WO2021013856A9 - Membrane d'etancheite pour cuve etanche de stockage de fluide - Google Patents

Membrane d'etancheite pour cuve etanche de stockage de fluide Download PDF

Info

Publication number
WO2021013856A9
WO2021013856A9 PCT/EP2020/070598 EP2020070598W WO2021013856A9 WO 2021013856 A9 WO2021013856 A9 WO 2021013856A9 EP 2020070598 W EP2020070598 W EP 2020070598W WO 2021013856 A9 WO2021013856 A9 WO 2021013856A9
Authority
WO
WIPO (PCT)
Prior art keywords
tank
base
relief
waterproofing membrane
dimension
Prior art date
Application number
PCT/EP2020/070598
Other languages
English (en)
Other versions
WO2021013856A1 (fr
Inventor
Nicolas LAURAIN
Guillaume De Combarieu
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to JP2022504162A priority Critical patent/JP2022542064A/ja
Priority to KR1020227002295A priority patent/KR20220036944A/ko
Priority to CN202080053098.0A priority patent/CN114144611B/zh
Publication of WO2021013856A1 publication Critical patent/WO2021013856A1/fr
Publication of WO2021013856A9 publication Critical patent/WO2021013856A9/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • B63B27/34Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures using pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/016Preventing slosh
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealing membranes for sealed tanks with membranes.
  • the invention relates to the field of waterproofing membranes for sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at approximately -162 ° C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • a sealed and thermally insulating LNG storage tank comprising a secondary thermally insulating barrier, a secondary waterproofing membrane resting on the secondary thermally insulating barrier, a primary thermally insulating barrier resting on the membrane of secondary sealing, and a primary sealing membrane resting on the primary thermally insulating barrier and intended to be in contact with the liquefied gas.
  • the primary waterproofing membrane of this document is composed of corrugated metal plates having a first series of so-called high parallel corrugations and a second series of so-called low parallel corrugations, the second series of corrugations being perpendicular to the first series of ripples.
  • These corrugated metal plates are made of stainless steel with a thickness of approximately 1.2 mm.
  • the low waves have a height of about 35 mm while the high waves have a height of about 55 mm.
  • the corrugations of the primary waterproofing membrane allow the primary waterproofing membrane to have a certain flexibility allowing it to contract or expand under the effect of changes in temperature without risking damage to its structure.
  • the liquefied gas contained in the tank is subjected to different movements.
  • the movements at sea of a ship for example under the effect of climatic conditions such as the state of the sea or the wind, cause agitation of the liquid in the tank.
  • the agitation of the liquid generally referred to as "sloshing" or sloshing, generates stresses on the walls of the tank which can adversely affect the integrity of the tank, in particular by bending the corrugations of the primary waterproofing membrane. .
  • the primary waterproofing membrane loses flexibility and risks no longer being able to play its role.
  • Document FR1323237 also describes a sealing membrane for a liquefied gas storage tank.
  • the waterproofing membrane comprises two series of embossments. These embossments allow, as in the previous document, to give a certain flexibility to the waterproofing membrane in order to be able to contract or expand under the effect of temperature changes.
  • the embossings of this document are also subject to the sloshing of the fluid and the sealing membrane may thus lose flexibility or be damaged.
  • An idea underlying the invention is to reduce the risk of damage to the sloshing of the waterproofing membrane of a sealed tank, while retaining the flexibility of the waterproofing membrane allowing it to contract. and thermally expand.
  • the invention provides a sealing membrane for a sealed fluid storage tank, in which the sealing membrane comprises at least one metal plate, the metal plate comprising a flat portion defining a plane of the plate and a plurality of reliefs projecting from the flat portion in a thickness direction perpendicular to the plane of the plate, the reliefs being spaced from each other, the metal plate comprising in all directions of the plane at least one relief , each relief comprising a base making the connection between the relief and the flat portion, and comprising at least one vertex, the base comprising in the plane formed by the flat portion a first dimension equal to the diameter of the smallest circle circumscribed around the base and a second dimension equal to the diameter of the largest circle inscribed in the base, and the distance between the top and the base in the thickness direction forming an h author of the relief, in which the height of the relief is less than 20 mm, in which each relief is spaced from an adjacent relief in all directions of the plane by a distance less than or equal to 2 times the first dimension of
  • the reliefs by virtue of their height and by their dimensional ratios, are less subject to the sloshing of the fluid, which allows the sealing membrane not to degrade and thus lose its seal.
  • a maximum distance between adjacent patterns linked to the dimensions of the reliefs makes it possible to have a sufficient distribution of the reliefs over the entire waterproofing membrane in order to allow regular contraction or expansion in all directions and thus maintain flexibility. when using the tub.
  • adjacent patterns is understood to mean patterns which are separated from one another by at least one straight line in the plane of the plate formed only by the flat portion.
  • the diameter of the smallest circle circumscribed around the base is understood to mean the diameter of the smallest circle located around and outside the base, and having at least two points of intersection with the base so that the circle surrounds the base without cutting it.
  • this circle has as its center the point of intersection of the perpendicular bisectors of the sides of the base.
  • the diameter of the largest circle inscribed in the base is understood to mean the diameter of the largest circle located inside the base and having at least two points of intersection with the base so that the circle is located entirely in the base without cutting it.
  • this circle has as its center the point of intersection of the bisectors of the base.
  • such a sealing membrane may have one or more of the following characteristics.
  • the ratio of the second dimension of the base to the height of the relief is greater than or equal to 0.6.
  • the sealing membrane comprises a plurality of metal plates welded edge to edge in a sealed manner to each other.
  • sealed welded means a weld made using a continuous weld bead to form a continuous surface between the two elements welded to each other.
  • all the reliefs of the plate are identical.
  • the reliefs are regularly or irregularly distributed on the metal plate.
  • the metal plate comprises at least a first series of reliefs and a second series of reliefs, the reliefs of the first series having dimensions and / or shapes different from the reliefs of the second series.
  • each relief is spaced from an adjacent relief in all directions of the plane by a distance less than or equal to 1.5 times, preferably less than or equal to 1 time, the first dimension of the based.
  • each metal plate measures at least 1 m in the longitudinal direction and at least 0.5 m in the transverse direction, for example 3 m in the longitudinal direction and 1 m in the transverse direction.
  • the height of the relief is between 8 mm and 20 mm, preferably between 10 mm and 14 mm.
  • the ratio of the first dimension of the base to height of the relief is less than or equal to 1.5, for example 1.4 for a relief of ellipsoidal shape.
  • the ratio of the second dimension of the base to the height of the relief is greater than or equal to 0.7.
  • the ratio of the second dimension of the base to the height of the relief is between 1 and 2.5.
  • the reliefs are produced by forming, preferably stamping, or else by stamping, die-stamping, or else magnetoforming.
  • the thickness of the metal plate e piaçue expressed in
  • the metal plate is made of stainless steel or of high manganese steel.
  • the minimum thickness of the plate is therefore approximately equal to 0.58 mm.
  • the minimum thickness of your plate is therefore approximately equal to 0.68 mm.
  • the metal plates have a thickness between 0.5 mm and 2 mm.
  • the metal plates are made of a metal material whose Young's modulus is between 130 GPa and 230 GPa. [0032] According to one embodiment, the metal plates are made of a metal material whose elastic limit is greater than 170 MPa at room temperature.
  • the metal plates are made of a metal material, the elastic limit of which is between 170 MPa and 500 MPa.
  • the number of reliefs per linear meter of metal plate N relief is within the following range: with a the coefficient of thermal expansion of the metal plate in K -1 , DT the temperature difference between the ambient temperature and the temperature of the fluid stored in the tank in K, and h the height of the relief in mm.
  • the base has the shape of an ellipse, for example a circle, or of a polygon.
  • the base has the shape of an ellipse and the ratio of the first dimension of the base to the height of the relief is less than or equal to 1, 4.
  • the ratio of the first dimension to the second dimension is less than or equal to 1.4, preferably between 1 and 1, 4.
  • the first dimension of the base is equal to the second dimension of the base.
  • each relief has a pyramidal or semi-ellipsoid shape, for example of a semi-sphere or of a pyramid with a square base.
  • each relief has a shape which widens towards the base.
  • the orthogonal projection of the at least one vertex of the relief in the plane of the plate is located in the perimeter of the base.
  • At least 90%, preferably all, of the areas of the metal plate projecting from the flat portion are reliefs.
  • the invention provides a sealed and thermally insulating tank for storing liquefied gas integrated into a supporting structure, the tank comprising a plurality of tank walls forming an internal space for receiving the liquefied gas, at the at least one of the vessel walls comprising a thermally insulating barrier fixed to the supporting structure and an aforementioned sealing membrane resting on the thermally insulating barrier and intended to be in contact with the liquefied gas in the vessel.
  • the reliefs protrude from the flat portion towards the internal space of the tank,
  • the reliefs protrude from the flat portion in the direction of the supporting structure.
  • the thermally insulating barrier comprises a plurality of insulating panels juxtaposed to one another.
  • the waterproofing membrane is a primary waterproofing membrane
  • the thermally insulating barrier is a primary thermally insulating barrier
