WO2020021208A1 - Cuve etanche et thermiquement isolante - Google Patents

Cuve etanche et thermiquement isolante Download PDF

Info

Publication number
WO2020021208A1
WO2020021208A1 PCT/FR2019/051847 FR2019051847W WO2020021208A1 WO 2020021208 A1 WO2020021208 A1 WO 2020021208A1 FR 2019051847 W FR2019051847 W FR 2019051847W WO 2020021208 A1 WO2020021208 A1 WO 2020021208A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
corrugation
tank
corrugations
reinforcing member
Prior art date
Application number
PCT/FR2019/051847
Other languages
English (en)
Inventor
Mohammed OULALITE
Pierre Charbonnier
Mohamed Sassi
Marc BOYEAU
Bruno Deletre
Raphaël PRUNIER
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN201980049866.2A priority Critical patent/CN112513515B/zh
Priority to RU2021101088A priority patent/RU2762476C1/ru
Priority to KR1020217005332A priority patent/KR102542637B1/ko
Priority to EP19761920.8A priority patent/EP3827195A1/fr
Priority to US17/263,419 priority patent/US11821587B2/en
Publication of WO2020021208A1 publication Critical patent/WO2020021208A1/fr
Priority to PH12021550183A priority patent/PH12021550183A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and / or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) exhibiting by for example a temperature between -50 ° C and 0 ° C, or for the transport of Liquefied Natural Gas (LNG) at around -162 ° C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the liquefied gas is LNG, namely a mixture with a high methane content stored at a temperature of about -162 ° C at atmospheric pressure.
  • Other liquefied gases can also be considered, in particular ethane, propane, butane or ethylene.
  • Liquefied gases can also be stored under pressure, for example at a relative pressure between 2 and 20 bar, and in particular at a relative pressure close to 2 bar.
  • the tank can be produced using various techniques, in particular in the form of an integrated membrane tank.
  • a sealed and thermally insulating tank for transporting cryogenic liquid, such as LNG, for example, is installed in a space formed by the internal hull of a double-hull ship.
  • a tank has a multilayer structure making it possible to ensure both the insulation and the tightness of the tank.
  • the tank thus comprises, from the outside of the tank towards the inside of the tank, a secondary insulating barrier, a secondary waterproof membrane, a barrier primary insulation and a primary waterproof membrane intended to be in contact with the cryogenic liquid contained in the tank.
  • This multilayer structure makes it possible to ensure that even in the event of degradation of the primary waterproof membrane, the tank retains, thanks to the secondary insulating barrier and the secondary waterproof membrane, sufficient sealing and insulation so that the cryogenic liquid does not damage the structure in which the tank is integrated, typically the double hull of the ship.
  • the primary insulation barrier mainly has a separation function between the secondary waterproof membrane and the primary waterproof membrane more than an insulation function.
  • the primary insulating barrier is for example made up of plywood plates having a limited thickness.
  • the primary waterproof membrane has undulations. Such undulations allow the primary waterproof membrane to deform under stresses, for example during temperature changes in the tank caused by the loading or unloading of cryogenic liquid in the tank or even in order to withstand the deformations of the structure. carrier in swell.
  • the primary insulating barrier having limited insulation characteristics, the secondary waterproof membrane and the primary waterproof membrane have close operating temperatures.
  • the secondary waterproof membrane is subject to constraints related to temperature changes in the tank similar to the stresses experienced by the primary waterproof membrane. Consequently, the secondary waterproof membrane also has undulations making it possible to absorb the deformations generated by the temperature changes in the tank or even in order to withstand the deformations of the load-bearing structure.
  • the plywood plates forming the primary insulating barrier have passages for accommodating these undulations of the waterproof membrane secondary.
  • the undulations of the secondary membrane and the undulations of the primary membrane are superimposed in order to accommodate, at least partially, the undulations of the secondary waterproof membrane in the undulations of the primary waterproof membrane.
  • An idea underlying the invention is to provide a sealed and thermally insulating tank with good resistance to stress characteristics.
  • One idea underlying the invention is to provide a waterproof and thermally insulating tank with a primary waterproof membrane reinforced.
  • An idea underlying the invention is to provide a waterproof and thermally insulating tank whose corrugations of the primary waterproof membrane are reinforced.
  • the invention provides a sealed and thermally insulating tank intended to be installed in a support structure, said tank comprising, from the outside of the tank towards the inside of the tank, a secondary insulation barrier intended to be anchored to the supporting structure, a secondary waterproofing membrane resting on the secondary insulation barrier, a primary insulation barrier resting on the secondary sealing membrane and a primary sealing membrane resting on the barrier primary insulation, the primary waterproofing membrane having primary corrugations projecting towards the interior of the tank, the secondary waterproofing membrane comprising secondary corrugations projecting towards the interior of the tank, the primary corrugations and the corrugations secondary being superimposed in a thickness direction,
  • the primary insulation barrier having passages, the secondary corrugations being housed in said passages, the dimension in the thickness direction of the primary insulation barrier being less than the dimension of the secondary corrugations taken in said thickness direction of so that the secondary corrugations pass through the passages and are partially housed in the primary corrugations, the tank further comprising a primary reinforcing member interposed in the thickness direction between a secondary corrugation and a primary corrugation superimposed so as to reinforce said primary corrugation.
  • the primary corrugations are reinforced by the primary reinforcing member, thereby increasing the resistance of the primary waterproof membrane to pressure forces.
  • such a sealed and thermally insulating tank may include one or more of the following characteristics.
  • the primary and secondary sealing membranes each have flat portions located between the corrugations and rest respectively on the primary insulation barrier and the secondary insulation barrier.
  • the primary reinforcing member has a concave support surface whose concavity is turned towards the secondary corrugation, said support surface conforming to an internal face of the secondary corrugation situated opposite screw.
  • the support surface has a radius of curvature identical to or close to the radius of curvature of the internal face of the secondary corrugation.
  • the radius of curvature of the support surface is such that the support surface partially covers, for example at least 50%, the internal surface of the secondary corrugation.
  • the bearing surface covers in particular the portion of the secondary corrugation which projects into the primary corrugation.
  • the support surface is supported on a vertex of the secondary corrugation.
  • a clearance separates the primary reinforcing member and a base from the secondary corrugation, said base of the secondary corrugation being joined to plane portions of the secondary waterproof membrane.
  • the radius of curvature of the support surface is identical to the radius of curvature of the internal surface of the secondary corrugation so that the support surface completely covers the internal face of the secondary corrugation.
  • the primary reinforcing member cooperates stably and reliably with the secondary corrugation in order to provide effective reinforcement of the primary corrugation.
  • the primary reinforcing member has a convex reinforcing surface whose convexity is turned towards the primary corrugation and having a radius of curvature matching the radius of curvature of an external face of the primary corrugation.
  • a clearance separates the reinforcement surface from the external face of the primary corrugation at room temperature.
  • the radius of curvature of the reinforcement surface is identical to the radius of curvature of the external face of the primary corrugation on a portion of said external face in line with a vertex of the primary corrugation.
  • said portion of the external face of the primary corrugation is delimited on either side of the top of the primary corrugation by inflection points of said external face.
  • the primary reinforcement member provides uniform, reliable and effective reinforcement of the primary corrugation.
  • the primary corrugation and the secondary corrugation are superimposed in the direction of thickness so that a vertex of the secondary corrugation is arranged in line with a vertex of the primary corrugation.
  • the thickness of the primary reinforcing member decreases towards the lateral ends of said primary reinforcing member
  • the reinforcing surface and the bearing surface are contiguous at said lateral ends of the primary reinforcing member.
  • the ends of the reinforcement surface and of the bearing surface are connected by a junction surface of the primary reinforcement member.
  • the primary reinforcing member is hollow.
  • the hollow primary reinforcing member comprises interior reinforcing webs.
  • Such a primary reinforcing member has a significant structural resistance allowing reliable and effective reinforcement of the primary corrugation.
  • a hollow reinforcing member allows the circulation of gas between the primary corrugation and the secondary corrugation, for example an inert gas such as nitrogen.
  • the reinforcing webs develop perpendicular to the internal face of the secondary corrugation. According to one embodiment, the reinforcing webs develop perpendicular to the external face of the primary corrugation.
  • the tank further comprises a holding device arranged to exert on the primary reinforcement member a support in the direction of the secondary corrugation so as to maintain said primary reinforcement member in abutment against said secondary corrugation.
  • the holding device comprises a flexible member anchored on the primary insulation barrier and linked to the primary reinforcing member so as to exert the pressing force towards the secondary ripple on said member primary reinforcement.
  • the holding device comprises a flexible strip having a first end anchored on the primary insulation barrier on one side of the primary reinforcement member, a second end anchored on the primary insulation barrier of the 'other side of the primary reinforcing member, and a central portion interposed between the primary reinforcing member and the primary corrugation.
  • the flexible strip is anchored to the primary insulation barrier by fasteners, for example staples, screws, nails or the like.
  • the flexible member is elastic.
  • the holding device comprises an elastic blade.
  • the ends of the elastic strip form legs resiliently held against the primary insulation barrier on either side of the secondary ripple.
  • the elastic blade is anchored to the primary insulation barrier by friction.
  • the primary reinforcing member comprises a pair of legs projecting laterally from the ends of the primary reinforcing member, said legs being housed in respective countersinks of the primary insulation barrier so as to block the 'primary reinforcement member moving in the thickness direction of the tank.
  • the primary reinforcing member is held in position by the primary insulation barrier.
  • the reinforcing member is stable and reinforces the primary corrugation reliably.
  • the primary insulation barrier comprises a plurality of panels interposed between flat portions of the primary waterproof membrane and of the secondary waterproof membrane.
  • these panels are made of wood, for example plywood.
  • the counterbores are produced on an external face of the primary insulation barrier resting against the secondary sealing membrane so that the legs of the primary reinforcing member are interposed, in the thickness direction , between the primary insulation barrier and the secondary waterproofing membrane.
  • the tank also comprises a secondary reinforcement member inserted in the thickness direction of the tank between a secondary corrugation and the secondary insulation barrier so as to reinforce said secondary corrugation.
  • the secondary reinforcing member has an external shape matching the internal shape of a portion of the secondary corrugation which projects into the primary corrugation.
  • the secondary reinforcement member reinforces the projecting portion of the secondary corrugation in a complete and uniform manner.
  • the secondary reinforcing member is hollow so as to allow a circulation of gas, for example inert gas, under the secondary corrugation.
  • the secondary reinforcement member includes internal webs, such internal webs structurally reinforcing said secondary reinforcement body.
  • the secondary ripple is also reinforced.
  • the secondary corrugation thus reinforced serves to support the primary reinforcement member so that the primary reinforcement member provides better reinforcement of the primary corrugation.
  • Such a tank can be part of a terrestrial storage installation, for example to store LNG or be installed in a floating structure, coastal or deep water, in particular an LNG tanker, a floating storage and regasification unit (FSRU) , a floating remote production and storage unit (FPSO) and others.
  • FSRU floating storage and regasification unit
  • FPSO floating remote production and storage unit
  • Such a tank can also serve as a fuel tank in any type of ship.
  • a vessel for transporting a cold liquid product comprises a double hull and the above-mentioned tank placed in the double hull.
  • the invention also provides a method of loading or unloading such a ship, in which a cold liquid product is conveyed through isolated pipes from or to a floating or land storage installation to or from the vessel of the ship.
  • the invention also provides a transfer system for a cold liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the ship to a floating or terrestrial storage installation and a pump to drive a flow of cold liquid product through the isolated pipes from or to the floating or terrestrial storage installation to or from the vessel.
  • Certain aspects of the invention start from the idea of reinforcing the primary corrugations of a sealed and thermally insulating tank in which the corrugations of the primary waterproof membrane and the corrugations of the secondary waterproof membrane are superimposed. Certain aspects of the invention start from the idea of reinforcing a primary corrugation whose internal space is at least partially occupied by a secondary corrugation. Certain aspects of the invention start from the idea of reinforcing a primary undulation opposite a curved surface formed by a secondary undulation.
