-20 2000-03-14 The Aerospace Corporation Roller washer bearing and method
JP4014743B2 (ja) * 1998-12-04 2007-11-28 東京ガス・エンジニアリング株式会社 タンク用ポンプピット
JP2003278998A (ja) 2002-03-27 2003-10-02 Jfe Engineering Kk 低温貯槽のポンプピット構造
US7153054B2 (en) * 2004-05-20 2006-12-26 United Technologies Corporation Fastener assembly for attaching a non-metal component to a metal component
FR2977562B1 (fr) * 2011-07-06 2016-12-23 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse
FR2980164B1 (fr) * 2011-09-19 2014-07-11 Saipem Sa Support installe en mer equipe de reservoirs externes
FR2984992B1 (fr) * 2011-12-21 2015-03-27 Gaztransp Et Technigaz Cuve etanche et isolante munie d'un dispositif de retenue
US20130287520A1 (en) * 2012-04-26 2013-10-31 Caterpillar Inc. Coupling arrangement for providing controlled loading
GB201302125D0 (en) * 2013-02-07 2013-03-20 Rolls Royce Plc A panel mounting arrangement
US8640493B1 (en) * 2013-03-20 2014-02-04 Flng, Llc Method for liquefaction of natural gas offshore
FR3023257B1 (fr) 2014-07-04 2017-12-29 Gaztransport Et Technigaz Cuve etanche et isolante disposee dans une double coque flottante
KR20160119343A (ko) * 2015-04-03 2016-10-13 삼성중공업 주식회사 액화가스 저장탱크 및 액화가스 배출방법
FR3035175B1 (fr) 2015-04-20 2017-04-28 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante equipee d'un element traversant
FR3062703B1 (fr) * 2017-02-09 2020-10-02 Gaztransport Et Technigaz Structure de dome gaz pour une cuve etanche et thermiquement isolante

Also Published As

Publication number Publication date
FR3083843A1 (fr) 2020-01-17
WO2020016509A1 (fr) 2020-01-23
US11649930B2 (en) 2023-05-16
JP7419338B2 (ja) 2024-01-22
JP2021530412A (ja) 2021-11-11
KR20210031950A (ko) 2021-03-23
SG11202100409QA (en) 2021-02-25
CN112424525B (zh) 2022-08-23
US20210293384A1 (en) 2021-09-23
FR3083843B1 (fr) 2020-07-17
CN112424525A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
EP2956352B1 (fr) Paroi, etanche et thermiquement isolante, pour cuve de stockage de fluide
EP3948060B1 (fr) Cuve étanche et thermiquement isolante
EP3788294A1 (fr) Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
FR3074560A1 (fr) Cuve etanche et thermiquement isolante
FR3110951A1 (fr) Dispositif d’ancrage destine a retenir des blocs isolants
WO2019012236A1 (fr) Cuve etanche et thermiquement isolante
FR2973098A1 (fr) Cuve etanche et thermiquement isolante
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3054872A1 (fr) Structure de paroi etanche
FR3094071A1 (fr) Cuve étanche et thermiquement isolante
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee
FR3112588A1 (fr) Paroi d'une cuve de stockage d'un gaz liquéfiée
WO2019211551A1 (fr) Cuve etanche et thermiquement isolante equipee d'une tour de chargement/dechargement
WO2017174938A1 (fr) Cuve étanche et thermiquement isolante
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
WO2020016509A1 (fr) Installation de stockage de fluide
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
FR3090810A1 (fr) Système d’ancrage pour cuve étanche et thermiquement isolante
FR3077116A1 (fr) Cuve etanche et thermiquement isolante
FR3121730A1 (fr) Dispositif d’ancrage destiné à retenir des blocs isolants
WO2021013856A9 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2023089156A1 (fr) Cuve étanche et thermiquement isolante
WO2023067026A1 (fr) Cuve étanche et thermiquement isolante

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20240311