  • the vessel wall comprises in a thickness direction from the outside towards inside the vessel, a secondary thermally insulating barrier attached to the load-bearing structure, a secondary waterproofing membrane resting on the secondary thermally insulating barrier, the primary thermally insulating barrier resting on the secondary waterproofing membrane and the membrane of primary seal based on the primary thermally insulating barrier.
  • Such a tank can be part of an onshore storage installation, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU), a floating production and remote storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating production and remote storage unit
  • Such a tank can also serve as a fuel tank in any type of vessel.
  • a ship for transporting a cold liquid product comprises a double hull and a above-mentioned tank arranged in the double hull, the double hull forming the supporting structure of the tank.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to an installation floating or terrestrial storage facility and a pump for driving a flow of cold liquid product through insulated pipelines from or towards the floating or terrestrial storage facility to or from the vessel's vessel.
  • the invention also provides a method for loading or unloading such a vessel, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel's tank.
  • Figure 1 shows a schematic top view of a portion of a waterproofing membrane comprising reliefs according to a first embodiment.
  • Figure 2 shows a schematic sectional view along line II-II of Figure 1, showing one of the reliefs of the waterproofing membrane.
  • Figure 3 shows a perspective view of a portion of a waterproofing membrane comprising a relief according to a second embodiment.
  • Figure 4 shows a schematic sectional view along line IV-IV of Figure 3, showing one of the reliefs of the waterproofing membrane.
  • Figure 5 shows a schematic top view of a portion of a waterproofing membrane comprising reliefs according to a third embodiment.
  • Figure 6 shows a schematic front view of a tank wall according to a first variant comprising a sealing membrane according to the first embodiment and a thermally insulating barrier.
  • Figure 7 shows a schematic front view of a tank wall according to a second variant comprising a sealing membrane according to the first embodiment and a thermally insulating barrier.
  • FIG. 8 represents a schematic front view of a tank wall according to a third variant comprising a primary waterproofing membrane according to the first embodiment, a primary thermally insulating barrier, a secondary waterproofing membrane and a barrier. thermally insulating secondary.
  • FIG. 9 is a cut-away schematic representation of an LNG vessel tank comprising a waterproofing membrane and a loading / unloading terminal for this tank
  • the waterproofing membrane 1 comprises a plurality of metal plates 2 welded edge to edge in a sealed manner to each other.
  • the metal plates 2 comprise a flat portion 3 defining a plane of the plate and a plurality of reliefs 4 projecting from the flat portion 3 in a thickness direction perpendicular to the plane of the plate.
  • the reliefs 4 are spaced from each other and distributed over the whole of the metal plate 2 so that it is not possible to draw a straight line in the plane of the plate without crossing a relief 4.
  • the waterproofing membrane 2 has reliefs in all directions of the plane of the plate.
  • the flat portion 3 thus separates the reliefs 4 from one another.
  • Each relief 4 has a base 5 and at least one top 6.
  • the metal plates 2 of the waterproofing membrane 1 have a relatively small thickness 11 compared to the other dimensions of the metal plates 2 to ensure the flexibility of the waterproofing membrane. to thermal contraction / expansion.
  • the reliefs 4 have a circular base 5 and has a single apex 6 so as to form half-spheres or half-ellipsoids.
  • the reliefs 4 are here regularly distributed on the metal plate 2 but could be in another embodiment not shown irregularly distributed on the metal plate 2
  • Figure 2 shows in section one of the reliefs of Figure 1 so as to represent the different dimensions of the relief 4.
  • the base 5 comprises in the plane of the plate a first dimension 7 and a second dimension 8 which in the case of the first embodiment are equal.
  • the first dimension 7 is equal to the diameter of the smallest circle circumscribed around the base 5 while the second dimension 8 is equal to the diameter of the largest circle inscribed in the base 5.
  • the distance between the vertex 6 and the base 5 in the thickness direction of the metal plate 2 defines the height 9 of the relief 4.
  • each relief 4 is spaced from an adjacent relief 4 by a distance less than or equal to once the first dimension 7 of the base 5.
  • the ratio of the second dimension 8 of the base 5 on the height 9 of the relief 4 is approximately equal to 3.33.
  • the ratio of the first dimension 7 of the base 5 to the height 9 of the relief 4 is approximately equal to 0.3.
  • Figures 3 and 4 show a second embodiment of the reliefs 4 of the sealing membrane 1.
  • the shape of the base 5 of the reliefs 4 is different from the first embodiment.
  • the base 5 is here a quadrilateral having a larger dimension 7 formed by the diagonal of the quadrilateral and a smaller dimension 8 formed by the smaller side of the quadrilateral.
  • the ratio between the first dimension 7 of the base 5 on the second dimension 8 of the base 5 is here equal to approximately 1, 4 while the ratio between the second dimension 8 of the base 4 on the height 9 of the relief 4 is approximately equal to 2.5.
  • the ratio of the first dimension 7 of the base 5 to the height 9 of the relief 4 is approximately equal to 0.56.
  • the metal plates 2 comprise reliefs of identical shape and size from one metal plate to the other.
  • FIG. 5 shows a third embodiment of the reliefs 4 of the sealing membrane 1 where, unlike the previous embodiments, the metal plate 2 comprises a first series of relief 22 and a second series of relief 23 having dimensions and different shapes.
  • the reliefs 4 of the first series 22 take the shape of the reliefs of the first embodiment of Figures 1 and 2 while the reliefs 4 of the second series 23 take the shape of the reliefs 4 of the second embodiment.
  • the series are alternated with each other on the dimensions of the metal plate 2.
  • the reliefs 4 can have different shapes and sizes respecting the s described above and the metal plate 2 can also include more than two different series of relief.
  • the technique described above for producing a waterproofing membrane can be used in different types of tanks, for example to constitute the primary waterproofing membrane of an LNG tank in an onshore installation or in a floating structure. like an LNG carrier or other.
  • FIG 6 there is shown the multilayer structure of a tank wall according to a first variant for a sealed and thermally insulating storage tank 71 such as for example liquefied gas.
  • the tank wall comprises successively in the thickness direction from the outside to the inside of the tank 71, a thermally insulating barrier 12 retained in a supporting structure 15, and a sealing membrane such as described in the first embodiment illustrated in Figures 1 and 2, resting against the thermally insulating barrier 12 and intended to be in contact with the fluid contained in the tank.
  • the supporting structure 3 can in particular be formed by the hull or the double hull of a ship.
  • the supporting structure 3 comprises a plurality of walls defining the general shape of the tank, usually a polyhedral shape.
  • the thermally insulating barrier 12 comprises a plurality of insulating panels 16 which are anchored to the supporting structure 15 by means of anchoring devices not shown.
  • the insulating panels 16 have a general parallelepipedal shape and are arranged in parallel rows.
  • Figure 7 shows the multilayer structure of a tank wall according to a second variant.
  • This variant differs from the first variant only by the shape of the thermally insulating barrier 12.
  • the insulating panels 16 comprise on their upper surface shapes complementary to the reliefs 4 so as to match the shape as closely as possible. of the waterproofing membrane 1.
  • the reliefs 4 protrude towards the interior of the tank and the complementary shapes 18 thus fill the space under the reliefs 4.
  • the reliefs 4 protrude outwardly from the tank and the complementary shapes 18 are here hollows in the thermally insulating barrier 12 to receive the reliefs 4.
  • FIG. 8 shows the multilayer structure of a tank wall according to a third variant.
  • Each tank wall successively comprises, in the thickness direction, from the outside to the inside of the tank 71, a secondary thermally insulating barrier 14 retained in a supporting structure 15, a secondary sealing membrane 13 resting against the wall.
  • the primary thermally insulating barrier 12 comprises a plurality of primary insulating panels 16 which are anchored to the supporting structure 15 by means of anchoring devices not shown.
  • the secondary thermally insulating barrier 14 comprises a plurality of secondary insulating panels 17 which are anchored to the supporting structure 15 by means of anchoring devices (not shown)
  • the primary 16 and secondary 17 insulating panels have a general parallelepipedal shape and are arranged in rows. parallels.
  • the secondary insulating panels 17 and the primary insulating panels 16 comprise a bottom plate, a cover plate and possibly a plate intermediate, for example made of plywood.
  • the insulating panels 16, 17 also comprise one or more layers of insulating polymer foam sandwiched between the bottom plate, the cover plate and the possible intermediate plate and glued to them.
  • the insulating polymer foam can in particular be a polyurethane-based foam, optionally reinforced with fibers.
  • the insulating panels 16, 17 may be made entirely of insulating polymeric foam.
  • the insulating panels 16, 17 can also be produced in the form of a box filled with an insulating lining.
  • the secondary waterproofing membrane 13 can be produced in the same way as your primary waterproofing membrane 1.
  • the secondary waterproofing membrane 13 can also be produced by a continuous sheet of metal strakes with raised edges or by strips of laminated composite materials glued to each other.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the vessel 71 comprises a primary watertight barrier intended to be in contact with the LNG contained in the vessel, a secondary watertight barrier arranged between the primary watertight barrier and the double hull 72 of the vessel, and two insulating barriers arranged respectively between the vessel. primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double shell 72.
  • the loading / unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 9 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be swiveled and adapts to all types of LNG carrier templates.
  • a connecting pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station. unloading 75 and the installation on land 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station are used. 75.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Gasket Seals (AREA)

