EP3804089A1 - Stator de machine electrique tournante - Google Patents

Stator de machine electrique tournante

Info

Publication number
EP3804089A1
EP3804089A1 EP19727431.9A EP19727431A EP3804089A1 EP 3804089 A1 EP3804089 A1 EP 3804089A1 EP 19727431 A EP19727431 A EP 19727431A EP 3804089 A1 EP3804089 A1 EP 3804089A1
Authority
EP
European Patent Office
Prior art keywords
notches
stator
ring
stator according
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19727431.9A
Other languages
German (de)
English (en)
Inventor
Xavier JANNOT
François TURCAT
Cédric Plasse
Olivier Gas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moteurs Leroy Somer SAS
Original Assignee
Moteurs Leroy Somer SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moteurs Leroy Somer SAS filed Critical Moteurs Leroy Somer SAS
Publication of EP3804089A1 publication Critical patent/EP3804089A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to rotating electrical machines and more particularly the stators of such machines.
  • JP 2 875497 relates to an electric machine stator comprising a toothed crown whose portions between two consecutive teeth are thinned on the side of the air gap.
  • JP 2011-097723 discloses individual teeth reported on a cylinder head.
  • the breech household notches completely open or semi-open towards the gap, so as to allow the introduction of windings.
  • the half-open notches receive electrical conductors of circular cross section arranged in bulk, while the open notches house electrical conductors of rectangular cross section, arranged in a row.
  • the openings of the notches to the gap can produce significant electromagnetic disturbances, including an increase in the "magnetic" air gap due to flux fringes, higher iron losses on the rotor surface for the same reason, or else pulsating couples because the variations of permeance are relatively brutal.
  • the patent application FR 3,019,947 describes a stator comprising a toothed crown comprising teeth interconnected by material bridges and defining between them notches for receiving the coils, the notches being open radially outwards. The openings of the notches are closed by a yoke attached to the toothed crown.
  • the invention responds to this need with the aid of a stator comprising:
  • a crown comprising:
  • windings arranged in the notches of the ring at least a portion of these material bridges having at least one deformable zone that can deform during assembly of the cylinder head on the ring and / or the insertion of the windings in the notches.
  • deformable zone includes a zone of the material bridge deforming preferentially during a relative movement of the teeth it connects.
  • the deformation of the material bridge can result in an elongation or shortening of the circumferential dimension of the material bridge, resulting in an elongation or shortening of the circumferential dimension of the crown.
  • the preferential deformation can result from a particular shape given to the bridge.
  • the deformable zone makes it possible to respond to the mechanical stresses experienced by the crown during the assembly of the crown with the cylinder head. In addition, it allows if desired to have more open slots before mounting the cylinder head and therefore a greater clearance between the coils and the wall of the notches during the insertion of the coils, which facilitates it and reduces the risk of insulation damage.
  • the cylinder head makes it possible to close the notches of the crown and to keep the coils in the notches after their insertion.
  • the cylinder head can be assembled with the crown in various ways.
  • the deformable areas of the material bridges facilitate this assembly by providing some flexibility to the crown, which allows it to adapt to the shape of the cylinder head during assembly of the latter, the cylinder head, more rigid, imposing its shape.
  • the deformable zone preferably forms a clearance between the material bridge and the corresponding winding, which can facilitate the penetration of the varnish during the impregnation of the stator.
  • the stator can be used as a closed impregnation chamber by sealing the ends of the stator only. The tooling is thus simplified. This also reduces the amount of varnish lost and cleaning operations.
  • notches open radially outwardly allows the coils to be inserted into the notches by a radial inward movement of the notches.
  • the installation of the coils is facilitated, firstly in that the access to the interior of the notches is easier, being open notches completely and towards the outside rather than the gap, and secondly in that the space available around the ring, for the necessary tools and even for a winding machine, is greater than the space available in the stator bore.
  • such a stator has many advantages from the electromagnetic point of view compared to a stator with notches open to the air gap. It makes it possible to greatly reduce the electromagnetic disturbances related to the presence of the openings of the notches giving onto the air gap in the prior art.
  • the filling of the notches being facilitated, the filling rate can be improved, which can further increase the performance of the machine.
  • the volume torque can be increased.
  • the absence of opening of the notches to the air gap reduces the pulsations of notches.
  • the electromagnetic performances of the machine are improved.
  • At least one notch may have opposite edges parallel to each other, better all the notches.
  • the width of the notches is preferably substantially constant over its entire height.
  • At least one tooth may be generally trapezoidal when observed in section in a plane perpendicular to the axis of the stator.
  • all the bridges of material each have at least one deformable zone. This makes it possible to vary the diameter of the crown over a larger value range and to have more homogeneous magnetic properties.
  • the bridges of material are continuous with the teeth, extending from the base of the latter,
  • the material bridges are integral with the teeth
  • the teeth have a continuity of material between them at their base via the material bridges.
  • each material bridge has a single deformable zone.
  • the deformable zones may or may not be centered within the corresponding material bridge.
  • each deformable zone has the shape of a fold defining at least one groove on one side of the material bridge, for example that facing the air gap, and a protruding projection on the opposite side.
  • the grooves are open towards the gap and protruding reliefs extend into the bottom of the notch.
  • the projecting reliefs extend into a recess in the bottom of the corresponding notch, the protruding reliefs being in particular of height less than or equal to the depth of said recess. This prevents the reliefs protrude into the bottom of the notch, which facilitates the filling of the notch by the coils.
  • the height of the protruding reliefs remains less than or equal to the depth of said recess.
  • the bridges of material having a deformable zone may have a median axis, when the stator is observed along the axis of rotation, curve or in the form of a broken line, in particular in the form of an arch or a V.
  • the deformable zone is an area of the bridge of material that can stretch and deform by stretching, to form a necking when mounting the crown on the cylinder head and / or the insertion of the coils in the notches.
  • the deformable areas are areas of the material bridge that are magnetically saturated during operation of the machine. This improves the passage of the electromagnetic flux between the notches and the air gap, which allows to minimize the harmonics, and to obtain more torque by desaturation of the teeth and the cylinder head.
  • the bottom of the notches each has at least one flat portion against which a winding, preferably of substantially rectangular section, is supported.
  • the flat portion or portions are substantially perpendicular to the radial axis of the notch.
  • the bottom of the notch may be flat, with the exception of a recess.
  • the bottom of the notch may be completely flat and the material bridge may be deformed by stretching to form a necking, as mentioned above.
  • the deformable zone or the recess preferably forms a clearance between the material bridge and the corresponding winding, which can facilitate the penetration of the varnish during the impregnation of the stator.
  • the crown has reliefs on its radially outer surface, cooperating with cooperating reliefs, in particular nested one inside the other of the cylinder head.
  • Such reliefs allow by cooperation of forms to maintain the crown and the yoke fixed relative to each other.
  • the cooperating reliefs are preferably of the dovetail and mortise type.
  • the crown can be made by helically winding a sheet metal strip having teeth connected by the material bridges, the opposite edges of each notch preferably becoming substantially parallel to each other when the strip is wound on itself to form the ring.
  • the strip may be formed of sectors each having a plurality of teeth, the sectors being connected by links, these sectors being cut in a sheet metal strip.
  • the connections may be flexible bridges connecting the sectors to each other and / or parts of complementary shapes, for example of the dovetail and mortise type or complementary reliefs bearing against each other, especially when the crown is kept in compression by the cylinder head.
  • the complementary shapes can be on the material bridges so that the different sectors are assembled at the bridges of material.
  • the assembly of the complementary shapes of the different sectors is outside the deformable zones of the material bridges. This facilitates assembly, especially in the case of large machines.
  • the sectors have recessed shapes cooperating with complementary projecting forms of an adjacent sector.
  • the ring comprises a stack of pre-cut magnetic sheets.
  • the ring is manufactured by additive manufacturing, for example by sintering powder.
  • the cylinder head can be made by directly winding a sheet metal strip if its width allows it, forming or not in said sheet metal strip adapted slots during its cutting, so as to facilitate this winding, by stacking pre-cut magnetic sheets or by additive manufacturing, for example by powder sintering.
  • the cylinder head is attached to the crown after the installation of the windings in the notches.
  • the coils can be arranged in the notches in a concentrated or distributed manner.
  • distributed is meant that at least one of the windings passes successively in two not adjacent notches.
  • the coils are arranged in the notches in a distributed manner, in particular when the number of rotor poles is less than or equal to 8.
  • the windings each comprise at least one electrical conductor which may be in cross section of circular shape, or of polygonal shape with rounded edges, preferably of rectangular shape, this list not being limiting.
  • the conductors When the conductors are of circular cross section, they can be arranged in the notch according to a hexagonal stack. When the conductors are of polygonal cross section, they can be arranged in the notch in one or more rows oriented radially. The optimization of the stack can allow to have in the notches a larger amount of electrical conductors and thus to obtain a stator of greater power at constant volume.
  • the electrical conductors can be arranged randomly in the notches or rows.
  • the electrical conductors are stored in the notches.
  • rows is meant that the conductors are not arranged in the notches in bulk but in an orderly manner. They are stacked in the slots in a non-random manner, being for example arranged in one or more rows of aligned electrical conductors, in particular in one or two rows, preferably in a single row.
  • the electrical conductors are preferably electrically isolated from the outside by an insulating coating, in particular an enamel.
  • the coils are separated from the walls of the notch by an insulator, in particular by at least one insulating sheet.
