WO2022129796A1 - Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante - Google Patents

Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante Download PDF

Info

Publication number
WO2022129796A1
WO2022129796A1 PCT/FR2021/052353 FR2021052353W WO2022129796A1 WO 2022129796 A1 WO2022129796 A1 WO 2022129796A1 FR 2021052353 W FR2021052353 W FR 2021052353W WO 2022129796 A1 WO2022129796 A1 WO 2022129796A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
portions
notch
turn
turns
Prior art date
Application number
PCT/FR2021/052353
Other languages
English (en)
Inventor
Olivier Gas
Jacques Saint Michel
Xavier JANNOT
Nicolas Langlard
Sebastien Desurmont
Original Assignee
Nidec Psa Emotors
Skyazur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2013503A external-priority patent/FR3118349B1/fr
Priority claimed from FR2013445A external-priority patent/FR3118351B1/fr
Priority claimed from FR2013543A external-priority patent/FR3118340A1/fr
Application filed by Nidec Psa Emotors, Skyazur filed Critical Nidec Psa Emotors
Priority to CN202180093998.2A priority Critical patent/CN116848758A/zh
Priority to US18/256,813 priority patent/US20240030757A1/en
Priority to EP21848280.0A priority patent/EP4264795A1/fr
Publication of WO2022129796A1 publication Critical patent/WO2022129796A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • H02K15/0421Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils consisting of single conductors, e.g. hairpins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/064Windings consisting of separate segments, e.g. hairpin windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to coils intended to be inserted into slots of a stator of a rotating electrical machine.
  • the invention also relates to the associated winding, the stator and the corresponding rotating electrical machine. It also relates to methods of manufacturing such windings.
  • the invention relates more particularly to synchronous or asynchronous alternating current machines. It relates in particular to traction or propulsion machines for electric (Battery Electric Vehicle) and/or hybrid (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle) motor vehicles, such as individual cars, vans, trucks or buses.
  • the invention also applies to rotating electrical machines for industrial and/or energy production applications, in particular naval, aeronautical or wind turbine applications.
  • the coils of electric machines are formed by winding an electric wire in a plurality of identical turns, the coils then being inserted into the notches of the machine, taking the shape necessary to fill the notches by bending on insertion.
  • the coils are formed by winding an electric wire in a turn on a template of predetermined shape, then inserted into the notches while substantially retaining the shape of the template.
  • stators comprising coils formed by winding an electric wire in a plurality of identical turns of substantially hexagonal shape.
  • the coils are configured to be inserted into two slots of the stator spaced apart by a plurality of slots.
  • the invention aims to meet this need and it achieves this, according to one aspect of the invention, thanks to a coil intended to be bent in order to be inserted into a first and a second notch of a stator of a rotating electrical machine.
  • the coil being wound in a plurality of successive turns, each turn comprising: a first half-turn having a first notch portion configured to be inserted into the first notch of the stator, a second half-turn having a second portion of notch configured to be inserted into the second notch of the stator, the first and second innermost notch portions of the coil having their innermost surfaces extending along a same median plane of the coil, the coil being entirely comprised between two outer planes parallel to the midplane of the coil and defined by the surfaces of the outermost first and second notch portions of the coil farthest from the plane middle of the coil, the first notch portions and the second notch portions being stacked in an identical order starting from the middle plane of the coil towards the external planes.
  • Median plane means the plane containing the longitudinal axis of the coil and extending across the width of the coil.
  • Transverse plane means the plane containing the longitudinal axis of the coil and extending through the thickness of the coil.
  • the first notch portions and the second notch portions being stacked in an identical order starting from the median plane of the coil towards the planes external
  • the first notch portions taken from the first turn to the last turn of the winding are stacked from the median plane towards one of the external planes
  • the second notch portions taken from the first turn to the last turn of the winding are also stacked from the median plane to one of the outer planes, and vice versa.
  • the first notch portion of the first turn of the coil is the innermost of the coil
  • the second notch portion of this same first turn is also the innermost of the coil and vice versa.
  • the first notch portions of the successive turns are configured to be arranged in the first notch of the stator in a radially opposite order to the second notch portions of the successive turns in the second notch. That is to say, if the first notch portion of the first turn of the coil is radially the innermost in the first notch of the stator, the second portion of this same turn is radially the outermost in the second notch. of the stator and vice versa.
  • Each coil having several turns a reduction in the losses by induced currents, or AC Joule losses, is obtained, which is particularly advantageous when the operating speed is high. Heat transfer to the cold source is also facilitated.
  • the inversion of the order of the slot portions in the first and second slots also called “transposition”, makes it possible in particular to minimize the circulation currents between slot portions of the same coil in each of the first and second slots .
  • first and second innermost notch portions of the coil have their innermost surfaces extending along the same median plane. Moreover, such compactness allows better filling of the notches of the stator by allowing the first and the second notch portion inserted into a notch to be very close or even in contact with one another. This improves the performance of the machine.
  • the coil being entirely comprised between two external planes parallel to the median plane and defined by the surfaces of the first and second outermost notch portions of the coil furthest from the median plane of the coil"
  • the Maximum coil thickness is the thickness of the coil at the notch portions.
  • the coil When the coil is inserted into the notches of the stator or before it is inserted into the notches of the stator, it is bent (or curved) to take the curvature of the stator and allow the insertion of the notch portions into two notches of the stator spaced between them.
  • the median plane becomes a median cylinder of the coil and the external planes become external cylinders with the same central axis as the median cylinder but with different radii.
  • the coil may have an angular extent in the stator comprised between 20° and 180°, better comprised between 50° and 80°, preferably substantially equal to 65°.
  • the first and second notch portions are of the same length, in particular substantially the length of the notches of the stator.
  • the first and second half-turns are of the same length.
  • the first and second notch portions are straight.
  • the coil is preferably formed from one or more conductive wires, preferably from a single conductive wire.
  • the conductive wire(s) are, in cross-section, of circular shape, or of polygonal shape, in particular with rounded edges, preferably of rectangular shape, among other possible shapes.
  • the conductive wire is of rectangular cross-section.
  • the first notch portions are stacked on top of each other by being in contact with each other by their widest face, otherwise called the dish, and the second notch portions are also stacked on top of each other. the others by being in contact with each other by their dish.
  • the coil is a winding of a conductive wire of which one of the first or last turn is the turn closest to the median plane P and the other of the first or last turn is the turn farthest from the median plane p.
  • the conductive wire of the coil is electrically insulated by an insulating coating, in particular an enamel.
  • the coil is preferably of substantially hexagonal shape, in particular with two opposite sides formed by the first and second notch portions that are longer than the others, in particular at least twice as long as the other sides of the hexagon.
  • the first and second notch portions are shorter than the other sides of the hexagon.
  • the first and second half-turns each extend along a half-turn plane, in particular parallel to the flat of the conductive wire, the half-turn planes of the first and second half-turns being parallel to each other and parallel to the midplane of the coil.
  • the half-turn planes of the first half-turns all extend on the same side of the median plane of the coil and the half-turn planes of the second half-turns all extend on the other side of the mid-plane of the coil.
  • the second half-turns are each connected to the first half-turn of the same turn and to the first half-turn of the following turn by junction portions.
  • the first and second half-turns each comprise two bun portions extending on either side of the respective first and second notch portions.
  • the bun portions are connected to the junction portions between the first and second half-turns and intended to extend out of the first and second notches.
  • the bun portions are preferably formed straight before insertion of the notch portions into the notches of the stator and bent just before or during the insertion of the notch portions into the notches of the stator to follow the curvature of the stator.
  • the bun portions extend in the same plane of extension parallel to the median plane of the coil as the corresponding first or second notch portion.
  • the bun portions may form a non-flat angle with the corresponding first or second notch portion.
  • the angle between the first or the second notch portion and the bun portions can be between 90° and 150°, preferably being of the order of 120°.
  • the junction portions between the first and second half-turns and part of the first and second half-turns, in particular the bun portions of the half-turns form two buns of the coil extending on either side. other from the stator when the coil is inserted into the stator.
  • the consecutive junction portions on the same side of the notch portions extend over different heads.
  • each junction portion is a loop portion extending between the first and the second half-turn that it connects, in particular between the bun portions of the first and the second half-turn that it connects.
  • the innermost junction portion of the coil forms a substantially complete loop, the other junction portions preferably forming loop portions with an angular extent substantially equal to 180°.
  • the junction portions of the coil can all be stacked along the same junction plane by superimposing each other, in particular on the flat side of the conductive wire.
  • the junction portions form a single head at each end of the coil and are of increasing length from the center of the coil to the outside of the coil.
  • the heads of the two ends of the coil extend along the same junction plane, in particular perpendicular to the median plane of the coil.
  • the junction portions of the coil are stacked according to at least two juxtaposed heads extending along mutually parallel junction planes, the junction portions overlapping between they, in particular on the flat side of the conducting wire, alternately on one and the other of the two heads.
  • the two junction planes are preferably laterally offset from each other by a distance substantially equal to the width of the flat of the conductive wire so that the two adjacent heads are joined laterally. This makes it possible in particular to reduce the radial bulk of the chignons in order to facilitate the manufacture of the electric machine.
  • the junction planes are perpendicular to the median plane of the coil.
  • the first notch portions can be superposed in a single column extending perpendicular to the median plane of the coil, that is to say configured to extend radially in the first notch, and the second notch portions can be superimposed according to a single column perpendicular to the median plane, i.e. configured to extend radially into the second notch.
  • the width of the wire of the first and of the second notch portion is substantially equal to the width of the first and of the second notch respectively in which it is inserted.
  • the first notch portions are superimposed according to several, in particular two, juxtaposed columns extending perpendicular to the median plane
  • the second notch portions are also superimposed according to several, in particular two, juxtaposed columns extending perpendicular to the median plane.
  • the junction portions on one side of the notch portions are stacked according to as many heads as there are juxtaposed columns of the junction portions
  • the junction portions on the other side of the portions of notch are stacked according to a number of juxtaposed heads corresponding to the number of columns of the notch portions plus one, the heads extending along junction planes parallel to each other and preferably perpendicular to the median plane of the coil.
  • the first notch portions of the consecutive turns can extend over different columns and the second notch portions of the consecutive turns can extend over different columns.
  • the coil can be configured to be disposed in the slots of the stator in a concentrated or distributed manner.
  • distributed it is meant that the first and the second notch are not adjacent.
  • the coil is configured to be disposed in the first and the second slot in a distributed manner.
  • a coil intended to be inserted into a first and a second notch of a stator of a rotating electrical machine, the coil being wound according to a plurality of successive turns, each turn comprising: a first half-turn comprising a first notch portion configured to be inserted into the first notch of the stator, a second half-turn comprising a second notch portion configured to be inserted into the second notch of the stator, the second half-turns each being connected to the first half-turn of the same turn and to the first half-turn of the following turn by junction portions, on each side of the first and second notch portions, the junction portions of the coil are stacked according to at least two juxtaposed heads extending along planes parallel junctions between them.
  • junction portions of the coil are stacked according to at least two juxtaposed heads makes it possible in particular to reduce the radial size of the chignons, which facilitates the manufacture of the machine.
  • Median plane means the plane containing the longitudinal axis of the coil and extending across the width of the coil.
  • Transverse plane means the plane containing the longitudinal axis of the coil and extending through the thickness of the coil.
  • the consecutive junction portions on the same side of the notch portions extending over different heads.
  • the two junction planes are preferably laterally offset from each other by a distance substantially equal to the width of the flat of the conductive wire so that the two adjacent heads are joined laterally.
  • the first notch portion and the innermost second notch portion of the coil have their innermost surface which extend along the same median plane of the coil.
  • This allows to have a coil which is compact perpendicular to the median plane.
  • such compactness allows better filling of the notches of the stator by allowing the first and the second notch portion inserted into a notch to be in contact with one another. This improves cooling.
  • the first and second innermost notch portions of the coil have their innermost surfaces which extend along two different planes radially spaced apart from each other by a non-zero distance.
  • the coil is entirely comprised between two external planes parallel to the median plane and defined by the surfaces farthest from the median plane of the first and second outermost notch portions of the coil.
  • the fact that the coils extend entirely between two planes defined by surfaces of the outermost notch portions parallel to the median plane makes it possible to have coils compact in the radial direction at the level of the buns, that is to say the portions which extend out of the notches after the insertion of the coils in the notches.
  • the coil being entirely comprised between two external planes parallel to the median plane and defined by the surfaces farthest from the median plane of the first and second outermost notch portions of the coil, it is understood that the maximum thickness of the coil corresponds to the thickness of the coil at the notch portions.
  • the first notch portions and the second notch portions are stacked in an identical order starting from the median plane of the coil towards the external planes.
  • the first notch portions and the second notch portions being stacked in an identical order starting from the median plane of the coil towards the external planes
  • the first notch portions taken from the first turn to the last turn of the winding are stacked from the middle plane to one of the outer planes
  • the second notch portions taken from the first turn to the last turn of the winding are also stacked from the middle plane to one of the external planes and vice versa.
  • the first notch portion of the first turn of the coil is the innermost of the coil
  • the second notch portion of this same turn is the innermost of the coil and vice versa.
  • the first notch portions of the successive turns are configured to be arranged in the first notch of the stator in a radially opposite order to the second notch portions of the successive turns in the second notch. That is to say, if the first notch portion of the first turn of the coil is radially the innermost in the first notch of the stator, the second portion of this same turn is radially the outermost in the second notch. of the stator and vice versa.
  • Each coil having several turns a reduction in the losses by induced currents, or AC Joule losses, is obtained, which is particularly advantageous when the operating speed is high. Heat transfer to the cold source is also facilitated.
  • the two junction planes are perpendicular to the median plane of the coil.
  • the first and second half-turns each comprise two bun portions extending on either side of the respective first and second notch portions.
  • the bun portions are connected to the junction portions between the first and second half-turns and intended to extend out of the first and second notches.
  • the bun portions are preferably straight before insertion of the notch portions into the notches of the stator and curved after insertion to follow the curvature of the stator.
  • the bun portions extend in the same plane as the corresponding first or second notch portion.
  • the bun portions may form a non-flat angle with the corresponding first or second notch portion.
  • the angle between the first or the second notch portion and the bun portions can be between 90° and 150°, preferably being of the order of 120°.
  • the junction portions between the first and second half-turns and part of the first and second half-turns, in particular the bun portions of the half-turns form two buns of the coil extending on either side. other from the stator when the coil is inserted into the stator.
  • each junction portion is a loop portion extending between the first and the second half-turn that it connects, in particular between the bun portions of the first and the second half-turn that it connects.
  • the innermost junction portion of the coil forms a substantially complete loop, the other junction portions preferably forming loop portions with an angular extent substantially equal to 180°.
  • all the junction portions form loop portions of angular extent substantially equal to 180°.
  • the coil When the coil is inserted into the slots of the stator, it is deformed to take the curvature of the stator.
  • the median plane becomes a median cylinder of the coil and the external planes become external cylinders with the same central axis as the median cylinder but with different radii.
  • the coil may have an angular extent in the stator comprised between 20° and 180°, better comprised between 50° and 80°, preferably substantially equal to 65°.
  • the first and second notch portions are of the same length.
  • the first and second half-turns are of the same length.
  • the coil is preferably of substantially hexagonal shape, in particular with two opposite sides formed by the first and second notch portions that are longer than the others, in particular at least twice as long as the other sides of the hexagon.
  • the first and second notch portions are shorter than the other sides of the hexagon.
  • the coil is preferably formed of one or more conductive wires, preferably of a single conductive wire.
  • the conductive wire(s) are, in cross-section, of circular shape, or of polygonal shape, in particular with rounded edges, preferably of rectangular shape, among other possible shapes.
  • the conductive wire is of rectangular cross-section.
  • the first notch portions are stacked on top of each other by being in contact with each other by their widest face, otherwise called the dish, and the second notch portions are also stacked on top of each other. the others by being in contact with each other by their dish.
  • the coil is a winding of a conductive wire of which one of the first or last turn is the turn closest to the median plane P and the other of the first or last turn is the turn farthest from the median plane p.
  • the conductive wire of the coil is electrically insulated by an insulating coating, in particular an enamel.
  • the first and second notch portions are straight.
  • the first and second half-turns each extend along a half-turn plane, in particular parallel to the flat of the conductive wire, the half-turn planes of the first and second half-turns being parallel to each other and parallel to the midplane of the coil.
  • the half-turn planes of the first half-turns all extend on the same side of the median plane of the coil and the half-turn planes of the second half-turns all extend on the other side of the mid-plane of the coil.
  • the first notch portions can be superposed in a single column perpendicular to the median plane of the coil, that is to say configured to extend radially into the first notch, and the second notch portions can be superimpose according to a single column perpendicular to the median plane, ie configured to extend radially in the second notch.
  • the width of the wire of the first and of the second notch portion is substantially equal to the width of the first and of the second notch respectively in which it is inserted.
  • the first notch portions are superimposed according to several, in particular two, juxtaposed columns extending perpendicular to the median plane, and the second notch portions are also superimposed according to several, in particular two, juxtaposed columns extending perpendicular to the median plane.
  • the junction portions on one side of the notch portions are stacked according to as many heads as there are juxtaposed columns of the junction portions, and the junction portions on the other side of the portions of notch are stacked according to a number of juxtaposed heads corresponding to the number of columns of the notch portions plus one, the heads extending along junction planes parallel to each other and preferably perpendicular to the median plane of the coil.
  • the first notch portions of the consecutive turns can extend over different columns and the second notch portions of the consecutive turns can extend over different columns.
  • the coil can be configured to be disposed in the slots of the stator in a concentrated or distributed manner.
  • distributed it is meant that the first and the second notch are not adjacent.
  • the coil is configured to be disposed in the first and the second slot in a distributed manner.
  • the invention also relates, according to another of its aspects, to a coil intended to be bent in order to be inserted into a first and a second notch of a stator of a rotary electrical machine, the coil being wound according to a plurality of successive turns, each turn comprising: a first half-turn having a first notch portion configured to be inserted into the first notch of the stator, a second half-turn having a second notch portion configured to be inserted into the second notch of the stator, the first notch portions being stacked according to one or more columns each configured to extend radially into the first notch of the stator, and the second slot portions being stacked in the same number of columns each configured to extend radially into the second slot of the stator, the first slot portions and the second slot portions being stacked in an identical order starting from a median plane of the coil to the external planes, the second half-turns each being connected to the first half-turn of the same turn and to the first half-turn of the following turn by junction portions, the portions junction
  • the first notch portions and the second notch portions being stacked in an identical order starting from a median plane of the coil towards the external planes
  • the first notch portions taken from the first turn to the last turn of the winding are stacked from the middle plane to one of the outer planes
  • the second notch portions taken from the first turn to the last turn of the winding are also stacked from the middle plane to one of the external planes and vice versa.