Abstract

L'invention concerne une membrane d'étanchéité pour cuve étanche de stockage de fluide, dans laquelle la membrane d'étanchéité comporte au moins une plaque métallique (2), la plaque métallique (2) comportant une portion plane (3) définissant un plan de la plaque et une pluralité de reliefs (4) faisant saillie de la portion plane (3) dans une direction d'épaisseur perpendiculaire au plan de la plaque, les reliefs (4) étant espacés les uns des autres, la plaque comportant dans toutes les directions du plan au moins un relief, chaque relief (4) comportant une base (5) faisant la liaison entre le relief (4) et la portion plane (3), et comportant au moins un sommet (6), la base (5) comprenant dans le plan formé par la portion plane (3) une première dimension et une deuxième dimension, et la distance entre le sommet (6) et la base (5) dans la direction d'épaisseur formant une hauteur du relief, dans laquelle la hauteur du relief (4) est inférieure à 20 mm, dans laquelle chaque relief (4) est écarté d'un relief (4) adjacent dans toutes les directions du plan par une distance inférieure ou égale à 2 fois la première dimension de la base (5), le ratio de la première dimension de la base (5) sur la hauteur du relief (4) est inférieur ou égal à 2.

Description

Description
Titre de l'invention : Membrane d’étanchéité pour cuve étanche de stockage de fluide
Domaine technique
[0001] L’invention se rapporte au domaine des membranes d’étanchéité pour des cuves étanches à membranes. En particulier, l’invention se rapporte au domaine des membranes d’étanchéité pour des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Arrière-plan technologique
[0002] Il est connu du document FR2691520 une cuve étanche et thermiquement isolante de stockage de GNL comprenant une barrière thermiquement isolante secondaire, une membrane d’étanchéité secondaire reposant sur la barrière thermiquement isolante secondaire, une barrière thermiquement isolante primaire reposant sur la membrane d’étanchéité secondaire, et une membrane d’étanchéité primaire reposant sur la barrière thermiquement isolante primaire et destinée à être en contact avec le gaz liquéfié.
[0003] La membrane d’étanchéité primaire de ce document est composée de plaques métalliques ondulées présentant une première série d’ondulations parallèles dites hautes et une deuxième série d'ondulations parallèles dites basses, la deuxième série d'ondulations étant perpendiculaire à la première série d’ondulations. Ces plaques métalliques ondulées sont réalisées en acier inoxydable d'une épaisseur d’environ 1 ,2 mm. De plus, les ondulations basses ont une hauteur d’environ 35 mm tandis que les ondulations hautes ont une hauteur d’environ 55 mm. Les ondulations de la membrane d’étanchéité primaire permettent notamment à la membrane d’étanchéité primaire d'avoir une certaine flexibilité lui permettant de se contracter ou se dilater sous l’effet des changements de température sans risquer d’endommager sa structure.
[0004] Lorsqu’une telle cuve est intégrée dans un navire, le gaz liquéfié contenu dans la cuve est soumis à différents mouvements. En particulier, les mouvements en mer d’un navire, par exemple sous l’effet des conditions climatiques telles que l’état de la mer ou le vent, entraînent une agitation du liquide dans la cuve. L’agitation du liquide, généralement désignée sous le terme de « sloshing » ou ballottement, engendre des contraintes sur les parois de la cuve qui peuvent nuire à l'intégrité de la cuve, notamment en pliant les ondulations de la membrane d’étanchéité primaire. En subissant de tels endommagements, la membrane d’étanchéité primaire perd en flexibilité et risque de ne plus pouvoir jouer son rôle.
[0005] Le document FR1323237 décrit également une membrane d’étanchéité pour cuve de stockage de gaz liquéfié. Dans ce document, la membrane d'étanchéité comprend deux séries de gaufrages. Ces gaufrages permettent comme pour le document précédent d’apporter une certaine flexibilité à la membrane d’étanchéité afin de pouvoir se contracter ou se dilater sous l’effet des changements de température.
[0006] Toutefois, de par leur forme et leurs rapports dimensionnels, les gaufrages de ce document sont également soumis aux ballotements du fluide et la membrane d’étanchéité peut ainsi perdre en flexibilité ou être endommagée.
Résumé
[0007] Une idée à la base de l’invention est de réduire le risque d’endommagement au ballotement de la membrane d’étanchéité d'une cuve étanche, tout en conservant la flexibilité de la membrane d’étanchéité lui permettant de se contracter et dilater thermiquement.
[0008] Selon un mode de réalisation, l’invention fournit une membrane d’étanchéité pour cuve étanche de stockage de fluide, dans laquelle la membrane d’étanchéité comporte au moins une plaque métallique, la plaque métallique comportant une portion plane définissant un plan de la plaque et une pluralité de reliefs faisant saillie de la portion plane dans une direction d’épaisseur perpendiculaire au plan de la plaque, les reliefs étant espacés les uns des autres, la plaque métallique comportant dans toutes les directions du plan au moins un relief, chaque relief comportant une base faisant la liaison entre le relief et la portion plane, et comportant au moins un sommet, la base comprenant dans le plan formé par la portion plane une première dimension égale au diamètre du plus petit cercle circonscrit autour de la base et une deuxième dimension égale au diamètre du plus grand cercle inscrit dans la base, et la distance entre le sommet et la base dans la direction d’épaisseur formant une hauteur du relief, dans laquelle la hauteur du relief est inférieure à 20 mm, dans laquelle chaque relief est écarté d’un relief adjacent dans toutes les directions du plan par une distance inférieure ou égale à 2 fois la première dimension de la base, et le ratio de la première dimension de la base sur la hauteur de chaque relief est inférieur ou égal à 2.
[0009] Grâce à ces caractéristiques, les reliefs de par leur hauteur et de par leurs rapports dimensionnels sont moins soumis au ballotement du fluide ce qui permet à la membrane d’étanchéité de ne pas se dégrader et ainsi perdre en étanchéité. De plus, une telle distance maximale entre des motifs adjacents liée aux dimensions des reliefs permet d’avoir une répartition suffisante des reliefs sur toute la membrane d’étanchéité afin de permettre une contraction ou une dilatation régulière dans toutes les directions et ainsi conserver la flexibilité lors de l’utilisation de la cuve.
[0010] On entend par motifs adjacents, des motifs qui sont séparés l’un de l’autre par au moins une ligne droite dans le plan de la plaque formée uniquement par la portion plane.