  • an insulator in particular by at least one insulating sheet.
  • Such a sheet insulator allows better electrical insulation of the windings relative to the notch.
  • each notch receives at least two coils, in particular at least two coils of different phases. These two windings can be superimposed radially.
  • the two coils can be separated from each other by at least one insulating sheet, preferably by at least two sheets of insulation.
  • Each winding can be formed of several turns.
  • the windings are said to be in pins, in particular U-shaped ("U-pin” in English) or straight, I-shaped ("I-pin” in English) pins, and in this case comprise an I-shaped or U-shaped portion whose ends are welded to conductors out of the corresponding notch.
  • the stator can be twisted ("skewing" in English). Such twisting may help to clamp the coils into the notches and reduce the harmonic notches.
  • the invention also relates to a rotating electrical machine comprising a stator as defined above.
  • the machine can be synchronous or not.
  • the machine can be reluctant. It can constitute a synchronous motor.
  • the rotating electrical machine may comprise a wound rotor or permanent magnets.
  • the subject of the invention is also a process for manufacturing a stator as defined above, in which the step of inserting the coils into the notches of the stator ring is implemented.
  • the method comprises a step of deformation of the deformable zone or zones when mounting the cylinder head on the ring and / or the insertion of the windings in the notches.
  • Such deformation can change the diameter of the crown and the width of the notches.
  • the step of inserting the coils into the notches can be implemented so as to widen the notches by extension of the material bridges. This also causes an increase in the outer diameter of the crown. This facilitates the insertion of the windings.
  • the coils are preferably inserted into the slots by a radial inward movement.
  • the stage of mounting the cylinder head on the ring may cause a decrease in the inner diameter of the ring by tightening the material bridges.
  • the method may comprise a step of cutting the crown and the yoke simultaneously in the same sheet with one or more common cuts, including a single cut.
  • the mounting of the cylinder head on the ring may cause a decrease in the outer diameter of the ring by tightening the material bridge or bridges.
  • the method may comprise a step of deforming the deformable zones to increase the diameter of the ring so as to reduce the possible clearance between the ring and the cylinder head after the step of mounting the cylinder head on the ring.
  • FIG. 1 is a diagrammatic and partial cross-section of a machine comprising a stator produced in accordance with the invention
  • FIG. 2 schematically represents a portion of the stator ring of the machine of FIG. 1,
  • FIG. 3 illustrates the portion of the stator ring of FIG. 2, the deformable zones being widened
  • FIG. 4 represents the portion of the stator ring of FIG. 3, the deformable zones being tightened
  • FIGS. 5 to 7 illustrate variants of the shape of the material bridges and the notches
  • FIG. 8 illustrates a variant of the portion of the stator ring, the deformable zones being widened
  • FIG. 9 represents the portion of the stator ring of FIG. 8, the deformable zones being constricted
  • FIGS. 10 to 13 illustrate variant portions of the stator ring.
  • FIG. 1 illustrates a rotary electrical machine 10 comprising a rotor 1 and a stator 2.
  • the stator makes it possible to generate a rotating magnetic field driving the rotor 1, in the context of a synchronous motor, and in the case of an alternator, the rotation of the rotor induces an electromotive force in the stator windings.
  • the stator 2 comprises windings 22, which are arranged in notches 21 formed between teeth 23 of a toothed crown 25.
  • the notches are closed on the air gap side by material bridges 27, each connecting two consecutive teeth of the crown 25.
  • the stator 2 comprises a yoke 29 attached to the ring 25.
  • the notches 21 are, in the example described, with radial edges 33 parallel to each other, and are, in section in a plane perpendicular to the axis of rotation X of the machine, of substantially rectangular shape.
  • the bottom of the notches 35 is of a shape substantially complementary to that of the windings 22, with the exception of a recess 40.
  • the bottom of the notches 35 has two planar portions 30 on each side. other of the recess 40, against which the rectangular windings 22 are supported.
  • the bottom of the notches 35 is connected to the radial edges 33 by rounded edges 36.
  • the recess 40 is in the form of a longitudinal groove extending along the axis of rotation X of the machine, centered on the bottom of the notch 21.
  • the recess 40 preferably has a depth p between 0.4 mm and 1 mm, for example equal to 0.6 mm.
  • the bridges of material 27 preferably each have a deformable zone 32 making it possible to vary their circumferential dimension e, corresponding to the width of the notches 21, and in this way to vary the average internal diameter 2R of the ring 25.
  • the deformable zones 32 are in the form of folds.
  • the material bridges 27 have a variable width, the deformable areas 32 being the areas of smaller width.
  • the smallest width of the material bridges 27 is preferably between 0.3 mm and 0.6 mm, for example equal to 0.4 mm.
  • each fold defines on the bottom side of the notches 35 a protruding relief 42 extending into the recess 40 and, on the side of the air gap 46, a groove 48.
  • Each projecting relief 42 is in the form of a rounded rib at its apex. It has a height h less than the depth p of the recess 40, so as not to exceed it.
  • the grooves 48 are in the form of grooves of rounded section in a plane perpendicular to the X axis.
  • the grooves 48 and projecting reliefs 42 bend.
  • the projecting reliefs 42 have a height h, mlx greater than the height h without deformation and the recesses 40 have a depth p mxX greater than depth of the recess p without deformation, the height h, mlx remaining lower than the depth p müX of the recess 40 correspondent.
  • the ring 25 and / or the yoke 29 are each formed of a stack of magnetic sheets stacked along the X axis, the sheets being for example identical and superimposed exactly. They can be held together by clipping, rivets, tie rods, welds and / or any other technique.
  • the magnetic sheets are preferably magnetic steel.
  • the teeth 23 of the ring 25 have complementary reliefs 56 on the surface for clipping the various sheets forming the ring 25 between them.
  • the complementary reliefs 56 may be on all the teeth 23 or on a portion of the teeth 23 only, for example on a tooth 23 out of two.
  • the sheets are glued together or assembled otherwise.
  • the yoke 29 may have complementary surface reliefs for clipping the different plates forming the yoke 29 between them.
  • the crown and / or the cylinder head can still be formed of a cut sheet metal strip wound on itself.
  • the yoke 29 is mounted on the ring 25 by cooperation of shapes.
  • the ring 25 and the yoke 29 have complementary reliefs 49 on the outer surface of the ring and the inner surface of the cylinder head, to maintain them in position relative to each other.
  • the coils 22 may be arranged in the notches 21 in a concentrated or distributed manner, preferably distributed.
  • the electrical conductors 34 of the windings 22 are arranged in the notches in a row.
  • the electrical conductors 34 are preferably of flattened rectangular cross section and are superimposed radially for example in a single row.
  • the electrical conductors 34 are enamelled or coated with any other suitable insulating coating.
  • Each notch 21 can receive two coils 22 stacked of different phases.
  • Each coil 22 may, in cross section, be of substantially rectangular shape.
  • Each coil 22 is surrounded by a sheet of insulation 37 for isolating the windings of the walls 33 and 36 of the notch and the coils 22 of different phases.
  • the electrical conductors 22 are assembled in coils 22 out of the notches 21 and surrounded by an insulating sheet 27 and the coils 22 with the insulating sheets 37 are inserted into the notches 21. This operation is facilitated by the fact that the notches are open completely radially outwards, and by the fact that the material bridges are deformable.
  • the rotor 1 shown in FIG. 1 comprises a central opening 5 for mounting on a shaft and comprises a rotor magnetic mass 3 extending axially along the axis of rotation X of the rotor, this rotor mass being for example formed by a package of magnetic sheets stacked along the X axis, the sheets being for example identical and superimposed exactly.
  • the rotor 1 comprises for example a plurality of permanent magnets 7 arranged in housings 8 of the rotor magnetic mass 3. In a variant, the rotor is wound.
  • the stator can be obtained by means of the manufacturing method which will now be described.
  • the coils 22 are inserted into the notches 21 of the ring 25 by a radial displacement of the coils 21 towards the inside of the notches 21.
  • the notches 21 can expand by deformation of the deformable areas of the coils 21. material bridges 27.
  • the outer diameter of the ring 25 can thus be larger than before winding.
  • the yoke 29 is force-applied on the ring 27.
  • This assembly can cause a decrease in the enlarged outer diameter of the ring 25 by deformation of the deformable areas 32.
  • the clearance between the crown and the yoke is then minimal.
  • the embodiment of Figure 5 differs from that of Figures 1 and 2 in that the bottom of the notch 21 does not have a recess.
  • the protruding reliefs are of rounded sectional shape in a plane perpendicular to the X axis.
  • FIG. 6 differs from that of FIGS. 1 and 2 in that the bottom of the notch 21 does not have a recess and in that the folds are each formed of a groove 50 facing towards this bottom. the notch 21 and a protruding relief 52 extending in the gap 46.
  • FIG. 7 differs from that of FIG. 5 in that the protruding grooves 48 and reliefs 42 have a V-shaped broken line profile and that the bottom of the notch 21 is of decreasing width towards the relief projecting from the radial edges 33 of the notch 21.
  • FIGS. 8 and 9 differs from that of FIGS. 1 and 2 in that the deformable zone is an area that can stretch and deform by stretching to form a necking 60. When stretched, like this is shown in Figure 8, the deformable zone 32 may thin locally. Before mounting the yoke, the material bridge 27 may have a constant thickness, as illustrated in FIG. 9.
  • the embodiment of FIG. 10 differs from that of FIGS. 1 and 2 in that the bottom of the hole has two deformable zones 32 as previously described.
  • FIGS. 11 to 13 differ from that of FIGS. 1 and 2 in that at least a portion of the material bridges 27 have complementary reliefs 62 and 64. These complementary reliefs 62 and 64 may be in an area of material bridge 27 different from the deformable zone 32.
  • the ring 25 is manufactured by assembling sectors of sheets which are assembled together circumferentially via the complementary reliefs 62 and 64.
  • the complementary reliefs 62 and 64 may be complementary reliefs which are fixed to one another, for example tails donde and mortise, as shown in Figure 11. They allow to fix two sectors between them whether in extension or compression of the crown. As a variant, as illustrated in FIGS.
  • the complementary reliefs 62 and 64 are respectively projecting and recessed reliefs of complementary shapes which bear against one another without being fastened thereon. reliefs 62 and 64 between them, by compression of the ring 25, in particular by the cylinder head 29. They make it possible to maintain two adjacent sectors by interlocking the reliefs 62 and 64 and by supporting the reliefs 62 and 64 between them while maintaining the crown in compression.
  • the invention is not limited to the exemplary bridges of material illustrated and these can be made with other forms still, multiple corrugations for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