  • the first notch portion of the first turn of the coil is the innermost of the coil
  • the second notch portion of this same turn is the innermost of the coil and vice versa.
  • Median plane of the coil means the plane containing the longitudinal axis of the coil and extending across the width of the coil. This plane is normal to the winding axis of the turns. After bending, it forms a side portion of a cylinder. This median plane may be parallel to the extension planes of the first and second half-turns.
  • Transverse plane we understand the plane containing the longitudinal axis of the coil and extending in the thickness of the coil
  • Each coil having several turns a reduction in the losses by induced currents, or AC Joule losses, is obtained, which is particularly advantageous when the operating speed is high. Heat transfer to the cold source is also facilitated.
  • the inversion of the order of the slot portions in the first and second slots, also called “transposition”, makes it possible in particular to minimize the circulation currents between slot portions of the same coil in each of the first and second slots .
  • junction portions extend from one of the sides of the first and second notch portions stacking according to a number of juxtaposed heads strictly greater than the number of columns of the first and second notch portions makes it possible in particular to reduce the radial size of at least one of the buns, which facilitates the manufacture of the electric machine.
  • Such a reduced size allows the fitting of a part to close the notches after the insertion of the coils, in particular when the coils are inserted in a stator having a crown and a yoke as described below.
  • the first and second innermost notch portions of the coil may have their innermost surfaces extending along the same median plane of the coil.
  • the coil may be entirely comprised between two outer planes parallel to the mid-plane of the coil and defined by the surfaces of the outermost first and second notch portions of the coil furthest from the mid-plane of the coil.
  • the first slot portions and the second slot portions can be stacked in an identical order starting from the mid-plane of the coil towards the outer planes.
  • the first and second notch portions are of the same length, in particular substantially the length of the notches of the stator.
  • the first and second half-turns are of the same length.
  • the first and second notch portions are straight.
  • the coil is preferably formed from one or more conductive wires, preferably from a single conductive wire.
  • the conductive wire(s) are, in cross-section, of circular shape, or of polygonal shape, in particular with rounded edges, preferably of rectangular shape, among other possible shapes.
  • the conductive wire is of rectangular cross-section.
  • the first notch portions are stacked on top of each other by being in contact with each other by their widest face, otherwise called the dish, and the second notch portions are also stacked on top of each other. the others by being in contact with each other by their dish.
  • the coil is a winding of a conductive wire of which one of the first or last turn is the turn closest to the median plane P and the other of the first or last turn is the turn farthest from the median plane p.
  • the conductive wire of the coil is electrically insulated by an insulating coating, in particular an enamel.
  • the coil is preferably of substantially hexagonal shape, in particular with two opposite sides formed by the first and second notch portions that are longer than the others, in particular at least twice as long as the other sides of the hexagon.
  • the first and second notch portions are shorter than the other sides of the hexagon.
  • the first and second half-turns each extend along a half-turn plane, in particular parallel to the flat of the conductive wire, the half-turn planes of the first and second half-turns being parallel to each other and parallel to the midplane of the coil.
  • the half-turn planes of the first half-turns all extend on the same side of the median plane of the coil and the half-turn planes of the second half-turns all extend on the other side of the mid-plane of the coil.
  • the first and second half-turns each comprise two bun portions extending on either side of the respective first and second notch portions.
  • the bun portions are connected to the junction portions between the first and second half-turns and intended to extend out of the first and second notches.
  • the bun portions are preferably formed straight before insertion of the notch portions into the notches of the stator and bent just before or during the insertion of the notch portions into the notches of the stator to follow the curvature of the stator.
  • the bun portions extend in the same plane of extension parallel to the median plane of the coil as the corresponding first or second notch portion.
  • the bun portions may form a non-flat angle with the corresponding first or second notch portion.
  • the angle between the first or second portion notch and bun portions can be between 90 ° and 150 °, preferably being of the order of 120 °.
  • the junction portions between the first and second half-turns and part of the first and second half-turns, in particular the bun portions of the half-turns form two buns of the coil extending on either side. other from the stator when the coil is inserted into the stator.
  • each junction portion head is a loop portion extending between the first and the second half-turn that it connects, in particular between the bun portions of the first and the second half-turn that it connects .
  • the innermost junction portion of the coil forms a substantially complete loop, the other junction portions preferably forming loop portions with an angular extent substantially equal to 180°.
  • the junction portions of the coil can all be stacked according to the same junction plane by superimposing each other, in particular on the flat side of the conductive wire.
  • the junction portions form a single head on said side of the first and second notch portions and are of increasing length from the center of the coil towards the outside of the coil.
  • the heads of the two ends of the coil extend along junction planes perpendicular to the median plane of the coil.
  • the junction portions of the coil are stacked according to at least two juxtaposed heads extending along mutually parallel junction planes, the junction portions overlapping between they, in particular on the flat side of the conducting wire, alternately on one and the other of the two heads.
  • the two junction planes are preferably laterally offset from each other by a distance substantially equal to the width of the flat of the conductive wire so that the two adjacent heads are joined laterally. This makes it possible in particular to reduce the radial bulk of the chignons in order to facilitate the manufacture of the electric machine.
  • the junction planes are perpendicular to the median plane of the coil.
  • the first notch portions can be superposed in a single column extending perpendicular to the median plane of the coil, that is to say configured to extend radially in the first notch, and the second notch portions can be superimposed according to a single column perpendicular to the median plane, i.e. configured to extend radially into the second notch.
  • the width of the wire of the first and of the second notch portion is substantially equal to the width of the first and of the second notch respectively in which it is inserted.
  • the first notch portions are superimposed according to several, in particular two, juxtaposed columns extending perpendicular to the median plane
  • the second notch portions are also superimposed according to several, in particular two, juxtaposed columns extending perpendicular to the median plane.
  • the junction portions on one side of the notch portions are stacked according to as many heads as there are juxtaposed columns of the junction portions
  • the junction portions on the other side of the portions of notch are stacked according to a number of juxtaposed heads corresponding to the number of columns of the notch portions plus one, the heads extending along junction planes parallel to each other and preferably perpendicular to the median plane of the coil.
  • the first notch portions of the consecutive turns can extend over different columns and the second notch portions of the consecutive turns can extend over different columns.
  • the coil can be configured to be disposed in the slots of the stator in a concentrated or distributed manner.
  • the coil is configured to be disposed in the first and the second slot in a distributed manner.
  • the number of column(s) can be greater than or equal to 1, preferably between 1 and 3, for example equal to 1 or 2.
  • the number of columns can be greater than or equal to 2 and the first notch portions and second notch portions of the successive turns can be stacked alternately on the different corresponding columns.
  • the ends of the coil may extend on the same side of the first and second notch portions.
  • the number of heads on which the junction portions stack on said side of the notch portions is for example equal to the number of column(s) plus one.
  • the number of heads formed by the junction portions extending on the other side of the notch portions may be greater than or equal to the number of column(s) minus one, for example greater than or equal to the number of column(s). ), or even strictly greater than the number of column(s), for example equal to the number of column(s) plus one.
  • the number of heads on one side may be equal to the number of column(s) plus one and on the other equal to the number of column(s) or the number of column(s) plus one.
  • the heads before bending preferentially extend along joint planes parallel to each other, in particular perpendicular to the median plane of the coil.
  • Another object of the invention is a coil cluster comprising a plurality of coils as described previously, the coils being interconnected by continuity of the conductive wire.
  • a stator comprising: a crown comprising: o teeth forming between them notches open radially outwards, and o bridges of material each connecting two adjacent teeth at their base on the side of the air gap and defining the bottom of the notch between these teeth, coils each arranged in a first and a second notch of the stator, a yoke attached to the crown.
  • each coil being wound in a plurality of successive turns, each turn comprising: a first half-turn comprising a first notch portion configured to be inserted into the first notch of the stator, a second half-turn connected to the first half-turn comprising a second notch portion configured to be inserted into the second notch of the stator, the first notch portions of the successive turns being arranged in the first notch of the stator in a radially inverse order of the second notch portions of the successive turns in the second notch.
  • the notch portions of the successive turns being arranged in the first notch of the stator in a radially inverse order to the second notch portions of the successive turns in the second notch
  • the notch portions are arranged in the first notch according to a particular radial order of the successive turns and that the second notch portions are arranged in the second notch according to an inverse radial order of the successive turns. That is to say, if the first notch portion of the first turn of the coil is radially the innermost in the first notch of the stator, the second portion of this same turn is radially the outermost in the second notch. of the stator and vice versa.
  • first notch portions and the second notch portions are stacked in an identical order starting from the median plane of the coil towards the external planes, that is to say that the first portions of notches taken from the first turn to the last turn of the winding are stacked from the middle plane towards one of the outer planes, then the second notch portions taken from the first turn to the last turn of the winding are also stacked from the median plane to one of the external planes and vice versa.
  • first notch portion of the first turn of the coil is the innermost of the coil
  • the second notch portion of this same turn is the innermost of the coil and vice versa.
  • Each coil having several turns a reduction in the losses by induced currents, or AC Joule losses, is obtained, which is particularly advantageous when the operating speed is high. Heat transfer to the cold source is also facilitated.
  • the inversion of the order of the slot portions in the first and second slots also called “transposition”, makes it possible in particular to minimize the circulation currents between slot portions of the same coil in each of the first and second slots .
  • inserted cylinder head it should be understood that the cylinder head is not made in one piece with the crown but is fixed to the latter during the manufacture of the stator.
  • the slots are open radially outwards allows the windings to be inserted into the slots by radially inward movement of the slots.
  • the installation of the windings is facilitated, on the one hand in that access to the interior of the notches is easier, since they are notches that are completely open and in the direction of the outside rather than towards the air gap, and on the other hand in that the space available around the crown, for the necessary tools, even for a winding machine, is more important than the space available in the bore of the stator.
  • the yoke makes it possible to close the notches of the crown and to maintain the windings in the notches after their insertion.
  • the cylinder head can be assembled with the ring gear in various ways.
  • the stator can be used as a closed impregnation enclosure by sealing the ends of the stator only. The tooling is thus simplified. This also reduces the amount of varnish lost and cleaning operations.
  • stator has many advantages from the electromagnetic point of view compared to a stator having slots open towards the air gap. It makes it possible to greatly reduce the electromagnetic disturbances linked to the presence of the openings of the notches giving onto the air gap in the prior art.
  • At least one notch may have opposite edges parallel to each other.
  • the width of the notches is preferably substantially constant over their entire height.
  • At least one tooth, preferably all of the teeth, may be generally trapezoidal in shape when viewed in section in a plane perpendicular to the axis of the stator.
  • bridges of material each have a deformable zone, and preferably, all the bridges of material each have a deformable zone.
  • deformable zone we understand a zone of the bridge of material that deforms preferentially during a relative movement of the teeth that it connects.
  • the deformation of the bridge of material can result in an elongation or a shortening of the circumferential dimension of the bridge of material, which leads to an elongation or a shortening of the circumferential dimension of the crown.
  • the preferential deformation can result from a particular shape given to the bridge.
  • the deformable zone makes it possible to adapt to the mechanical stresses undergone by the crown during the assembly of the crown with the cylinder head. In addition, this allows, if desired, to have more open notches before assembly of the cylinder head and therefore a greater clearance between the electrical conductors and the wall of the notches during the insertion of the electrical conductors, which facilitates this. ci and reduces the risk of damage to the insulators.
  • the material bridges each have a zone with reduced magnetic permeability, in particular in the form of at least one localized narrowing, at least one localized crushing, at least one opening or at least one localized treatment .
  • the area of reduced magnetic permeability of the material bridge is magnetically saturated during machine operation, which limits the passage of flux and increases the efficiency of the machine.
  • the bottom of the notches each has at least one flat portion against which at least one electrical conductor, preferably of substantially rectangular section, bears.
  • the flat portion or portions are substantially perpendicular to the radial axis of the notch.
  • the bottom of the slot may be flat except for a recess and/or a deformable area.
  • the deformable zone or the recess preferably forms a clearance between the bridge of material and the corresponding electrical conductor or conductors, which can facilitate the penetration of the varnish during the impregnation of the stator. This allows good filling of the notches by the electrical conductors in the case of electrical conductors of rectangular cross-section, by allowing the electrical conductors to rest flat in the bottom of the notch.
  • the crown has reliefs on its radially outer surface, cooperating with cooperating reliefs, in particular nested one inside the other of the cylinder head.
  • cooperating reliefs are preferably of the dovetail and mortise type or reliefs bearing against each other.
  • the crown can be made by winding in a helix a strip of sheet metal comprising teeth connected by the bridges of material, the opposite edges of each notch becoming, preferably, substantially parallel to each other when the strip is wound on itself to form the crown.
  • the strip may be formed of sectors each comprising several teeth, the sectors being connected by links, these sectors being cut out from a sheet metal strip.
  • the connections can be flexible bridges connecting the sectors together and/or parts of complementary shapes, for example of the dovetail and mortise type or complementary reliefs bearing against each other, in particular when the crown is held in compression by the cylinder head.
  • the complementary shapes can be on the material bridges so that the different sectors are assembled at the level of the material bridges.
  • the assembly of the complementary shapes of the different sectors takes place outside the deformable zones of the bridges of material. This facilitates assembly, especially in the case of bulky machines.
  • the sectors have recessed shapes cooperating with complementary projecting shapes of an adjacent sector.
  • the ring comprises a stack of pre-cut magnetic sheets.
  • the crown is manufactured by additive manufacturing, for example by powder sintering.
  • the cylinder head can be made by winding directly in a helix a strip of sheet metal if its width allows it, by forming or not in said strip of sheet metal suitable slots during its cutting, so as to facilitate this winding, by stacking pre-cut magnetic sheets, or by additive manufacturing, for example by powder sintering.
  • the cylinder head is attached to the crown after the installation of the windings in the notches.
  • the coils are each as described above.
  • the above characteristics in relation to the other aspects of the invention apply to the method in combination or independently of the other aspects of the invention.
  • the first notch portion and the second innermost notch portion of each coil have their innermost surface which extend into the notches along the same median cylinder of the coil having as its main axis the axis of the stator.
  • such compactness allows better filling of the notches of the stator by allowing the first and the second notch portion inserted into a notch to be in contact with one another. This improves cooling.
  • first and second innermost notch portions of each coil have their innermost surfaces which extend according to two different cylinders spaced radially from one another by a distance included which is not zero.
  • each coil By “the innermost of each coil” is meant the closest to the middle cylinder portion of each coil.
  • each coil has a radial size less than or equal to the depth of the notches (dimensions of the notches in the radial direction).
  • each coil is entirely comprised between two outer cylinders with the same central axis as the middle cylinder and defined by the surfaces furthest from the middle cylinder of the first and second outermost notch portions of the coil.
  • the fact that the coils extend entirely between cylinders defined by surfaces of the outermost notch portions parallel to the median cylinder makes it possible to have compact coils in the radial direction at the level of the chignons, that is to say the portions which extend out of the slots after the coils are inserted into the slots.
  • the coil being entirely comprised between two outer cylinders parallel to the middle cylinder and defined by the surfaces farthest from the cylinder median of the first and second outermost notch portions of the coil
  • the coil has at the buns a radial dimension equal to or less than the sum of the radial dimensions of the first and second notch portions. Therefore, the buns of the coils have a radial size less than or equal to the depth (dimensions of the notches in the radial direction) of the notches.
  • the buns have a radial size greater than the depth of the notches.
  • the coils may have an angular extent comprised between 20° and 180°, better comprised between 50° and 80°, preferably substantially equal to 65°.
  • the first and second notch portions are of the same length.
  • the first and second half-turns are of the same length.
  • Each coil is preferably of substantially hexagonal shape, in particular with two opposite sides formed by the first and second notch portions that are longer than the others, in particular at least twice as long as the other sides of the hexagon.
  • the first and second notch portions are shorter than the other sides of the hexagon.
  • Each coil is preferably formed of one or more conductive wires, preferably of a single conductive wire.
  • the conductive wire(s) are, in cross-section, of circular shape, or of polygonal shape, in particular with rounded edges, preferably of rectangular shape, among other possible shapes.
  • the conductive wire is of rectangular cross-section.
  • the first notch portions are stacked on top of each other by being in contact with each other by their widest face, otherwise called the dish, and the second notch portions are also stacked on top of each other. the others by being in contact with each other by their dish.
  • the conductive wire of the coil is electrically insulated by an insulating coating, in particular an enamel.
  • the first and second notch portions are straight.
  • the first and second half-turns of each coil each extend along a half-turn cylinder, in particular parallel to the flat of the conductive wire, the half-turn cylinders of the first and second half-turns being parallel to each other and parallel to the middle cylinder of the coil.
  • the half-turn cylinders of the first half-turns all extend on the same side of the middle cylinder of the corresponding coil and the half-turn cylinders of the second half-turns all extend on the other side of the middle cylinder of the corresponding coil.
  • the second half-turns are each connected to the first half-turn of the same turn and to the first half-turn of the following turn by junction portions.
  • the first and second half-turns each comprise two bun portions extending on either side of the respective first and second notch portions.
  • the bun portions are connected to the junction portions between the first and second half-turns and intended to extend out of the first and second notches.
  • the bun portions are preferably straight before insertion of the notch portions into the notches of the stator and curved after insertion to follow the curvature of the stator.
  • the bun portions extend over the same cylinder as the corresponding first or second notch portion.
  • the bun portions can form a non-zero angle with the corresponding first or second notch portion.
  • the angle between the first or the second notch portion and the bun portions can be between 5 and 90°, preferably between 40 and 60.
  • the junction portions between the first and second half-turns and part of the first and second half-turns, in particular the bun portions of the half-turns form two buns of the coil extending on either side. other from the stator when the coil is inserted into the stator.
  • each junction portion is a loop portion extending between the first and the second half-turn that it connects, in particular between the bun portions of the first and the second half-turn that it connects.
  • the innermost junction portion of each coil forms a substantially complete loop, the other junction portions preferably forming loop portions of angular extent substantially equal to 180°.
  • all the junction portions form loop portions of angular extent substantially equal to 180°.
  • the junction portions of the corresponding coil can all be stacked along the same junction plane by overlapping each other, in particular on the flat of the conductive wire.