[001 1] On entend par le diamètre du plus petit cercle circonscrit autour de la base, le diamètre du plus petit cercle situé autour et à l’extérieur de la base, et ayant au moins deux points d’intersection avec la base de sorte que le cercle entoure la base sans la couper. Par exemple dans le cas d’une base triangulaire, ce cercle a pour centre le point d’intersection des médiatrices des côtés de la base.
[0012] On entend par le diamètre du plus grand cercle inscrit dans la base, le diamètre du plus grand cercle situé à l’intérieur de la base et ayant au moins deux points d’intersection avec la base de sorte que le cercle soit situé entièrement dans la base sans la couper. Par exemple dans le cas d’une base triangulaire, ce cercle a pour centre le point d’intersection des bissectrices de la base.
[0013] Selon des modes de réalisation, une telle membrane d’étanchéité peut comporter une ou plusieurs des caractéristiques suivantes.
[0014] Selon un mode de réalisation, le ratio de la deuxième dimension de la base sur la hauteur du relief est supérieur ou égal à 0,6.
[0015] Selon un mode de réalisation, la membrane d’étanchéité comporte une pluralité de plaques métalliques soudées bord à bord de manière étanche les unes aux autres.
[0016] On entend par l’expression « soudé de manière étanche » une soudure réalisée à l’aide d’un cordon de soudure continu afin de former une surface continue entre les deux éléments soudés l’un à l’autre.
[0017] Selon un mode de réalisation, tous les reliefs de la plaque sont identiques.
[0018] Selon un mode de réalisation, les reliefs sont régulièrement ou irrégulièrement répartis sur la plaque métallique.
FEUILLE RECTIFIÉE (RÈGLE 91) ISA/EP [0019] Selon un mode de réalisation, la plaque métallique comporte au moins une première série de reliefs et une deuxième série de reliefs, les reliefs de la première série ayant des dimensions et/ou formes différentes des reliefs de la deuxième série.
[0020] Selon un mode de réalisation, chaque relief est écarté d’un relief adjacent dans toutes les directions du plan par une distance inférieure ou égale à 1 ,5 fois, de préférence inférieure ou égale à 1 fois, la première dimension de la base.
[0021] Selon un mode de réalisation, chaque plaque métallique mesure au moins 1 m dans la direction longitudinale et au moins 0,5 m dans la direction transversale, par exemple 3 m dans la direction longitudinale et 1 m dans la direction transversale.
[0022] Selon un mode de réalisation, la hauteur du relief est comprise entre 8 mm et 20 mm, de préférence compris entre 10 mm et 14 mm.
[0023] Selon un mode de réalisation, le ratio de la première dimension de la base sur hauteur du relief est inférieur ou égal à 1 ,5, par exemple 1 ,4 pour un relief de forme ellipsoïdale.
[0024] Selon un mode de réalisation, le ratio de la deuxième dimension de la base sur la hauteur du relief est supérieur ou égal à 0,7.
[0025] Selon un mode de réalisation, le ratio de la deuxième dimension de la base sur la hauteur du relief est compris entre 1 et 2,5.
[0026] Selon un mode de réalisation, les reliefs sont réalisés par formage, de préférence emboutissage, ou bien par estampage, matriçage, ou encore magnétoformage.
[0027] Selon un mode de réalisation, l'épaisseur de la plaque métallique epiaçue exprimée en
115 mm au niveau de la portion plane est supérieure ou égale à - , avec E le module
E d’Young du matériau constitutif de la plaque métallique exprimé en GPa.
[0028] Selon un mode de réalisation, la plaque métallique est réalisée en acier inoxydable ou en acier à haut manganèse.
[0029] Ainsi, pour un acier inoxydable ayant un module d’Young de 200 GPa, l'épaisseur minimale de la plaque est donc environ égale à 0,58 mm. Pour un acier à haut manganèse ayant un module d’Young de 170 GPa, l'épaisseur minimale de ta plaque est donc environ égale à 0,68 mm.
[0030] Selon un mode de réalisation, les plaques métalliques ont une épaisseur comprise entre 0,5 mm et 2 mm.
[0031] Selon un mode de réalisation, les plaques métalliques sont réalisées dans un matériau métallique dont le module d’Young est compris entre 130 GPa et 230 GPa. [0032] Selon un mode de réalisation, les plaques métalliques sont réalisées dans un matériau métallique dont la limite élastique est supérieure à 170 MPa à température ambiante.
[0033] Selon un mode de réalisation, les plaques métalliques sont réalisées dans un matériau métallique dont la limite élastique est comprise entre 170 MPa et 500 MPa.
[0034] Selon un mode de réalisation, le nombre de reliefs par mètre linéaire de plaque métallique N relief est compris dans l'intervalle suivant :
Figure imgf000007_0001
avec a le coefficient de dilatation thermique de la plaque métallique en K-1, DT la différence de température entre la température ambiante et la température du fluide stocké dans la cuve en K, et h la hauteur du relief en mm.
[0035] Selon un mode de réalisation, la base présente une forme d'ellipse, par exemple un cercle, ou de polygone.
[0036] Selon un mode de réalisation, la base présente une forme d'ellipse et le ratio de la première dimension de la base sur hauteur du relief est inférieur ou égal à 1 ,4.
[0037] Selon un mode de réalisation, le ratio de la première dimension sur la deuxième dimension est inférieur ou égale à 1,4, de préférence compris entre 1 et 1 ,4.
[0038] Selon un mode de réalisation, la première dimension de la base est égale à la deuxième dimension de la base.
[0039] Selon un mode de réalisation, chaque relief présente une forme pyramidale ou de demi ellipsoïde, par exemple de demi-sphère ou de pyramide à base carrée.
[0040] Selon un mode de réalisation, chaque relief présente une forme s’évasant vers la base.
[0041] Selon un mode de réalisation, la projection orthogonale de l’au moins un sommet du relief dans le plan de la plaque est situé dans le périmètre de la base.
[0042] Selon un mode de réalisation, au moins 90%, de préférence la totalité, des zones de la plaque métallique faisant saillie de la portion plane sont des reliefs.
[0043] Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante de stockage de gaz liquéfié intégrée dans une structure porteuse, la cuve comprenant une pluralité de parois de cuve formant un espace interne de réception du gaz liquéfié, au moins une des parois de cuve comportant une barrière thermiquement isolante fixée à la structure porteuse et une membrane d’étanchéité précitée reposant sur la barrière thermiquement isolante et destinée à être en contact avec le gaz liquéfié dans la cuve. [0044] Selon un mode de réalisation, les reliefs font saillie de la portion plane en direction de l’espace interne de la cuve,