La présente invention concerne un stator, comportant : - une couronne (25) comportant : o des dents ménageant entre elles des encoches (21) ouvertes radialement vers l'extérieur, et o des ponts de matière (27) reliant chacun deux dents adjacentes à leur base du côté de l'entrefer (46), - une culasse rapportée sur la couronne (25), et - des bobinages (22) disposés dans les encoches (21) de la couronne (25), au moins une partie des ponts de matière (27) présentant au moins une zone déformable (32) pouvant se déformer lors du montage de la culasse sur la couronne (25).

Description

STATOR DE MACHINE ELECTRIQUE TOURNANTE
La présente invention concerne les machines électriques tournantes et plus particulièrement les stators de telles machines.
JP 2 875497 porte sur un stator de machine électrique comportant une couronne dentelée dont les portions situées entre deux dents consécutives sont amincies du côté de l'entrefer.
JP 2011-097723 (D3) divulgue des dents individuelles rapportées sur une culasse.
Dans la plupart des stators connus, la culasse ménage des encoches totalement ouvertes ou semi-ouvertes en direction de l’entrefer, de manière à permettre l’introduction des bobinages. Généralement, les encoches semi-ouvertes reçoivent des conducteurs électriques de section transversale circulaire disposés en vrac, tandis que les encoches ouvertes logent des conducteurs électriques de section transversale rectangulaire, disposés de manière rangée.
Or, les ouvertures des encoches vers l’entrefer peuvent produire des perturbations électromagnétiques non négligeables, notamment une augmentation de l’entrefer « magnétique » en raison des franges de flux, des pertes fer plus élevées à la surface du rotor pour la même raison, ou encore des couples pulsatoires car les variations de perméance sont relativement brutales.
La demande de brevet FR 3 019 947 décrit un stator comportant une couronne dentelée comportant des dents reliées entre elles par des ponts de matière et définissant entre elles des encoches de réception des bobines, les encoches étant ouvertes radialement vers l’extérieur. Les ouvertures des encoches sont fermées par une culasse rapportée sur la couronne dentelée.
Il existe un besoin pour bénéficier d’un stator de machine électrique tournante d’assemblage aisé permettant un remplissage efficace des encoches, tout en assurant des performances électromagnétiques satisfaisantes.
Résumé
L’invention répond à ce besoin à l’aide d’un stator comportant :
une couronne comportant :
o des dents ménageant entre elles des encoches ouvertes radialement vers l’extérieur, et o des ponts de matière reliant chacun deux dents adjacentes à leur base du côté de l'entrefer,
- une culasse rapportée sur la couronne, et
des bobinages disposés dans les encoches de la couronne, au moins une partie de ces ponts de matière présentant au moins une zone déformable pouvant se déformer lors du montage de la culasse sur la couronne et/ou de l’insertion des bobinages dans les encoches.
Par « zone déformable », on comprend une zone du pont de matière se déformant de manière préférentielle lors d’un mouvement relatif des dents qu’il relie. La déformation du pont de matière peut se traduire par un allongement ou un raccourcissement de la dimension circonférentielle du pont de matière, ce qui entraîne un allongement ou un raccourcissement de la dimension circonférentielle de la couronne. La déformation préférentielle peut résulter d’une forme particulière donnée au pont.
Par « culasse rapportée », il faut comprendre que la culasse n’est pas réalisée d’un seul tenant avec la couronne mais est fixée à cette dernière au cours de la fabrication du stator.
La zone déformable permet de répondre aux contraintes mécaniques subies par la couronne lors de l’assemblage de la couronne avec la culasse. De plus, cela permet si on le souhaite d’avoir des encoches plus ouvertes avant montage de la culasse et donc un jeu plus important entre les bobinages et la paroi des encoches lors de l’insertion des bobinages, ce qui facilite celle-ci et réduit le risque d’endommagement des isolants.
La culasse permet de fermer les encoches de la couronne et de maintenir les bobinages dans les encoches après leur insertion. Lors de la fabrication du stator, la culasse peut être assemblée avec la couronne de diverses manières. Les zones déformables des ponts de matière facilitent cet assemblage en offrant une certaine souplesse à la couronne, ce qui lui permet de s’adapter à la forme de la culasse lors du montage de cette dernière, la culasse, plus rigide, imposant sa forme.
Il est également possible d’assembler la couronne et la culasse avec un jeu entre elles, puis ensuite d’augmenter le diamètre de la couronne en la déformant grâce aux zones déformables pour réduire ce jeu. De plus, la présence des ponts de matière réduit le risque de perte de vernis dans l’entrefer lors de l’imprégnation par un vernis du stator complet. Ceci permet de réduire le besoin de nettoyage.
Elle permet également de réduire la fuite du vernis dans l’entrefer pendant le fonctionnement e la machine sur laquelle le stator est monté. Ceci simplifie la maintenance de la machine.
Le terme « vernis » doit ici s’entendre avec un sens large et couvre tout type de matériau d’imprégnation, notamment polymère.
La zone déformable forme, de préférence, un jeu entre le pont de matière et le bobinage correspondant, ce qui peut faciliter la pénétration du vernis lors de l’imprégnation du stator.
Du fait que les encoches sont fermées après assemblage de la culasse, le risque de fuite du vernis d’imprégnation vers l’entrefer est éliminé. Le stator peut être utilisé comme une enceinte fermée d’imprégnation en assurant une étanchéité aux extrémités du stator seulement. L’outillage est ainsi simplifié. Ceci réduit également la quantité de vernis perdue et les opérations de nettoyage.
Le fait que les encoches soient ouvertes radialement vers l’extérieur permet que les bobinages soient insérés dans les encoches par un déplacement radial vers l’intérieur des encoches. L’installation des bobinages est facilitée, d’une part en ce que l’accès à l’intérieur des encoches est plus aisé, s’agissant d’encoches ouvertes totalement et en direction de l’extérieur plutôt que vers l’entrefer, et d’autre part en ce que l’espace disponible autour de la couronne, pour les outillages nécessaires, voire pour une machine à bobiner, est plus important que l’espace disponible dans l’alésage du stator.
En outre, un tel stator présente de nombreux avantages du point de vue électromagnétique par rapport à un stator présentant des encoches ouvertes vers l’entrefer. Il permet de réduire fortement les perturbations électromagnétiques liées à la présence des ouvertures des encoches donnant sur l’entrefer dans l’art antérieur. En outre, le remplissage des encoches étant facilité, le taux de remplissage peut être amélioré, ce qui peut permettre d’augmenter encore les performances de la machine. Le couple volumique peut être augmenté. L’absence d’ouverture des encoches vers l’entrefer permet de réduire les pulsations d’encoches. Les performances électromagnétiques de la machine en sont améliorées.
Stator
Encoches
Au moins une encoche peut être à bords opposés parallèles entre eux, mieux toutes les encoches. La largeur des encoches est, de préférence, sensiblement constante sur toute sa hauteur.
Au moins une dent, mieux toutes les dents, peut être de forme générale trapézoïdale lorsqu’observée en section dans un plan perpendiculaire à l’axe du stator.