  • the junction portions form a single head at each end of the corresponding coil and are of increasing length from the center of the corresponding coil towards the outside of the corresponding coil.
  • the heads of the two ends of the coil extend along the same junction plane, in particular a radial plane of the stator.
  • the junction portions of the coil are stacked according to at least two juxtaposed heads extending along parallel junction planes between them, the portions of junction overlapping each other, in particular on the flat side of the conductive wire, alternately on one and the other of the two heads.
  • the two junction planes are preferably laterally offset from each other by a distance substantially equal to the width of the flat of the conductive wire so that the two adjacent heads are joined laterally. This makes it possible in particular to reduce the radial bulk of the chignons in order to facilitate the manufacture of the electric machine.
  • the junction planes are radial planes of the stator.
  • the first notch portions can be superimposed in a single column extending along a radial plane of the stator, that is to say configured to extend radially in the first notch, and the second portions of notch can overlap in a single column extending along a radial plane of the stator, ie configured to extend radially in the second notch.
  • the width of the wire of the first and the second notch portion is substantially equal to the width of the first and the second notch respectively in which it is inserted.
  • the first notch portions overlap in several, in particular two, juxtaposed columns extending along a radial plane of the stator
  • the second notch portions also overlap in several, in particular two, columns juxtaposed extending along a radial plane of the stator.
  • the junction portions on one side of the notch portions are stacked according to as many heads as there are juxtaposed columns of the junction portions
  • the junction portions on the other side of the portions of notch are stacked according to a number of juxtaposed heads corresponding to the number of columns of the notch portions plus one, the heads extending along junction planes corresponding to radial planes of the stator.
  • the coil can be configured to be disposed in the slots of the stator in a concentrated or distributed manner.
  • concentrated it is understood that the coil is wound around a single tooth and the first and the second notch are adjacent.
  • distributed it is meant that the first and the second notch are not adjacent.
  • the coil is configured to be disposed in the first and the second slot in a distributed manner.
  • the slot portions may be separated from the interior surface of the slots by sheet insulation.
  • the coil may include at least one sheet insulator attached to a portion of the coil, in particular surrounded around a portion of the coil.
  • the portion of the coil covered with the sheet insulation preferably corresponds to the first or to the second notch portions.
  • the coil comprises at least two sheet insulators attached to two portions of the coil corresponding respectively at least to the first and second notch portions, in particular surrounded around two portions of the coil.
  • the portions of the coil received in the notches are covered with sheet insulation over their entire surface inserted in the notches.
  • the coils can be grouped together in clusters of coils comprising a plurality of coils as described above, the coils of a cluster being interconnected by continuity of the conductive wire, in particular at the buns. electric machine
  • the invention also relates, according to another aspect of the invention, to a rotating electrical machine comprising a stator as described above or comprising a stator having notches and coils or clusters of coils as defined above, the first notch portions are inserted into one of the notches and the second notch portions are inserted into another of the notches, all of the notches receiving first notch portions from a coil and second notch portions from another coil.
  • the invention also relates, according to another aspect, to a method of manufacturing an electric coil for a rotating electric machine, comprising the steps consisting of: (a) shaping at least one conductive wire using a forming system so as to form an alternation, along the conductive wire, of at least a first half-turn and at least a second half turn,
  • Such a manufacturing process makes it possible to manufacture compact coils whose chignons, that is to say the portions of the coil which extend out of the notches after the insertion of the coils in the notches, are of reduced size.
  • the process is a process for manufacturing the coil according to one of the preceding aspects or a cluster as described previously.
  • the method can also be a method of manufacturing the coil received in a stator as described previously.
  • the manufactured coil can be one of the coils as described previously.
  • the above characteristics in relation to the other aspects of the invention apply to the method in combination or independently of the other aspects of the invention.
  • step (b) are each carried out by rotation around an axis transverse to an axis of extension of the conductive wire before it is shaped.
  • step (a) comprises the shaping of at least one conductive wire using the forming system so as to form an alternation, along the conductive wire, of first half-turns and second half turns.
  • the first (s) and second (s) adjacent half-turns are each interconnected by a junction portion of the rectilinear conductive wire before step (b) of folding.
  • the or each junction portion forms a loop portion when the corresponding first and second half-turns are folded over one another.
  • the junction portions preferentially fold over each other in step (b) from the first end to the second end of the conductive wire.
  • the junction portions can be of increasing length from the first end of the conductive wire to the second end of the conductive wire.
  • Step (a) can be carried out in one or more successive shaping operations by the forming system, the or each shaping operation by the forming system comprising the following succession of steps: the positioning of a portion of conductive wire in the forming system, the shaping of the portion of the conductive wire by the forming system, and the extraction, from the forming system, of the portion of the shaped conductive wire.
  • Step (a) may include a plurality of successive shaping operations, by the forming system, of successive parts of the conductive wire to shape in each part at least a first or second half-turn.
  • Steps (a) and (b) may not be distinct.
  • Step (a) can comprise a plurality of successive shaping operations by the system for forming successive parts of the conductive wire and step (b) can be carried out in different folding sub-steps as and when measurement of the shaping of the first(s) and second(s) half-turns by the forming system.
  • the folding of the first (s) and second (s) half-turns on each other is done in the order of shaping of the first (s) and second (s) half-turns by folding the first half-turn shaped near the first end of the lead wire on the adjacent second half-turn to form a one-turn winding, then repeatedly folding the winding over the adjacent first end half-turn at the second end of the lead wire.
  • steps (a) and (b) are separate, step (b) being carried out entirely after step (a).
  • the folding of the first (s) and second (s) half-turns in step (b) is always done by rotation in the same direction of the first end of the conductive wire towards the second end of the conductive wire.
  • the forming system comprises a plurality of rollers comprising: rollers with fixed axes during the shaping steps, and - Movable axle rollers during the shaping steps between a rest position in which the conductive wire is not deformed and a deformation position of the conductive wire.
  • the presence of fixed and mobile axle rollers allows for versatility in the dimensions of the coil that can be formed.
  • the dimension of the coil is in particular a function of the chosen positioning of the rollers.
  • the movable axis rollers are preferably movable axis transversely to an extension axis of the conductive wire in the absence of shaping.
  • the fixed and/or mobile axle rollers can be retractable.
  • retractable it is understood that the rollers can be removed from their location or pushed into a housing provided for this purpose to release the shaped conductive wire and facilitate its extraction. This makes it easier to extract each of the conductive wire parts from the forming system and possibly to change the position of the fixed and/or mobile axle rollers between two shaping operations by the forming system.
  • At least two rollers with successive fixed axes can extend on the same side of the conductive wire.
  • At least two movable axle rollers extend between two fixed axle rollers on one side of the conductor wire opposite to said two fixed axle rollers.
  • each movable axle roller is adjacent to two fixed axle rollers extending from the opposite side of the conductive wire and the shaping of the conductive wire is done in step (a) by moving the rollers from moving axes in translation towards the conducting wire.
  • Each formatting operation can include the steps of:
  • Step (iii) retracting the rollers with fixed and/or mobile axes once the corresponding half-turn has been formed to extract the portion of shaped conductor wire from the forming system.
  • Step (a) may include the steps of:
  • the first and second portions of the conductive wire are preferably of the same length.
  • the first and second forming system configurations may be the same or, preferably, different.
  • the first and the second part are of the same shapes after shaping and in the case where the first and the second configuration of the forming system are different, the first and second part are of different shapes after shaping.
  • the fixed and mobile rollers can each be arranged, in the second configuration of the forming system, on the opposite side of the conductive wire with respect to their position in the first configuration of the forming system.
  • This makes it possible in particular to shape the first and second parts respectively in symmetry with respect to the axis of extension of the wire before deformation and avoids having to turn the wire over when folding the half-turns one on the other. other.
  • the folding is then done by tilting the first half-turn on the second half-turn around an axis transverse to the axis of the conductive wire before deformation, without any other deformation of the conductive wire.
  • step (al) the shaping of the first part of the conductive wire can form a first half-turn and in step (a2) the shaping of the second part of the conductive wire can form a second half -turn, the first and the second half-turn being configured to form a complete turn in step (b).
  • the conductive wire before forming may extend along a longitudinal axis extending between the first(s) and second(s) half-turns after forming, in particular along the longitudinal axis of the formed turn.
  • the forming system may comprise two rollers with fixed axes during shaping and two rollers with movable axes during shaping, arranged between the rollers of fixed axes.
  • the segment of the conductive wire between the two movable axle rollers in steps (a1) and (a2) can be substantially straight and can be configured to fit into the notches of the electrical machine, in particular the notches of the stator.
  • the method may include the additional steps of:
  • the method may include steps of folding the first(s) and second(s) half-turns as they are formed.
  • the method comprises the steps of:
  • step (b2) folding, after step (a3) and before step (a4), of the winding obtained in step (bl) and of the additional half-turn shaped in the step of shaping previous shape to form a new winding
  • the folding step (bl) can be done by rotating the first half-turn around an axis transverse to the longitudinal axis of the conductive wire before shaping.
  • the folding step (b2) can be done by rotating the winding around an axis transverse to the longitudinal axis of the conductive wire before shaping.
  • the first and second configuration of the forming system are identical.
  • Steps (al) and (a2) can be identical and each make it possible to shape in a single operation of the forming system at least a first half-turn and at least a part of a second half-turn adjacent to the first half turn.
  • the method may include a step (a3) of repeating step (a2).
  • Steps (al) and (a2) can be identical and can each make it possible to shape in a single operation of the forming system a first half-turn and a second half-turn adjacent to the first half-turn.
  • the conductive wire may extend along an axis extending between the first (s) and second (s) half-turns.
  • the forming system may comprise two successive windings of two rollers with fixed axes during shaping and two rollers with movable axes during shaping extending between the rollers with fixed axes.
  • the rollers with fixed axes of one of the two windings being arranged on the side of the conductive wire opposite to that on which the rollers with fixed axes of the other winding are arranged.
  • one of the windings allows the formation of one of the first and of the second half-turn and the other of the windings allows the formation of the other of the first and of the second half-turn.
  • the method may include the steps of:
  • step (b2) folding after step (a2) of the winding on the first half-turn adjacent to the winding to form a new winding, then of the new winding on the second half-turn shaped in the previous step and adjacent to the winding to form a new winding, and
  • step (b3) repeating step (b2) between the different shaping steps.
  • the steps (a1) and (a2) are identical and each make it possible to shape in a single operation of the forming system a first part of a second half-turn, a first half-turn adjacent to the first part of a second preceding half-turn and a second part of a second half-turn adjacent to the first half-turn, the conductive wire before forming extending along a longitudinal axis extending laterally to the second half-turns, the first and the second part of the second half-turn being two parts which together form a complete second half-turn.
  • the method may include a step (a3) of repeating step (a2).
  • the forming system may comprise two first rollers with mobile axes nested between two first rollers with fixed axes, themselves nested between two second rollers with mobile axes, themselves nested between two second rollers of fixed axes along the longitudinal axis of the conductive wire.
  • the second rollers with fixed axes are close to the conductive wire to maintain the latter along the longitudinal axis
  • the first rollers with fixed axes are spaced from the longitudinal axis transversely to the latter by the width of the second half-turn(s);
  • the second movable axle rollers move transversely to the longitudinal axis by the width of the second half-turn(s) and the first movable axle rollers move transversely to the longitudinal axis by the width of a turn.
  • the method may include the steps of:
  • step (bl) folding after step (a2) of the first half-turn shaped in the preceding shaping step onto the adjacent second half-turn to form a winding forming a turn then folding the winding over the first half-turn adjacent to the winding to form a new winding
  • step (b2) repetition of step (bl) between the different shaping steps.
  • the winding formed preferably comprises a plurality of turns of conductive wire.
  • the winding is preferably substantially hexagonal in shape, in particular with two opposite sides longer than the others, in particular at least twice as long as the other sides, the latter possibly having substantially the same length.
  • the first (s) and second (s) half-turns can each have a straight notch portion intended to be inserted into the notches of the rotating electrical machine and two bun portions forming a non-zero angle with the portion of notch and intended to form the buns of the coil.
  • the junction portions between the first (s) and second (s) half-turns each form, after folding the first and second half-turns on each other, a loop portion.
  • the conductive wire, in particular each junction portion can be wound around at least one portion loop formed previously by the folding or folding of the first and second half-turns folded previously.
  • the conductive wire, in particular each junction portion can be wound into a single head at each end when the first and second half-turns are folded together, the junction portions overlapping each other at each end.
  • junction portions are rolled up in at least two heads at each end during the folding of the first and second half-turns between them so that the junction portions are wound alternately on one or the other of the heads.
  • the winding can constitute a coil as described previously.
  • the method may include a step of assembling at least two superposed windings to form a coil of the rotating electrical machine.
  • the bun junction portions of the different windings can be offset relative to each other perpendicular to the longitudinal axis of the conductive wire before shaping.
  • the method may include an additional step of separating the first and second half-turns from each other after folding. Such spacing makes it possible to angularly open the junction portion(s) at the level of the buns. This makes it possible to reduce the size of the coil, in particular the chignons, to facilitate its cooling.
  • the method may include a step of bending the coil, in particular during its insertion into the notches of the rotating electrical machine, so that it extends into the notches following the shape of the stator of the rotating electrical machine, in particular by along a cylindrical surface.
  • the method may include attaching sheet insulation at least to the portions of the coil intended to be received in the slots of the stator.
  • Figure IA schematically represents in perspective an example of winding
  • Figure 2 represents schematically and in isolation, in perspective, an example of a coil
  • Figure 3 is a view along III of the coil of Figure 2
  • Figure 4 shows the coil of Figures 2 and 3 along IV
  • FIG 6 is a view along VI of the coil of Figure 5
  • FIG 7 shows the coil of Figures 5 and 6, according to VII,
  • FIG 8 shows a detail of the end of the coil of figures 1 to 7,
  • Figure 9 shows the detail of figure 8, seen along IX,
  • FIG 10 Figure 10 schematically shows in perspective a forming system and a portion of a conductive wire inserted into the forming system before a shaping step thereof,
  • FIG 11 illustrates the shaping of the portion of the lead wire of Figure 10 in the forming system of Figure 10,
  • FIG 12 schematically shows the conductive wire after three shaping steps by the forming system of Figures 10 and 11,
  • Figure 13 shows schematically and in perspective the conducting wire of figure 12, after folding the first end half-turn over the adjacent second half-turn to form a turn,
  • Figure 14 schematically shows in perspective the step of folding the turn of Figure 13 onto the first adjacent half-turn
  • Figure 15 represents the winding obtained by the step illustrated in figure 14,
  • Figure 16 schematically shows a variant of shaping by a forming system of the first and second half-turns
  • FIG. 17 schematically represents a variant of shaping by a forming system of the first and second half-turns
  • Figure 18 schematically represents in perspective an alternative arrangement of the buns of the coils
  • Figure 19 schematically represents a coil variant before bending
  • FIG 20 Figure 20 schematically shows in perspective a coil variant before bending
  • Figure 21 represents the coil of figure 20 according to XXI
  • Figure 22 corresponds to the coil of figure 21 after bending
  • FIG 23 shows a coil cluster of Figure 20
  • Figure 24 is a view according to XXIV of Figure 23,
  • Figure 25 shows an example of a stator
  • Figure 26 shows schematically and in perspective a coil variant
  • Figure 27 shows schematically and in perspective a coil variant
  • Figure 28 shows schematically and in perspective a coil variant
  • Figure 28 is a view according to XXIX of Figure 28, and
  • Figure 30 shows schematically and in perspective a coil variant.
  • Figure IA There is illustrated in Figure IA a winding 10 arranged according to the arrangement that it would have in the stator (not visible) of the machine.
  • Figure IB shows coils 20 inserted into notches 62 of stator 60.
  • Figures 2 and 3 show a coil 20 in isolation.
  • Each coil 20 has two straight portions 22 intended to be inserted into the notches 62 of the stator 60, as illustrated in FIG. notches, on either side of them.
  • the coils 20 are bent prior to their insertion into the notches 62 of the stator 60 to allow their insertion into the latter.
  • the coils 20 extend along a median cylinder P of the same curvature as that of the outer surface of the stator on which they are intended to be mounted, the straight portions 22 being rectilinear and the buns 24 extending in top view along an arc of a circle.
  • the coils may have an angular extent comprised between 20° and 180°, better comprised between 50° and 80°, preferably substantially equal to 65°.
  • the cylinder P Before bending of the coil 20, as shown in Figures 6 and 7, the cylinder P has the shape of a median plane P.
  • the coils 20 are of substantially hexagonal shape in front view and are formed by winding a conductive wire 30 into a plurality of turns each formed of a first half-turn 32a and a second half-turn 32b interconnected by a junction portion 40, the turns also being interconnected by junction portions 40.
  • the first half-turns 32a all extend mainly on one side of a transverse plane T perpendicular to the median plane P and the second half-turns 32b extend mainly on the opposite side of this transverse plane T with respect to the first half-turns 32a.
  • the conductive wire 30 is of rectangular section, its smaller side forming the edge and its long side forming the dish.
  • the first half-turns 32a are all of identical shape and overlap while being in contact two by two, preferably over their entire length.
  • the conducting wires 30 of the first half-turns 32a are superimposed on each other on their flat. The same applies to the second half-turns.
  • the first half-turn closest to the median plane P and the second half-turn closest to the median plane P can overlap while being at least partially contiguous, in particular at their ends, as is particularly visible in Figures 7 and 8.
  • the first half-turns 32a all extend from a first side of the median plane P and mainly from a first side of the transverse plane T by overlapping each other in a direction X perpendicular to the median plane P and the second half - turns 32b all extend on a second side of the median plane P opposite the first and mostly on a second side of the transverse plane T opposite the first.
  • the first and second half-turns 32a and 32b include respective straight notch portions 34a and 34b. These notch portions are connected by respective elbows 38a and 38b to respective bun portions 36a and 36b, straight also.
  • the bun portions 36a of the first half-turns are connected to the bun portions 36b of the adjacent second half-turns by the junction portions 40 in the form of a loop.
  • the bun portions 36a and 36b each form an angle a, visible in particular in Figure 3, with the corresponding notch portion 34a or 34b.
  • the angle a is for example between 90° and 150°, preferably being of the order of 120°.
  • the straight portions 22 of the coils 20 are formed respectively by the superposition of the notch portions 34a of the first half-turns 32a and the superposition of the second first notch portions 34b of the second half-turns 32b.