[0045] Selon un mode de réalisation, les reliefs font saillie de la portion plane en direction de la structure porteuse.
[0046] Selon un mode de réalisation, la barrière thermiquement isolante comprend une pluralité de panneaux isolants juxtaposés les uns aux autres.
[0047] Selon un mode de réalisation, la membrane d'étanchéité est une membrane d’étanchéité primaire, la barrière thermiquement isolante est une barrière thermiquement isolante primaire, et la paroi de cuve comporte dans une direction d’épaisseur depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire fixée à la structure porteuse, une membrane d’étanchéité secondaire reposant sur la barrière thermiquement isolante secondaire, la barrière thermiquement isolante primaire reposant sur la membrane d’étanchéité secondaire et la membrane d’étanchéité primaire reposant sur la barrière thermiquement isolante primaire.
[0048] Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire.
[0049] Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque, la double coque formant la structure porteuse de la cuve.
[0050] Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
[0051] Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Brève description des figures [0052] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
[0053] [Fig. 1] La figure 1 représente une vue de dessus schématique d'une portion d’une membrane d’étanchéité comprenant des reliefs selon un premier mode de réalisation.
[0054] [Fig. 2] La figure 2 représente une vue de coupe schématique selon la ligne ll-ll de la figure 1 , représentant l’un des reliefs de la membrane d'étanchéité.
[0055] [Fig. 3] La figure 3 représente une vue en perspective d’une portion d’une membrane d’étanchéité comprenant un relief selon un deuxième mode de réalisation.
[0056] [Fig. 4] La figure 4 représente une vue de coupe schématique selon la ligne IV-IV de la figure 3, représentant l’un des reliefs de la membrane d’étanchéité.
[0057] [Fig. 5] La figure 5 représente une vue de dessus schématique d’une portion d’une membrane d’étanchéité comprenant des reliefs selon un troisième mode de réalisation.
[0058] [Fig. 6] La figure 6 représente une vue schématique de face d’une paroi de cuve selon une première variante comprenant une membrane d’étanchéité selon le premier mode de réalisation et une barrière thermiquement isolante.
[0059] [Fig. 7] La figure 7 représente une vue schématique de face d'une paroi de cuve selon une deuxième variante comprenant une membrane d’étanchéité selon le premier mode de réalisation et une barrière thermiquement isolante.
[0060] [Fig. 8] La figure 8 représente une vue schématique de face d’une paroi de cuve selon une troisième variante comprenant une membrane d’étanchéité primaire selon le premier mode de réalisation, une barrière thermiquement isolante primaire, une membrane d’étanchéité secondaire et une barrière thermiquement isolante secondaire.
[0061] [Fig. 9] La figure 9 est une représentation schématique écorchée d’une cuve de navire méthanier comportant une membrane d’étanchéité et d'un terminal de chargement/déchargement de cette cuve
Description des modes de réalisation
[0062] Par convention, on appellera « sur » ou « au-dessus » ou « supérieur » une position située plus près de l’intérieur de la cuve et « sous » ou « en dessous » ou « inférieur » une position située plus près de la structure porteuse, quelle que soit l’orientation de la paroi de cuve par rapport au champ de gravité terrestre. [0063] Il va être décrit par la suite une membrane d'étanchéité 1 pour une cuve étanche de stockage de fluide.
[0064] Sur la figure 1 , on a représenté une membrane d'étanchéité 1 selon un premier mode de réalisation. La membrane d’étanchéité 1 comporte une pluralité de plaques métalliques 2 soudées bord à bord de manière étanche les unes aux autres. Les plaques métalliques 2 comportent une portion plane 3 définissant un plan de la plaque et une pluralité de reliefs 4 faisant saillie de la portion plane 3 dans une direction d'épaisseur perpendiculaire au plan de la plaque.
[0065] Les reliefs 4 sont espacés les uns des autres et répartis sur l’ensemble de la plaque métallique 2 de façon qu’il ne soit pas possible de tracer une ligne droite dans le plan de la plaque sans traverser un relief 4. En effet, en vue d’assurer la flexibilité de la plaque métallique 2 à la contraction/dilatation thermique, la membrane d’étanchéité 2 présente des reliefs dans toutes les directions du plan de la plaque. La portion plane 3 sépare ainsi les reliefs 4 les uns des autres. Chaque relief 4 comporte une base 5 et au moins un sommet 6. Les plaques métalliques 2 de la membrane d’étanchéité 1 ont une épaisseur 11 relativement faible par rapport aux autres dimensions des plaques métalliques 2 pour assurer la flexibilité de la membrane d’étanchéités à la contraction/dilatation thermique.
[0066] Dans le premier mode de réalisation représenté en figures 1 et 2, les reliefs 4 ont une base 5 circulaire et présente un unique sommet 6 de sorte à former des demi-sphères ou demi-ellipsoïdes. Les reliefs 4 sont ici régulièrement répartis sur la plaque métallique 2 mais pourrait être dans un autre mode de réalisation non représenté irrégulièrement répartis sur la plaque métallique 2
[0067] La figure 2 représente en coupe l’un des reliefs de la figure 1 de façon à représenter les différentes dimensions du relief 4. En effet, la base 5 comporte dans le plan de la plaque une première dimension 7 et une deuxième dimension 8 qui dans le cas du premier mode de réalisation sont égales. La première dimension 7 est égale au diamètre du plus petit cercle circonscrit autour de la base 5 tandis que la deuxième dimension 8 est égale au diamètre du plus grand cercle inscrit dans la base 5. De plus, la distance entre le sommet 6 et la base 5 dans la direction d’épaisseur de la plaque métallique 2 définit la hauteur 9 du relief 4.
[0068] Dans le mode de réalisation de la figure 2, chaque relief 4 est écarté d’un relief adjacent 4 d’une distance inférieure ou égale à une fois la première dimension 7 de la base 5. Le ratio de la deuxième dimension 8 de la base 5 sur la hauteur 9 du relief 4 est environ égal à 3,33. Ainsi le ratio de la première dimension 7 de la base 5 sur la hauteur 9 du relief 4 est environ égal à 0.3. [0069] Les figures 3 et 4 représentent un deuxième mode de réalisation des reliefs 4 de la membrane d’étanchéité 1. Dans ce mode de réalisation, la forme de la base 5 des reliefs 4 est différente au premier mode de réalisation. En effet, la base 5 est ici un quadrilatère ayant une plus grande dimension 7 formée par la diagonale du quadrilatère et une plus petite dimension 8 formée par le plus petit côté du quadrilatère. Le ratio entre la première dimension 7 de la base 5 sur la deuxième dimension 8 de la base 5 est ici égal à environ 1 ,4 tandis que le ratio entre la deuxième dimension 8 de la base 4 sur la hauteur 9 du relief 4est environ égal à 2,5. Ainsi, le ratio de la première dimension 7 de la base 5 sur la hauteur 9 du relief 4 est environ égal à 0,56.