De préférence, tous les ponts de matière présentent chacun au moins une zone déformable. Ceci permet de faire varier le diamètre de la couronne sur une plus grande plage de valeur et d’avoir des propriétés magnétiques plus homogènes.
De préférence, les ponts de matière sont continus avec les dents, s’étendant de la base de ces dernières,
De préférence, les ponts de matière sont venus de matière avec les dents,
De préférence, les dents présentent une continuité de matière entre elles à leur base par l’intermédiaire des ponts de matière.
De préférence, chaque pont de matière présente une unique zone déformable.
Les zones déformables peuvent être centrées ou non au sein du pont de matière correspondant.
De préférence, chaque zone déformable a la forme d’un pli définissant au moins une gorge sur l’un des côtés du pont de matière, par exemple celui tourné vers l’entrefer, et un relief en saillie du côté opposé. De préférence, les gorges sont ouvertes vers l’entrefer et les reliefs en saillie s’étendent dans le fond de l’encoche.
De préférence, les reliefs en saillie s’étendent dans un renfoncement du fond de l’encoche correspondante, les reliefs en saillie étant notamment de hauteur inférieure ou égale à la profondeur dudit renfoncement. Ceci permet d’éviter que les reliefs ne dépassent dans le fond de l’encoche, ce qui facilite le remplissage de l’encoche par les bobinages. De préférence, après déformation du pont de matière, la hauteur des reliefs en saillie reste inférieure ou égale à la profondeur dudit renfoncement. Les ponts de matière ayant une zone déformable peuvent présenter un axe médian, lorsque le stator est observé selon l’axe de rotation, courbe ou sous forme d’une ligne brisée, notamment sous la forme d’une arche ou d’un V.
En variante, la zone déformable est une zone du pont de matière pouvant s’étirer et se déformer par étirement, pour former une striction lors du montage de la couronne sur la culasse et/ou de l’insertion des bobinages dans les encoches.
De préférence, les zones déformables sont des zones du pont de matière qui sont saturées magnétiquement durant le fonctionnement de la machine. Ceci améliore le passage du flux électromagnétique entre les encoches et l’entrefer, ce qui permet de minimiser les harmoniques, et d’obtenir plus de couple par désaturation des dents et de la culasse.
De préférence, le fond des encoches présente chacune au moins une portion plane contre laquelle un bobinage, de préférence de section sensiblement rectangulaire, est en appui. La ou les portions planes sont sensiblement perpendiculaires à l’axe radial de l’encoche.
Le fond de l’encoche peut être plat, à l’exception d’un renfoncement.
En variante, le fond de l’encoche peut être totalement plat et le pont de matière peut se déformer par étirement pour former une striction, comme mentionné plus haut.
La zone déformable ou le renfoncement forme, de préférence, un jeu entre le pont de matière et le bobinage correspondant, ce qui peut faciliter la pénétration du vernis lors de l’imprégnation du stator.
Ceci permet un bon remplissage des encoches par les bobinages dans le cas de bobinages de section transversale rectangulaire, en permettant aux bobinages de prendre appui à plat dans le fond de l’encoche.
Interface culasse - couronne
De préférence, la couronne présente des reliefs sur sa surface radialement extérieure, coopérant avec des reliefs coopérants, notamment imbriqués l’un dans l’autre de la culasse. De tels reliefs permettent par coopération de formes de maintenir la couronne et la culasse fixes l’un par rapport à l’autre. Les reliefs coopérants sont, de préférence, du type queue d’aronde et mortaise.
La couronne peut être réalisée par enroulement en hélice d’une bande de tôle comportant des dents reliées par les ponts de matière, les bords opposés de chaque encoche devenant, de préférence, sensiblement parallèles entre eux lorsque la bande est enroulée sur elle-même pour former la couronne.
En variante, la bande peut être formée de secteurs comportant chacun plusieurs dents, les secteurs étant reliés par des liaisons, ces secteurs étant découpés dans une bande de tôle. Les liaisons peuvent être des ponts flexibles reliant les secteurs entre eux et/ou des parties de formes complémentaires, par exemple du type queue d’aronde et mortaise ou des reliefs complémentaires venant en appui l’un contre l’autre, notamment lorsque la couronne est maintenue en compression par la culasse.
Les formes complémentaires peuvent être sur les ponts de matière de sorte que les différents secteurs sont assemblés au niveau des ponts de matière. De préférence, l’assemblage des formes complémentaires des différents secteurs se fait hors des zones déformables des ponts de matière. Ceci facilite l’assemblage, notamment dans le cas de machines volumineuses. Par exemple, les secteurs présentent des formes en creux coopérant avec des formes en saillie complémentaires d’un secteur adjacent.
En variante, la couronne comporte un empilement de tôles magnétiques prédécoupées.
En variante encore, la couronne est fabriquée par fabrication additive, par exemple par frittage de poudre.
La culasse peut être réalisée en enroulant directement en hélice une bande de tôle si sa largeur le permet, en formant ou non dans ladite bande de tôle des fentes adaptées lors de sa découpe, de manière à faciliter cet enroulement, en empilant des tôles magnétiques prédécoupées, ou par fabrication additive, par exemple par frittage de poudre.
La culasse est rapportée sur la couronne après l’installation des bobinages dans les encoches.
Bobinages
Les bobinages peuvent être disposés dans les encoches de manière concentrée ou répartie.
Par « concentrée », on comprend que les bobinages sont enroulés chacun autour d’une seule dent.
Par « répartie », on entend qu’au moins l’un des bobinages passe successivement dans deux encoches non adjacentes. De préférence, les bobinages sont disposés dans les encoches de manière répartie, notamment lorsque le nombre de pôles du rotor est inférieur ou égal à 8.
Les bobinages comportent chacun au moins un conducteur électrique qui peut être en section transversale de forme circulaire, ou de forme polygonale à arêtes arrondies, préférentiellement de forme rectangulaire, cette liste n’étant pas limitative.
Lorsque les conducteurs sont de section transversale circulaire, ils peuvent être disposés dans l’encoche selon un empilement hexagonal. Lorsque les conducteurs sont de section transversale polygonale, ils peuvent être disposés dans l’encoche en une ou plusieurs rangées orientées radialement. L’optimisation de l’empilement peut permettre de disposer dans les encoches une plus grande quantité de conducteurs électriques et donc d’obtenir un stator de plus grande puissance, à volume constant.
Les conducteurs électriques peuvent être disposés de manière aléatoire dans les encoches ou rangées. De préférence, les conducteurs électriques sont rangés dans les encoches. Par « rangés », on entend que les conducteurs ne sont pas disposés dans les encoches en vrac mais de manière ordonnée. Ils sont empilés dans les encoches de manière non aléatoire, étant par exemple disposés selon une ou plusieurs rangées de conducteurs électriques alignés, notamment selon une ou deux rangées, préférentiellement selon une unique rangée.
Les conducteurs électriques sont de préférence isolés électriquement de l’extérieur par un revêtement isolant, notamment un émail.
De préférence, les bobinages sont séparés des parois de l’encoche par un isolant, notamment par au moins une feuille d’isolant. Un tel isolant en feuille permet une meilleure isolation électrique des bobinages par rapport à l’encoche.