  • the buns 24 of the coils 20 on either side of the straight portions 22 of the coils 20 are formed by the superposition of the bun portions 36a and 36b and the junction portions 40 extending from the side corresponding to the said bun 24.
  • the first and second half-turns 32a and 32b are of the same length S, measured between the ends of the bun portions 36a or 36b and the notch portions 34a and 34b are of the same length m substantially equal to the height of the notches of the stator.
  • the first and second half-turns can be of the same width Q, illustrated in particular in FIG. 6, measured between the transverse plane T and the center of gravity of the intermediate portion 32a or 32b.
  • the first half-turns 32a can be of a different width Q from the second half-turns 32b.
  • junction portions 40 form superimposed loops in the chignons having in their center an opening 42 of width 1, in particular visible in FIGS. 7 and 8.
  • the loops have an angular opening greater than or equal to 180°.
  • the loop of the innermost junction portion 40 is almost a closed ball, this resulting from the fact that the innermost notch portions 34a and 34b have surfaces extending along the median plane P.
  • the buns have a greater width L, taken perpendicular to the median plane P, greater than the thickness e of the coils 20 loops 40 excluded, as shown in Figure 9.
  • Each coil 20 has two connection ends 28 and 29, each extending in a bun 24, preferably in the same bun 24.
  • a first free end 28 of the conductive wire extends from the first or second half-turn 32a or 32b closest to the median plane P and the second free end 29 of the conductive wire extends from the first or the second half-turn 32a or 32b farthest from the median plane P.
  • the coil 20 is obtained by winding the conductive wire 30 always in the same direction as will be explained later.
  • the adjacent coils 20 are partially superimposed by their buns 24 by overlapping one another, the buns 24 being circumferentially offset from each other.
  • the coils 20 are configured so that the straight portion 22 formed by the notch portions 34a of the first half-turns 32a of a coil 20 overlap in the slots of the stator with the straight portion 22 formed by the notch portions 34b second half-turns 32b of another coil 20.
  • the free ends 28 and 29 of the conductive wire all extend on the same side of the stator.
  • the forming system 50 comprises two rollers with a fixed axis 52 on a first side of a longitudinal axis X and two rollers with a movable axis 54 arranged between the rollers of fixed axis 52 on the other side of the X axis.
  • the rollers 54 are movable in the direction of the rollers 52 perpendicular to the X axis, as shown in FIG. 11.
  • the rollers 52 are spaced apart from each other by a distance d substantially equal to the length S of the first half-turns 32a.
  • the axes of the rollers 54 are spaced apart by a distance k substantially equal to the length m of the main portion of the first half-turns 32a.
  • a first rectilinear part of the conducting wire 30 is positioned along the axis X between the rollers 52 and the rollers 54. Then, the rollers 54 are moved from a first position, in the direction of the rollers 52 perpendicular to the axis X by a substantially the same distance b equal to the width Q of the first half-turns 32a, towards a second position. The rollers 54 deform the conductive wire 30 during their movement, giving it the shape of the first half-turn 32a. The latter is then removed from the forming system. To facilitate removal, the rollers 54 are retractable.
  • the rollers 52 and the rollers 54 are moved so that they are positioned on the opposite side of the X axis with respect to the position occupied during the previous operation.
  • the rollers 34 are moved from their first position in the direction of the rollers 52, perpendicular to the axis X, by the same distance b substantially equal to the width Q of the second half-turns 32a, towards a second position.
  • the rollers 54 deform the conductive wire 30 during their displacement, giving them the shape of a second half-turn 32b.
  • the first half-turn 32a shaped previously and the second half-turn 32b formed here are interconnected by a rectilinear portion. The second shaped half-turn is then removed from the forming system.
  • rollers 52 and 54 are repositioned as in the first operation and a new first half-turn 32a is shaped on a part of the conductive wire 30 adjacent to the previous part.
  • the second operation is reproduced on a part of the wire 30 adjacent to the previous part.
  • the conductive wire 30 then has a succession of first and second half-turns 32a and 32b along the axis X, interconnected by straight portions, as shown in Figure 12.
  • the rectilinear portions are longer and longer along the conductive wire, in order to allow them to be superimposed in loops 40 without shifting the first and second successive half-turns.
  • the innermost junction portion 40 of the buns is necessarily shorter than the outermost junction portion 40 of the buns.
  • first and second half-turns 32a and 32b are then folded over each other, as shown in Figures 13 to 15.
  • a first folding step the first half-turn 32a shaped in the first step above is folded over the second half-turn 32b shaped in the second step at the straight portion, by rotation around an axis Y1 perpendicular to the axis X, as illustrated in FIG. 13.
  • the first half-turn 32a and the second half-turn then form a complete turn and the rectilinear portion takes the form of a portion of loop 40.
  • the complete turn formed is itself folded over the first adjacent half-turn 32a shaped in the third step at the rectilinear portion between the second half-turn 32b shaped at the second step and the first half-turn 32a shaped in the third step, by rotation around an axis Y2 perpendicular to the axis X, as illustrated in FIG. 14.
  • the complete turn and the first half-turn turn then form a winding of one turn and a half and the rectilinear portion forms a loop portion 40, as shown in Figure 15.
  • a third folding step the winding previously formed is itself folded over the adjacent half-turn at the level of the rectilinear portion between the half-turn adjacent to the winding and the preceding half-turn by rotation around an axis Yi perpendicular to the axis X, the rectilinear portion folding over the loop portion 40 formed during the first folding step, and so on until the winding is folded over the last half-turn 32a or 32b, preferably 32b, of the coil 20, the rectilinear portions folding over each other.
  • the above folding steps are performed between the above shaping operations.
  • the folding step on a half-turn 32a or 32b is carried out after it has been shaped.
  • the operations are performed in the following order: first and second shaping operations/first folding step/third shaping operation/second folding step/alternating shaping and folding operations. folding steps, or first and second shaping operations/first folding step/third and fourth shaping operations/second and third steps folding/alternation of two formatting operations and two folding steps.
  • the forming system 50 makes it possible to shape in a single shaping operation a first and a second half-turn 32a and 32b along the axis X. It comprises the along this axis X: a first set of rollers comprising two rollers with fixed axes 52a on one side of the axis X and two rollers with movable axes 54a arranged between the rollers 52a on the other side of the axis X relative to the rollers 52a, the rollers 54a being movable towards the rollers 52a perpendicular to the axis X and a second set of rollers comprising two rollers with fixed axes 52b on the side of the axis X opposite to the rollers 52a of the first winding and two movable axle rollers 54b disposed between the rollers 52b on the same side of the X axis as the rollers 52a of the first winding, the rollers 54b being movable towards the rollers 52b perpendicular to
  • rollers 52a and 52b of each set of rollers are spaced apart by a distance d substantially equal to the long ur S of the first and second half-turns 32a and 32b respectively.
  • the rollers 54a and 54b are spaced apart by a distance k, between their axes, substantially equal to the length m of the respective main portions 32a and 32b of the first and second half-turns.
  • a first rectilinear part of the conducting wire 30 is positioned along the axis X between the rollers 52a and 52b and the rollers 54a and 54b. Then, the rollers 54a and 54b are moved in the direction of the rollers 52a and 52b by a distance b substantially equal to the width Q of the first and second half-turns 32a and 32b.
  • the rollers 54a and 54b deform the conductive wire 30 during their movement, giving it the shape of a succession of a first half-turn 32a shaped by the first set of rollers and a second half-turn 32b shaped by the second set of rollers.
  • This operation can be repeated as many times as there are turns on successive parts of the conductive wire 30.
  • the folding steps are identical to those described previously.
  • the X axis extends along the main portion of the second half-turns 32b and the forming system 50 makes it possible to forms in a single operation a half of a second half-turn 32b, a first half-turn 32a and a half of a second half-turn along the axis X.
  • the forming system comprises along the axis X: two fixed axle rollers 52b on one side of the X axis, two movable axle rollers 54b arranged between the rollers 52b, on the other side of the X axis relative to the rollers 52b, two axle rollers fixed 52a arranged, in projection on the axis X, between the rollers 54b, on the side of the rollers 52b and spaced from the axis X transversely to the latter by a distance r substantially equal to the width Q of the second half-turns 32b , and two movable axle rollers 54a arranged, in projection on the X axis, between the rollers 52a and on the side of the rollers 54b.
  • the rollers 54a are spaced apart by a distance k between their axes, substantially equal to the length m-S of the intermediate portion of the first half-turns 32a.
  • the rollers 52a are spaced from the adjacent roller 54a along the X axis by a distance substantially equal to the length S-m along the X axis of the bun portion 36a of the first half-turns 32a.
  • the rollers 54b are spaced from the adjacent fixed roller 52a along the axis X by a distance substantially equal to the length m-S of the main portion of the second half-turns 32b.
  • a first rectilinear part of the conducting wire 30 is positioned along the axis X between the rollers 52a and 52b and the rollers 54a and 54b. Then, the rollers 54b are moved from a first position in the direction of the rollers 52a, perpendicular to the axis X, by a distance bl substantially equal to the width Q of the second half-turns 32b, to a second position, and the rollers 54a are moved from a first position in the direction of the rollers 52a perpendicular to the axis X by a distance b2 substantially equal to the total width of the coil 20 in a second position.
  • rollers 54a and 54b deform the conductive wire 30 during their displacement, giving it the shape of a succession of patterns composed of a half of a second half-turn 32b, a first half-turn 32a and a half second half-turn along the X axis, as shown in Figure 17.
  • the coil 20 is then entirely included, before bending, between the planes V and R before bending of the coil defined by the outermost flats of the first and second outermost notch portions 32a and 32b of coil 20, as seen in Figure 19. Planes V and R become outer cylinders after coil bending.
  • the embodiment of FIGS. 20 to 25 differs from previous embodiments in that the first and second notch portions 34a and 34b are stacked on the flat side of the conductive wire in two columns 22a and 22b juxtaposed and in contact. with each other through the song of the common thread.
  • the bun 24 comprises two bun heads 26a and 26b, one 26a connecting the first notch portions 34a of the inner column 22b to the second notch portions 34b of the outer column 22b and the other connecting the first notch portions 34a of the outer column 22a to the second notch portions 34b of the inner column 22a.
  • the bun 24 comprises three bun heads 26c, 26d and 26e, the first notch portions 34a of the inner column 22b being alternately connected to the second notch portions 34b of the outer column 22a and of the inner column 22b via the junction portions respectively of the central head 26d and of the head 26e on the side of which extend the second half-turns and the first notch portions 34a of the outer column 22b being alternately connected to the second notch portions 34b of the outer column 22a and of the inner column 22b via the junction portions respectively of the central head 26d and of the head 26b from the side of which extend the first half-turns.
  • connection ends 28 and 29 are on either side of the three bun heads 26c, 26d and 26e.
  • the innermost first and second half-turns 32a and 32b can be spaced apart from each other transversely to the median plane P of the coil by a zero or non-zero distance m, in particular such that the first and second half-turns 32a and 32b are interconnected by a junction portion forming a loop portion extending over 180° with the smallest possible bend radius without damaging the conductive wire.
  • the conductive wire can be wound further to form other coils 20b and 20c, the various coils 20a, 20b and 20c being attached to each other by continuity of the common thread.
  • all of these coils 20a, 20b and 20c formed from the same wire are configured to fit into adjacent slots of the stator, as shown in Figure 25. They are nested together. on the others and form a cluster of adjacent coils.
  • the ends 28 and 29 of the conductive wire preferably extend on either side of the coil heads of the same bun.
  • the portions of the electric wire allowing the junction between the various coils 50 are preferably in the form of a loop extending parallel to the loops of the bun heads between the latter, without exceeding transversely from the latter.
  • Coils 20 as shown can fit into slots 62 of any stator 60 having slots 62 open.
  • the stator 60 comprises a crown 65 in which the notches 62 opening outwards are made, and a yoke 68 attached to the crown 65 allowing the notches 62 to be closed radially. after inserting the winding.
  • the notches 62 are formed between teeth interconnected by bridges of material forming the bottom of the notches 62.
  • the bridges of material forming the bottom of the notches can be deformable.
  • the crown 65 can be in one piece as shown in Figure 1B or in several sectors, not shown.
  • the cylinder head 68 may include reliefs complementary to the reliefs of the crown 65 to facilitate assembly.
  • the reliefs are for example tenons and mortises or complementary notches and grooves.
  • the straight portions 22 of the coils intended to be inserted into the notches 62 of the stator 60 can be covered with an insulating sheet 53 making it possible to isolate them from the interior of the notch and between them.
  • the method may include an additional step of separating the straight portions 22 of the coils 20 from each other.
  • Such a gap makes it possible to open the loop portion(s) in the buns 24. This makes it possible to reduce the size of the coil, in particular of the buns 24, to facilitate their cooling and to reduce the length of wire necessary for the manufacture of each coil.
  • the method may also include an additional step of crushing the coil heads 26 allowing them to be tilted relative to the transverse plane T.
  • the coil 20 has straight portions 22 in a single column. On one side of the straight portions 22, the coil has the two ends 28 and 29 and a single bun head 26. On the other side of the straight portions 22, the coil has two bun heads 26a and 26b on which the portions of junctions fold alternately.
  • the innermost first and second half-turns 32a and 32b both have a surface extending along the median plane P of the coil.
  • Figure 27 differs from that of Figure 26 in that the coil has three bun heads 26a to 26c on which the junction portions fold alternately.
  • the innermost first and second half-turns 32a and 32b are separated from each other transversely to the median plane P of the coil by a zero distance m.
  • the coil 20 has straight portions 22 in two columns 22a and 22b. On one side of the straight portions 22, the coil has a single bun head 26. On the other side of the straight portions 22, the coil has the two ends 28 and 29 and three bun heads 26a to 26c on which the portions of junctions fold alternately.
  • the innermost first and second half-turns 32a and 32b may be spaced apart transversely to the median plane P of the coil by a zero or non-zero distance m.
  • the bun head 26 has a much larger transverse size t than that of the coil b on the side of the three bun heads 26a to 26c. Such a bulk prevents the insertion of the yoke on the side of the single bun head. However, the bolt can be inserted from the other side.
  • the coil 20 has straight portions 22 in two columns 22a and 22b. On one side of the straight portions 22, the coil has the two ends 28 and 29 and three bun heads 26a to 26c on which the junction portions fold alternately. On the other side of the straight portions 22, the coil has four bun heads 26d to 26g on which the junction portions fold alternately.
  • the innermost first and second half-turns 32a and 32b can be spaced apart transversely to the median plane P of the coil by a zero or non-zero distance m.
  • the first and second half-turns can take different shapes
  • the clusters of coils can be made with first and second notch portions in a single column and with one or more bun heads
  • the central spacing of the first and second half-turns may be present on a coil whose first and second notch portions are in a single column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

L'invention concerne une bobine (20) destinée à être insérée dans une première et une seconde encoche d'un stator (60), la bobine (20) étant enroulée selon une pluralité de spires successives, chaque spire comportant : - une première demi-spire (32a) comportant une première portion d'encoche (34a) configurée pour être insérée dans la première encoche du stator, - une seconde demi-spire (32b) comportant une seconde portion d'encoche (34b) configurée pour être insérée dans la seconde encoche du stator, les secondes demi-spires (32b) étant chacune reliées à la première demi-spire (32a) de la même spire et à la première demi-spire (32a) de la spire suivante par des portions de jonction (40), de chaque côté des premières et deuxièmes portions d'encoche (34a, 34b), les portions de jonction (40) de la bobine s'empilent selon au moins deux têtes (26a, 26b, 26c, 26d, 26e) juxtaposées s'étendant selon des plans de jonctions parallèles entre eux.

Description

Description
Titre : Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
La présente invention revendique les priorités des demandes françaises 2013503, déposée le 17 décembre 2020, 2013543 déposée le 17 décembre 2020 et 2013445 déposée le 17 décembre 2020 dont les contenus (textes, dessins et revendications) sont ici incorporés par référence.
La présente invention concerne les bobines destinées à être insérée dans des encoches d’un stator d’une machine électrique tournante. L’invention concerne également le bobinage associé, le stator et la machine électrique tournante correspondante. Elle concerne également les procédés de fabrication de tels bobinages.
L’invention porte plus particulièrement sur les machines synchrones ou asynchrones, à courant alternatif. Elle concerne notamment les machines de traction ou de propulsion de véhicules automobiles électriques (Battery Electric Vehicle) et/ou hybrides (Hybrid Electric Vehicle - Plug-in Hybrid Electric Vehicle), telles que voitures individuelles, camionnettes, camions ou bus. L’invention s’applique également à des machines électriques tournantes pour des applications industrielles et/ou de production d’énergie, notamment navales, aéronautiques ou éoliennes.
Domaine technique
Usuellement, les bobines de machines électriques sont formées par enroulement d’un fil électrique selon une pluralité de spires identiques, les bobines étant ensuite insérées dans les encoches de la machine en prenant la forme nécessaire au remplissage des encoches par cintrage à l’insertion. En variante, les bobines sont formées par enroulement d’un fil électrique en spire sur un gabarit de forme prédéterminée, puis insérées dans les encoches en conservant sensiblement la forme du gabarit.
Il est connu des demandes de brevet EP2416471, JP2011097723, EP2562917, EP3197020 et US 10476337 des stators comportant des bobines formées par enroulement d’un fil électrique selon une pluralité de spires identiques de forme sensiblement hexagonales. Les bobines sont configurées pour être insérés dans deux encoches du stator espacées l’une de l’autre par une pluralité d’encoches. Il existe un besoin pour bénéficier de bobines pour un stator de machine électrique tournante d’assemblage aisé permettant un remplissage efficace des encoches, tout en assurant des performances électromagnétiques satisfaisantes. Il existe également un besoin pour améliorer encore les stators de machines électriques et notamment diminuer les ondulations de couple et les pertes Joule AC par courants induits, les vibrations et le bruit électromagnétique .
Il existe également un besoin pour disposer d’un procédé de fabrication des bobines permettant la formation de bobines avec un taux de remplissage des encoches satisfaisant, permettant une fabrication rapide des bobines, limitant la quantité de conducteurs électriques utilisée et capables d’être refroidies efficacement.