  • Figure 1 is a partial sectional view of a sealed and thermally insulating tank
  • Figure 2 is a detail sectional view of a sealed and thermally insulating tank as illustrated in Figure 1 further comprising a primary reinforcing member according to a first embodiment
  • Figure 3 is a detail sectional view of a sealed and thermally insulating tank as illustrated in Figure 1 further comprising a primary reinforcing member according to a first variant of the first embodiment;
  • Figure 4 is a detailed sectional view of a sealed and thermally insulating tank as illustrated in Figure 1 comprising besides a primary reinforcement member according to a second variant of the first embodiment;
  • Figure 5 is a detailed sectional view of a sealed and thermally insulating tank as illustrated in Figure 1 further comprising a primary reinforcing member according to a second embodiment
  • Figure 6 is a schematic cutaway view of an LNG tank and a loading / unloading terminal of this tank.
  • the gas may in particular be a liquefied natural gas (LNG), that is to say a gaseous mixture mainly comprising methane as well as one or more other hydrocarbons, such as ethane, propane, n-butane, i-butane, n-pentane i-pentane, neopentane, and nitrogen in small proportion.
  • LNG liquefied natural gas
  • the gas can also be ethane or a liquefied petroleum gas (LPG), that is to say a mixture of hydrocarbons resulting from the refining of petroleum comprising essentially propane and butane.
  • Such a sealed and thermally insulating tank is integrated into a support structure 1 such as, for example, the double hull of an LNG transport vessel.
  • This support structure 1 defines a plurality of support walls jointly delimiting an internal space of the double shell intended to receive the sealed and thermally insulating tank.
  • the sealed and thermally insulating tank comprises a plurality of tank walls each carried by a respective support wall of the support structure 1.
  • Each tank wall has a multilayer structure comprising, from the corresponding support wall to the interior of the tank , a secondary thermally insulating barrier 2, a secondary waterproof membrane 3, a primary thermally insulating barrier 4 and a primary waterproof membrane 5 delimiting the interior of the tank and intended to be at contact of the liquid contained in the tank.
  • FIG. 1 partially illustrates a sealed and thermally insulating tank wall according to this multilayer structure.
  • the secondary thermally insulating barrier 2 comprises an insulating lining 6 sandwiched between a bottom plate 7 and a cover plate 8.
  • the insulating lining 6 is for example a polyurethane foam reinforced by fibers or not reinforced.
  • the bottom plate 7 and the cover plate 8 are rigid plates, for example plywood plates.
  • the secondary thermally insulating barrier 2 can be produced in many ways, for example by means of insulating panels of parallelepipedal shape juxtaposed in a regular pattern on a corresponding bearing wall of the supporting structure 1. These insulating panels are anchored on the supporting structure 1 to by means of anchoring members (not illustrated). Beads of mastic 9 are interposed between the bottom plate 7 and the support structure 1 in order to make up for the flatness defects of the support structure 1. The secondary thermally insulating barrier 2 thus forms a flat support surface on which the secondary waterproof membrane 3 rests.
  • the secondary waterproof membrane 3 comprises a plurality of corrugated metal plates. These metal plates are welded together to form the secondary waterproof membrane 3.
  • This secondary waterproof membrane 3 can be anchored on the supporting structure in many ways.
  • the secondary waterproof membrane 3 can be anchored on the supporting structure indirectly by being anchored on the secondary thermally insulating barrier 2 or directly by being anchored on anchoring members (not shown) passing through the secondary thermally insulating barrier 2.
  • the secondary waterproof membrane 3 has corrugations 10, hereinafter secondary corrugations 10, projecting towards the inside of the tank. These secondary corrugations 10 make it possible to absorb the deformations of the secondary waterproof membrane 3, for example linked to temperature changes in the tank, or to the deformation of the ship's beam.
  • the secondary waterproof membrane 3 comprises a first series of secondary undulations 10 parallel to each other and developing parallel to a first direction, for example a longitudinal direction of the ship.
  • the secondary waterproof membrane 3 has a second series of secondary undulations 10 parallel to each other and developing parallel to a second direction, for example a transverse direction of the ship.
  • the secondary waterproof membrane 3 has flat portions 1 1, hereinafter secondary flat portions 1 1, interposed between adjacent secondary corrugations 10.
  • the primary thermally insulating barrier 4 has a reduced thickness compared to the secondary thermally insulating barrier 2.
  • the primary thermally insulating barrier 4 comprises a plurality of rigid plates 12 resting on the secondary waterproof membrane 3. More particularly, as illustrated in FIG. 1 , the rigid plates 12 of the primary thermally insulating barrier 4 rest on the flat portions 1 1 of the secondary waterproof membrane 3.
  • the primary thermally insulating barrier 4 comprises a plurality of passages 13 in which the secondary corrugations 10 are housed. These passages 13 are for example delimited by flanks 32 of the rigid plates 12 situated on either side of the secondary corrugations 10.
  • the rigid plates 12 have a thickness, taken along the thickness direction of the corresponding vessel wall, less than the height of the secondary corrugations 10, taken along said thickness direction.
  • the secondary corrugations 10 pass through the passages 13 of the primary thermally insulating barrier 4 and protrude towards the inside of the tank beyond the primary thermally insulating barrier 4.
  • the thickness of the rigid plates 12 is between 9 and 36 mm, preferably between 12 and 24 mm.
  • the rigid plates 12 of the primary thermally insulating barrier 4 form a primary flat support surface on which the primary waterproof membrane 5 rests.
  • the primary waterproof membrane 5 comprises a plurality of connected corrugated metal plates between them in a sealed manner, for example by welding.
  • this primary waterproof membrane 5 can be anchored to the support structure 1 indirectly, by being anchored to the primary thermally insulating barrier 4, or directly, by being anchored to the support structure via an anchoring member, said anchoring member possibly being common to the anchoring of the secondary waterproof membrane 3 and of the primary waterproof membrane 5.
  • the primary waterproof membrane 5 has corrugations 14, hereinafter primary corrugations 14, to absorb the deformations of the primary waterproof membrane 5.
  • the primary waterproof membrane 5 has a first series of corrugations primary 14 parallel to each other and a second series of primary corrugations 14 parallel to each other.
  • the primary watertight membrane also comprises plane portions 15, hereinafter primary plane portions 15, interposed between the primary corrugations 14.
  • Figure 1 illustrates a sectional view of the vessel wall, so that only secondary corrugations 10 of the first series of secondary corrugations 10 and primary corrugations 14 of the first series of primary corrugations are shown in section. However, the description below applies by analogy to all of the secondary corrugations 10 and primary corrugations 14 of the primary waterproof membranes 5 and secondary 3.
  • the primary corrugations 14 are arranged in line with the secondary corrugations 10.
  • the portions of the secondary corrugations 10 projecting from the primary thermally insulating barrier 4 are housed in the primary corrugations 14 with which they are superimposed.
  • the secondary corrugations 10 have an internal surface 16 facing an external surface 17 of the corresponding primary corrugations 14.
  • the primary and secondary corrugations 14 and 10 projecting towards the inside of the tank, the internal surface 16 of the secondary corrugation 10 has a convex shape and the external surface 17 of the primary corrugation 14 has a concave shape.
  • the secondary corrugations 10 are centered in the primary corrugations 14 so that a vertex 18 of the secondary corrugations 10 is located to the right of a vertex 19 of the primary corrugations 14.
  • the primary corrugations 14 and the secondary corrugations 10 are symmetrical by relative to a plane passing through the vertices 18 and 19 and developing parallel to the longitudinal direction of said undulations 10, 14.
  • the metal plates forming the primary 5 and secondary 3 waterproof membranes can in particular be made of stainless steel, aluminum, Invar®: that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10 6 and 2.10 6 K 1 , or in an iron alloy with a high manganese content, the coefficient of expansion of which is typically of the order of 7.10 6 K 1 .
  • Invar® that is to say an alloy of iron and nickel whose coefficient of expansion is typically between 1, 2.10 6 and 2.10 6 K 1 , or in an iron alloy with a high manganese content, the coefficient of expansion of which is typically of the order of 7.10 6 K 1 .
  • other metals or alloys are also possible.
  • the metal plates can have a thickness of between 1 mm and 1.6 mm. Other thicknesses are also possible, knowing that thickening of the metal sheet leads to an increase in its cost and generally increases the rigidity of the corrugations 10, 14.
  • the waterproof membranes, of the metal plates forming the said waterproof membranes, of the anchoring of the thermally insulating barriers or of the waterproof membranes are described in the document US2017 / 0159888 or WO2016021948.
  • the metal plates assembled to form the waterproof membranes 3, 5 can be shaped by stamping or folding.
  • the corrugations 10, 14 allow the waterproof membranes 3, 5 to be flexible in order to be able to deform under the effect of the thermal and mechanical stresses generated by the LNG in the tank. Indeed, the loading of a cryogenic fluid such as LNG into the tank results in a significant temperature change generating significant thermal contraction stresses in the primary waterproof membrane 5. These thermal stresses are also present at the secondary waterproof membrane 3, the primary thermal insulation barrier 4 having a thickness which does not make it possible to attenuate these thermal stresses.
  • the movements of liquid in the tank in particular in the case of a ship sailing at sea, can generate significant stresses on the primary waterproof membrane 5, in particular at the level of the primary corrugations 14 which protrude from the inside of the tank.
  • Another factor of deformation of membranes watertight 3, 5 is the elongation of the beam of a ship in response to the movements of the ship on the swell.
  • FIG. 2 illustrates a portion of a sealed and thermally insulating tank as described above, further comprising a primary reinforcement member 20 according to a first embodiment.
  • a primary reinforcement member 20 makes it possible to reinforce the primary waterproof membrane 5, and in particular the primary corrugations 14, with regard to the different stresses undergone by said primary waterproof membrane 5.
  • This FIG. 2 illustrates the tank wall and the primary reinforcement 20 at a single primary corrugation 14 and at a single secondary corrugation 10, the description below being applicable for one, several or all of the primary corrugations 14 and secondary 10 of the tank.
  • the primary reinforcing member 20 is interposed between the primary waterproof membrane 5 and the secondary waterproof membrane 3. More particularly, the primary corrugation 14 and the secondary corrugation 10 being superimposed, the primary reinforcement 20 is interposed between the internal face 16 of the secondary corrugation 10 and the external face 17 of the primary corrugation 14.
  • the primary reinforcement member 20 has a bearing surface 21 and a reinforcement surface 22.
  • the primary reinforcement member 20 is symmetrical relative to the plane passing through the vertices 18 , 19 of the corrugations 10, 14 and developing parallel to the longitudinal direction of the corrugations 10, 14.
  • the support surfaces 21 and reinforcement 22 are symmetrical with respect to said plane.
  • the bearing surface 21 faces the internal face 16 of the secondary corrugation 10.
  • This bearing surface 21 has a concave shape, the concavity of which faces the internal face 16 of the secondary corrugation 10.
  • the bearing surface 21 has a shape complementary to the shape of the internal face 16 of the secondary corrugation 10.
  • the support surface 21 covers with contact the internal face 16 of the secondary corrugation 10 on at least 50% of said internal face 16.
  • the radius of curvature of the support surface 21 is close to the radius of curvature of the internal face 16 of the secondary corrugation 10.
  • the surface support 21 has a central portion comprising the middle of said support surface 21.
  • This central portion of the support surface 21 has a radius of curvature identical to the radius of curvature of a central portion of the internal face 16 of the secondary corrugation 10.
  • the central portion of the support surface 21 covers and is in contact with the central portion of the internal face 16 of the secondary corrugation 10.
  • the central portion of the internal face 16 of the secondary corrugation 10 comprises the apex 18 of the secondary corrugation 10 and develops on either side of said apex 18 symmetrically with respect to the plane of symmetry of the secondary corrugation 10.
  • the central portion of the bearing surface 21 is symmetrical relative to the plane of symmetry of the secondary corrugation 10.
  • the central portion of the internal face 16 of the secondary corrugation 10 is delimited on either side of the vertex 18 by the inflection points formed by said internal face 16 of the secondary corrugation 10.
  • the bearing surface 21 covers the internal face 16 of the secondary corrugation 10 from a first point of inflection situated on one side of the apex 18 of the secondary corrugation 10 up to the point d inflection located on the other side of the secondary ripple 10 relative to said vertex 18.
  • the cooperation between the bearing surface 21 and the internal face 16 of the secondary corrugation 10 makes it possible to maintain in position the primary reinforcing member 20 on the secondary corrugation 10 facing the external face 17 of the primary corrugation 14.
  • this cooperation makes it possible to offer the primary reinforcing member 20 support so that said primary reinforcing member 20 can reinforce the primary corrugation 14, as explained below.
  • the reinforcement surface 22 faces the external face 17 of the primary corrugation 14.
  • the reinforcement surface 22 has a shape complementary to the shape of the external face 17 of the primary corrugation 14.
  • the reinforcement surface 22 has a convexity facing the external face 17 of the primary corrugation 14.
  • the reinforcement surface 22 has a central portion whose radius of curvature is identical to the radius of curvature of the central portion of the external face 17 of the primary welding 14. Said central portions are symmetrical with respect to the plane of symmetry of the primary corrugation 14.