De préférence, chaque encoche reçoit au moins deux bobinages, notamment au moins deux bobinages de phases différentes. Ces deux bobinages peuvent se superposer radialement.
Les deux bobinages peuvent être séparés entre eux par au moins une feuille d’isolant, de préférence par au moins deux feuilles d’isolant.
Chaque bobinage peut être formé de plusieurs spires.
En variante, les bobinages sont dits en épingles, notamment en épingle en forme de U (« U-pin » en anglais) ou droite, en forme de I (« I-pin » en anglais), et comportent dans ce cas une portion en forme de I ou de U dont les extrémités sont soudées à des conducteurs hors de l’encoche correspondante.
Le stator peut être vrillé (« skewing » en anglais). Un tel vrillage peut contribuer à serrer les bobinages dans les encoches et de réduire les harmoniques d’encoches.
Machine et rotor
L’invention a encore pour objet une machine électrique tournante comportant un stator tel que défini précédemment. La machine peut être synchrone ou non. La machine peut être à réluctance. Elle peut constituer un moteur synchrone.
La machine électrique tournante peut comporter un rotor bobiné ou à aimants permanents.
Procédé de fabrication et machine
L’invention a encore pour objet un procédé de fabrication d’un stator tel que défini plus haut, dans lequel on met en œuvre l’étape d’insertion des bobinages dans les encoches de la couronne du stator.
Lors de cette étape, on peut disposer au moins un bobinage dans deux encoches différentes non consécutives de la couronne du stator.
De préférence, le procédé comporte une étape de déformation de la ou des zones déformables lors du montage de la culasse sur la couronne et/ou de l’insertion des bobinages dans les encoches. Une telle déformation peut modifier le diamètre de la couronne et la largeur des encoches.
L’étape d’insertion des bobinages dans les encoches peut être mise en œuvre de sorte à élargir les encoches par extension des ponts de matière. Ceci entraîne également une augmentation du diamètre extérieur de la couronne. Ceci facilite l’insertion des bobinages.
Les bobinages sont, de préférence, insérés dans les encoches par un déplacement radial vers l’intérieur.
L’étape de montage de la culasse sur la couronne peut entraîner une diminution du diamètre intérieur de la couronne par resserrement des ponts de matière. Ceci permet d’assembler la culasse et la couronne tout en ayant un jeu minimal entre ces dernières afin d’améliorer les performances électriques en réduisant la somme des entrefers du pôle magnétique. De préférence, le procédé peut comporter une étape de découpage de la couronne et de la culasse simultanément dans une même tôle avec une ou plusieurs découpes communes, notamment une découpe unique. Dans ce cas, le montage de la culasse sur la couronne peut entraîner une diminution du diamètre extérieur de la couronne par resserrement du ou des ponts de matière. En effet, lors de la découpe de la couronne et de la culasse par une presse, des contraintes sont générées et la matière découpée se relâche ensuite, ce qui entraîne une extension de la matière au-delà de la ligne de découpe et rend difficile l’assemblage des deux parties au niveau de la découpe commune en l’absence desdits ponts.
Le procédé peut comporter une étape de déformation des zones déformables pour augmenter le diamètre de la couronne de sorte à réduire le jeu éventuel entre la couronne et la culasse après l’étape de montage de la culasse sur la couronne.
Description détaillée
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de réalisation non limitatifs de celle-ci, et à l’examen du dessin annexé, sur lequel :
- la figure 1 représente en coupe transversale, de manière schématique et partielle, une machine comportant un stator réalisé conformément à l’invention,
- la figure 2 représente de manière schématique une portion de la couronne du stator de la machine de la figure 1 ,
- la figure 3 illustre la portion de la couronne du stator de la figure 2, les zones déformables étant élargies,
- la figure 4 représente la portion de la couronne du stator de la figure 3, les zones déformables étant resserrées,
- les figures 5 à 7 illustrent des variantes de la forme des ponts de matière et des encoches,
- la figure 8 illustre une variante de portion de la couronne du stator, les zones déformables étant élargies,
- la figure 9 représente la portion de la couronne du stator de la figure 8, les zones déformables étant resserrées, et
- les figures 10 à 13 illustrent des variantes de portion de la couronne du stator. On a illustré à la figure 1 une machine électrique tournante 10 comportant un rotor 1 et un stator 2. Le stator permet de générer un champ magnétique tournant d’entraînement du rotor 1, dans le cadre d’un moteur synchrone, et dans le cas d’un alternateur, la rotation du rotor induit une force électromotrice dans les bobinages du stator.
Les exemples illustrés ci-dessous sont schématiques et les dimensions relatives n’ont pas été nécessairement respectées.
Stator
Le stator 2 comporte des bobinages 22, lesquels sont disposés dans des encoches 21 ménagées entre des dents 23 d’une couronne dentelée 25. Les encoches sont fermées du côté de l’entrefer par des ponts de matière 27, reliant chacun deux dents consécutives de la couronne 25.
Le stator 2 comporte une culasse 29 rapportée sur la couronne 25.
Les encoches 21 sont, dans l’exemple décrit, à bords radiaux 33 parallèles entre eux, et sont, en section dans un plan perpendiculaire à l’axe de rotation X de la machine, de forme sensiblement rectangulaire.
Le fond des encoches 35 est de forme sensiblement complémentaire de celle des bobinages 22, à l’exception d’un renfoncement 40. Dans l’exemple des figures 1 à 4, le fond des encoches 35 présente deux portions planes 30 de part et d’autre du renfoncement 40, contre lesquelles les bobinages 22 rectangulaires sont en appui. Le fond des encoches 35 est relié aux bords radiaux 33 par des arrondis 36.
Le renfoncement 40 se présente sous la forme d’une rainure longitudinale s’étendant le long de l’axe de rotation X de la machine, centrée sur le fond de l’encoche 21.
Le renfoncement 40 présente de préférence une profondeur p comprise entre 0,4 mm et 1 mm, par exemple égale à 0,6 mm.
Les ponts de matière 27 présentent de préférence chacun une zone déformable 32 permettant de faire varier leur dimension circonférentielle e, correspondant à la largeur des encoches 21, et de cette façon de faire varier le diamètre intérieur moyen 2R de la couronne 25.
Dans l’exemple illustré, les zones déformables 32 se présentent sous la forme de plis. Les ponts de matière 27 présentent une largeur variable, les zones déformables 32 étant les zones de plus faible largeur. La plus petite largeur des ponts de matière 27 est de préférence comprise entre 0,3 mm et 0,6 mm, par exemple égale à 0,4 mm.
Comme cela est illustré sur la figure 2, chaque pli définit du côté du fond des encoches 35 un relief en saillie 42 s’étendant dans le renfoncement 40 et, du côté de l’entrefer 46, une gorge 48.
Chaque relief en saillie 42 se présente sous la forme d’une nervure arrondie à son sommet. Il présente une hauteur h inférieure à la profondeur p du renfoncement 40, de sorte à ne pas dépasser de celui-ci.
Les gorges 48 se présentent sous la forme de rainures de section arrondie dans un plan perpendiculaire à l’axe X.
Comme cela est illustré sur la figure 3, lorsque les zones déformables 32 sont étirées, les gorges 48 et reliefs en saillie 42 s’aplatissent pour allonger le pont de matière et ainsi élargir l’encoche.