Résumé de l’invention
Bobine
L’invention vise à répondre à ce besoin et elle y parvient, selon un aspect de l’invention, grâce à une bobine destinée à être cintrée pour être insérée dans une première et une seconde encoche d’un stator d’une machine électrique tournante, la bobine étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi-spire présentant une première portion d’encoche configurée pour être insérée dans la première encoche du stator, une seconde demi-spire présentant une seconde portion d’encoche configurée pour être insérée dans la seconde encoche du stator, les première et seconde portions d’encoche les plus intérieures de la bobine ayant leurs surfaces les plus intérieures s’étendant selon un même plan médian de la bobine, la bobine étant entièrement comprise entre deux plans externes parallèles au plan médian de la bobine et définis par les surfaces des premières et secondes portions d’encoche les plus extérieures de la bobine les plus éloignées du plan médian de la bobine, les premières portions d’encoche et les secondes portions d’encoche étant empilées selon un ordre identique en partant du plan médian de la bobine vers les plans externes.
Par « plan médian », on comprend le plan contenant l’axe longitudinal de la bobine et s’étendant dans la largeur de la bobine. Par « plan transversal », on comprend le plan contenant l’axe longitudinal de la bobine et s’étendant dans l’épaisseur de la bobine.
Par « les premières portions d’encoche et les secondes portions d’encoche étant empilées selon un ordre identique en partant du plan médian de la bobine vers les plans externes », on comprend que, si les premières portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées à partir du plan médian vers un des plans externes, alors les secondes portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées aussi à partir du plan médian vers un des plans externes, et inversement. Ainsi, on comprend que si la première portion d’encoche de la première spire de la bobine est la plus intérieure de la bobine, la seconde portion d’encoche de cette même première spire est la plus intérieure de la bobine également et inversement.
Il en résulte que, lorsque les portions d’encoche sont insérées dans les encoches correspondantes, les premières portions d’encoche des spires successives sont configurées pour être disposées dans la première encoche du stator dans un ordre radialement inverse des secondes portions d’encoche des spires successives dans la seconde encoche. C’est-à-dire, si la première portion d’encoche de la première spire de la bobine est radialement la plus intérieure dans la première encoche du stator, la seconde portion de cette même spire est radialement la plus extérieure dans la seconde encoche du stator et inversement.
Chaque bobine comportant plusieurs spires, on obtient une réduction des pertes par courants induits, ou pertes Joule AC, ce qui est particulièrement avantageux lorsque la vitesse de fonctionnement est élevée. Le transfert thermique vers la source froide en est également facilité.
L’inversion de l’ordre des portions d’encoche dans les première et seconde encoches, également appelée « transposition », permet notamment de minimiser les courants de circulation entre portions d’encoche d’une même bobine dans chacune des première et seconde encoches.
Par « les plus intérieures de la bobine », on comprend les plus proches du plan médian de la bobine.
Le fait que les première et seconde portions d’encoche les plus intérieures de la bobine aient leurs surfaces les plus intérieures s’étendant selon un même plan médian permet d’avoir une bobine qui est compacte perpendiculairement au plan médian de la bobine. De plus une telle compacité permet un meilleur remplissage des encoches du stator en permettant que la première et la deuxième portion d’encoche insérées dans une encoche soient très proches voire même en contact l’une de l’autre. Ce qui améliore les performances de la machine. Par « la bobine étant entièrement comprise entre deux plans externes parallèles au plan médian et définis par les surfaces des premières et secondes portions d’encoche les plus extérieures de la bobine les plus éloignées du plan médian de la bobine », on comprend que l’épaisseur maximale de la bobine correspond à l’épaisseur de la bobine au niveau des portions d’encoche.
Le fait que les bobines s’étendent entièrement entre deux plans externes définis par des surfaces des portions d’encoche les plus extérieure permet d’avoir des bobines compactes dans le sens radial au niveau des chignons, c’est à dire les portions qui s’étendent hors des encoches après l’insertion des bobines dans les encoches. Ceci permet également de faciliter la fabrication de la machine électrique en limitant évitant que les portions hors des encoches aient un encombrement radial hors des encoches supérieur à l’encombrement radial des encoches.
Lorsque la bobine est insérée dans les encoches du stator ou avant qu’elle ne soit insérée dans les encoches du stator, elle est cintrée (ou galbée) pour prendre la courbure du stator et permettre l’insertion des portions d’encoches dans deux encoches du stator espacées entre elles. Le plan médian devient un cylindre médian de la bobine et les plans externes deviennent des cylindres externes de même axe central que le cylindre médian mais de rayons différents. La bobine peut présenter une étendue angulaire dans le stator comprise entre 20° et 180°, mieux comprise entre 50° et 80°, de préférence sensiblement égale à 65°.
De préférence, les premières et secondes portions d’encoche sont de même longueur, notamment sensiblement la longueur des encoches du stator.
De préférence, les premières et secondes demi-spires sont de mêmes longueurs.
De préférence, les premières et secondes portions d’encoche sont rectilignes.
La bobine est formée préférentiellement d’un ou plusieurs fils conducteurs, de préférence d’un unique fil conducteur. De préférence, le ou les fils conducteurs sont, en section transversale, de forme circulaire, ou de forme polygonale, notamment à arêtes arrondies, préférentiellement de forme rectangulaire, entre autres formes possibles. De préférence, le fil conducteur est de section transversale rectangulaire. De préférence, les premières portions d’encoche sont empilées les unes sur les autres en étant en contact les unes avec les autres par leur face la plus large, autrement appelée le plat, et les secondes portions d’encoche sont également empilées les unes sur les autres en étant en contact les unes avec les autres par leur plat. De préférence, la bobine est un enroulement d’un fil conducteur dont l’une de la première ou dernière spire est la spire la plus proche du plan médian P et l’autre de la première ou dernière spire est la spire la plus éloignée du plan médian P.
De préférence, le fil conducteur de la bobine est isolé électriquement par un revêtement isolant, notamment un émail.
La bobine est, de préférence, de forme sensiblement hexagonale, notamment avec deux côtés opposés formés par les premières et secondes portions d’encoche plus longs que les autres, notamment au moins deux fois plus longs que les autres côtés de l’hexagone. En variante, les premières et secondes portions d’encoche sont moins longues que les autres côtés de l’hexagone.
De préférence, les premières et secondes demi-spires s’étendent chacune selon un plan de demi-spire, notamment parallèle au plat du fil conducteur, les plans de demi-spire des premières et secondes demi-spires étant parallèles entre eux et parallèle au plan médian de la bobine. De préférence, les plans de demi-spire des premières demi-spires s’étendent tous d’un même côté du plan médian de la bobine et les plans de demi-spire des secondes demi-spires s’étendant tous de l’autre côté du plan médian de la bobine.
De préférence, les secondes demi-spires sont chacune reliées à la première demi- spire de la même spire et à la première demi-spire de la spire suivante par des portions de jonction.
De préférence, les premières et secondes demi-spires comportent chacune deux portions de chignon s’étendant de part et d’autre des premières et secondes portions d’encoche respectives. Les portions de chignon sont reliées aux portions de jonction entre les premières et secondes demi- spires et destinées à s’étendre hors des premières et secondes encoches. Les portions de chignon sont, de préférence, formées rectilignes avant insertion des portions d’encoche dans les encoches du stator et cintrés juste avant ou lors de l’insertion des portions d’encoche dans les encoches du stator pour suivre la courbure du stator. De préférence, les portions de chignon s’étendent dans le même plan d’extension parallèle au plan médian de la bobine que la première ou la deuxième portion d’encoche correspondante. Les portions de chignon peuvent former un angle non plat avec la première ou seconde portion d’encoche correspondante. L’angle entre la première ou la seconde portion d’encoche et les portions de chignon peut être compris entre 90° et 150°, étant de préférence de l’ordre de 120°. De préférence, les portions de jonction entre les premières et secondes demi- spires et une partie des premières et secondes demi-spires, notamment les portions de chignon des demi-spires, forment deux chignons de la bobine s’étendant de part et d’autre du stator lorsque la bobine est insérée dans le stator.
De préférence, les portions de jonction consécutives d’un même côté des portions d’encoche s’étendent sur des têtes différentes.
De préférence, chaque portion de jonction est une portion de boucle s’étendant entre la première et la seconde demi-spire qu’elle relie, notamment entre les portions de chignon de la première et la seconde demi-spire qu’elle relie. De préférence, la portion de jonction la plus intérieure de la bobine forme une boucle sensiblement complète, les autres portions de jonction formant préférentiellement des portions de boucle d’étendue angulaire sensiblement égale à 180°.
Des deux côtés des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine peuvent toutes s’empiler selon un même plan de jonction en se superposant toutes les unes aux autres, notamment sur le plat du fil conducteur. Ainsi, les portions de jonction forment une unique tête à chaque extrémité de la bobine et sont de longueur croissante du centre de la bobine vers l’extérieur de la bobine. De préférence, les têtes des deux extrémités de la bobine s’étendent selon le même plan de jonction, notamment perpendiculaire au plan médian de la bobine.
En variante, de chaque côté des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine s’empilent selon au moins deux têtes juxtaposées s’étendant selon des plans de jonction parallèles entre eux, les portions de jonction se superposant entre elles, notamment sur le plat du fil conducteur, alternativement sur l’une et l’autre des deux têtes. Les deux plans de jonction sont, de préférence, décalés latéralement entre eux d’une distance sensiblement égale à la largeur du plat du fil conducteur de sorte que les deux têtes adjacentes sont jointives latéralement. Ceci permet notamment de réduire l’encombrement radial des chignons afin de faciliter la fabrication de la machine électrique. De préférence, les plans de jonctions sont perpendiculaires au plan médian de la bobine.
Les premières portions d’encoche peuvent se superposer selon une unique colonne s’étendant perpendiculairement au plan médian de la bobine, c’est-à-dire configuré pour s’étendre radialement dans la première encoche, et les secondes portions d’encoche peuvent se superposer selon une unique colonne perpendiculaire au plan médian, c’est à dire configuré pour s’étendre radialement dans la seconde encoche. De préférence, la largeur du fil de la première et de la seconde portion d’encoche est sensiblement égale à la largeur de la première et de la seconde encoche respectivement dans laquelle elle s’insère.
En variante, les premières portions d’encoche se superposent selon plusieurs, notamment deux, colonnes juxtaposées s’étendant perpendiculairement au plan médian, et les secondes portions d’encoche se superposent également selon plusieurs, notamment deux, colonnes juxtaposées s’étendant perpendiculairement au plan médian. Dans ce cas, de préférence, les portions de jonction d’un côté des portions d’encoche s’empilent selon autant de têtes que de colonnes juxtaposées des portions de jonction, et les portions de jonction de l’autre côté des portions d’encoche s’empilent selon un nombre de têtes juxtaposées correspondant au nombre de colonnes des portions d’encoche plus une, les têtes s’étendant selon des plans de jonctions parallèles entre eux et préférentiellement perpendiculaire au plan médian de la bobine.
Les premières portions d’encoches des spires consécutives peuvent s’étendre sur des colonnes différentes et les deuxièmes portions d’encoches des spires consécutives peuvent s’étendre sur des colonnes différentes.
La bobine peut être configurée pour être disposée dans les encoches du stator de manière concentrée ou répartie.
Par « concentrée », on comprend que la bobine est enroulée autour d’une seule dent et la première et la seconde encoche sont adjacentes.
Par « répartie », on entend que la première et la seconde encoche ne sont pas adjacentes.
De préférence, la bobine est configurée pour être disposée dans la première et la seconde encoche de manière répartie.
L’invention a encore pour objet, selon un autre aspect, une bobine destinée à être insérée dans une première et une seconde encoche d’un stator d’une machine électrique tournante, la bobine étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi- spire comportant une première portion d’ encoche configurée pour être insérée dans la première encoche du stator, une seconde demi- spire comportant une seconde portion d’encoche configurée pour être insérée dans la seconde encoche du stator, les secondes demi-spires étant chacune reliées à la première demi-spire de la même spire et à la première demi-spire de la spire suivante par des portions de jonction, de chaque côté des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine s’empilent selon au moins deux têtes juxtaposées s’étendant selon des plans de jonctions parallèles entre eux.
Le fait que les portions de jonction de la bobine s’empilent selon au moins deux têtes juxtaposées permet notamment de réduire l’encombrement radial des chignons, ce qui facilite la fabrication de la machine.
Par « plan médian », on comprend le plan contenant l’axe longitudinal de la bobine et s’étendant dans la largeur de la bobine. Par « plan transversal », on comprend le plan contenant l’axe longitudinal de la bobine et s’étendant dans l’épaisseur de la bobine.
De préférence, les portions de jonction consécutives d’un même côté des portions d’encoche s’étendant sur des têtes différentes.
Les deux plans de jonctions sont, de préférence, décalés latéralement entre eux d’une distance sensiblement égale à la largeur du plat du fil conducteur de sorte que les deux têtes adjacentes sont jointives latéralement.
De préférence, avant insertion dans le stator, la première portion d’encoche et la seconde portion d’encoche la plus intérieure de la bobine ont leur surface la plus intérieure qui s’étendent selon un même plan médian de la bobine. Ceci permet d’avoir une bobine qui est compacte perpendiculairement au plan médian. De plus une telle compacité permet un meilleur remplissage des encoches du stator en permettant que la première et la deuxième portion d’encoche insérées dans une encoche soient en contact l’une de l’autre. Ce qui améliore le refroidissement.
En variante, les première et seconde portions d’encoche les plus intérieures de la bobine ont leurs surfaces les plus intérieures qui s’étendent selon deux plans différents espacés entre eux radialement d’une distance non nulle.
Par « la plus intérieure de la bobine », on comprend la plus proche du plan médian de la bobine.
De préférence, la bobine est entièrement comprise entre deux plans externes parallèles au plan médian et définis par les surfaces les plus éloignées du plan médian des premières et secondes portions d’encoche les plus extérieures de la bobine. Le fait que les bobines s’étendent entièrement entre deux plans définis par des surfaces de portions d’encoche les plus extérieure parallèles au plan médian permet d’avoir des bobines compactes dans le sens radial au niveau des chignons, c’est à dire les portions qui s’étendent hors des encoches après l’insertion des bobines dans les encoches.
Par « la bobine étant entièrement comprise entre deux plans externes parallèles au plan médian et définis par les surfaces les plus éloignées du plan médian des premières et secondes portions d’encoche les plus extérieures de la bobine », on comprend que l’épaisseur maximale de la bobine correspond à l’épaisseur de la bobine au niveau des portions d’encoche.
De préférence, les premières portions d’encoche et les secondes portions d’encoche sont empilées selon un ordre identique en partant du plan médian de la bobine vers les plans externes.
Par « les premières portions d’encoche et les secondes portions d’encoche étant empilées selon un ordre identique en partant du plan médian de la bobine vers les plans externes », on comprend que, si les premières portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées à partir du plan médian vers un des plans externe, alors les secondes portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées aussi à partir du plan médian vers un des plans externe et inversement. Ainsi, on comprend que si la première portion d’encoche de la première spire de la bobine est la plus intérieure de la bobine, la seconde portion d’encoche de cette même spire est la plus intérieure de la bobine et inversement.
Il en résulte que, lorsque les portions d’encoche sont insérées dans les encoches correspondantes, les premières portions d’encoche des spires successives sont configurées pour être disposées dans la première encoche du stator dans un ordre radialement inverse des secondes portions d’encoche des spires successives dans la seconde encoche. C’est-à-dire, si la première portion d’encoche de la première spire de la bobine est radialement la plus intérieure dans la première encoche du stator, la seconde portion de cette même spire est radialement la plus extérieure dans la seconde encoche du stator et inversement.
Chaque bobine comportant plusieurs spires, on obtient une réduction des pertes par courants induits, ou pertes Joule AC, ce qui est particulièrement avantageux lorsque la vitesse de fonctionnement est élevée. Le transfert thermique vers la source froide en est également facilité.
L’inversion de l’ordre des portions d’encoche dans les première et seconde encoches, également appelée « transposition », permet notamment de minimiser les courants de circulation entre portions d’encoche d’une même bobine dans chacune des première et seconde encoches.
De préférence, les deux plans de jonction sont perpendiculaires au plan médian de la bobine.
De préférence, les premières et secondes demi-spires comportent chacune deux portions de chignon s’étendant de part et d’autre des premières et secondes portions d’encoche respectives. Les portions de chignon sont reliées aux portions de jonction entre les premières et secondes demi- spires et destinées à s’étendre hors des premières et secondes encoches. Les portions de chignon sont, de préférence, rectilignes avant insertion des portions d’encoche dans les encoches du stator et courbes après insertion pour suivre la courbure du stator. De préférence, les portions de chignon s’étendent dans le même plan que la première ou la deuxième portion d’encoche correspondante. Les portions de chignon peuvent former un angle non plat avec la première ou seconde portion d’encoche correspondante. L’angle entre la première ou la seconde portion d’encoche et les portions de chignon peut être compris entre 90° et 150°, étant de préférence de l’ordre de 120°.
De préférence, les portions de jonction entre les premières et secondes demi- spires et une partie des premières et secondes demi-spires, notamment les portions de chignon des demi-spires, forment deux chignons de la bobine s’étendant de part et d’autre du stator lorsque la bobine est insérée dans le stator.
De préférence, chaque portion de jonction est une portion de boucle s’étendant entre la première et la seconde demi-spire qu’elle relie, notamment entre les portions de chignon de la première et la seconde demi-spire qu’elle relie. De préférence, la portion de jonction la plus intérieure de la bobine forme une boucle sensiblement complète, les autres portions de jonction formant préférentiellement des portions de boucle d’étendue angulaire sensiblement égale à 180°. En variante, toutes les portions de jonction forment des portions de boucle d’étendue angulaire sensiblement égale à 180°.
Lorsque la bobine est insérée dans les encoches du stator, elle est déformée pour prendre la courbure du stator. Le plan médian devient un cylindre médian de la bobine et les plans externes deviennent des cylindres externes de même axe central que le cylindre médian mais de rayons différents. La bobine peut présenter une étendue angulaire dans le stator comprise entre 20° et 180°, mieux comprise entre 50° et 80°, de préférence sensiblement égale à 65°. De préférence, les premières et secondes portions d’encoche sont de même longueur.
De préférence, les premières et secondes demi-spires sont de mêmes longueurs.
La bobine est, de préférence, de forme sensiblement hexagonale, notamment avec deux côtés opposés formés par les premières et secondes portions d’encoche plus longs que les autres, notamment au moins deux fois plus longs que les autres côtés de l’hexagone. En variante, les premières et secondes portions d’encoche sont moins longues que les autres côtés de l’hexagone.