  • the central portion of the external face 17 has a point on said external face 17 located at the right of the apex 19 of the primary corrugation 14 and is delimited, on either side of said vertex 19, by the points of inflection of the external face 17 of the primary corrugation 14.
  • a clearance separating the reinforcement surface 22 and the external face 17 of the primary corrugation 14 can be provided. Such a clearance makes it possible to accommodate the assembly and mounting tolerances of the primary waterproof membrane 5.
  • the thickness of the primary reinforcing member 20 at one location of said primary reinforcing member 20 is defined as the minimum distance separating the support surface 21 and the reinforcing surface 22 at said location.
  • the primary reinforcing member 20 has a maximum thickness in the middle, that is to say at its plane of symmetry.
  • the thickness of the primary reinforcement member 20 decreases from the middle of the primary reinforcement member 20 towards its ends 23.
  • the ends 23 have a flat surface 24 connecting the reinforcement surface 22 and the bearing surface 21
  • the flat surface 24 is distant, in the thickness direction of the tank wall, from the flat portions 11 of the secondary waterproof membrane 3.
  • a base of the secondary corrugation 10 is ie the portions of the secondary corrugation 10 located on either side of the central portion of said secondary corrugation 10, are not covered by the primary reinforcing member 20.
  • the absence of covering of the base of the secondary corrugation 10 by the primary reinforcing member 20 allows said base of the secondary corrugation 10 to deform in response to stresses such as a tensile force linked to the thermal contraction or deformation of the ship's beam.
  • the secondary corrugation can deform to absorb the deformations of the secondary sealing membrane 3 without this deformation being hindered by the primary reinforcing member 20.
  • this deformation is possible due to the difference in radius of curvature between the bearing surface 21 and the internal face 16 of the secondary corrugation 10, a clearance separating the base of the secondary corrugation 10 and the bearing surface 21 to allow unimpeded deformation of the secondary corrugation 10
  • Such a clearance separating the support surface 21 and the internal face 16 of the secondary corrugation 10 is dimensioned as a function of several parameters.
  • This clearance is dimensioned as a function of the manufacturing and mounting tolerances of the primary reinforcement member 20 and of the secondary corrugation 10.
  • This clearance is also dimensioned as a function of the behavior in thermal contraction of the primary reinforcement member 20 as well as the deformation behavior of the secondary corrugation 10.
  • the deformation behavior of the secondary corrugation 10 is determined as a function of the behavior in thermal contraction of the secondary corrugation 10 and of the behavior of said secondary corrugation 10 under the effect of stresses that may occur in the tank.
  • this game is preferably sized to meet the following equation:
  • CT renf represents the variation in size of the primary reinforcement member 20 under the effect of thermal contraction , for example between a state of the secondary ripple 10 in a tank at room temperature and a state of the secondary ripple 10 when the tank is filled with LNG
  • Ouv on dsec represents the variation in size of the secondary ripple 10 resulting from thermal contraction and stresses in the tank.
  • the primary reinforcing member 20 is full.
  • the reinforcement surface 22 of the primary reinforcement member 20 supports the primary corrugation 14 and thus limits its deformation as well as the degradations that may result from said deformation.
  • a secondary reinforcement member 25 is housed under the secondary corrugation 10.
  • This secondary wave reinforcement 25 has a flat outer wall 26 resting on the secondary thermally insulating barrier 2.
  • This secondary reinforcement member 25 also has an envelope
  • This envelope 27 developing above the external wall 26.
  • This envelope 27 follows the shape of an external face 28 of the secondary corrugation 10.
  • the external face 28 of the secondary corrugation 10 is in contact with the reinforcing member secondary 25. Similarly to its cooperation with the primary reinforcing member 20, the external face
  • the secondary reinforcement member 25 is hollow. Thus, it allows the circulation of gas in the secondary thermally insulating barrier 2, such as for example an inert gas such as nitrogen. Furthermore, the secondary reinforcement member 25 has internal webs 29 making it possible to reinforce said secondary reinforcement member 25.
  • the primary reinforcing member 20 is supported by the cooperation between the bearing surface 21 and the secondary corrugation 10.
  • the internal face 16 of the secondary corrugation 10 reinforced by the secondary reinforcement member 25 forms a solid and reliable support surface for the primary reinforcement member 20, allowing said primary reinforcement member 20 to reinforce the primary corrugation 14 reliably.
  • FIG. 3 illustrates a first alternative embodiment of the primary reinforcing member 20. Certain elements illustrated in FIG. 3 are voluntarily represented with deviations, it being understood that the deviations are only present to allow better readability of FIG. 3 .
  • a holding member 30 cooperates with the primary reinforcing member 20 in order to keep it in position on the secondary corrugation 10.
  • the holding member 30 comprises a flexible strip 31.
  • the ends of this flexible strip 31 are anchored on the primary thermally insulating barrier 4 on either side of the secondary corrugation 10. More particularly, the ends of the flexible strip 31 are anchored on the sides 32 of the rigid plates 12 of the thermally insulating barrier primary 4, said sides 32 delimiting the passages 13 in which the secondary corrugations 10 are housed.
  • These ends of the flexible strip 31 can be anchored on the primary thermally insulating barrier 4 in numerous ways, for example by means of staples 45, screws, nails, or any other suitable means.
  • the flexible strip 31 is interposed between the external face 17 of the primary corrugation 14 and the reinforcing surface 22.
  • the flexible strip 31 covers the reinforcing surface 22 of the primary reinforcing member 20.
  • This flexible strip 31 is prestressed so as to exert a support on the primary reinforcing member 20 in the direction of the secondary corrugation 10.
  • the complementarity of shape between the bearing surface 21 and the internal face 16 of the secondary corrugation 10 ensures correct positioning of the primary reinforcing member 20 on the secondary corrugation 10 under the effect of this support exerted by the flexible strip 31.
  • Such a flexible strip 31 can be made of many materials.
  • this flexible band 31 is made of fabric, for example textile of the cotton type, from fibers of mineral fibers, for example glass fiber, or synthetic fibers (PA, PE, PEI, ).
  • Such a flexible strip 31 of fabric is put under tension during the anchoring of its ends on the primary thermally insulating barrier 4, thus allowing the support of the primary reinforcing member 20 on the secondary corrugation 10.
  • the flexible strip 31 is made of elastic material such as for example rubber or any other material.
  • FIG. 4 illustrates a second variant embodiment of the first embodiment of the primary reinforcement member 20.
  • This second variant differs from the first variant illustrated in FIG. 3 in that the flexible strip 31 is a metal strip 33 the ends of which form elastic tabs 34.
  • the metal strip 33 comprises a central portion 35 matching the shape of the reinforcement surface 22 of the primary reinforcement member 20.
  • the elastic tabs 34 project laterally from the ends of the central portion 35 in the direction of the sides 32 of the rigid plates 12 of the primary thermally insulating barrier 4.
  • These elastic tabs 34 have a sectional shape of "S" so as to comprise a junction portion 36 with the central portion 35, said junction portion 36 extending the end of the corresponding central portion , a separation portion 37 developing from the junction portion 36 in the direction of the sides 32 and a support portion 38 developing from the separation portion 37 and arranged to bear elastically against the sides 32.
  • These elastic tabs 34 are arranged so as to be in abutment on the sides 32 and keep the metal strip 33 in position in abutment on the secondary corrugation 10.
  • the metal strip 33 maintains in position the primary reinforcing member 20 on the internal face 16 of the secondary corrugation 10 by pressing and friction of the elastic tabs 34 on the sides 32 delimiting the passage 13.
  • the elastic tabs 34 are arranged to be supported in a counterbore of the primary thermally insulating barrier 4.
  • a counterbore can be produced on an internal face of the rigid plate 12, said internal face of the rigid plate 12 being turned towards the primary waterproof membrane 5.
  • This countersinking can also be carried out on an external face of the rigid plate 12, said external face being turned towards the secondary waterproof membrane 3.
  • FIG. 5 illustrates a second embodiment of the primary reinforcement member 20.
  • This second embodiment of the primary reinforcement member 20 differs from the first embodiment illustrated above with reference to FIGS. 2 to 4 in that that the ends 23 of the primary reinforcing member 20 form flat lugs 39.
  • the bearing surface 21 of the primary reinforcing member 20 conforms to the whole of the internal face 16 of the secondary corrugation 12 so that the planar tabs 39 partially cover a planar portion 11 of the waterproof membrane secondary 3.
  • the primary reinforcing member 20 has a surface support 21 whose radius of curvature is identical to the radius of curvature of the internal face 16 of the secondary corrugation 10 and develops on either side of the secondary corrugation 10 by resting on the secondary waterproof membrane 3 of on either side of the secondary ripple 10.
  • the primary thermally insulating barrier 4 comprises a counterbore 40.
  • This counterbore 40 is formed on a lower face 41 of the primary thermally insulating barrier 4 so as to provide a space between said primary thermally insulating barrier 4 and the secondary waterproof membrane 3.
  • the flat legs 39 of the primary reinforcing member 20 are housed in this counterbore 41 so that said legs 39 are interposed between the primary thermally insulating barrier 4 and the secondary waterproof membrane 3.
  • the body of primary reinforcement 20 is held in position by abutment on the bottom of the counterbore 40 of the primary thermally insulating barrier 4 and in abutment on a flat portion 1 1 of the secondary waterproof membrane 3, and therefore indirectly in abutment on the secondary thermally insulating barrier 2.
  • the counterbore 40 is for example produced on the external face of these rigid plates 12, that is to say on the face resting on the portions planes 1 1 of the secondary waterproof membrane 3.
  • This indirect support of the primary reinforcement member 20 on the secondary thermally insulating barrier 2 allows the primary reinforcement member 20 to be held in position.
  • the support of the primary reinforcing member 20 on the secondary waterproof membrane 3 and on the secondary thermally insulating barrier 2 allows the primary reinforcing member 20 to fulfill the function of strengthening the primary corrugation 14 without stressing the secondary corrugation 10.
  • the support of the primary reinforcing member 20 in this second embodiment is provided by the lugs 39 resting on the flat portion 1 1 of the secondary waterproof membrane 3 and not by the support of the bearing surface 21 on the secondary corrugation 10 as in the first embodiment.
  • the secondary corrugation 10 is less or even not requested to allow the primary reinforcing member 20 to fulfill its function of strengthening the primary corrugation 14. Consequently, in this second embodiment, it can it may be possible not to use a secondary reinforcement member 25, as illustrated in FIG. 5.
  • the primary reinforcing member 20 is hollow.
  • An internal wall 42 forming the reinforcement surface 22 and an external wall 43 forming the support surface 21, these walls 42 and 43 joining at the ends of the primary reinforcement member 20 to form the flat legs 39.
  • Internal webs 44 connect the internal wall 42 and the external wall 43 in order to reinforce this hollow primary reinforcement member 20. These internal webs 44 develop for example substantially perpendicular to the external wall 43.
  • the complementarity between the internal face 16 of the secondary corrugation 10 and the bearing face 21 of the primary reinforcement member 20 ensures lateral support of the primary reinforcement member 20. Typically, this complementarity allows center the primary reinforcing member 20 on the secondary corrugation 10.
  • the primary reinforcing member 20 consists of two primary half-reinforcements separated at the plane passing through the vertices 18, 19 of the primary corrugations 14 and secondary 10 to allow unimpeded deformation of the secondary corrugation 10.
  • the half-reinforcements can be free at the vertices 18, 19 of the corrugations 10, 14 and locked in translation by means of the tab 39 housed in the counterbore 40.
  • the two half-reinforcements can also be connected by an axial pivoting connection perpendicular to the section plane of FIG. 5.
  • the technique described above for making a sealed and thermally insulating tank can be used in different types of tanks, for example to form the primary sealing membrane of an LNG tank in a land installation or in a floating structure such as an LNG tanker or other.
  • a cutaway view of an LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary waterproof barrier intended to be in contact with the LNG contained in the tank, a secondary waterproof barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary waterproof barrier and the secondary waterproof barrier and between the secondary waterproof barrier and the double hull 72.
  • loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal for transferring a cargo of LNG from or to the tank 71.
  • FIG. 6 represents an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and a shore installation 77.
  • the loading and unloading station 75 is a fixed offshore installation comprising an arm mobile 74 and a tower 78 which supports the mobile arm 74.
  • the mobile arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the mobile arm 74 can be adjusted to suit all LNG tankers' sizes .
  • a connection pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the submarine pipe 76 to the loading or unloading station 75.
  • the submarine pipe 76 allows the transfer of liquefied gas between the loading or unloading station 75 and the shore installation 77 over a long distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during the loading and unloading operations.
  • pumps on board the vessel 70 are used and / or pumps fitted the installation on land 77 and / or pumps fitted to the loading and unloading station 75.