[0070] Dans les deux premiers modes de réalisation, les plaques métalliques 2 comprennent des reliefs de forme et taille identique d’une plaque métallique à l’autre.
[0071] La figure 5 représente un troisième mode de réalisation des reliefs 4 de la membrane d’étanchéité 1 où contrairement aux modes précédents, la plaque métallique 2 comportent une première série de relief 22 et une deuxième série de relief 23 ayant des dimensions et des formes différentes. En effet, les reliefs 4 de la première série 22 reprennent la forme des reliefs du premier mode de réalisation des figures 1 et 2 tandis que les reliefs 4 de la deuxième série 23 reprennent la forme des reliefs 4 du deuxième mode de réalisation. Comme illustré, les séries sont alternées les unes avec les autres sur les dimensions de la plaque métallique 2.
[0072] Dans d'autres modes de réalisation non illustrés, les reliefs 4 peuvent posséder des formes et tailles différentes respectant les s décrits ci-dessus et la plaque métallique 2 peut également comprendre plus de deux séries de relief différentes.
[0073] La technique décrite ci-dessus pour réaliser une membrane d’étanchéité peut être utilisée dans différents types de réservoirs, par exemple pour constituer la membrane d’étanchéité primaire d’un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
[0074] Sur la figure 6, il est représenté la structure multïcouche d’une paroi de cuve selon une première variante pour une cuve étanche et thermiquement isolante de stockage 71 tel que par exemple de gaz liquéfié. Dans cette variante illustré, la paroi de cuve comporte successivement dans la direction d'épaisseur depuis l’extérieur vers l’intérieur de la cuve 71, une barrière thermiquement isolante 12 retenue à une structure porteuse 15, et une membrane d'étanchéité telle que décrite dans le premier mode de réalisation illustré en figures 1 et 2, reposant contre la barrière thermiquement isolante 12 et destinée à être en contact avec le fluide contenu dans la cuve. [0075] La structure porteuse 3 peut notamment être formée par la coque ou la double coque d’un navire. La structure porteuse 3 comporte une pluralité de parois définissant la forme générale de la cuve, habituellement une forme polyédrique.
[0076] La barrière thermiquement isolante 12 comporte une pluralité de panneaux isolants 16 qui sont ancrés sur la structure porteuse 15 au moyen de dispositifs d’ancrage non représentés. Les panneaux isolants 16 présentent une forme générale parallélépipédique et sont disposés selon des rangés parallèles.
[0077] La figure 7 représente la structure multicouche d’une paroi de cuve selon une deuxième variante. Cette variante ne diffère de la première variante que par la forme de la barrière thermiquement isolante 12. En effet, dans cette variante, les panneaux isolants 16 comportent sur leur surface supérieure des formes complémentaires 18 aux reliefs 4 de sorte à épouser au mieux la forme de la membrane d’étanchéité 1. En effet, dans le cas représenté, les reliefs 4 font saillie vers l’intérieur de la cuve et les formes complémentaires 18 viennent ainsi combler l’espace sous les reliefs 4. Dans un mode de réalisation non représenté, les reliefs 4 font saillie vers l’extérieur de la cuve et les formes complémentaires 18 sont ici des creux dans la barrière thermiquement isolante 12 pour recevoir les reliefs 4.
[0078] Sur la figure 8, on a représenté la structure multicouche d’une paroi de cuve selon une troisième variante. Chaque paroi de cuve comporte successivement, dans la direction d’épaisseur, depuis l’extérieur vers l’intérieur de la cuve 71, une barrière thermiquement isolante secondaire 14 retenue à une structure porteuse 15, une membrane d'étanchéité secondaire 13 reposant contre la barrière thermiquement isolante secondaire 12, une barrière thermiquement isolante primaire 12 reposant contre la membrane d'étanchéité secondaire 13 et une membrane d'étanchéité primaire 6 telle que décrite dans le premier mode de réalisation illustré en figures 1 et 2, reposant sur la barrière thermiquement isolante primaire 12 et destinée à être en contact avec le fluide contenu dans la cuve.
[0079] La barrière thermiquement isolante primaire 12 comporte une pluralité de panneaux isolants primaires 16 qui sont ancrés sur la structure porteuse 15 au moyen de dispositifs d’ancrage non représentés. La barrière thermiquement isolante secondaire 14 comporte une pluralité de panneaux isolants secondaires 17 qui sont ancrés sur la structure porteuse 15 au moyen de dispositifs d’ancrage non représentés Les panneaux isolants primaires 16 et secondaires 17 présentent une forme générale parallélépipédique et sont disposés selon des rangés parallèles.
[0080] Les panneaux isolants secondaires 17 et les panneaux isolants primaires 16 comportent une plaque de fond, une plaque de couvercle et éventuellement une plaque intermédiaire, par exemple réalisées en bois contreplaqué. Les panneaux isolants 16, 17 comportent également une ou plusieurs couches de mousse polymère isolante prises en sandwich entre la plaque de fond, la plaque de couvercle et l’éventuelle plaque intermédiaire et collées à celles-ci. La mousse polymère isolante peut notamment être une mousse à base de polyuréthanne, optionnellement renforcée par des fibres. Dans un autre mode de réalisation, tes panneaux isolants 16, 17 peuvent être uniquement constitués de mousse polymère isolante. Les panneaux isolants 16, 17 peuvent également être réalisés sous la forme de caisson remplis d'une garniture isolante.
[0081] La membrane d’étanchéité secondaire 13 peut être réalisée de la même manière que ta membrane d’étanchéité primaire 1. La membrane d’étanchéité secondaire 13 peut également être réalisée par une nappe continue de virures métalliques à bords relevés ou encore par des bandes de matériaux composites stratifiés collées les unes aux autres.
[0082] En référence à la figure 9, une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
[0083] De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
[0084] La figure 9 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
[0085] Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
[0086] Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
[0087] L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication.
[0088] Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