La bobine est formée préférentiellement d’un ou plusieurs fils conducteurs, de préférence d’un unique fil conducteur. De préférence, le ou les fils conducteurs sont, en section transversale, de forme circulaire, ou de forme polygonale, notamment à arêtes arrondies, préférentiellement de forme rectangulaire, entre autres formes possibles. De préférence, le fil conducteur est de section transversale rectangulaire. De préférence, les premières portions d’encoche sont empilées les unes sur les autres en étant en contact les unes avec les autres par leur face la plus large, autrement appelée le plat, et les secondes portions d’encoche sont également empilées les unes sur les autres en étant en contact les unes avec les autres par leur plat.
De préférence, la bobine est un enroulement d’un fil conducteur dont l’une de la première ou dernière spire est la spire la plus proche du plan médian P et l’autre de la première ou dernière spire est la spire la plus éloignée du plan médian P.
De préférence, le fil conducteur de la bobine est isolé électriquement par un revêtement isolant, notamment un émail.
De préférence, les premières et secondes portions d’encoche sont rectilignes.
De préférence, les premières et secondes demi-spires s’étendent chacune selon un plan de demi-spire, notamment parallèle au plat du fil conducteur, les plans de demi-spire des premières et secondes demi-spires étant parallèles entre eux et parallèle au plan médian de la bobine. De préférence, les plans de demi-spire des premières demi-spires s’étendent tous d’un même côté du plan médian de la bobine et les plans de demi-spire des secondes demi-spires s’étendant tous de l’autre côté du plan médian de la bobine.
Les premières portions d’encoche peuvent se superposer selon une unique colonne perpendiculaire au plan médian de la bobine, c’est-à-dire configuré pour s’étendre radialement dans la première encoche, et les secondes portions d’encoche peuvent se superposer selon une unique colonne perpendiculaire au plan médian, c’est à dire configuré pour s’étendre radialement dans la seconde encoche. De préférence, la largeur du fil de la première et de la seconde portion d’encoche est sensiblement égale à la largeur de la première et de la seconde encoche respectivement dans laquelle elle s’insère.
En variante, les premières portions d’encoche se superposent selon plusieurs, notamment deux, colonnes juxtaposées s’étendant perpendiculairement au plan médian, et les secondes portions d’encoche se superposent également selon plusieurs, notamment deux, colonnes juxtaposées s’étendant perpendiculairement au plan médian. Ceci permet d’avoir un plus grand nombre de spires dans les encoches, ce qui améliore les performances de la machine.
Dans ce cas, de préférence, les portions de jonction d’un côté des portions d’encoche s’empilent selon autant de têtes que de colonnes juxtaposées des portions de jonction, et les portions de jonction de l’autre côté des portions d’encoche s’empilent selon un nombre de têtes juxtaposées correspondant au nombre de colonnes des portions d’encoche plus une, les têtes s’étendant selon des plans de jonctions parallèles entre eux et préférentiellement perpendiculaire au plan médian de la bobine.
Les premières portions d’encoches des spires consécutives peuvent s’étendre sur des colonnes différentes et les deuxièmes portions d’encoches des spires consécutives peuvent s’étendre sur des colonnes différentes.
La bobine peut être configurée pour être disposée dans les encoches du stator de manière concentrée ou répartie.
Par « concentrée », on comprend que la bobine est enroulée autour d’une seule dent et la première et la seconde encoche sont adjacentes.
Par « répartie », on entend que la première et la seconde encoche ne sont pas adjacentes.
De préférence, la bobine est configurée pour être disposée dans la première et la seconde encoche de manière répartie.
L’invention a également trait, selon un autre de ses aspects, à une bobine destinée à être cintrée pour être insérée dans une première et une seconde encoche d’un stator d’une machine électrique tournante, la bobine étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi- spire présentant une première portion d’encoche configurée pour être insérée dans la première encoche du stator, une seconde demi- spire présentant une seconde portion d’encoche configurée pour être insérée dans la seconde encoche du stator, les premières portions d’encoche étant empilées selon une ou plusieurs colonnes chacune configurée pour s’étendre radialement dans la première encoche du stator, et les secondes portions d’encoche étant empilées selon un même nombre de colonnes chacune configurée pour s’étendre radialement dans la seconde encoche du stator, les premières portions d’encoche et les secondes portions d’encoche étant empilées selon un ordre identique en partant d’un plan médian de la bobine vers les plans externes, les secondes demi-spires étant chacune reliées à la première demi-spire de la même spire et à la première demi-spire de la spire suivante par des portions de jonction, les portions de jonction s’étendant d’un des côtés des première et deuxième portions d’encoche s’empilant selon un nombre de têtes juxtaposées strictement supérieur au nombre de colonnes des première et deuxième portions d’encoche.
Par « les premières portions d’encoche et les secondes portions d’encoche étant empilées selon un ordre identique en partant d’un plan médian de la bobine vers les plans externes», on comprend que les premières portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées à partir du plan médian vers un des plans externe, alors les secondes portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées aussi à partir du plan médian vers un des plans externe et inversement. Ainsi, on comprend que si la première portion d’encoche de la première spire de la bobine est la plus intérieure de la bobine, la seconde portion d’encoche de cette même spire est la plus intérieure de la bobine et inversement.
Par « plan médian de la bobine », on comprend le plan contenant l’axe longitudinal de la bobine et s’étendant dans la largeur de la bobine. Ce plan est normal à l’axe d’enroulement des spires. Après cintrage, il forme une portion latérale de cylindre. Ce plan médian peut être parallèle aux plans d’extension des première et secondes demi-spires. Par « plan transversal », on comprend le plan contenant l’axe longitudinal de la bobine et s’étendant dans l’épaisseur de la bobine
Chaque bobine comportant plusieurs spires, on obtient une réduction des pertes par courants induits, ou pertes Joule AC, ce qui est particulièrement avantageux lorsque la vitesse de fonctionnement est élevée. Le transfert thermique vers la source froide en est également facilité. L’inversion de l’ordre des portions d’encoche dans les première et seconde encoches, également appelée « transposition », permet notamment de minimiser les courants de circulation entre portions d’encoche d’une même bobine dans chacune des première et seconde encoches.
Le fait que les portions de jonction s’étendent d’un des côtés des première et deuxième portions d’encoche s’empilant selon un nombre de têtes juxtaposées strictement supérieur au nombre de colonnes des première et deuxième portions d’encoche permet notamment de réduire l’encombrement radial d’au moins un des chignons, ce qui facilite la fabrication de la machine électrique. Un tel encombrement réduit permet l’emmanchement d’une pièce pour fermer les encoches après l’insertion des bobines, notamment lorsque les bobines sont insérées dans un stator présentant une couronne et une culasse tel que décrit ci- après.
Les première et seconde portions d’encoche les plus intérieures de la bobine peuvent avoir leurs surfaces les plus intérieures s’étendant selon le même plan médian de la bobine.
La bobine peut être entièrement comprise entre deux plans externes parallèles au plan médian de la bobine et définis par les surfaces des premières et secondes portions d’encoche les plus extérieures de la bobine les plus éloignées du plan médian de la bobine.
Les premières portions d’encoche et les secondes portions d’encoche peuvent être empilées selon un ordre identique en partant du plan médian de la bobine vers les plans externes.
De préférence, les caractéristiques décrites précédemment en lien avec les autres aspects de l’invention s’appliquent à cet aspect de l’invention indépendamment ou en combinaison.
De préférence, les premières et secondes portions d’encoche sont de même longueur, notamment sensiblement la longueur des encoches du stator.
De préférence, les premières et secondes demi-spires sont de mêmes longueurs.
De préférence, les premières et secondes portions d’encoche sont rectilignes.
La bobine est formée préférentiellement d’un ou plusieurs fils conducteurs, de préférence d’un unique fil conducteur. De préférence, le ou les fils conducteurs sont, en section transversale, de forme circulaire, ou de forme polygonale, notamment à arêtes arrondies, préférentiellement de forme rectangulaire, entre autres formes possibles. De préférence, le fil conducteur est de section transversale rectangulaire. De préférence, les premières portions d’encoche sont empilées les unes sur les autres en étant en contact les unes avec les autres par leur face la plus large, autrement appelée le plat, et les secondes portions d’encoche sont également empilées les unes sur les autres en étant en contact les unes avec les autres par leur plat.
De préférence, la bobine est un enroulement d’un fil conducteur dont l’une de la première ou dernière spire est la spire la plus proche du plan médian P et l’autre de la première ou dernière spire est la spire la plus éloignée du plan médian P.
De préférence, le fil conducteur de la bobine est isolé électriquement par un revêtement isolant, notamment un émail.
La bobine est, de préférence, de forme sensiblement hexagonale, notamment avec deux côtés opposés formés par les premières et secondes portions d’encoche plus longs que les autres, notamment au moins deux fois plus longs que les autres côtés de l’hexagone. En variante, les premières et secondes portions d’encoche sont moins longues que les autres côtés de l’hexagone.
De préférence, les premières et secondes demi-spires s’étendent chacune selon un plan de demi-spire, notamment parallèle au plat du fil conducteur, les plans de demi-spire des premières et secondes demi-spires étant parallèles entre eux et parallèle au plan médian de la bobine. De préférence, les plans de demi-spire des premières demi-spires s’étendent tous d’un même côté du plan médian de la bobine et les plans de demi-spire des secondes demi-spires s’étendant tous de l’autre côté du plan médian de la bobine.
De préférence, les premières et secondes demi-spires comportent chacune deux portions de chignon s’étendant de part et d’autre des premières et secondes portions d’encoche respectives. Les portions de chignon sont reliées aux portions de jonction entre les premières et secondes demi- spires et destinées à s’étendre hors des premières et secondes encoches. Les portions de chignon sont, de préférence, formées rectilignes avant insertion des portions d’encoche dans les encoches du stator et cintrés juste avant ou lors de l’insertion des portions d’encoche dans les encoches du stator pour suivre la courbure du stator. De préférence, les portions de chignon s’étendent dans le même plan d’extension parallèle au plan médian de la bobine que la première ou la deuxième portion d’encoche correspondante. Les portions de chignon peuvent former un angle non plat avec la première ou seconde portion d’encoche correspondante. L’angle entre la première ou la seconde portion d’encoche et les portions de chignon peut être compris entre 90° et 150°, étant de préférence de l’ordre de 120°.
De préférence, les portions de jonction entre les premières et secondes demi- spires et une partie des premières et secondes demi-spires, notamment les portions de chignon des demi-spires, forment deux chignons de la bobine s’étendant de part et d’autre du stator lorsque la bobine est insérée dans le stator.
De préférence, chaque tête de portion de jonction est une portion de boucle s’étendant entre la première et la seconde demi-spire qu’elle relie, notamment entre les portions de chignon de la première et la seconde demi-spire qu’elle relie. De préférence, la portion de jonction la plus intérieure de la bobine forme une boucle sensiblement complète, les autres portions de jonction formant préférentiellement des portions de boucle d’étendue angulaire sensiblement égale à 180°.
D’un des côtés des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine peuvent toutes s’empiler selon un même plan de jonction en se superposant toutes les unes aux autres, notamment sur le plat du fil conducteur. Ainsi, les portions de jonction forment une unique tête dudit côté des premières et deuxièmes portions d’encoches et sont de longueur croissante du centre de la bobine vers l’extérieur de la bobine.
De préférence, les têtes des deux extrémités de la bobine s’étendent selon des plans de jonction perpendiculaire au plan médian de la bobine.
En variante, de chaque côté des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine s’empilent selon au moins deux têtes juxtaposées s’étendant selon des plans de jonction parallèles entre eux, les portions de jonction se superposant entre elles, notamment sur le plat du fil conducteur, alternativement sur l’une et l’autre des deux têtes. Les deux plans de jonction sont, de préférence, décalés latéralement entre eux d’une distance sensiblement égale à la largeur du plat du fil conducteur de sorte que les deux têtes adjacentes sont jointives latéralement. Ceci permet notamment de réduire l’encombrement radial des chignons afin de faciliter la fabrication de la machine électrique. De préférence, les plans de jonctions sont perpendiculaires au plan médian de la bobine.
Les premières portions d’encoche peuvent se superposer selon une unique colonne s’étendant perpendiculairement au plan médian de la bobine, c’est-à-dire configuré pour s’étendre radialement dans la première encoche, et les secondes portions d’encoche peuvent se superposer selon une unique colonne perpendiculaire au plan médian, c’est à dire configuré pour s’étendre radialement dans la seconde encoche. De préférence, la largeur du fil de la première et de la seconde portion d’encoche est sensiblement égale à la largeur de la première et de la seconde encoche respectivement dans laquelle elle s’insère.
En variante, les premières portions d’encoche se superposent selon plusieurs, notamment deux, colonnes juxtaposées s’étendant perpendiculairement au plan médian, et les secondes portions d’encoche se superposent également selon plusieurs, notamment deux, colonnes juxtaposées s’étendant perpendiculairement au plan médian. Dans ce cas, de préférence, les portions de jonction d’un côté des portions d’encoche s’empilent selon autant de têtes que de colonnes juxtaposées des portions de jonction, et les portions de jonction de l’autre côté des portions d’encoche s’empilent selon un nombre de têtes juxtaposées correspondant au nombre de colonnes des portions d’encoche plus une, les têtes s’étendant selon des plans de jonctions parallèles entre eux et préférentiellement perpendiculaire au plan médian de la bobine.
Les premières portions d’encoches des spires consécutives peuvent s’étendre sur des colonnes différentes et les deuxièmes portions d’encoches des spires consécutives peuvent s’étendre sur des colonnes différentes.
La bobine peut être configurée pour être disposée dans les encoches du stator de manière concentrée ou répartie.
Par « concentrée », on comprend que la bobine est enroulée autour d’une seule dent et la première et la seconde encoche sont adjacentes.
Par « répartie », on entend que la première et la seconde encoche ne sont pas adjacentes. De préférence, la bobine est configurée pour être disposée dans la première et la seconde encoche de manière répartie.
Le nombre de colonne(s) peut être supérieur ou égal à 1, de préférence entre 1 et 3, par exemple égal à 1 ou 2.
Le nombre de colonnes peut être supérieur ou égal à 2 et les premières portions d’encoches et secondes portions d’encoche des spires successives peuvent s’empiler alternativement sur les différentes colonnes correspondantes.
Les extrémités de la bobine peuvent s’étendre d’un même côté des premières et deuxièmes portions d’encoches.
Le nombre de têtes sur lesquelles s’empilent les portions de jonction dudit côté des portions d’encoche est par exemple égal au nombre de colonne(s) plus un. Le nombre de têtes formées par les portions de jonction s’étendant de l’autre des côtés des portions d’encoche peut être supérieur ou égal au nombre de colonne(s) moins un, par exemple supérieur ou égal au nombre de colonne(s), voire strictement supérieur au nombre de colonne(s), par exemple égal au nombre de colonne(s) plus un.
Dans un mode de réalisation, le nombre de têtes d’un côté peut être égal au nombre de colonne(s) plus un et de l’autre égal au nombre de colonne(s) ou au nombre de colonne(s) plus un.
Les têtes avant cintrage s’étendent préférentiellement selon des plans de jonction parallèles entre eux, notamment perpendiculaire au plan médian de la bobine.
Grappe
L’invention a encore pour objet, selon un autre aspect, une grappe de bobine comportant une pluralité de bobines telles que décrites précédemment, les bobines étant reliées entre elle par continuité du fil conducteur.
Stator
L’invention a encore pour objet, selon un autre aspect, un stator comportant : une couronne comportant : o des dents ménageant entre elles des encoches ouvertes radialement vers l’extérieur, et o des ponts de matière reliant chacun deux dents adjacentes à leur base du côté de l'entrefer et définissant le fond de l’encoche entre ces dents, des bobines disposées chacune dans une première et une seconde encoche du stator, une culasse rapportée sur la couronne. chaque bobine étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi- spire comportant une première portion d’ encoche configurée pour être insérée dans la première encoche du stator, une seconde demi-spire reliée à la première demi-spire comportant une seconde portion d’encoche configurée pour être insérée dans la seconde encoche du stator, les premières portions d’encoche des spires successives étant disposés dans la première encoche du stator dans un ordre radialement inverse des secondes portions d’encoche des spires successives dans la seconde encoche. Par « les premières portions d’ encoche des spires successives étant disposés dans la première encoche du stator dans un ordre radialement inverse des secondes portions d’encoche des spires successives dans la seconde encoche », on comprend que les portions d’encoche sont disposées dans la première encoche selon un ordre radial des spires successives particulier et que les secondes portions d’encoche sont disposées dans la seconde encoche selon un ordre radial des spires successives inverse. C’est-à-dire, si la première portion d’encoche de la première spire de la bobine est radialement la plus intérieure dans la première encoche du stator, la seconde portion de cette même spire est radialement la plus extérieure dans la seconde encoche du stator et inversement.
Ceci résulte du fait que les premières portions d’encoche et les secondes portions d’encoche sont empilées selon un ordre identique en partant du plan médian de la bobine vers les plans externe, c’est-à-dire que les premières portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées à partir du plan médian vers un des plans externe, alors les secondes portions d’encoche prises de la première spire à la dernière spire de l’enroulement sont empilées aussi à partir du plan médian vers un des plans externe et inversement. Ainsi, on comprend que si la première portion d’encoche de la première spire de la bobine est la plus intérieure de la bobine, la seconde portion d’encoche de cette même spire est la plus intérieure de la bobine et inversement.
Chaque bobine comportant plusieurs spires, on obtient une réduction des pertes par courants induits, ou pertes Joule AC, ce qui est particulièrement avantageux lorsque la vitesse de fonctionnement est élevée. Le transfert thermique vers la source froide en est également facilité.
L’inversion de l’ordre des portions d’encoche dans les première et seconde encoches, également appelée « transposition », permet notamment de minimiser les courants de circulation entre portions d’encoche d’une même bobine dans chacune des première et seconde encoches.
Par « culasse rapportée », il faut comprendre que la culasse n’est pas réalisée d’un seul tenant avec la couronne mais est fixée à cette dernière au cours de la fabrication du stator.
Le fait que les encoches soient ouvertes radialement vers l’extérieur permet que les bobinages soient insérés dans les encoches par un déplacement radial vers l’intérieur des encoches. L’installation des bobinages est facilitée, d’une part en ce que l’accès à l’intérieur des encoches est plus aisé, s’agissant d’encoches ouvertes totalement et en direction de l’extérieur plutôt que vers l’entrefer, et d’autre part en ce que l’espace disponible autour de la couronne, pour les outillages nécessaires, voire pour une machine à bobiner, est plus important que l’espace disponible dans l’alésage du stator.