Abstract

Cuve étanche et thermiquement isolante comportant une barrière d'isolation secondaire (2), une membrane d'étanchéité secondaire ondulée (3), une barrière d'isolation primaire (4) et une membrane d'étanchéité primaire (5) ondulée, les ondulations primaires (14) et les ondulations secondaires (10) étant superposées selon une direction d'épaisseur, la dimension selon la direction d'épaisseur de la barrière d'isolation primaire (4) étant inférieure à la dimension des ondulations secondaires (10) prise selon ladite direction d'épaisseur de sorte que les ondulations secondaires (10) traversent des passages (13) de la barrière d'isolation primaire (4) et sont partiellement logées dans les ondulations primaires (14), La cuve comportant en outre un organe de renfort primaire (20) intercalé selon la direction d'épaisseur entre une ondulation secondaire (10) et une ondulation primaire (14) superposées de manière à renforcer ladite ondulation primaire (14).

Description

Cuve étanche et thermiquement isolante
Domaine technique
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
Dans un mode de réalisation, le gaz liquéfié est du GNL, à savoir un mélange à forte teneur en méthane stocké à une température d’environ -162°C à la pression atmosphérique. D’autres gaz liquéfiés peuvent aussi être envisagés, notamment l’éthane, le propane, le butane ou l’éthylène. Des gaz liquéfiés peuvent aussi être stockés sous pression, par exemple à une pression relative comprise entre 2 et 20 bar, et en particulier à une pression relative voisine de 2 bar. La cuve peut être réalisée selon différentes techniques, notamment sous la forme d’une cuve intégrée à membrane.
Arrière-plan technologique
Une cuve étanche et thermiquement isolante pour le transport de liquide cryogénique, comme par exemple du GNL, est par exemple installée dans un espace formé par la coque interne d’un navire à double coque. Une telle cuve présente une structure multicouche permettant d’assurer à la fois l’isolation et l’étanchéité de la cuve. La cuve comporte ainsi, de l’extérieur de la cuve vers l’intérieur de la cuve, une barrière isolante secondaire, une membrane étanche secondaire, une barrière isolante primaire et une membrane étanche primaire destinée à être au contact du liquide cryogénique contenu dans la cuve. Cette structure multicouche permet de s’assurer que même en cas de dégradation de la membrane étanche primaire, la cuve conserve grâce à la barrière isolante secondaire et la membrane étanche secondaire une étanchéité et une isolation suffisante pour que le liquide cryogénique n’endommage pas la structure dans laquelle la cuve est intégrée, typiquement la double-coque du navire.
Dans un système de cuve multi-couches tel que décrit dans le document US2017/0159888 A1 , seule la barrière isolante secondaire présente des caractéristiques isolantes suffisantes pour garantir l’isolation de la cuve. Dans une telle cuve, la barrière d’isolation primaire présente principalement une fonction d’écartement entre la membrane étanche secondaire et la membrane étanche primaire plus qu’une fonction d’isolation. Dans une telle cuve, la barrière isolante primaire est par exemple constituée de plaques de contreplaqué présentant une épaisseur limitée.
Par ailleurs, la membrane étanche primaire présente des ondulations. De telles ondulations permettent à la membrane étanche primaire de se déformer sous les contraintes, par exemple lors des changements de température dans la cuve engendrés par le chargement ou le déchargement de liquide cryogénique dans la cuve ou bien encore afin de supporter les déformations de la structure porteuse à la houle.
La barrière isolante primaire ayant des caractéristiques d’isolation limitée, la membrane étanche secondaire et la membrane étanche primaire présentent des températures de fonctionnement proches. Ainsi, même en l’absence de fuites dans la membrane étanche primaire, la membrane étanche secondaire est sujette à des contraintes liées aux changements de température dans la cuve analogues aux contraintes subies par la membrane étanche primaire. En conséquence, la membrane étanche secondaire présente également des ondulations permettant d’absorber les déformations engendrées par les changements de température dans la cuve ou bien encore afin de supporter les déformations de la structure porteuse à la houle.
Les plaques de contreplaqué formant la barrière isolante primaire présentent des passages permettant de loger ces ondulations de la membrane étanche secondaire. En outre, du fait de l’épaisseur limitée de la barrière isolante primaire, les ondulations de la membrane secondaire et les ondulations de la membrane primaire sont superposées afin de loger, au moins partiellement, les ondulations de la membrane étanche secondaire dans les ondulations de la membrane étanche primaire.
Résumé
Une idée à la base de l’invention est de fournir une cuve étanche et thermiquement isolante présentant de bonnes caractéristiques de résistance aux contraintes. Une idée à la base de l’invention est de fournir une cuve étanche et thermiquement isolante dont la membrane étanche primaire est renforcée. Une idée à la base de l’invention est de fournir une cuve étanche et thermiquement isolante dont les ondulations de la membrane étanche primaire sont renforcées.
Selon un mode de réalisation, l’invention fournit une cuve étanche et thermiquement isolante destinée à être installée dans une structure porteuse, ladite cuve comportant, depuis l’extérieur de la cuve vers l’intérieur de la cuve, une barrière d’isolation secondaire destinée à être ancrée sur la structure porteuse, une membrane d’étanchéité secondaire reposant sur la barrière d’isolation secondaire, une barrière d’isolation primaire reposant sur la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire reposant sur la barrière d’isolation primaire, la membrane d’étanchéité primaire comportant des ondulations primaires faisant saillie vers l’intérieur de la cuve, la membrane d’étanchéité secondaire comportant des ondulations secondaires faisant saillie vers l’intérieur de la cuve, les ondulations primaires et les ondulations secondaires étant superposées selon une direction d’épaisseur,
la barrière d’isolation primaire présentant des passages, les ondulations secondaires étant logées dans lesdits passages, la dimension selon la direction d’épaisseur de la barrière d’isolation primaire étant inférieure à la dimension des ondulations secondaires prise selon ladite direction d’épaisseur de sorte que les ondulations secondaires traversent les passages et sont partiellement logées dans les ondulations primaires, la cuve comportant en outre un organe de renfort primaire intercalé selon la direction d’épaisseur entre une ondulation secondaire et une ondulation primaire superposées de manière à renforcer ladite ondulation primaire.
Grâce à ces caractéristiques, les ondulations primaires sont renforcées par l’organe de renfort primaire, accroissant ainsi la résistance de la membrane étanche primaire aux efforts de pression.
Selon des modes de réalisation, une telle cuve étanche et thermiquement isolante peut comporter une ou plusieurs des caractéristiques suivantes.
Selon un mode de réalisation, les membranes d’étanchéité primaire et secondaire comportent chacune des portions planes situées entre les ondulations et reposent respectivement sur la barrière d’isolation primaire et la barrière d’isolation secondaire.
Selon un mode de réalisation, l’organe de renfort primaire présente une surface d’appui concave dont la concavité est tournée vers l’ondulation secondaire, ladite surface d’appui épousant une face interne de l’ondulation secondaire située en vis-à-vis.
Selon un mode de réalisation, la surface d’appui présente un rayon de courbure identique ou proche du rayon de courbure de la face interne de l’ondulation secondaire.
Selon un mode de réalisation, le rayon de courbure de la surface d’appui est tel que la surface d’appui recouvre partiellement, par exemple au moins 50%, la surface interne de l’ondulation secondaire. Selon un mode de réalisation, la surface d’appui recouvre notamment la portion de l’ondulation secondaire qui fait saillie dans l’ondulation primaire.
Selon un mode de réalisation, la surface d’appui est en appui sur un sommet de l’ondulation secondaire.
Selon un mode de réalisation, un jeu sépare l’organe de renfort primaire et une base de l’ondulation secondaire, ladite base de l’ondulation secondaire étant jointive de portions planes de la membrane étanche secondaire. Un tel jeu permet une déformation de la base de l’ondulation secondaire, par exemple en présence de forces de traction sur ladite ondulation secondaire issues de la contraction thermique ou de l’élongation de la poutre navire ou pour les tolérances de montage.
Selon un mode de réalisation, le rayon de courbure de la surface d’appui est identique au rayon de courbure de la surface interne de l’ondulation secondaire de sorte que la surface d’appui recouvre entièrement la face interne de l’ondulation secondaire.
Grâce à ces caractéristiques, l’organe de renfort primaire coopère de façon stable et fiable avec l’ondulation secondaire afin d’offrir un renforcement efficace de l’ondulation primaire.
Selon un mode de réalisation, l’organe de renfort primaire présente une surface de renfort convexe dont la convexité est tournée vers l’ondulation primaire et présentant un rayon de courbure épousant le rayon de courbure d’une face externe de l’ondulation primaire.
Selon un mode de réalisation un jeu sépare la surface de renfort de la face externe de l’ondulation primaire à température ambiante.
Selon un mode de réalisation, le rayon de courbure de la surface de renfort est identique au rayon de courbure de la face externe de l’ondulation primaire sur une portion de ladite face externe au droit d’un sommet de l’ondulation primaire. Selon un mode de réalisation, ladite portion de la face externe de l’ondulation primaire est délimitée de part et d’autre du sommet de l’ondulation primaire par des points d’inflexion de ladite face externe.
Grâce à ces caractéristiques, l’organe de renfort primaire assure un renforcement uniforme, fiable et efficace de l’ondulation primaire.
Selon un mode de réalisation, l’ondulation primaire et l’ondulation secondaire sont superposées selon la direction d’épaisseur de sorte qu’un sommet de l’ondulation secondaire soit agencé au droit d’un sommet de l’ondulation primaire.
Selon un mode de réalisation, l’épaisseur de l’organe de renfort primaire s’amenuise en direction des extrémités latérales dudit organe de renfort primaire Selon un mode de réalisation, la surface de renfort et la surface d’appui sont jointives au niveau desdites extrémités latérales de l’organe de renfort primaire. Selon un mode de réalisation, les extrémités de la surface de renfort et de la surface d’appui sont reliées par une surface de jonction de l’organe de renfort primaire.
Selon un mode de réalisation, l’organe de renfort primaire est creux. Selon un mode de réalisation, l’organe de renfort primaire creux comporte des voiles de renfort intérieurs.
Un tel organe de renfort primaire présente une résistance structurelle importante permettant un renforcement fiable et efficace de l’ondulation primaire. En outre, un tel organe de renfort creux permet la circulation de gaz entre l’ondulation primaire et l’ondulation secondaire, par exemple un gaz inerte tel que de l’azote.
Selon un mode de réalisation, les voiles de renfort se développent perpendiculairement à la face interne de l’ondulation secondaire. Selon un mode de réalisation, les voiles de renfort se développent perpendiculairement à la face externe de l’ondulation primaire.
Selon un mode de réalisation, la cuve comporte en outre un dispositif de maintien agencé pour exercer sur l’organe de renfort primaire un appui en direction de l’ondulation secondaire de manière à maintenir ledit organe de renfort primaire en appui contre ladite ondulation secondaire.
Selon un mode de réalisation, le dispositif de maintien comporte un organe souple ancré sur la barrière d’isolation primaire et lié à l’organe de renfort primaire de manière à exercer la force d’appui en direction de l’ondulation secondaire sur ledit organe de renfort primaire.
Selon un mode de réalisation, le dispositif de maintien comporte une bande souple présentant première extrémité ancrée sur la barrière d’isolation primaire d’un côté de l’organe de renfort primaire, une deuxième extrémité ancrée sur la barrière d’isolation primaire de l’autre côté de l’organe de renfort primaire, et une portion centrale intercalée entre l’organe de renfort primaire et l’ondulation primaire. Selon un mode de réalisation, la bande souple est ancrée à la barrière d’isolation primaire par des attaches, par exemple des agrafes, des vis, des clous ou autres.
Selon un mode de réalisation, l’organe souple est élastique. Selon un mode de réalisation, le dispositif de maintien comporte une lame élastique. Selon un mode de réalisation, les extrémités de la lame élastique forment des pattes maintenues élastiquement contre la barrière d’isolation primaire de part et d’autre de l’ondulation secondaire.
Selon un mode de réalisation, la lame élastique est ancrée à la barrière d’isolation primaire par friction.
Selon un mode de réalisation, l’organe de renfort primaire comporte une paire de pattes faisant saillie latéralement des extrémités de l’organe de renfort primaire, lesdites pattes étant logées dans des lamages respectifs de la barrière d’isolation primaire de manière à bloquer l’organe de renfort primaire en déplacement selon la direction d’épaisseur de la cuve.
Grâce à ces caractéristiques, l’organe de renfort primaire est maintenu en position par la barrière d’isolation primaire. Ainsi, l’organe de renfort est stable et renforce l’ondulation primaire de façon fiable.
Selon un mode de réalisation, la barrière d’isolation primaire comporte une pluralité de panneaux intercalés entre des portions planes de la membrane étanche primaire et de la membrane étanche secondaire. Selon un mode de réalisation, ces panneaux sont en bois par exemple en bois contreplaqué.
Selon un mode de réalisation, les lamages sont réalisés sur une face externe de la barrière d’isolation primaire reposant contre la membrane d’étanchéité secondaire de sorte que les pattes de l’organe de renfort primaire soient intercalées, selon la direction d’épaisseur, entre la barrière d’isolation primaire et la membrane d’étanchéité secondaire.
Selon un mode de réalisation, la cuve comporte en outre un organe de renfort secondaire intercalé selon la direction d’épaisseur de la cuve entre une ondulation secondaire et la barrière d’isolation secondaire de manière à renforcer ladite ondulation secondaire.
Selon un mode de réalisation, l’organe de renfort secondaire présente une forme externe épousant la forme interne d’une portion de l’ondulation secondaire qui fait saillie dans l’ondulation primaire.
Ainsi, l’organe de renfort secondaire renforce la portion saillante de l’ondulation secondaire de façon complète et uniforme.
Selon un mode de réalisation, l’organe de renfort secondaire est creux de manière à permettre une circulation de gaz, par exemple de gaz inerte, sous l’ondulation secondaire. Selon un mode de réalisation, l’organe de renfort secondaire comporte des voiles internes, de tels voiles internes renforçant structurellement ledit organe de renfort secondaire.
Grâce à ces caractéristiques, l’ondulation secondaire est également renforcée. En outre, l’ondulation secondaire ainsi renforcée sert d’appui à l’organe de renfort primaire de sorte que l’organe de renfort primaire assure un meilleur renforcement de l’ondulation primaire.
Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Une telle cuve peut aussi servir de réservoir de carburant dans tout type de navire.
Selon un mode de réalisation, un navire pour le transport d’un produit liquide froid comporte une double coque et une cuve précitée disposée dans la double coque.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide froid, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Certains aspects de l’invention partent de l’idée de renforcer les ondulations primaires d’une cuve étanche et thermiquement isolante dans laquelle les ondulations de la membrane étanche primaire et les ondulations de la membrane étanche secondaire sont superposées. Certains aspects de l’invention partent de l’idée de renforcer une ondulation primaire dont l’espace interne est au moins partiellement occupé par une ondulation secondaire. Certains aspects de l’invention partent de l’idée de renforcer une ondulation primaire en vis-à-vis d’une surface courbe formée par une ondulation secondaire.
Brève description des figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
• La figure 1 est une vue en coupe partielle d’une cuve étanche et thermiquement isolante ;
• la figure 2 est une vue en coupe de détail d’une cuve étanche et thermiquement isolante telle qu’illustrée sur la figure 1 comportant en outre un organe de renfort primaire selon un premier mode de réalisation ;