Revendications
[Revendication 1] Membrane d’étanchéité (1) pour cuve étanche de stockage de fluide, dans laquelle la membrane d’étanchéité (1) comporte au moins une plaque métallique
(2), ta plaque métallique (2) comportant une portion plane (3) définissant un plan de la plaque et une pluralité de reliefs (4) faisant saillie de la portion plane (3) dans une direction d’épaisseur perpendiculaire au plan de la plaque, les reliefs (4) étant espacés les uns des autres, la plaque métallique (2) comportant dans toutes les directions du plan au moins un relief (4), chaque relief (4) comportant une base (5) faisant la liaison entre le relief (4) et la portion plane (3), et comportant au moins un sommet (6), la base (5) comprenant dans le plan formé par la portion plane (3) une première dimension (7) égale au diamètre du plus petit cercle circonscrit autour de la base (5) et une deuxième dimension (8) égale au diamètre du plus grand cercle inscrit dans la base (5), et la distance entre le sommet (6) et la base (5) dans la direction d’épaisseur formant une hauteur (9) du relief, dans laquelle la hauteur (9) du relief (4) est inférieure à 20 mm, dans laquelle chaque relief (4) est écarté d’un relief (4) adjacent dans toutes les directions du plan par une distance inférieure ou égale à 2 fois la première dimension (7) de la base (5), et le ratio de la première dimension (7) de la base (5) sur hauteur (9) de chaque relief (4) est inférieur ou égal à 2
[Revendication 2] Membrane d’étanchéité (1) selon la revendication 1, dans laquelle le ratio de la deuxième dimension (8) de la base (5) sur la hauteur (9) du relief (4) est supérieur ou égal à 0,6.
[Revendication 3] Membrane d’étanchéité (1) selon la revendication 1 ou la revendication 2, dans laquelle les reliefs (4) sont réalisés par formage, de préférence emboutissage, ou bien par estampage, matriçage, ou encore magnétoformage.
[Revendication 4] Membrane d’étanchéité (1) selon l’une des revendications 1 à 3, dans laquelle l’épaisseur (11) de la plaque métallique (2) epiaque exprimée en mm au niveau de la portion plane (3) est supérieure ou égale à , avec E le module d’Young du
Figure imgf000015_0001
matériau constitutif de la plaque métallique (2) exprimé en GPa.
[Revendication 5] Membrane d’étanchéité (1) selon l’une des revendications 1 à 4, dans laquelle les plaques métalliques (2) ont une épaisseur (11) comprise entre 0,5 mm et 2 mm.
[Revendication 6] Membrane d’étanchéité (1) selon l’une des revendications 1 à 5, dans laquelle les plaques métalliques (2) sont réalisées dans un matériau métallique dont le module d’Young est compris entre 130 GPa et 230 GPa.
[Revendication 7] Membrane d'étanchéité (1) selon l’une des revendications 1 à 6, dans laquelle les plaques métalliques (2) sont réalisées dans un matériau métallique dont la limite élastique est supérieure à 170 MPa à température ambiante.
[Revendication 8] Membrane d’étanchéité (1) selon l’une des revendications 1 à 7, dans laquelle le nombre de reliefs (4) par mètre linéaire de plaque métallique N relief est compris dans l’intervalle suivant :
Figure imgf000016_0001
avec a le coefficient de dilatation thermique de la plaque métallique (2) en K'1, DT la différence de température entre la température ambiante et la température du fluide stocké dans la cuve en K, et h la hauteur (9) du relief (4) en mm.
[Revendication 9] Membrane d'étanchéité (1) selon l'une des revendications 1 à 8, dans laquelle la base (5) présente une forme d’ellipse ou de polygone.
[Revendication 10] Membrane d’étanchéité (1 ) selon l'une des revendications 1 à 8, dans laquelle la base (5) présente une forme d'ellipse et le ratio de la première dimension (7) de la base (5) sur hauteur (9) du relief (4) est inférieur ou égal à 1 ,4.
[Revendication 11] Membrane d’étanchéité (1) selon, l’une des revendications 1 à 10, dans laquelle le ratio de la première dimension sur la deuxième dimension est inférieur ou égale à 1,4.
[Revendication 12] Cuve étanche et thermiquement isolante (71) de stockage de gaz liquéfié intégrée dans une structure porteuse (15), la cuve comprenant une pluralité de parois de cuve formant un espace interne de réception du gaz liquéfié, au moins une des parois de cuve comportant une barrière thermiquement isolante (12) fixée à la structure porteuse (15) et une membrane d’étanchéité (1) selon l’une des revendications 1 à 11 reposant sur la barrière thermiquement isolante (12) et destinée à être en contact avec le gaz liquéfié dans la cuve.
[Revendication 13] Cuve selon la revendication 12, dans laquelle les reliefs (4) font saillie de la portion plane (3) en direction de l’espace interne de la cuve.
[Revendication 14] Cuve selon la revendication 12, dans laquelle les reliefs (4) font saillie de la portion plane (3) en direction de la structure porteuse (15).
[Revendication 15] Cuve selon l’une des revendications 12 à 14, dans laquelle la membrane d'étanchéité est une membrane d’étanchéité primaire (1), la barrière thermiquement isolante est une barrière thermiquement isolante primaire (12), et la paroi de cuve (1) comporte dans une direction d’épaisseur depuis l’extérieur vers l’intérieur de la cuve, une barrière thermiquement isolante secondaire (14) fixée à la structure porteuse (15), une membrane d’étanchéité secondaire (13) reposant sur la barrière thermiquement isolante secondaire (14), la barrière thermiquement isolante primaire (12) reposant sur la membrane d’étanchéité secondaire (13) et la membrane d’étanchéité primaire (1) reposant sur la barrière thermiquement isolante primaire (12).
[Revendication 16] Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71) selon l’une des revendications 12 à 15 disposée dans la double coque, la double coque formant la structure porteuse de la cuve (71).
[Revendication 17] Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 16, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
[Revendication 18] Procédé de chargement ou déchargement d’un navire (70) selon la revendication 16, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71).
PCT/EP2020/070598 2019-07-23 2020-07-21 Membrane d'etancheite pour cuve etanche de stockage de fluide WO2021013856A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022504162A JP2022542064A (ja) 2019-07-23 2020-07-21 密閉流体貯蔵タンクのための密閉メンブレン
KR1020227002295A KR20220036944A (ko) 2019-07-23 2020-07-21 밀봉된 유체 저장 탱크용 밀봉 멤브레인
CN202080053098.0A CN114144611B (zh) 2019-07-23 2020-07-21 用于密封式流体储存罐的密封膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1908349 2019-07-23
FR1908349A FR3099226B1 (fr) 2019-07-23 2019-07-23 Membrane d’étanchéité pour cuve étanche de stockage de fluide