Lors de l’insertion des conducteurs électriques dans les encoches, qui se fait radialement et non axialement, les conducteurs se déplacent au contact d’une longueur de la masse statorique qui au maximum correspond à la profondeur de l’encoche. Il en résulte des contraintes mécaniques plus faibles que pour une insertion axiale, où les conducteurs sont exposés à un déplacement au contact de la masse statorique sur une longueur égale à la dimension axiale de celle-ci. Du fait des contraintes mécaniques moindres lors de l’insertion, le revêtement isolant recouvrant les conducteurs électriques est moins sollicité et le risque d’une détérioration est réduit, de telle sorte que la présence d’un isolant en feuille autour du bobinage n’est plus nécessaire lorsque l’isolant est en polymère.
La culasse permet de fermer les encoches de la couronne et de maintenir les bobinages dans les encoches après leur insertion. Lors de la fabrication du stator, la culasse peut être assemblée avec la couronne de diverses manières.
Du fait que les encoches sont fermées après assemblage de la culasse, le risque de fuite du vernis d’imprégnation vers l’entrefer est éliminé. Le stator peut être utilisé comme une enceinte fermée d’imprégnation en assurant une étanchéité aux extrémités du stator seulement. L’outillage est ainsi simplifié. Ceci réduit également la quantité de vernis perdue et les opérations de nettoyage.
En outre, un tel stator présente de nombreux avantages du point de vue électromagnétique par rapport à un stator présentant des encoches ouvertes vers l’entrefer. Il permet de réduire fortement les perturbations électromagnétiques liées à la présence des ouvertures des encoches donnant sur l’entrefer dans l’art antérieur.
L’absence d’ouverture des encoches vers l’entrefer permet de réduire les pulsations d’encoches. Les performances électromagnétiques de la machine en sont améliorées.
Encoches
Au moins une encoche, mieux toutes les encoches, peuvent être à bords opposés parallèles entre eux. La largeur des encoches est, de préférence, sensiblement constante sur toute leur hauteur. Au moins une dent, mieux toutes les dents, peuvent être de forme générale trapézoïdale lorsqu’ observée en section dans un plan perpendiculaire à l’axe du stator.
De préférence, plusieurs ponts de matière présentent chacun une zone déformable, et de préférence, tous les ponts de matière présentent chacun une zone déformable. Par « zone déformable », on comprend une zone du pont de matière se déformant de manière préférentielle lors d’un mouvement relatif des dents qu’il relie. La déformation du pont de matière peut se traduire par un allongement ou un raccourcissement de la dimension circonférentielle du pont de matière, ce qui entraîne un allongement ou un raccourcissement de la dimension circonférentielle de la couronne. La déformation préférentielle peut résulter d’une forme particulière donnée au pont.
La zone déformable permet de s’adapter aux contraintes mécaniques subies par la couronne lors de l’assemblage de la couronne avec la culasse. De plus, cela permet si on le souhaite d’avoir des encoches plus ouvertes avant montage de la culasse et donc un jeu plus important entre les conducteurs électriques et la paroi des encoches lors de l’insertion des conducteurs électriques, ce qui facilite celle-ci et réduit le risque d’endommagement des isolants.
De préférence, les ponts de matière présentent chacun une zone à perméabilité magnétique réduite, notamment sous la forme d’au moins un rétrécissement localisé, d’au moins un écrasement localisé, d’au moins une ouverture ou d’au moins un traitement localisé. La zone à perméabilité magnétique réduite du pont de matière est saturée magnétiquement lors du fonctionnement de la machine, ce qui limite le passage du flux et augmente l’efficacité de la machine.
De préférence, le fond des encoches présente chacun au moins une portion plane contre laquelle au moins un conducteur électrique, de préférence de section sensiblement rectangulaire, est en appui. La ou les portions planes sont sensiblement perpendiculaires à l’axe radial de l’encoche.
Le fond de l’encoche peut être plat, à l’exception d’un renfoncement et/ou d’une zone déformable.
La zone déformable ou le renfoncement forme, de préférence, un jeu entre le pont de matière et le ou les conducteurs électriques correspondant, ce qui peut faciliter la pénétration du vernis lors de l’imprégnation du stator. Ceci permet un bon remplissage des encoches par les conducteurs électriques dans le cas de conducteurs électriques de section transversale rectangulaire, en permettant aux conducteurs électriques de prendre appui à plat dans le fond de l’encoche.
Interface entre la culasse et la couronne
De préférence, la couronne présente des reliefs sur sa surface radialement extérieure, coopérant avec des reliefs coopérants, notamment imbriqués l’un dans l’autre de la culasse. De tels reliefs permettent par coopération de formes de maintenir la couronne et la culasse fixes l’un par rapport à l’autre. Les reliefs coopérants sont, de préférence, du type queue d’aronde et mortaise ou des reliefs venant en appui l’un contre l’autre.
La couronne peut être réalisée par enroulement en hélice d’une bande de tôle comportant des dents reliées par les ponts de matière, les bords opposés de chaque encoche devenant, de préférence, sensiblement parallèles entre eux lorsque la bande est enroulée sur elle-même pour former la couronne.
En variante, la bande peut être formée de secteurs comportant chacun plusieurs dents, les secteurs étant reliés par des liaisons, ces secteurs étant découpés dans une bande de tôle. Les liaisons peuvent être des ponts flexibles reliant les secteurs entre eux et/ou des parties de formes complémentaires, par exemple du type queue d’aronde et mortaise ou des reliefs complémentaires venant en appui l’un contre l’autre, notamment lorsque la couronne est maintenue en compression par la culasse.
Les formes complémentaires peuvent être sur les ponts de matière de sorte que les différents secteurs sont assemblés au niveau des ponts de matière. De préférence, l’assemblage des formes complémentaires des différents secteurs se fait hors des zones déformables des ponts de matière. Ceci facilite l’assemblage, notamment dans le cas de machines volumineuses. Par exemple, les secteurs présentent des formes en creux coopérant avec des formes en saillie complémentaires d’un secteur adjacent.
En variante, la couronne comporte un empilement de tôles magnétiques prédécoupées.
En variante encore, la couronne est fabriquée par fabrication additive, par exemple par frittage de poudre.
La culasse peut être réalisée en enroulant directement en hélice une bande de tôle si sa largeur le permet, en formant ou non dans ladite bande de tôle des fentes adaptées lors de sa découpe, de manière à faciliter cet enroulement, en empilant des tôles magnétiques prédécoupées, ou par fabrication additive, par exemple par frittage de poudre.
La culasse est rapportée sur la couronne après l’installation des bobinages dans les encoches.
Bobine
De préférence, les bobines sont chacune telles que décrites précédemment. Les caractéristiques ci-dessus en relation avec les autres aspects de l’invention s’applique au procédé en combinaison ou indépendamment des autres aspects de l’invention.
De préférence, la première portion d’encoche et la seconde portion d’encoche la plus intérieure de chaque bobine ont leur surface la plus intérieure qui s’étendent dans les encoches selon un même cylindre médian de la bobine ayant pour axe principale l’axe du stator. Ceci permet d’avoir une bobine qui est compacte perpendiculairement à la portion de cylindre médian. De plus une telle compacité permet un meilleur remplissage des encoches du stator en permettant que la première et la deuxième portion d’encoche insérées dans une encoche soient en contact l’une de l’autre. Ce qui améliore le refroidissement.
En variante, les première et seconde portions d’encoche les plus intérieures de chaque bobine ont leurs surfaces les plus intérieures qui s’étendent selon deux cylindres différents espacés entre eux radialement d’une distance comprise non nulle.
Par « la plus intérieure de chaque bobine », on comprend la plus proche de la portion de cylindre médiane de chaque bobine.
De préférence, chaque bobine présente un encombrement radial inférieur ou égale à la profondeur des encoches (dimensions des encoches dans les sens radial).
De préférence, chaque bobine est entièrement comprise entre deux cylindres externes de même axe central que le cylindre médian et définis par les surfaces les plus éloignées du cylindre médian des premières et secondes portions d’encoche les plus extérieures de la bobine. Le fait que les bobines s’étendent entièrement entre cylindre définis par des surfaces de portions d’encoche les plus extérieure parallèles au cylindre médian permet d’avoir des bobines compactes dans le sens radial au niveau des chignons, c’est à dire les portions qui s’étendent hors des encoches après l’insertion des bobines dans les encoches.
Par « la bobine étant entièrement comprise entre deux cylindres externes parallèles au cylindre médian et définis par les surfaces les plus éloignées du cylindre médian des premières et secondes portions d’encoche les plus extérieures de la bobine », on comprend que la bobine présente au niveau des chignons un encombrement radial égale ou plus faible que la somme des encombrement radiaux des première et secondes portions d’encoches. De ce fait, les chignons des bobines ont une encombrement radial inférieure ou égale à la profondeur (dimensions des encoches dans les sens radial) des encoches.
En variante, les chignons présentent un encombrement radial supérieur à la profondeur des encoches.
Les bobines peuvent présenter une étendue angulaire comprise entre 20° et 180°, mieux comprise entre 50° et 80°, de préférence sensiblement égale à 65°.
De préférence, les premières et secondes portions d’encoche sont de même longueur.
De préférence, les premières et secondes demi-spires sont de mêmes longueurs.
Chaque bobine est, de préférence, de forme sensiblement hexagonale, notamment avec deux côtés opposés formés par les premières et secondes portions d’encoche plus longs que les autres, notamment au moins deux fois plus longs que les autres côtés de l’hexagone. En variante, les premières et secondes portions d’encoche sont moins longues que les autres côtés de l’hexagone.
Chaque bobine est formée préférentiellement d’un ou plusieurs fils conducteurs, de préférence d’un unique fil conducteur. De préférence, le ou les fils conducteurs sont, en section transversale, de forme circulaire, ou de forme polygonale, notamment à arêtes arrondies, préférentiellement de forme rectangulaire, entre autres formes possibles. De préférence, le fil conducteur est de section transversale rectangulaire. De préférence, les premières portions d’encoche sont empilées les unes sur les autres en étant en contact les unes avec les autres par leur face la plus large, autrement appelée le plat, et les secondes portions d’encoche sont également empilées les unes sur les autres en étant en contact les unes avec les autres par leur plat.
De préférence, le fil conducteur de la bobine est isolé électriquement par un revêtement isolant, notamment un émail.
De préférence, les premières et secondes portions d’encoche sont rectilignes.
De préférence, les premières et secondes demi-spires de chaque bobine s’étendent chacune selon un cylindre de demi- spire, notamment parallèle au plat du fil conducteur, les cylindres de demi-spire des premières et secondes demi-spires étant parallèles entre eux et parallèle au cylindre médian de la bobine. De préférence, les cylindres de demi-spire des premières demi-spires s’étendent tous d’un même côté du cylindre médian de la bobine correspondante et les cylindres de demi- spire des secondes demi- spires s’étendant tous de l’autre côté du cylindre médian de la bobine correspondante.
De préférence, les secondes demi-spires sont chacune reliées à la première demi- spire de la même spire et à la première demi-spire de la spire suivante par des portions de jonction.
De préférence, les premières et secondes demi-spires comportent chacune deux portions de chignon s’étendant de part et d’autre des premières et secondes portions d’encoche respectives. Les portions de chignon sont reliées aux portions de jonction entre les premières et secondes demi- spires et destinées à s’étendre hors des premières et secondes encoches. Les portions de chignon sont, de préférence, rectilignes avant insertion des portions d’encoche dans les encoches du stator et courbe après insertion pour suivre la courbure du stator. De préférence, les portions de chignon s’étendent sur le même cylindre que la première ou la deuxième portion d’encoche correspondante. Les portions de chignon peuvent former un angle non nul avec la première ou seconde portion d’encoche correspondante. L’angle entre la première ou la seconde portion d’encoche et les portions de chignon peut être compris entre 5 et 90°, de préférence entre 40 et 60.
De préférence, les portions de jonction entre les premières et secondes demi- spires et une partie des premières et secondes demi-spires, notamment les portions de chignon des demi-spires, forment deux chignons de la bobine s’étendant de part et d’autre du stator lorsque la bobine est insérée dans le stator.
De préférence, chaque portion de jonction est une portion de boucle s’étendant entre la première et la seconde demi-spire qu’elle relie, notamment entre les portions de chignon de la première et la seconde demi-spire qu’elle relie. De préférence, la portion de jonction la plus intérieure de chaque bobine forme une boucle sensiblement complète, les autres portions de jonction formant préférentiellement des portions de boucle d’étendue angulaire sensiblement égale à 180°. En variante, toutes les portions de jonction forment des portions de boucle d’étendue angulaire sensiblement égale à 180°.
Pour chaque bobine, des deux côtés des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine correspondante peuvent toutes s’empiler selon un même plan de jonction en se superposant toutes les unes aux autres, notamment sur le plat du fil conducteur. Ainsi, les portions de jonction forment une unique tête à chaque extrémité de la bobine correspondante et sont de longueur croissante du centre de la bobine correspondante vers l’extérieur de la bobine correspondante. De préférence, les têtes des deux extrémités de la bobine s’étendent selon le même plan de jonction, notamment un plan radial du stator.
En variante, pour chaque bobine, de chaque côté des premières et deuxièmes portions d’encoche, les portions de jonction de la bobine s’empilent selon au moins deux têtes juxtaposées s’étendant selon des plans de jonction parallèles entre eux, les portions de jonction se superposant entre elles, notamment sur le plat du fil conducteur, alternativement sur l’une et l’autre des deux têtes. Les deux plans de jonction sont, de préférence, décalés latéralement entre eux d’une distance sensiblement égale à la largeur du plat du fil conducteur de sorte que les deux têtes adjacentes sont jointives latéralement. Ceci permet notamment de réduire l’encombrement radial des chignons afin de faciliter la fabrication de la machine électrique. De préférence, les plans de jonctions sont des plans radiaux du stator.
Pour chaque bobine, les premières portions d’encoche peuvent se superposer selon une unique colonne s’étendant selon un plan radial du stator, c’est-à-dire configuré pour s’étendre radialement dans la première encoche, et les secondes portions d’encoche peuvent se superposer selon une unique colonne s’étendant selon un plan radial du stator, c’est à dire configuré pour s’étendre radialement dans la seconde encoche. De préférence, la largeur du fil de la première et de la seconde portion d’encoche est sensiblement égale à la largeur de la première et de la seconde encoche respectivement dans laquelle elle s’insère.
En variante, pour chaque bobine, les premières portions d’encoche se superposent selon plusieurs, notamment deux, colonnes juxtaposées s’étendant selon un plan radial du stator, et les secondes portions d’encoche se superposent également selon plusieurs, notamment deux, colonnes juxtaposées s’étendant selon un plan radial du stator. Dans ce cas, de préférence, les portions de jonction d’un côté des portions d’encoche s’empilent selon autant de têtes que de colonnes juxtaposées des portions de jonction, et les portions de jonction de l’autre côté des portions d’encoche s’empilent selon un nombre de têtes juxtaposées correspondant au nombre de colonnes des portions d’encoche plus une, les têtes s’étendant selon des plans de jonctions correspondant à des plans radiaux du stator.
La bobine peut être configurée pour être disposée dans les encoches du stator de manière concentrée ou répartie. Par « concentrée », on comprend que la bobine est enroulée autour d’une seule dent et la première et la seconde encoche sont adjacentes.
Par « répartie », on entend que la première et la seconde encoche ne sont pas adjacentes.
De préférence, la bobine est configurée pour être disposée dans la première et la seconde encoche de manière répartie.
Les portions d’encoches peuvent être séparés de la surface intérieure des encoches par un isolant en feuilles. La bobine peut comporter au moins un isolant en feuille fixée sur une portion de la bobine, notamment entourée autour d’une portion de la bobine. La portion de la bobine recouverte de l’isolant en feuille correspond de préférence aux premières ou aux secondes portions d’encoche. De préférence, la bobine comporte au moins deux isolants en feuille fixées sur deux portions de la bobine correspondant respectivement aux moins aux premières et secondes portions d’encoche, notamment entourées autour de deux portions de la bobine.
De préférence, les portions de la bobine reçues dans les encoches sont recouvertes d’un isolant en feuille sur toute leur surface insérée dans les encoches.
Les bobines peuvent être regroupées en grappes de bobines comportant une pluralité de bobines telles que décrites précédemment, les bobines d’une grappe étant reliées entre elle par continuité du fil conducteur, en particulier au niveau des chignons. Machine électrique
L’invention a également pour objet, selon un autre aspect de l’invention, une machine électrique tournante comportant un stator tel que décrit précédemment ou comportant un stator présentant des encoches et des bobines ou grappes de bobines telles que définies précédemment, dont les première portions d’encoches sont insérées dans une des encoches et les secondes portions d’encoches sont insérées dans une autre des encoches, l’ensemble des encoches recevant des premières portions d’encoches d’une bobine et des secondes portions d’encoches d’une autre bobine.
Les caractéristiques mentionnées précédemment, en relation avec les aspects précédents de l’invention, peuvent s’appliquer également à cet aspect de l’invention en combinaison ou indépendamment des autres aspects de l’invention.
Procédé de fabrication
L’invention a également pour objet, selon un autre aspect, un procédé de fabrication d’une bobine électrique pour une machine électrique tournante, comportant les étapes consistant à : (a) mettre en forme au moins un fil conducteur à l’aide d’un système de formage de façon à former une alternance, le long du fil conducteur, d’au moins une première demi- spire et d’au moins une seconde demi-spire,
(b) replier les première(s) et seconde(s) demi- spires les unes sur les autres en partant d’une première extrémité du fil conducteur vers une seconde extrémité du fil conducteur, pour former un enroulement formant au moins une spire.
Un tel procédé de fabrication permet de fabriquer des bobines compactes dont les chignons, c’est à dire les portions de la bobine qui s’étendent hors des encoches après l’insertion des bobines dans les encoches, sont d’encombrement réduit.
Il permet également un meilleur remplissage des encoches, ce qui améliore le refroidissement et permet de réduire la quantité de conducteur électrique utilisée.
Il permet également d’avoir une inversion de l’ordre des portions d’encoche des spires de la bobine dans les encoches dans lesquelles la bobine s’étend, également appelée « transposition », afin de minimiser les courants de circulation entre portions d’encoche d’une même bobine dans chacune des première et seconde encoches.