• la figure 3 est vue en coupe de détail d’une cuve étanche et thermiquement isolante telle qu’illustrée sur la figure 1 comportant en outre un organe de renfort primaire selon une première variante du premier mode de réalisation ;
• la figure 4 est vue en coupe de détail d’une cuve étanche et thermiquement isolante telle qu’illustrée sur la figure 1 comportant en outre un organe de renfort primaire selon une deuxième variante du premier mode de réalisation ;
• la figure 5 est une vue en coupe de détail d’une cuve étanche et thermiquement isolante telle qu’illustrée sur la figure 1 comportant en outre un organe de renfort primaire selon un deuxième mode de réalisation ;
• La figure 6 est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
Description détaillée de modes de réalisation
Dans la description ci-dessous, on fait référence à une cuve étanche et thermiquement isolante comportant un espace interne destiné à être rempli de gaz combustible ou non combustible. Le gaz peut notamment être un gaz naturel liquéfié (GNL), c’est-à-dire un mélange gazeux comportant majoritairement du méthane ainsi qu’un ou plusieurs autres hydrocarbures, tels que l’éthane, le propane, le n-butane, le i-butane, le n-pentane le i-pentane, le néopentane, et de l’azote en faible proportion. Le gaz peut également être de l’éthane ou un gaz de pétrole liquéfié (GPL), c’est-à- dire un mélange d’hydrocarbures issu du raffinage du pétrole comportant essentiellement du propane et du butane.
Une telle cuve étanche et thermiquement isolante est intégrée dans une structure porteuse 1 telle que, par exemple, la double coque d’un navire de transport du GNL. Cette structure porteuse 1 définit une pluralité de parois porteuses délimitant conjointement un espace interne de la double coque destiné à recevoir la cuve étanche et thermiquement isolante. La cuve étanche et thermiquement isolante comporte une pluralité de parois de cuve portées chacune par une paroi porteuse respective de la structure porteuse 1. Chaque paroi de cuve présente une structure multicouche comportant, depuis la paroi porteuse correspondante jusqu’à l’intérieur de la cuve, une barrière thermiquement isolante secondaire 2, une membrane étanche secondaire 3, une barrière thermiquement isolante primaire 4 et une membrane étanche primaire 5 délimitant l’intérieur de la cuve et destinée à être au contact du liquide contenu dans la cuve. La figure 1 illustre partiellement une paroi de cuve étanche et thermiquement isolante selon cette structure multicouche.
La barrière thermiquement isolante secondaire 2 comporte une garniture isolante 6 prise en sandwich entre une plaque de fond 7 et une plaque de couvercle 8. La garniture isolante 6 est par exemple une mousse de polyuréthane renforcée par des fibres ou non renforcée. La plaque de fond 7 et la plaque de couvercle 8 sont des plaques rigides, par exemple des plaques de contreplaqué.
La barrière thermiquement isolante secondaire 2 peut être réalisée de nombreuses manières, par exemple au moyen de panneaux isolants de forme parallélépipédique juxtaposés selon un motif régulier sur une paroi porteuse correspondante de la structure porteuse 1. Ces panneaux isolants sont ancrés sur la structure porteuse 1 au moyen d’organes d’ancrage (non illustrés). Des cordons de mastic 9 sont intercalés entre la plaque de fond 7 et la structure porteuse 1 afin de rattraper les défauts de planéité de la structure porteuse 1 . La barrière thermiquement isolante secondaire 2 forme ainsi une surface de support plane sur laquelle repose la membrane étanche secondaire 3.
La membrane étanche secondaire 3 comporte une pluralité de plaques métalliques ondulées. Ces plaques métalliques sont soudées entre elles pour former la membrane étanche secondaire 3. Cette membrane étanche secondaire 3 peut être ancrée sur la structure porteuse de nombreuses manières. Ainsi, la membrane étanche secondaire 3 peut être ancrée sur la structure porteuse de façon indirecte en étant ancrée sur la barrière thermiquement isolante secondaire 2 ou de façon directe en étant ancrée sur des organes d’ancrage (non illustrés) traversant la barrière thermiquement isolante secondaire 2.
La membrane étanche secondaire 3 comporte des ondulations 10, ci-après ondulations secondaires 10, faisant saillie vers l’intérieur de la cuve. Ces ondulations secondaires 10 permettent d’absorber les déformations de la membrane étanche secondaire 3, par exemple liées aux changements de température dans la cuve, ou à la déformation de la poutre du navire. La membrane étanche secondaire 3 comporte une première série d’ondulations secondaires 10 parallèles entre elles et se développant parallèlement à une première direction, par exemple une direction longitudinale du navire. La membrane étanche secondaire 3 comporte une deuxième série d’ondulations secondaires 10 parallèles entre elles et se développant parallèlement à une deuxième direction, par exemple une direction transversale du navire. La membrane étanche secondaire 3 comporte des portions planes 1 1 , ci- après portions planes secondaires 1 1 , intercalées entre des ondulations secondaires 10 adjacentes.
La barrière thermiquement isolante primaire 4 présente une épaisseur réduite par rapport à la barrière thermiquement isolante secondaire 2. La barrière thermiquement isolante primaire 4 comporte une pluralité de plaques rigides 12 reposant sur la membrane étanche secondaire 3. Plus particulièrement, comme illustré sur la figure 1 , les plaques rigides 12 de la barrière thermiquement isolante primaire 4 reposent sur les portions planes 1 1 de la membrane étanche secondaire 3. La barrière thermiquement isolante primaire 4 comporte une pluralité de passages 13 dans lesquels sont logés les ondulations secondaires 10. Ces passages 13 sont par exemple délimités par des flancs 32 des plaques rigides 12 situées de part et d’autre des ondulations secondaires 10.
Les plaques rigides 12 présentent une épaisseur, prise selon la direction d’épaisseur de la paroi de cuve correspondante, inférieure à la hauteur des ondulations secondaires 10, prise selon ladite direction d’épaisseur. Ainsi, les ondulations secondaires 10 traversent les passages 13 de la barrière thermiquement isolante primaire 4 et font saillie vers l’intérieur de la cuve au-delà de la barrière thermiquement isolante primaire 4. A titre d’exemple, l’épaisseur des plaques rigides 12 est comprise entre 9 et 36 mm, de préférence entre 12 et 24 mm.
Les plaques rigides 12 de la barrière thermiquement isolante primaire 4 forment une surface de support plane primaire sur laquelle repose la membrane étanche primaire 5. De façon analogue à la membrane étanche secondaire 3, la membrane étanche primaire 5 comporte une pluralité de plaques métalliques ondulées reliées entre elles de manière étanche, par exemple par soudure. De même, cette membrane étanche primaire 5 peut être ancrée à la structure porteuse 1 de manière indirecte, en étant ancrée à la barrière thermiquement isolante primaire 4, ou de manière directe, en étant ancrée à la structure porteuse via un organe d’ancrage, ledit organe d’ancrage pouvant être commun à l’ancrage de la membrane étanche secondaire 3 et de la membrane étanche primaire 5. La membrane étanche primaire 5 comporte des ondulations 14, ci-après ondulations primaires 14, pour absorber les déformations de la membrane étanche primaire 5. De façon analogue à la membrane étanche secondaire 3, la membrane étanche primaire 5 comporte une première série d’ondulations primaires 14 parallèles entre elles et une deuxième série d’ondulations primaires 14 parallèles entre elles. La membrane étanche primaire comporte en outre des portions planes 15, ci-après portions planes primaires 15, intercalées entre les ondulations primaires 14.
La figure 1 illustre une vue en coupe de la paroi de cuve, de sorte que seule des ondulations secondaires 10 de la première série d’ondulations secondaires 10 et des ondulations primaires 14 de la première série d’ondulations primaires sont représentées en coupe. Cependant, la description ci-dessous s’applique par analogie à l’ensemble des ondulations secondaires 10 et des ondulations primaires 14 des membranes étanches primaires 5 et secondaires 3.
Les ondulations primaires 14 sont disposées au droit des ondulations secondaires 10. Ainsi, les portions des ondulations secondaires 10 faisant saillie de la barrière thermiquement isolante primaire 4 sont logées dans les ondulations primaires 14 avec lesquelles elles sont superposées. Plus particulièrement, les ondulations secondaires 10 présentent une surface interne 16 en vis-à-vis d’une surface externe 17 des ondulations primaires 14 correspondantes. Les ondulations primaires 14 et secondaires 10 faisant saillie vers l’intérieur de la cuve, la surface interne 16 de l’ondulation secondaire 10 présente une forme convexe et la surface externe 17 de l’ondulation primaire 14 présente une forme concave. Les ondulations secondaires 10 sont centrées dans les ondulations primaires 14 de sorte qu’un sommet 18 des ondulations secondaires 10 est situé au droit d’un sommet 19 des ondulations primaires 14. Ainsi, les ondulations primaires 14 et les ondulations secondaires 10 sont symétriques par rapport à un plan passant par les sommets 18 et 19 et se développant parallèlement à la direction longitudinale desdites ondulations 10, 14.
Cette superposition des ondulations primaires 14 et des ondulations secondaires 10 permet de positionner les portions planes primaires 15 au droit des portions planes secondaires 1 1. Ainsi, les portions planes primaires 15 peuvent reposer sur la barrière thermiquement isolante primaire 4 formée par les plaques rigides 12 agencée sur les portions planes secondaires 1 1.
Les plaques métalliques formant les membranes étanches primaire 5 et secondaire 3 peuvent notamment être réalisées en acier inoxydable, en aluminium, en Invar ® : c’est-à-dire un alliage de fer et de nickel dont le coefficient de dilatation est typiquement compris entre 1 ,2.10 6 et 2.106 K 1, ou dans un alliage de fer à forte teneur en manganèse dont le coefficient de dilatation est typiquement de l’ordre de 7.10 6 K 1. Toutefois, d’autres métaux ou alliages sont également possibles.
A titre d’exemple, les plaques métalliques peuvent présenter une épaisseur comprise entre 1 mm et 1.6 mm. D’autres épaisseurs sont également envisageables, sachant qu’un épaississement de la tôle métallique entraîne une augmentation de son coût et accroît généralement la rigidité des ondulations 10, 14.
D’autres détails et caractéristiques possibles des membranes étanches, des plaques métalliques formant lesdites membranes étanches, de l’ancrage des barrières thermiquement isolantes ou des membranes étanches sont décrits dans le document US2017/0159888 ou WO2016021948. A titre d'exemple, les plaques métalliques assemblées pour former les membranes étanches 3, 5 peuvent être mises en forme par emboutissage ou pliage.
Les ondulations 10, 14 permettent aux membranes étanches 3, 5 d’être flexibles afin de pouvoir se déformer sous l’effet des sollicitations thermiques et mécaniques générées par le GNL dans la cuve. En effet, le chargement d’un fluide cryogénique tel que le GNL dans la cuve entraîne un changement de température important générant des contraintes de contraction thermique importantes dans la membrane étanche primaire 5. Ces contraintes thermiques sont également présentes au niveau de la membrane étanche secondaire 3, la barrière d’isolation thermique primaire 4 présentant une épaisseur ne permettant pas d’atténuer ces contraintes thermiques. En outre, les mouvements de liquide dans la cuve, en particulier dans le cas d’un navire naviguant en mer, peuvent engendrer des contraintes importantes sur la membrane étanche primaire 5, en particulier au niveau des ondulations primaire 14 qui font saillie à l’intérieur de la cuve. Un autre facteur de déformation des membranes étanches 3, 5 est l’élongation de la poutre d’un navire en réponse aux mouvements du navire sur la houle.
La figure 2 illustre une portion de cuve étanche et thermiquement isolante telle que décrite ci-dessus comportant en outre un organe de renfort primaire 20 selon un premier mode de réalisation. Un tel organe de renfort primaire 20 permet de renforcer la membrane étanche primaire 5, et en particulier les ondulations primaires 14, au regard des différentes sollicitations subies par ladite membrane étanche primaire 5. Cette figure 2 illustre la paroi de cuve et l’organe de renfort primaire 20 au niveau d’une seule ondulations primaire 14 et d’une seule ondulation secondaire 10, la description ci-dessous pouvant s’appliquer pour une, plusieurs ou l’ensemble des ondulations primaires 14 et secondaires 10 de la cuve.
Comme illustré sur la figure 2, l’organe de renfort primaire 20 est intercalé entre la membrane étanche primaire 5 et la membrane étanche secondaire 3. Plus particulièrement, l'ondulation primaire 14 et l'ondulation secondaire 10 étant superposées, l’organe de renfort primaire 20 est intercalé entre la face interne 16 de l’ondulation secondaire 10 et la face externe 17 de l’ondulation primaire 14.
L’organe de renfort primaire 20 présente une surface d’appui 21 et une surface de renfort 22. De façon analogue aux ondulations primaire 14 et secondaire 10, l’organe de renfort primaire 20 est symétrique par rapport au plan passant par les sommets 18, 19 des ondulations 10, 14 et se développant parallèlement à la direction longitudinale des ondulations 10, 14. De même, les surfaces d’appui 21 et de renfort 22 sont symétriques par rapport audit plan.
La surface d’appui 21 est tournée vers la face interne 16 de l’ondulation secondaire 10. Cette surface d’appui 21 présente une forme concave dont la concavité est tournée vers la face interne 16 de l’ondulation secondaire 10. Ainsi, la surface d’appui 21 présente une forme complémentaire à la forme de la face interne 16 de l’ondulation secondaire 10.
De préférence, la surface d’appui 21 recouvre avec contact la face interne 16 de l’ondulation secondaire 10 sur au moins 50% de ladite face interne 16. Pour cela, le rayon de courbure de la surface d’appui 21 est proche du rayon de courbure de la face interne 16 de l’ondulation secondaire 10. Plus particulièrement, la surface d’appui 21 présente une portion centrale comportant le milieu de ladite surface d’appui 21 . Cette portion centrale de la surface d’appui 21 présente un rayon de courbure identique au rayon de courbure d’une portion centrale de la face interne 16 de l’ondulation secondaire 10. Autrement dit, la portion centrale de la surface d’appui 21 recouvre et est en contact avec la portion centrale de la face interne 16 de l’ondulation secondaire 10.
La portion centrale de la face interne 16 de l’ondulation secondaire 10 comporte le sommet 18 de l’ondulation secondaire 10 et se développe de part et d’autre dudit sommet 18 de façon symétrique par rapport au plan de symétrie de l’ondulation secondaire 10. De même, la portion centrale de la surface d’appui 21 est symétrique par rapport au plan de symétrie de l’ondulation secondaire 10.
Dans le mode de réalisation illustré sur la figure 2, la portion centrale de la face interne 16 de l’ondulation secondaire 10 est délimitée de part et d’autre du sommet 18 par les points d’inflexion formés par ladite face interne 16 de l’ondulation secondaire 10. Ainsi, la surface d’appui 21 recouvre la face interne 16 de l’ondulation secondaire 10 depuis un premier point d’inflexion situé d’un côté du sommet 18 de l’ondulation secondaire 10 jusqu’au point d’inflexion situé de l’autre côté de l’ondulation secondaire 10 par rapport audit sommet 18.
La coopération entre la surface d’appui 21 et la face interne 16 de l’ondulation secondaire 10 permet de maintenir en position l’organe de renfort primaire 20 sur l’ondulation secondaire 10 en vis-à-vis de la face externe 17 de l’ondulation primaire 14. En outre, cette coopération permet d’offrir à l’organe de renfort primaire 20 un appui afin que ledit organe de renfort primaire 20 puisse renforcer l’ondulation primaire 14, comme expliqué ci-dessous.
La surface de renfort 22 est tournée vers la face externe 17 de l’ondulation primaire 14. De façon analogue à la complémentarité de forme entre la face interne 16 de l’ondulation secondaire 10 et la surface d’appui 21 , la surface de renfort 22 présente une forme complémentaire à la forme de la face externe 17 de l’ondulation primaire 14. Ainsi, la surface de renfort 22 présente une convexité tournée vers la face externe 17 de l’ondulation primaire 14. Par ailleurs, la surface de renfort 22 présente une portion centrale dont le rayon de courbure est identique au rayon de courbure de la portion centrale de ia face externe 17 de i’onduiation primaire 14. Lesdites portions centrales sont symétriques par rapport au plan de symétrie de l’ondulation primaire 14. La portion centrale de la face externe 17 comporte un point de ladite face externe 17 situé au droit du sommet 19 de l’ondulation primaire 14 et est délimité, de part et d’autre dudit sommet 19, par les points d’inflexion de la face externe 17 de l’ondulation primaire 14.