Comme cela est illustré sur la figure 4, lorsque la couronne 25 est comprimée, les gorges 48 et reliefs en saillie 42 se plient. Les reliefs en saillie 42 présentent une hauteur h,mlx supérieure à la hauteur h sans déformation et les renfoncements 40 présentent une profondeur pmüX supérieure à profondeur du renfoncement p sans déformation, la hauteur h,mlx restant inférieure à la profondeur pmüX du renfoncement 40 correspondant.
La couronne 25 et/ou la culasse 29 sont formées chacune d’un paquet de tôles magnétiques empilées selon l’axe X, les tôles étant par exemple identiques et superposées exactement. Elles peuvent être maintenues entre elles par clipsage, par des rivets, par des tirants, des soudures et/ou toute autre technique. Les tôles magnétiques sont de préférence en acier magnétique.
Dans l’exemple illustré, les dents 23 de la couronne 25 présentent des reliefs complémentaires 56 en surface permettant clipser les différentes tôles composant la couronne 25 entre elles. Les reliefs complémentaires 56 peuvent être sur toutes les dents 23 ou sur une partie des dents 23 seulement, par exemple sur une dent 23 sur deux.
En variante, les tôles sont collées entre elles ou assemblées autrement.
De la même manière, la culasse 29 peut présenter des reliefs complémentaires en surface permettant de clipser les différentes tôles composant la culasse 29 entre elles. La couronne et/ou la culasse peuvent encore être formées d’une bande de tôle découpée enroulée sur elle-même.
La culasse 29 est montée sur la couronne 25 par coopération de formes. La couronne 25 et la culasse 29 présentent des reliefs 49 complémentaires sur la surface externe de la couronne et la surface interne de la culasse, permettant de les maintenir en position l’une par rapport à l’autre.
Bobinages
Les bobinages 22 peuvent être disposés dans les encoches 21 de manière concentrée ou répartie, de préférence répartie.
Dans l’exemple illustré sur la figure 2, les conducteurs électriques 34 des bobinages 22 sont disposés dans les encoches de manière rangée.
Comme illustré sur la figure 2, les conducteurs électriques 34 sont de préférence de section transversale aplatie, rectangulaire et sont superposés radialement par exemple en une seule rangée. Les conducteurs électriques 34 sont émaillés ou revêtus de tout autre revêtement isolant adapté.
Chaque encoche 21 peut recevoir deux bobinages 22 empilés de phases différentes. Chaque bobinage 22 peut, en section transversale, être de forme sensiblement rectangulaire.
Chaque bobinage 22 est entouré d’une feuille d’isolant 37 permettant d’isoler les bobinages des parois 33 et 36 de l’encoche et les bobinages 22 de phases différentes.
Les conducteurs électriques 22 sont assemblés en bobinages 22 hors des encoches 21 et entourés d’une feuille d’isolant 27 et les bobinages 22 avec les feuilles d’isolant 37 sont insérés dans les encoches 21. Cette opération est facilitée par le fait que les encoches sont ouvertes totalement radialement vers l’extérieur, et par le fait que les ponts de matière sont déformables.
Rotor
Le rotor 1 représenté à la figure 1 comporte une ouverture centrale 5 pour le montage sur un arbre et comporte une masse magnétique rotorique 3 s’étendant axialement selon l’axe de rotation X du rotor, cette masse rotorique étant par exemple formée par un paquet de tôles magnétiques empilées selon l’axe X, les tôles étant par exemple identiques et superposées exactement. Le rotor 1 comporte par exemple une pluralité d’aimants permanents 7 disposés dans des logements 8 de la masse magnétique rotorique 3. En variante, le rotor est bobiné.
Procédé de fabrication du stator et machine
Le stator peut être obtenu au moyen du procédé de fabrication qui va maintenant être décrit.
Les bobinages 22 sont insérés dans les encoches 21 de la couronne 25 par un déplacement radial des bobinages 21 vers l’intérieur des encoches 21. Lors de l’insertion des bobinages 22, les encoches 21 peuvent s’élargir par déformation des zones déformables des ponts de matière 27. Le diamètre extérieur de la couronne 25 peut ainsi être plus grand qu’avant bobinage.
Dans une étape suivante, la culasse 29 est rapportée en force sur la couronne 27. Cet assemblage peut entraîner une diminution du diamètre extérieur élargi de la couronne 25 par déformation des zones déformables 32. Le jeu entre la couronne et la culasse est alors minimal.
Le mode de réalisation de la figure 5 diffère de celui des figures 1 et 2 en ce que le fond de l’encoche 21 ne présente pas de renfoncement. Les reliefs en saillie sont de forme arrondie en section dans un plan perpendiculaire à l’axe X.
Le mode de réalisation de la figure 6 diffère de celui des figures 1 et 2 en ce que le fond de l’encoche 21 ne présente pas de renfoncement et en ce que les plis sont formés chacun d’une gorge 50 tournée vers ce fond de l’encoche 21 et d’un relief en saillie 52 s’étendant dans l’entrefer 46.
Le mode de réalisation de la figure 7 diffère de celui de la figure 5 en ce que les gorges 48 et reliefs en saillie 42 ont un profil sous forme de ligne brisée en forme de V et en ce que le fond de l’encoche 21 est de largeur décroissante vers le relief en saillie à partir des bords radiaux 33 de l’encoche 21.
Le mode de réalisation des figures 8 et 9 diffère de celui des figures 1 et 2 en ce que la zone déformable est une zone qui peut s’étirer et se déformer par étirement pour former une striction 60. Lorsqu’elle est étirée, comme cela est illustré sur la figure 8, la zone déformable 32 peut s’amincir localement. Avant le montage de la culasse, le pont de matière 27 peut présenter une épaisseur constante, comme cela est illustré sur la figure 9. Le mode de réalisation de la figure 10 diffère de celui des figures 1 et 2 en ce que le fond de rencoche présente deux zones déformables 32 telles que décrites précédemment.
Les modes de réalisation des figures 11 à 13 diffèrent de celui des figures 1 et 2 en ce qu’au moins une partie des ponts de matière 27 présente des reliefs complémentaires 62 et 64. Ces reliefs complémentaires 62 et 64 peuvent être dans une zone du pont de matière 27 différente de la zone déformable 32. Dans ces modes de réalisation, la couronne 25 est fabriquée par assemblage de secteurs de tôles qui sont assemblés entre eux circonférentiellement par l’intermédiaire des reliefs complémentaires 62 et 64. Les reliefs complémentaires 62 et 64 peuvent être des reliefs complémentaires qui se fixent l’un à l’autre, par exemple des queues d’arondes et mortaises, comme cela est illustré sur la figure 11. Ils permettent de fixer deux secteurs entre eux que ce soit en extension ou compression de la couronne. En variante, comme illustré sur les figures 12 et 13, les reliefs complémentaires 62 et 64 sont des reliefs respectivement en saillie et en retrait de formes complémentaires qui viennent en appui l’un sur l’autre sans qu’il n’y ait fixation des reliefs 62 et 64 entre eux, par compression de la couronne 25, notamment par la culasse 29. Ils permettent de maintenir deux secteurs adjacents par emboîtement des reliefs 62 et 64 et par appui des reliefs 62 et 64 entre eux en maintenant la couronne en compression.
Bien entendu, l’invention n’est pas limitée aux exemples de réalisation qui viennent d’être décrits, et les zones déformables peuvent ne pas être centrées.
L’invention n’est pas limitée aux exemples de ponts de matière illustrée et ces derniers peuvent être réalisées avec d’autres formes encore, à ondulations multiples par exemple.
L’expression « comportant un » doit être comprise comme étant synonyme de « comprenant au moins un ».