Publications (2)

Publication Number Publication Date
WO2021013856A1 WO2021013856A1 (fr) 2021-01-28
WO2021013856A9 true WO2021013856A9 (fr) 2021-04-22

Family

ID=68581957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070598 WO2021013856A1 (fr) 2019-07-23 2020-07-21 Membrane d'etancheite pour cuve etanche de stockage de fluide

Country Status (5)

Country Link
JP (1) JP2022542064A (fr)
KR (1) KR20220036944A (fr)
CN (1) CN114144611B (fr)
FR (1) FR3099226B1 (fr)
WO (1) WO2021013856A1 (fr)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE619064A (fr) * 1961-06-20
FR1323237A (fr) 1961-06-20 1963-04-05 Conch Int Methane Ltd Tôle gaufrée
US3279973A (en) * 1963-05-20 1966-10-18 Arne Christian Plane expansible corrugations
BE795368A (fr) * 1972-02-17 1973-05-29 Appel Carl Panneau de facade et procede pour sa fabrication
US4044186A (en) * 1974-09-11 1977-08-23 Rockwell International Corporation Shear flexibility for structures
GB2231597A (en) * 1989-02-04 1990-11-21 Steelpress Metal cladding panel
FR2691520B1 (fr) 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
DE102004023533A1 (de) * 2004-05-13 2005-12-08 Bayerische Motoren Werke Ag Wärmeisolierter Behälter zur Speicherung von Kraftstoff
JP5454706B2 (ja) * 2011-07-20 2014-03-26 新日鐵住金株式会社 パネル
CA2852451A1 (fr) * 2014-05-23 2015-11-23 Westport Power Inc. Support de recipient de stockage cryogenique
FR3032258B1 (fr) * 2015-01-30 2017-07-28 Gaztransport Et Technigaz Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire
US10845002B2 (en) * 2016-02-02 2020-11-24 Ic Technology As Liquid natural gas storage tank design
FR3068762B1 (fr) * 2017-07-04 2019-08-09 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante
FR3072759B1 (fr) * 2017-10-20 2021-04-30 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante

Also Published As

Publication number Publication date
WO2021013856A1 (fr) 2021-01-28
CN114144611A (zh) 2022-03-04
FR3099226B1 (fr) 2023-03-24
CN114144611B (zh) 2024-06-14
KR20220036944A (ko) 2022-03-23
JP2022542064A (ja) 2022-09-29
FR3099226A1 (fr) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2019077253A1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
EP3114387B1 (fr) Cuve étanche et isolante comportant un élément de déflexion permettant l'écoulement de gaz au niveau d'un angle
EP3833902A1 (fr) Structure d'angle pour une cuve etanche et thermiquement isolante
FR3054872A1 (fr) Structure de paroi etanche
WO2019239048A1 (fr) Cuve etanche et thermiquement isolante
FR3072760B1 (fr) Cuve etanche et thermiquement isolante a plusieurs zones
FR3085199A1 (fr) Paroi de cuve etanche et thermiquement isolante
WO2020193665A1 (fr) Cuve étanche et thermiquement isolante
EP3596383B1 (fr) Cuve étanche et thermiquement isolante comportant un bouchon isolant de renfort
FR3094071A1 (fr) Cuve étanche et thermiquement isolante
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
EP4013989B1 (fr) Cuve étanche et thermiquement isolante
FR3082596A1 (fr) Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
EP3821167A1 (fr) Paroi de cuve comportant une membrane d'etancheite presentant une ondulation ayant une portion curviligne renforcee
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2021245091A1 (fr) Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
WO2021013856A9 (fr) Membrane d'etancheite pour cuve etanche de stockage de fluide
WO2020016509A1 (fr) Installation de stockage de fluide
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2020021208A1 (fr) Cuve etanche et thermiquement isolante
WO2023036769A1 (fr) Installation de stockage pour gaz liquéfié
FR3077115A1 (fr) Cuve etanche et thermiquement isolante.
WO2020058600A1 (fr) Installation de stockage pour gaz liquéfié
FR3118796A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20743693

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022504162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022101029

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 20743693

Country of ref document: EP

Kind code of ref document: A1