Afin de faciliter le montage de la membrane étanche primaire 5 dans la cuve, un jeu séparant la surface de renfort 22 et la face externe 17 de l’ondulation primaire 14 peut être prévu. Un tel jeu permet de s’accommoder des tolérances d’assemblage et de montage de la membrane étanche primaire 5.
L’épaisseur de l’organe de renfort primaire 20 à un endroit dudit organe de renfort primaire 20 se définit comme la distance minimale séparant la surface d’appui 21 et la surface de renfort 22 audit endroit. L’organe de renfort primaire 20 présente une épaisseur maximale en son milieu, c’est-à-dire au niveau de son plan de symétrie. L’épaisseur de l’organe de renfort primaire 20 s’amenuise depuis le milieu de l’organe de renfort primaire 20 vers ses extrémités 23. Les extrémités 23 comportent une surface plane 24 reliant la surface de renfort 22 et la surface d’appui 21
Sur la figure 2, la surface plane 24 est distante, selon la direction d’épaisseur de la paroi de cuve, des portions planes 1 1 de la membrane étanche secondaire 3. Ainsi, une base de l’ondulation secondaire 10, c’est-à-dire les portions de l’ondulation secondaire 10 situées de part et d’autre de la portion centrale de ladite ondulation secondaire 10, n’est pas recouverte par l’organe de renfort primaire 20.
L’absence de recouvrement de la base de l’ondulation secondaire 10 par l’organe de renfort primaire 20 permet à ladite base de l’ondulation secondaire 10 de se déformer en réponse à des sollicitations telles qu’un effort de traction lié à la contraction thermique ou à la déformation de la poutre du navire. Autrement dit, l’ondulation secondaire peut se déformer pour absorber les déformations de la membrane d’étanchéité secondaire 3 sans que cette déformation ne soit entravée par l’organe de renfort primaire 20.
Dans un mode de réalisation non illustré, cette déformation est possible du fait de la différence de rayon de courbure entre la surface d’appui 21 et la face interne 16 de l’ondulation secondaire 10, un jeu séparant la base de l’ondulation secondaire 10 et la surface d’appui 21 pour permettre la déformation sans entrave de l’ondulation secondaire 10
Un tel jeu séparant la surface d’appui 21 et la face interne 16 de l’ondulation secondaire 10 est dimensionné en fonction de plusieurs paramètres. Ce jeu est dimensionné en fonction des tolérances de fabrication et de montage de l’organe de renfort primaire 20 et de l’ondulation secondaire 10. Ce jeu est également dimensionné en fonction du comportement en contraction thermique de l’organe de renfort primaire 20 ainsi que du comportement en déformation de l’ondulation secondaire 10. Le comportement en déformation de l’ondulation secondaire 10 est déterminé en fonction du comportement en contraction thermique de l’ondulation secondaire 10 et du comportement de ladite ondulation secondaire 10 sous l’effet des contraintes pouvant survenir dans la cuve. Typiquement, ce jeu est préférentiellement dimensionné pour répondre à l’équation suivante :
Jeu ^ toi CT renf OuVondsec
dans laquelle toi représente les tolérances de fabrication et de montage de l’organe de renfort primaire 20 et de l’ondulation secondaire 10, CTrenf représente la variation de dimension de l’organe de renfort primaire 20 sous l’effet de la contraction thermique, par exemple entre un état de l’ondulation secondaire 10 dans une cuve à température ambiante et un état de l’ondulation secondaire 10 lorsque la cuve est remplie de GNL, et Ouvondsec représente la variation de dimension de l’ondulation secondaire 10 résultant de la contraction thermique et des contraintes dans la cuve. Un tel jeu permet une liberté de déformation de l’ondulation secondaire 10 par rapport à l’organe de renfort primaire 20, l’ondulation secondaire 10 pouvant se déformer sans être contrainte par la surface d’appui 21 de l’organe de renfort primaire 20.
Dans ce premier mode de réalisation, l’organe de renfort primaire 20 est plein. Lors d’une déformation de l’ondulation primaire 14, la surface de renfort 22 de l’organe de renfort primaire 20 supporte l’ondulation primaire 14 et limite ainsi sa déformation ainsi que les dégradations pouvant résulter de ladite déformation. En outre, la complémentarité de forme entre la surface de renfort 22 et la face externe
17 de l’ondulation primaire 14 permet ce renforcement de l’ondulation primaire 14 de façon uniforme. Dans ce premier mode de réalisation, un organe de renfort secondaire 25 est logé sous l’ondulation secondaire 10. Ce renfort d’onde secondaire 25 présente une paroi externe 26 plane reposant sur la barrière thermiquement isolante secondaire 2. Cet organe de renfort secondaire 25 présente en outre une enveloppe
27 se développant au-dessus de la paroi externe 26. Cette enveloppe 27 épouse la forme d’une face externe 28 de l’ondulation secondaire 10. La face externe 28 de l’ondulation secondaire 10 est en contact avec l’organe de renfort secondaire 25. De façon analogue à sa coopération avec l’organe de renfort primaire 20, la face externe
28 de l’ondulation secondaire 10 présente une portion centrale qui coopère avec l’organe de renfort secondaire 25, ladite portion centrale comportant un point de la face externe 28 de l’ondulation secondaire 10 situé au droit du sommet 18 et étant délimité de part et d’autre dudit sommet par les points d’inflexion de ladite face externe 28.
L’organe de renfort secondaire 25 est creux. Ainsi, il permet la circulation de gaz dans la barrière thermiquement isolante secondaire 2, comme par exemple un gaz inerte tel que de l’azote. Par ailleurs, l’organe de renfort secondaire 25 comporte des voiles internes 29 permettant de renforcer ledit organe de renfort secondaire 25.
Lors d’une déformation de l’ondulation primaire 14, l’organe de renfort primaire 20 est supporté par la coopération entre la surface d’appui 21 et l’ondulation secondaire 10. La face interne 16 de l’ondulation secondaire 10 renforcée par l’organe de renfort secondaire 25 forme une surface d’appui solide et fiable pour l’organe de renfort primaire 20, permettant audit organe de renfort primaire 20 de renforcer l’ondulation primaire 14 de façon fiable.
Dans la description des figures 3 à 5 ci-dessous, les éléments identiques ou remplissant la même fonction que des éléments décrits ci-dessus en regard des figures 1 et 2 portent la même référence.
La figure 3 illustre une première variante de réalisation de l’organe de renfort primaire 20. Certains éléments illustrés sur la figure 3 sont volontairement représentés avec des écarts, étant entendu que les écarts ne sont présents que pour permettre une meilleure lisibilité de la figure 3. Dans cette première variante, un organe de maintien 30 coopère avec l’organe de renfort primaire 20 afin d’assurer son maintien en position sur l’ondulation secondaire 10. L’organe de maintien 30 comporte une bande souple 31. Les extrémités de cette bande souple 31 sont ancrées sur la barrière thermiquement isolante primaire 4 de part et d’autre de l’ondulation secondaire 10. Plus particulièrement, les extrémités de la bande souple 31 sont ancrées sur des flancs 32 des plaques rigides 12 de la barrière thermiquement isolante primaire 4, lesdits flancs 32 délimitant les passages 13 dans lesquels sont logés les ondulations secondaire 10.
Ces extrémités de la bande souple 31 peuvent être ancrées sur la barrière thermiquement isolante primaire 4 de nombreuses manières, par exemple au moyen d’agrafes 45, de vis, de clous, ou de tout autre moyen adapté.
La bande souple 31 est intercalée entre la face externe 17 de l’ondulation primaire 14 et la surface de renfort 22. La bande souple 31 recouvre la surface de renfort 22 de l’organe de renfort primaire 20. Cette bande souple 31 est précontrainte de manière à exercer sur l’organe de renfort primaire 20 un appui en direction de l’ondulation secondaire 10. La complémentarité de forme entre la surface d’appui 21 et la face interne 16 de l’ondulation secondaire 10 permet de garantir le bon positionnement de l’organe de renfort primaire 20 sur l’ondulation secondaire 10 sous l’effet de cet appui exercé par la bande souple 31.
Une telle bande souple 31 peut être réalisée en de nombreux matériaux.
Dans un mode de réalisation préférentiel, cette bande souple 31 est fabriquée en tissu, par exemple en textile du type coton, à partir de fibres de fibres minérales, par exemple en fibre de verre, ou en fibres synthétiques (PA, PE, PEI, ... ). Une telle bande souple 31 en tissu est mise en tension lors de l’ancrage de ses extrémités sur la barrière thermiquement isolante primaire 4, permettant ainsi l’appui de l’organe de renfort primaire 20 sur l’ondulation secondaire 10.
Dans un mode de réalisation, la bande souple 31 est réalisée en matériau élastique comme par exemple en caoutchouc ou tout autre matériau.
La figure 4 illustre une deuxième variante de réalisation du premier mode de réalisation de l’organe de renfort primaire 20. Cette deuxième variante diffère de la première variante illustrée sur la figure 3 en ce que la bande souple 31 est une bande métallique 33 dont les extrémités forment des pattes élastiques 34.
La bande métallique 33 comporte une portion centrale 35 épousant la forme de la surface de renfort 22 de l’organe de renfort primaire 20. Les pattes élastiques 34 font saillie latéralement des extrémités de la portion centrale 35 en direction des flancs 32 des plaques rigides 12 de la barrière thermiquement isolante primaire 4. Ces pattes élastiques 34 présentent une forme en coupe de « S » de manière à comporter une portion de jonction 36 avec la portion centrale 35, ladite portion de jonction 36 prolongeant l’extrémité de la portion centrale correspondante, une portion d’éloignement 37 se développant depuis la portion de jonction 36 en direction des flancs 32 et une portion d’appui 38 se développant depuis la portion d’éloignement 37 et agencée en appui élastiquement contre les flancs 32.
Ces pattes élastiques 34 sont agencées de manière à être en appui sur les flancs 32 et conserver la bande métallique 33 en position en appui sur l’ondulation secondaire 10. Ainsi, la bande métallique 33 maintien en position l’organe de renfort primaire 20 sur la face interne 16 de l’ondulation secondaire 10 par appui et friction des pattes élastiques 34 sur les flancs 32 délimitant le passage 13.
Dans une variante de réalisation non représenté, les pattes élastiques 34 sont agencées pour être en appui dans un lamage de la barrière thermiquement isolante primaire 4. Un te lamage peut être réalisé sur une face interne de la plaque rigide 12, ladite face interne de la plaque rigide 12 étant tournée vers la membrane étanche primaire 5. Ce lamage peut également être réalisé sur une face externe de la plaque rigide 12, ladite face externe étant tournée vers la membrane étanche secondaire 3.
La figure 5 illustre un deuxième mode de réalisation de l’organe de renfort primaire 20. Ce deuxième mode de réalisation de l’organe de renfort primaire 20 diffère du premier mode de réalisation illustré ci-dessus en regard des figures 2 à 4 en ce que les extrémités 23 de l’organe de renfort primaire 20 forment des pattes 39 planes. Par ailleurs, la surface d’appui 21 de l’organe de renfort primaire 20 épouse l’ensemble de la face interne 16 de l’ondulation secondaire 12 de sorte que les pattes 39 planes recouvrent partiellement une portion plane 1 1 de la membrane étanche secondaire 3. Autrement dit, l’organe de renfort primaire 20 présente une surface d’appui 21 dont le rayon de courbure est identique au rayon de courbure de la face interne 16 de l’ondulation secondaire 10 et se développe de part et d’autre de l’ondulation secondaire 10 en reposant sur la membrane étanche secondaire 3 de part et d’autre de l’ondulation secondaire 10.
Dans ce deuxième mode de réalisation, la barrière thermiquement isolante primaire 4 comporte un lamage 40. Ce lamage 40 est formé sur une face inférieure 41 de la barrière thermiquement isolante primaire 4 de manière à ménager un espace entre ladite barrière thermiquement isolante primaire 4 et la membrane étanche secondaire 3. Les pattes 39 planes de l’organe de renfort primaire 20 sont logées dans ce lamage 41 de sorte que lesdites pattes 39 soient intercalées entre la barrière thermiquement isolante primaire 4 et la membrane étanche secondaire 3. Ainsi, l’organe de renfort primaire 20 est maintenu en position par butée sur le fond du lamage 40 de la barrière thermiquement isolante primaire 4 et en appui sur une portion plane 1 1 de la membrane étanche secondaire 3, et donc indirectement en appui sur la barrière thermiquement isolante secondaire 2.
Dans le cadre d’une barrière thermiquement isolante primaire 4 constituée de plaques rigide 12 en contreplaqué, le lamage 40 est par exemple réalisé sur la face externe de ces plaques rigides 12, c’est-à-dire sur la face reposant sur les portions planes 1 1 de la membrane étanche secondaire 3.
Cet appui indirect de l’organe de renfort primaire 20 sur la barrière thermiquement isolante secondaire 2 permet le maintien en position de l’organe de renfort primaire 20. En particulier, lors d’une déformation de l’ondulation primaire 14, l’appui de l’organe de renfort primaire 20 sur la membrane étanche secondaire 3 et sur la barrière thermiquement isolante secondaire 2 permet à l’organe de renfort primaire 20 de remplir la fonction de renforcement de l’ondulation primaire 14 sans sollicitation de l’ondulation secondaire 10. Autrement dit, l’appui de l’organe de renfort primaire 20 dans ce second mode de réalisation est assuré par les pattes 39 reposant sur la portion plane 1 1 de la membrane étanche secondaire 3 et non pas par l’appui de la surface d’appui 21 sur l’ondulation secondaire 10 comme dans le premier mode de réalisation.
De façon non représentée, il est possible de prévoir dans ce deuxième mode de réalisation un jeu séparant ia surface d’appui 21 de i’organe de renfort primaire 20 et la face interne 16 de l’ondulation secondaire 10. Un tel jeu est réalisé de façon analogue au jeu décrit ci-dessus au regard du premier mode de réalisation afin de permettre la déformation de l’ondulation secondaire 10 sans entrave de l’organe de renfort primaire 20.
Ainsi, l’ondulation secondaire 10 est moins voire n’est pas sollicitée pour permettre à l’organe de renfort primaire 20 de remplir sa fonction de renforcement de l’ondulation primaire 14. En conséquence, dans ce deuxième mode de réalisation, il peut être possible de ne pas utiliser d’organe de renfort secondaire 25, comme cela est illustré sur la figure 5.
Par ailleurs, dans ce deuxième mode de réalisation, l’organe de renfort primaire 20 est creux. Une paroi interne 42 formant la surface de renfort 22 et une paroi externe 43 formant la surface d’appui 21 , ces parois 42 et 43 se joignant au niveau des extrémités de l’organe de renfort primaire 20 pour former les pattes 39 planes. Des voiles internes 44 relient la paroi interne 42 et la paroi externe 43 afin de renforcer cet organe de renfort primaire 20 creux. Ces voiles internes 44 se développent par exemple sensiblement perpendiculairement à la paroi externe 43.
La complémentarité entre la face interne 16 de l’ondulation secondaire 10 et la face d’appui 21 de l’organe de renfort primaire 20 permet d’assurer le maintien latéral de l’organe de renfort primaire 20. Typiquement, cette complémentarité permet de centrer l’organe de renfort primaire 20 sur l’ondulation secondaire 10.
Alternativement et de façon non représentée, l’organe de renfort primaire 20 se compose de deux demi-renforts primaire séparés au niveau du plan passant par les sommets 18, 19 des ondulations primaire 14 et secondaire 10 pour permettre la déformation sans entrave de l’ondulation secondaire 10. Les demi-renforts peuvent être libres au niveau des sommets 18, 19 des ondulations 10, 14 et bloqués en translation par l’intermédiaire de la patte 39 logée dans le lamage 40. Les deux demi- renforts peuvent aussi être reliés par une liaison pivotante axiale perpendiculaire au plan de coupe de la figure 5.
La technique décrite ci-dessus pour réaliser une cuve étanche et thermiquement isolante peut être utilisée dans différents types de réservoirs, par exemple pour constituer la membrane d’étanchéité primaire d’un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
En référence à la figure 6, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72.
De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
La figure 6 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans ie navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. L’usage de l’article indéfini « un » ou « une » pour un élément ou une étape n’exclut pas, sauf mention contraire, la présence d’une pluralité de tels éléments ou étapes.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