Claims

REVENDICATIONS
1. Stator (2), comportant :
- une couronne (25) comportant :
o des dents (23) ménageant entre elles des encoches (21) ouvertes radialement vers l’extérieur, et
o des ponts de matière (27) reliant chacun deux dents (23) adjacentes à leur base du côté de l'entrefer (46),
- une culasse (29) rapportée sur la couronne (25), et
- des bobinages (22) disposés dans les encoches (21) de la couronne (25), au moins une partie des ponts de matière (27) présentant au moins une zone déformable (32) pouvant se déformer lors du montage de la culasse (29) sur la couronne (25).
2. Stator selon la revendication 1, tous les ponts de matière (27) présentant chacun au moins une zone déformable (32).
3. Stator selon l’une quelconque des revendications précédentes, chaque zone déformable (32) ayant la forme d’un pli définissant au moins une gorge (48 ; 50) sur l’un des côtés du pont de matière (27), notamment celui tourné vers l’entrefer, et un relief en saillie (42 ; 52) du côté opposé.
4. Stator selon la revendication 3, le ou les reliefs en saillie (42) s’étendant dans un renfoncement (40) du fond de l’encoche correspondante (21), le ou les reliefs en saillie (42) étant notamment de hauteur h inférieure ou égale à la profondeur p du renfoncement (40).
5. Stator selon l’une des revendications 3 et 4, les gorges (48) étant ouvertes vers l’entrefer (46) et le ou les reliefs en saillie (42) s’étendent dans le fond de l’encoche correspondante (21).
6. Stator selon l'une quelconque des revendications précédentes, les ponts de matière (27) ayant chacun une zone déformable (32) présentant un axe médian de profil, lorsque le stator est observé selon l’axe de rotation, courbe ou sous forme d’une ligne brisée, notamment sous la forme d’une arche ou d’un V.
7. Stator selon la revendication 1 ou 2, la zone déformable (32) étant une zone du pont de matière (27) pouvant s’étirer et se déformer par étirement, pour former une striction (60) lors du montage de la culasse (29) sur la couronne (25) et/ou lors de l’insertion des bobinages (22) dans les encoches (21).
8. Stator selon l'une quelconque des revendications précédentes, les zones déformables (32) étant des zones du pont de matière (27) saturées magnétiquement durant le fonctionnement de la machine, notamment des zones de moindre largeur.
9. Stator selon l'une quelconque des revendications précédentes, les encoches (21) présentant chacune au moins une portion plane (30) contre laquelle un bobinage (22), de préférence de section sensiblement rectangulaire, est en appui.
10. Stator selon l'une quelconque des revendications précédentes, la couronne (25) présentant des reliefs sur sa surface radialement extérieure, coopérant avec des reliefs coopérants de la culasse (29).
11. Stator selon l'une quelconque des revendications précédentes, les bobinages (22) comportant chacun au moins un conducteur électrique (34) de forme, en section transversale, rectangulaire.
12. Stator selon l'une quelconque des revendications précédentes, chaque encoche (21) recevant deux bobinages (22) de phases différentes.
13. Machine électrique tournante (10) comportant un stator (2) selon l’une quelconque des revendications précédentes et un rotor (1).
14. Procédé de fabrication d’un stator selon l'une quelconque des revendications précédentes, comportant une étape de déformation de la ou des zones déformables (32) lors du montage de la culasse (29) sur la couronne (25) et/ou de l’insertion des bobinages (22) dans les encoches (21).
15. Procédé selon la revendication 14, l’étape d’insertion des bobinages dans les encoches étant mise en œuvre de sorte à élargir les encoches (21) par extension des ponts de matière (27).
16. Procédé selon l’une des revendications 14 et 15, l’étape de montage de la culasse (29) sur la couronne (25) entraînant une diminution du diamètre de la couronne (25) par resserrement des ponts de matière (27).
17. Procédé selon la revendication 16, comportant une étape de découpage de la couronne (25) et de la culasse (29) simultanément dans une même tôle par une ou plusieurs découpes communes, notamment par une découpe unique.
EP19727431.9A 2018-06-07 2019-06-04 Stator de machine electrique tournante Pending EP3804089A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854959A FR3082374B1 (fr) 2018-06-07 2018-06-07 Stator de machine electrique tournante
PCT/EP2019/064504 WO2019234031A1 (fr) 2018-06-07 2019-06-04 Stator de machine electrique tournante

Publications (1)

Publication Number Publication Date
EP3804089A1 true EP3804089A1 (fr) 2021-04-14

Family

ID=63557614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19727431.9A Pending EP3804089A1 (fr) 2018-06-07 2019-06-04 Stator de machine electrique tournante

Country Status (7)

Country Link
US (1) US11949284B2 (fr)
EP (1) EP3804089A1 (fr)
JP (1) JP2021526001A (fr)
KR (1) KR20210042261A (fr)
CN (1) CN112219340B (fr)
FR (1) FR3082374B1 (fr)
WO (1) WO2019234031A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817741B2 (en) * 2021-03-23 2023-11-14 Ford Global Technologies, Llc Electrified vehicle having electric machine stator with slot pocket
FR3128073B1 (fr) 2021-10-12 2024-07-12 Nidec Psa Emotors Stator de machine électrique tournante
FR3128074A1 (fr) * 2021-10-12 2023-04-14 Nidec Psa Emotors Stator de machine électrique tournante
GB2615358B (en) * 2022-02-07 2024-06-26 Hispeed Ltd Stator with asymmetric material bridges for an electric machine