REVENDICATIONS
1 . Cuve étanche et thermiquement isolante destinée à être installée dans une structure porteuse (1 ), ladite cuve comportant, depuis l’extérieur de la cuve vers l’intérieur de la cuve, une barrière d’isolation secondaire (2) destinée à être ancrée sur la structure porteuse (1 ), une membrane d’étanchéité secondaire (3) reposant sur la barrière d’isolation secondaire (2), une barrière d’isolation primaire (4) reposant sur la membrane d’étanchéité secondaire (3) et une membrane d’étanchéité primaire (5) reposant sur la barrière d’isolation primaire (4),
la membrane d’étanchéité primaire (5) comportant des ondulations primaires (14) faisant saillie vers l’intérieur de la cuve, la membrane d’étanchéité secondaire (3) comportant des ondulations secondaires (10) faisant saillie vers l’intérieur de la cuve, les ondulations primaires (14) et les ondulations secondaires (10) étant superposées selon une direction d’épaisseur,
la barrière d’isolation primaire (4) présentant des passages (13), les ondulations secondaires (10) étant logées dans lesdits passages (13), la dimension selon la direction d’épaisseur de la barrière d’isolation primaire (4) étant inférieure à la dimension des ondulations secondaires (10) prise selon ladite direction d’épaisseur de sorte que les ondulations secondaires (10) traversent les passages (13) et sont partiellement logées dans les ondulations primaires (14),
la cuve comportant en outre un organe de renfort primaire (20) intercalé selon la direction d’épaisseur entre une ondulation secondaire (10) et une ondulation primaire (14) superposées de manière à renforcer ladite ondulation primaire (14).
2. Cuve selon la revendication 1 , dans laquelle l’organe de renfort primaire (20) présente une surface d’appui (21 ) concave dont la concavité est tournée vers l’ondulation secondaire (10), ladite surface d’appui (21 ) épousant une face interne (16) de l’ondulation secondaire (10) située en vis-à-vis.
3. Cuve selon la revendication 1 ou 2, dans laquelle la surface d’appui (21 ) présente un rayon de courbure identique ou proche du rayon de courbure de la face interne (16) de l’ondulation secondaire (10).
4. Cuve selon l’une des revendications 1 à 3, dans laquelle le rayon de courbure de la surface d’appui (21 ) est tel que la surface d’appui (21 ) recouvre partiellement la surface interne (16) de l’ondulation secondaire (10).
5. Cuve selon l’une des revendications 1 à 4, dans laquelle l’organe de renfort primaire (20) présente une surface de renfort (22) convexe dont la convexité est tournée vers l’ondulation primaire (14) et présentant un rayon de courbure épousant le rayon de courbure d’une face externe (17) de l’ondulation primaire (14).
6. Cuve selon l’une des revendications 1 à 5, dans laquelle l’épaisseur de l’organe de renfort primaire (20) s’amenuise en direction des extrémités latérales dudit organe de renfort primaire (20).
7. Cuve selon l’une des revendications 1 à 6, dans laquelle l’organe de renfort primaire (20) est creux et comporte des voiles (44) de renfort intérieurs.
8. Cuve selon l’une des revendications 1 à 7, comportant en outre un dispositif de maintien (30) agencé pour exercer sur l’organe de renfort primaire (20) un appui en direction de l’ondulation secondaire (10) de manière à maintenir ledit organe de renfort primaire (20) en appui contre ladite ondulation secondaire (10).
9. Cuve selon la revendication 8, dans laquelle le dispositif de maintien comporte un organe souple (31 , 33) ancré sur la barrière d’isolation primaire (4) et lié à l’organe de renfort primaire (20) de manière à exercer la force d’appui en direction de l’ondulation secondaire (10) sur ledit organe de renfort primaire (20).
10. Cuve selon l’une des revendications 1 à 9, dans laquelle l’organe de renfort primaire comporte une paire de pattes (39) faisant saillie latéralement des extrémités de l’organe de renfort primaire (20), lesdites pattes (39) étant logées dans des lamages (41 ) respectifs de la barrière d’isolation primaire (4) de manière à bloquer l’organe de renfort primaire (20) en déplacement selon la direction d’épaisseur de la cuve.
1 1. Cuve selon l’une des revendications 1 à 10, comportant en outre un organe de renfort secondaire (25) intercalé selon la direction d’épaisseur de la cuve entre une ondulation secondaire (10) et la barrière d’isolation secondaire (2) de manière à renforcer ladite ondulation secondaire (10).
12. Cuve selon la revendication 1 1 , dans laquelle l’organe de renfort secondaire (25) présente une forme externe épousant la forme interne d’une portion de l’ondulation secondaire (10) qui fait saillie dans l’ondulation primaire (14).
13. Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une cuve (71 ) selon l’une des revendications 1 à 12 disposée dans la double coque.
14. Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 13, des canalisations isolées (73,
79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entraîner un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
15. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 13, dans lequel on achemine un produit liquide froid à travers des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
PCT/FR2019/051847 2018-07-26 2019-07-25 Cuve etanche et thermiquement isolante WO2020021208A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980049866.2A CN112513515B (zh) 2018-07-26 2019-07-25 密封热绝缘罐
RU2021101088A RU2762476C1 (ru) 2018-07-26 2019-07-25 Герметичный и теплоизоляционный резервуар
KR1020217005332A KR102542637B1 (ko) 2018-07-26 2019-07-25 밀폐된 단열 탱크
EP19761920.8A EP3827195A1 (fr) 2018-07-26 2019-07-25 Cuve etanche et thermiquement isolante
US17/263,419 US11821587B2 (en) 2018-07-26 2019-07-25 Sealed and thermally insulating tank
PH12021550183A PH12021550183A1 (en) 2018-07-26 2021-01-25 Sealed and thermally insulating tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856973 2018-07-26
FR1856973A FR3084438B1 (fr) 2018-07-26 2018-07-26 Cuve etanche et thermiquement isolante