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2711008A (en) * 1950-10-26 1955-06-21 Beresford James & Son Ltd Manufacture of stators for electric motors
US3320451A (en) 1961-11-24 1967-05-16 Gen Motors Corp Dynamoelectric machine assembly
US4801832A (en) 1987-11-04 1989-01-31 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
JPH027839A (ja) 1988-06-27 1990-01-11 Mitsubishi Electric Corp 電動機の固定子鉄心
JP3107177B2 (ja) * 1992-07-27 2000-11-06 株式会社安川電機 電動機のステータ
JP2875497B2 (ja) 1995-06-30 1999-03-31 アスモ株式会社 電動機のステータ
JPH11332140A (ja) * 1998-05-08 1999-11-30 Sankyo Seiki Mfg Co Ltd 放射リブ巻線式回転電機の電機子構造
US6225725B1 (en) * 1999-02-08 2001-05-01 Itoh Electric Co. Ltd. Manufacturing process of a divided type stator
SE520528C2 (sv) 1999-05-03 2003-07-22 Abb Ab Stator till en roterande elektrisk maskin och förfarande för framställning av denna
DE19934858A1 (de) * 1999-07-24 2001-01-25 Abb Research Ltd Rotierende elektrische Maschine und Verfahren zu deren Herstellung
JP3678102B2 (ja) * 2000-02-02 2005-08-03 株式会社日立製作所 電動機
JP3719595B2 (ja) * 2002-02-21 2005-11-24 多摩川精機株式会社 モータのステータ構造
US20030193260A1 (en) 2002-04-16 2003-10-16 Reiter Frederick B. Composite power metal stator sleeve
JP3744461B2 (ja) * 2002-04-26 2006-02-08 株式会社デンソー 回転電機のステータ
US6935011B2 (en) * 2002-08-05 2005-08-30 Visteon Global Technologies, Inc. Method of forming a stator for a brushless motor
US6844653B2 (en) 2003-03-31 2005-01-18 Valeo Electrical Systems, Inc. Stator design for permanent magnet motor with combination slot wedge and tooth locator
US20060108890A1 (en) 2004-11-22 2006-05-25 Willi Hauger Stator arrangement for an electric machine, a method for the manufacture of a stator arrangement and a direct current motor
DE102005004565A1 (de) 2005-02-01 2006-08-10 Robert Bosch Gmbh Stator für eine elektrische Maschine
DE102005005953A1 (de) * 2005-02-10 2006-08-17 Robert Bosch Gmbh Bürstenlose Gleichstrommaschine sowie Rückschlussringpaket, Zahnkranzpaket und Kopfteil einer Gleichstrommaschine sowie Verfahren zur Herstellung einer bürstenlosen Gleichstrommaschine
JP4691376B2 (ja) * 2005-03-25 2011-06-01 山洋電気株式会社 永久磁石型回転モータ
JP4476202B2 (ja) * 2005-09-20 2010-06-09 山洋電気株式会社 永久磁石型回転モータ
US7550892B2 (en) * 2005-10-03 2009-06-23 Ut-Battelle, Llc High slot utilization systems for electric machines
JP4386909B2 (ja) * 2006-09-08 2009-12-16 三洋電機株式会社 モータ
JP4807219B2 (ja) * 2006-10-20 2011-11-02 トヨタ自動車株式会社 ステータコアおよび回転電機
DE102007032872A1 (de) * 2007-07-12 2009-01-15 Ipgate Ag Stator für Elektromotor
US8129880B2 (en) 2007-11-15 2012-03-06 GM Global Technology Operations LLC Concentrated winding machine with magnetic slot wedges
US7851966B2 (en) 2008-01-10 2010-12-14 Rippel Wally E Stator for electric machine with improved efficiency and thermal performance
JP2011097723A (ja) 2009-10-29 2011-05-12 Honda Motor Co Ltd ステータの製造方法
CN201781336U (zh) * 2010-08-17 2011-03-30 浙江大学 一种模块化组合式电机定子结构
US20120275942A1 (en) * 2011-04-29 2012-11-01 Knapp John M Systems and Methods for Electric Motor Construction
FR2986388B1 (fr) * 2012-01-31 2016-05-13 Renault Sa Procede d'assemblage d'un stator segmente et stator segmente correspondant
US10177611B2 (en) * 2013-07-24 2019-01-08 Mitsubishi Electric Corporation Stator core, stator, and rotating electrical machine
US20160365756A1 (en) 2013-08-09 2016-12-15 Johnson Electric S.A. Motor and method for using and making the same
FR3019947B1 (fr) 2014-04-10 2017-12-08 Moteurs Leroy-Somer Stator de machine electrique tournante.
EP3288155B1 (fr) * 2015-04-22 2020-12-30 Mitsubishi Electric Corporation Machine électrique tournante et dispositif de direction assistée électrique
CN106487183A (zh) * 2015-08-28 2017-03-08 德昌电机(深圳)有限公司 单相永磁电机
CN106487187B (zh) 2015-08-28 2020-11-10 德昌电机(深圳)有限公司 单相永磁电机及使用该电机的吹风机
JP7102092B2 (ja) 2015-10-05 2022-07-19 ゼネラル・エレクトリック・カンパニイ 二相磁性材料を備えた発電機ステータ積層
CN106849424B (zh) * 2015-12-03 2020-01-07 德昌电机(深圳)有限公司 单相永磁电机
JP6664958B2 (ja) 2015-12-25 2020-03-13 サンデンホールディングス株式会社 コンプレッサ用モータ及びそれを備えたコンプレッサ
FR3082375B1 (fr) 2018-06-07 2021-12-24 Leroy Somer Moteurs Stator de machine electrique tournante

Also Published As

Publication number Publication date
JP2021526001A (ja) 2021-09-27
FR3082374B1 (fr) 2020-05-29
CN112219340B (zh) 2024-03-15
US11949284B2 (en) 2024-04-02
FR3082374A1 (fr) 2019-12-13
KR20210042261A (ko) 2021-04-19
CN112219340A (zh) 2021-01-12
WO2019234031A1 (fr) 2019-12-12
US20210218293A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
EP3804086B1 (fr) Stator de machine electrique tournante
EP3804089A1 (fr) Stator de machine electrique tournante
EP3804087A1 (fr) Stator de machine electrique tournante
EP3130061B1 (fr) Stator de machine electrique tournante
WO2020174179A1 (fr) Stator de machine electrique tournante
FR2992495A1 (fr) Interconnecteur pour stator de machine electrique et stator de machine electrique associe
WO2019234030A1 (fr) Stator de machine electrique tournante
EP3931941A1 (fr) Stator de machine electrique tournante
WO2022018333A1 (fr) Stator de machine électrique tournante
WO2019234026A1 (fr) Stator de machine electrique tournante
EP3170246A1 (fr) Procede de realisation d'un stator bobine de machine electrique tournante
US11791674B2 (en) Motor design and winding method
WO2021250338A1 (fr) Stator de machine électrique tournante
WO2020174187A1 (fr) Stator de machine électrique tournante
FR2801142A1 (fr) Tole de machine tournante electrique a elements rapportes
EP4371214A1 (fr) Stator de machine électrique tournante et procédé de fabrication
FR3118349A1 (fr) Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
EP4264795A1 (fr) Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante
WO2022207992A1 (fr) Conducteur électrique pour stator de machine électrique tournante et procédé de fabrication
FR3080500A1 (fr) Rotor de machine electrique tournante
FR3144438A1 (fr) Stator de machine électrique à flux axial
FR3144439A1 (fr) Stator de machine électrique à flux axial

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230829