Publications (1)

Publication Number Publication Date
WO2020021208A1 true WO2020021208A1 (fr) 2020-01-30

Family

ID=63896354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051847 WO2020021208A1 (fr) 2018-07-26 2019-07-25 Cuve etanche et thermiquement isolante

Country Status (8)

Country Link
US (1) US11821587B2 (fr)
EP (1) EP3827195A1 (fr)
KR (1) KR102542637B1 (fr)
CN (1) CN112513515B (fr)
FR (1) FR3084438B1 (fr)
PH (1) PH12021550183A1 (fr)
RU (1) RU2762476C1 (fr)
WO (1) WO2020021208A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112764B1 (fr) * 2020-07-24 2022-08-05 Gaztransport Et Technigaz Système d’empilement de membranes d’une cuve étanche et thermiquement isolante

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847758A2 (fr) * 2006-04-20 2007-10-24 Korea Gas Corporation Réservoir de stockage de gaz naturel liquéfié comportant une structure d'isolation améliorée, et son procédé de fabrication
FR2936784A1 (fr) * 2008-10-08 2010-04-09 Gaztransp Et Technigaz Cuve a membrane ondulee renforcee
KR20100060348A (ko) * 2008-11-27 2010-06-07 삼성중공업 주식회사 액화천연가스 화물창의 단열구조
KR20150140466A (ko) * 2014-06-05 2015-12-16 삼성중공업 주식회사 액화가스 화물창 및 이에 사용되는 방벽보강부재
WO2016021948A1 (fr) 2014-08-06 2016-02-11 한국가스공사 Structure de coin de réservoir de stockage de gnl
US20170159888A1 (en) 2014-07-11 2017-06-08 Kc Lng Tech Co., Ltd. Anchor structure, and liquefied natural gas storage tank comprising said anchor structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1432307A1 (ru) * 1987-01-19 1988-10-23 Всесоюзный Научно-Исследовательский И Проектный Институт "Теплопроект" Теплоизол ционна конструкци изотермического резервуара
FR2968284B1 (fr) * 2010-12-01 2013-12-20 Gaztransp Et Technigaz Barriere d'etancheite pour une paroi de cuve
FR3002515B1 (fr) * 2013-02-22 2016-10-21 Gaztransport Et Technigaz Paroi de cuve comportant un element traversant
FR3025122B1 (fr) * 2014-09-01 2017-03-31 Gaztransport Et Technigaz Piece d'angle et dispositif et procede de pliage pour former une ondulation dans une piece d'angle
KR101687604B1 (ko) * 2014-09-25 2016-12-19 한국과학기술원 초저온 액체 저장 시스템용 금속 멤브레인 조립체 및 그 제조 방법
FR3038690B1 (fr) * 2015-07-06 2018-01-05 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante ayant une membrane d'etancheite secondaire equipee d'un arrangement d'angle a toles metalliques ondulees
FR3039248B1 (fr) 2015-07-24 2017-08-18 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante munie d'une piece de renfort
RU2600419C1 (ru) * 2015-08-13 2016-10-20 Общество с ограниченной ответственностью проектно-конструкторское бюро "БАЛТМАРИН" Мембранный танк для сжиженного природного газа (тип вм)
FR3050008B1 (fr) * 2016-04-11 2018-04-27 Gaztransport Et Technigaz Cuve etanche a membranes d'etancheite ondulees

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847758A2 (fr) * 2006-04-20 2007-10-24 Korea Gas Corporation Réservoir de stockage de gaz naturel liquéfié comportant une structure d'isolation améliorée, et son procédé de fabrication
FR2936784A1 (fr) * 2008-10-08 2010-04-09 Gaztransp Et Technigaz Cuve a membrane ondulee renforcee
KR20100060348A (ko) * 2008-11-27 2010-06-07 삼성중공업 주식회사 액화천연가스 화물창의 단열구조
KR20150140466A (ko) * 2014-06-05 2015-12-16 삼성중공업 주식회사 액화가스 화물창 및 이에 사용되는 방벽보강부재
US20170159888A1 (en) 2014-07-11 2017-06-08 Kc Lng Tech Co., Ltd. Anchor structure, and liquefied natural gas storage tank comprising said anchor structure
WO2016021948A1 (fr) 2014-08-06 2016-02-11 한국가스공사 Structure de coin de réservoir de stockage de gnl

Also Published As

Publication number Publication date
FR3084438B1 (fr) 2020-07-31
FR3084438A1 (fr) 2020-01-31
CN112513515A (zh) 2021-03-16
EP3827195A1 (fr) 2021-06-02
KR102542637B1 (ko) 2023-06-13
RU2762476C1 (ru) 2021-12-21
US11821587B2 (en) 2023-11-21
CN112513515B (zh) 2023-03-14
PH12021550183A1 (en) 2022-02-14
US20210140586A1 (en) 2021-05-13
KR20210036943A (ko) 2021-04-05

Similar Documents

Publication Publication Date Title
FR3069044A1 (fr) Cuve etanche et thermiquement isolante
EP3473915B1 (fr) Cuve etanche et thermiquement isolante
WO2018024981A1 (fr) Structure de paroi etanche
FR3077278A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2018024982A1 (fr) Structure de paroi etanche
WO2020193665A1 (fr) Cuve étanche et thermiquement isolante
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
WO2020188107A1 (fr) Cuve étanche et thermiquement isolante
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
WO2019215404A1 (fr) Paroi de cuve étanche comprenant une membrane d'étanchéité
WO2019239071A1 (fr) Cuve étanche et thermiquement isolante à ondulations continues dans le dôme liquide
FR3073270B1 (fr) Cuve etanche et thermiquement isolante comportant des dispositifs d'ancrage des panneaux isolants primaires sur des panneaux isolants secondaires
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
EP3827195A1 (fr) Cuve etanche et thermiquement isolante
WO2021233712A1 (fr) Installation de stockage pour gaz liquéfié
WO2021037483A1 (fr) Cuve étanche et thermiquement isolante à joints isolants anti-convectifs
FR3111178A1 (fr) Cuve étanche et thermiquement isolante intégrée dans une structure porteuse
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2019012237A1 (fr) Cuve etanche et thermiquement isolante a bande de support incurvee
WO2023186866A1 (fr) Cuve étanche et thermiquement isolante
FR3077116A1 (fr) Cuve etanche et thermiquement isolante
WO2022053320A1 (fr) Cuve étanche et thermiquement isolante
FR3111176A1 (fr) Paroi de cuve pour cuve étanche et thermiquement isolante
FR3118796A1 (fr) Installation de stockage pour gaz liquéfié

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005332

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019761920

Country of ref document: EP

Ref document number: 2021101088

Country of ref document: RU