De préférence, le procédé est un procédé de fabrication de la bobine selon l’un des aspects précédents ou d’une grappe telle que décrite précédemment. Le procédé peut également être un procédé de fabrication de la bobine reçu dans un stator tel que décrit précédemment.
La bobine fabriquée peut être une des bobines telles que décrites précédemment. Les caractéristiques ci-dessus en relation avec les autres aspects de l’invention s’applique au procédé en combinaison ou indépendamment des autres aspects de l’invention.
De préférence, le ou les repliements de l’étape (b) sont chacun effectués par rotation autour d’un axe transversal à un axe d’extension du fil conducteur avant sa mise en forme.
De préférence, l’étape (a) comporte la mise en forme d’au moins un fil conducteur à l’aide du système de formage de façon à former une alternance, le long du fil conducteur, de premières demi-spires et de secondes demi-spires.
De préférence, les première(s) et seconde(s) demi-spires adjacentes sont chacune reliées entre elles par une portion de jonction du fil conducteur rectiligne avant l’étape (b) de repliement. De préférence, la ou chaque portion de jonction forme une portion de boucle lors du repliement des première et seconde demi-spires correspondantes l’une sur l’autre. Dans le cas d’une pluralité de premières et secondes demi-spires, les portions de jonction se replient préférentiellement les unes sur les autres à l’étape (b) de la première extrémité à la seconde extrémité du fil conducteur. Les portions de jonction peuvent être de longueur croissante de la première extrémité du fil conducteur à la seconde extrémité du fil conducteur.
L’étape (a) peut être réalisée en une ou plusieurs opérations successives de mise en forme par le système de formage, la ou chaque opération de mise en forme par le système de formage comportant la succession d’étapes suivantes : le positionnement d’une portion de fil conducteur dans le système de formage, la mise en forme de la portion du fil conducteur par le système de formage, et l’extraction, du système de formage, de la portion du fil conducteur mise en forme.
L’étape (a) peut comporter une pluralité d’opérations successives de mise en forme, par le système de formage, de parties successives du fil conducteur pour mettre en forme dans chaque partie au moins une première ou seconde demi-spire.
Les étapes (a) et (b) peuvent ne pas être distinctes. L’étape (a) peut comporter une pluralité d’opérations successives de mise en forme par le système de formage de parties successives du fil conducteur et l’étape (b) peut être réalisée en différentes sous-étapes de repliement au fur et à mesure de la mise en forme des première(s) et seconde(s) demi-spires par le système de formage. De préférence, le repliement des première(s) et seconde(s) demi- spires les unes sur les autres se fait dans l’ordre de mise en forme des première(s) et seconde(s) demi-spires en repliant la première demi-spire mise en forme à proximité de la première extrémité du fil conducteur sur la seconde demi-spire adjacente pour former un enroulement d’une spire, puis en repliant de façon répétitive l’enroulement sur la demi-spire adjacente de la première extrémité à la seconde extrémité du fil conducteur.
En variante, les étapes (a) et (b) sont distinctes, l’étape (b) étant réalisée entièrement après l’étape (a).
De préférence, le repliement des première(s) et seconde(s) demi-spires dans l’étape (b) se fait toujours par rotation dans le même sens de la première extrémité du fil conducteur vers la seconde extrémité du fil conducteur.
De préférence, le système de formage comporte une pluralité de galets comportant : des galets d’axes fixes pendant les étapes de mise en forme, et - des galets d’axes mobiles pendant les étapes de mise en forme entre une position de repos dans laquelle le fil conducteur n’est pas déformé et une position de déformation du fil conducteur.
La présence des galets d’axes fixes et mobiles permet d’avoir une versatilité des dimensions de la bobine que l’on peut former. La dimension de la bobine est en particulier fonction du positionnement choisi des galets.
Les galets d’axe mobile sont, de préférence, d’axe mobile transversalement à un axe d’extension du fil conducteur en l’absence de mise en forme.
Les galets d’axes fixes et/ou mobiles peuvent être escamotables. Par « escamotables », on comprend que les galets peuvent être retirés de leur emplacement ou enfoncés dans un logement prévu à cet effet pour libérer le fil conducteur mis en forme et faciliter son extraction. Ceci permet de faciliter l’extraction de chacune des parties de fil conducteur du système de formage et éventuellement de changer la position des galets d’axes fixes et/ou mobiles entre deux opérations de mise en forme par le système de formage.
Au moins deux galets d’axes fixes successifs peuvent s’étendre du même côté du fil conducteur.
De préférence, au moins deux galets d’axes mobiles s’étendent entre deux galets d’axes fixes d’un côté du fil conducteur opposé par rapports audits deux galets d’axes fixes.
De préférence, chaque galet d’axes mobiles est adjacent à deux galets d’axes fixes s’étendant du côté opposé du fil conducteur et la mise en forme du fil conducteur se fait à l’étape (a) par déplacement des galets d’axes mobiles en translation vers le fil conducteur.
Chaque opération de mise en forme peut comporter les étapes consistant à :
(i) étendre une portion de fil conducteur dans le système de formage configuré pour que les galets d’axes mobiles s’étendent du côté du fil conducteur opposé à celui duquel s’étendent les deux galets d’axes fixes adjacents, les galets d’axes mobiles étant en position de repos,
(ii) déplacer les galets d’axes mobiles en position de déformation pour mettre en forme la portion de fil conducteur, et
(iii) escamoter les galets d’axes fixes et/ou mobiles une fois la demi-spire correspondante formée pour extraire la portion de fil conducteur mise en forme du système de formage. L’étape (a) peut comporter les étapes consistant à :
(al) mettre en forme une première partie du fil conducteur à l’aide du système de formage dans une première configuration par une première opération de mise en forme,
(a2) mettre en forme une seconde partie du fil conducteur adjacente à la première partie du fil conducteur à l’aide du système de formage dans une seconde configuration par une seconde opération de mise en forme.
Les première et seconde parties du fil conducteur sont, de préférence, de même longueur.
Les première et seconde configurations du système de formage peuvent être identiques ou, de préférence, différentes. Dans le cas où la première et la seconde configuration du système de formage sont identiques, la première et la seconde partie sont de mêmes formes après mise en forme et dans le cas où la première et la seconde configuration du système de formage sont différentes, la première et la seconde partie sont de formes différentes après mise en forme.
Dans le cas où la première et la seconde configuration sont différentes, les galets fixes et mobiles peuvent être chacun disposés, en seconde configuration du système de formage, du côté opposé du fil conducteur par rapport à leur position en première configuration du système de formage. Ceci permet notamment de mettre en forme les première et seconde parties respectivement en symétrie par rapport à l’axe d’extension du fil avant déformation et évite d’avoir à retourner le fil lors du repliement des demi-spires l’une sur l’autre. Le repliement se fait alors par basculement de la première demi-spire sur la seconde demi-spire autour d’un axe transversal à l’axe du fil conducteur avant déformation, sans aucune autre déformation du fil conducteur.
A l’étape (al), la mise en forme de la première partie du fil conducteur peut former une première demi-spire et à l’étape (a2) la mise en forme de la seconde partie du fil conducteur peut former une seconde demi-spire, la première et la seconde demi-spire étant configurées pour former une spire complète à l’étape (b).
Le fil conducteur avant formage peut s’étendre selon un axe longitudinal s’étendant entre les première(s) et seconde(s) demi-spires après formage, notamment selon l’axe longitudinal de la spire formée. Dans le cas où les premières et secondes configurations sont différentes, le système de formage peut comporter deux galets d’axes fixes lors de la mise en forme et deux galets d’axes mobiles lors de la mise en forme, disposés entre les galets d’axes fixes.
Le segment du fil conducteur entre les deux galets d’axes mobiles aux étapes (al) et (a2) peut être sensiblement rectiligne et peut être configuré pour s’insérer dans les encoches de la machine électriques, notamment les encoches du stator.
Le procédé peut comporter les étapes additionnelles consistant à :
(a3) mettre en forme une troisième partie du fil conducteur adjacente à la seconde partie du fil conducteur à l’aide du système de formage dans la première configuration pour former une première demi- spire additionnelle,
(a4) répéter les étapes (a2) et (a3) pour former une pluralité de première(s) et seconde(s) demi-spires additionnelles.
Le procédé peut comporter des étapes de repliement des première(s) et seconde(s) demi-spires au fur et à mesure de leur formation. De préférence, le procédé comporte les étapes de :
(bl) repliement, après l’étape (a2) et avant l’étape (a3), de la première demi-spire mise en forme à l’étape (al) et de la seconde demi-spire mise en forme à l’étape (a2) pour former un enroulement formant une spire,
(b2) repliement, après l’étape (a3) et avant l’étape (a4), de l’enroulement obtenu à l’étape (bl) et de la demi- spire additionnelle mise en forme à l’étape de mise en forme précédente pour former un nouvel enroulement, et
(b3) répétition de l’étape (b2) après chaque étape de mise en forme.
L’étape de repliement (bl) peut se faire par rotation de la première demi-spire autour d’un axe transversal à l’axe longitudinal du fil conducteur avant mise en forme. L’étape de repliement (b2) peut se faire par rotation de l’enroulement autour d’un axe transversal à l’axe longitudinal du fil conducteur avant mise en forme.
En variante, la première et la seconde configuration du système de formage sont identiques.
Les étapes (al) et (a2) peuvent être identiques et permettent chacune de mettre en forme en une seule opération du système de formage au moins une première demi- spire et au moins une partie d’une seconde demi-spire adjacente à la première demi-spire.
Le procédé peut comporter une étape (a3) de répétition de l’étape (a2). Les étapes (al) et (a2) peuvent être identiques et peuvent permettre chacune de mettre en forme en une seule opération du système de formage une première demi-spire et une seconde demi-spire adjacente à la première demi-spire.
Le fil conducteur peut s’étendre le long d’un axe s’étendant entre les première(s) et seconde(s) demi-spires.
Dans ce cas, le système de formage peut comporter deux enroulements successifs de deux galets d’axes fixes lors de la mise en forme et de deux galets d’axes mobiles lors de la mise en forme s’étendant entre les galets d’axes fixes, les galets d’axes fixes d’un des deux enroulements étant disposés du côté du fil conducteur opposé à celui duquel les galets d’axes fixes de l’autre enroulement sont disposés. De la sorte, un des enroulements permet la formation de l’une de la première et de la seconde demi-spire et l’autre des enroulements permet la formation de l’autre de la première et de la seconde demi-spire.
Le procédé peut comporter les étapes de :
(bl) repliement entre les étapes (al) et (a2) de la première demi- spire mise en forme à l’étape (al) sur la seconde demi-spire mise en forme à l’étape (al) pour former un enroulement formant une spire,
(b2) repliement après l’étape (a2) de l’enroulement sur la première demi-spire adjacente à l’enroulement pour former un nouvel enroulement, puis du nouvel enroulement sur la seconde demi-spire mise en forme à l’étape précédente et adjacente à l’enroulement pour former un nouvel enroulement, et
(b3) répétition de l’étape (b2) entre les différentes étapes de mise en forme.
En variante, les étapes (al) et (a2) sont identiques et permettent chacune de mettre en forme en une seule opération du système de formage une première partie d’une seconde demi-spire, une première demi-spire adjacente à la première partie de seconde demi- spire précédente et une seconde partie d’une seconde demi-spire adjacente à la première demi-spire, le fil conducteur avant formage s’étendant selon un axe longitudinal s’étendant latéralement aux secondes demi- spires, la première et la seconde partie de seconde demi- spire étant deux parties qui réunies forment une seconde demi-spire complète.
Le procédé peut comporter une étape (a3) de répétition de l’étape (a2).
Dans ce cas, le système de formage peut comporter deux premiers galets d’axes mobiles imbriqués entre deux premiers galets d’axes fixes, eux-mêmes imbriqués entre deux seconds galets d’axes mobiles, eux-mêmes imbriqués entre deux seconds galets d’axes fixes le long de l’axe longitudinal du fil conducteur. De préférence, les seconds galets d’axes fixes sont à proximité du fil conducteur pour maintenir ce dernier le long de l’axe longitudinal, les premiers galets d’axes fixes sont espacés de l’axe longitudinal transversalement à ce dernier de la largeur de la ou des secondes demi-spires ; les seconds galets d’axes mobiles se déplacent transversalement à l’axe longitudinal de la largeur de la ou des secondes demi- spires et les premiers galets d’axes mobiles se déplacent transversalement à l’axe longitudinal de la largeur d’une spire.
Le procédé peut comporter les étapes de :
(bl) repliement après l’étape (a2) de la première demi-spire mise en forme à l’étape de mise en forme précédente sur la seconde demi- spire adjacente pour former un enroulement formant une spire puis repliement de l’enroulement sur la première demi-spire adjacente à l’enroulement pour former un nouvel enroulement, et
(b2) répétition de l’étape (bl) entre les différentes étapes de mise en forme.
L’enroulement formé comporte, de préférence, une pluralité de spires de fil conducteur.
L’enroulement est, de préférence, de forme sensiblement hexagonale, notamment avec deux côtés opposés plus longs que les autres, notamment au moins deux fois plus longs que les autres côtés, ces derniers pouvant avoir sensiblement la même longueur. Les première(s) et seconde(s) demi-spires peuvent chacune présenter une portion d’encoche droite destinée à s’insérer dans les encoches de la machine électrique tournante et deux portions de chignon formant un angle non nul avec la portion d’encoche et destinées à former les chignons de la bobine.
De préférence, les portions de jonction entre les première(s) et seconde(s) demi- spires forment chacune, après repliement des première et seconde demi- spires les unes sur les autres, une portion de boucle.
Dans le cas d’un enroulement présentant une pluralité de spires, lors du repliement des premières et secondes demi-spires les unes sur les autres, le fil conducteur, notamment chaque portion de jonction, peut s’enrouler autour d’au moins une portion de boucle formée précédemment par le ou les repliements des première et seconde demi- spires repliées précédemment. Le fil conducteur, notamment chaque portion de jonction, peut s’enrouler en une unique tête à chaque extrémité lors du repliement des premières et secondes demi-spires entre elles, les portions de jonction se superposant les unes aux autres à chaque extrémité.
En variante, les portions de jonction s’enroulent en au moins deux têtes en chaque extrémité lors du repliement des premières et secondes demi- spires entre elles de sorte que les portions de jonction s’enroulent alternativement sur l’une ou l’autre des têtes.
L’enroulement peut constituer une bobine telle que décrite précédemment.
Le procédé peut comporter une étape d’assemblage d’au moins deux enroulements superposés pour constituer une bobine de la machine électrique tournante. Les portions de jonction des chignons des différents enroulements peuvent être décalées les unes par rapport aux autres perpendiculairement à l’axe longitudinal du fil conducteur avant mise en forme.
Le procédé peut comporter une étape supplémentaire d’écartement des premières et secondes demi-spires les unes par rapport aux autres après repliement. Un tel écartement permet d’ouvrir angulairement la ou les portions de jonction au niveau des chignons. Ceci permet de réduire l’encombrement de la bobine, notamment des chignons, de faciliter son refroidissement.
Le procédé peut comporter une étape de cintrage de la bobine, notamment lors de son insertion dans les encoches de la machine électrique tournante, pour qu’elle s’étende dans les encoches en suivant la forme du stator de la machine électrique tournante, notamment en suivant une surface cylindrique.
Le procédé peut comporter la fixation d’un isolant en feuille au moins sur les portions de la bobine destinées à être reçues dans les encoches du stator.
Brève description des dessins
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’exemples de réalisation non limitatifs de celle-ci, et à l’examen du dessin annexé, sur lequel :
[Eig IA] La figure IA représente schématiquement en perspective un exemple de bobinage,
[Eig IB] La figure IB représente un exemple de stator avec une partie des bobines,
[Eig 2] La figure 2 représente schématiquement et isolément, en perspective, un exemple de bobine,
[Eig 3] La figure 3 est une vue selon III de la bobine de la figure 2, [Fig 4] La figure 4 représente la bobine des figures 2 et 3 selon IV,
[Fig 5] La figure 5 représente schématiquement et en perspective la bobine des figures 2 et 3 avant cintrage,
[Fig 6] La figure 6 est une vue selon VI de la bobine de la figure 5,
[Fig 7] La figure 7 représente la bobine des figures 5 et 6, selon VII,
[Fig 8] La figure 8 représente un détail de l’extrémité de la bobine des figures 1 à 7,
[Fig 9] La figure 9 représente le détail de la figure 8, vu selon IX,
[Fig 10] La figure 10 représente schématiquement et en perspective un système de formage et une portion d’un fil conducteur insérée dans le système de formage avant une étape de mise en forme de celle-ci,
[Fig 11] La figure 11 illustre la mise en forme de la portion du fil conducteur de la figure 10 dans le système de formage de la figure 10,
[Fig 12] La figure 12 représente schématiquement, le fil conducteur après trois étapes de mise en forme par le système de formage des figures 10 et 11,
[Fig 13] La figure 13 représente schématiquement et en perspective le fil conducteur de la figure 12, après repliement de la première demi-spire d’extrémité sur la seconde demi- spire adjacente pour former une spire,
[Fig 14] La figure 14 représente schématiquement et en perspective l’étape de repliement de la spire de la figure 13 sur la première demi- spire adjacente,
[Fig 15] La figure 15 représente l’enroulement obtenu par l’étape illustrée à la figure 14,
[Fig 16] La figure 16 représente schématiquement une variante de mise en forme par un système de formage des première et seconde demi-spires,
[Fig 17] La figure 17 représente schématiquement une variante de mise en forme par un système de formage des première et seconde demi-spires, et
[Fig 18] La figure 18 représente schématiquement en perspective une variante d’agencement des chignons des bobines
[Fig 19] La figure 19 représente schématiquement une variante de bobine avant cintrage,
[Fig 20] La figure 20 représente schématiquement et en perspective une variante de bobine avant cintrage, [Fig 21] La figure 21 représente la bobine de la figure 20 selon XXI,
[Fig 22] La figure 22 correspond à la bobine de la figure 21 après cintrage,
[Fig 23] La figure 23 représente une grappe de bobine de la figure 20,
[Fig 24] La figure 24 est une vue selon XXIV de la figure 23,
[Fig 25] La figure 25 représente un exemple de stator,
[Fig 26] La figure 26 représente schématiquement et en perspective une variante de bobine,
[Fig 27] La figure 27 représente schématiquement et en perspective une variante de bobine,
[Fig 28] La figure 28 représente schématiquement et en perspective une variante de bobine,
[Fig 29] La figure 28 est une vue selon XXIX de la figure 28, et
[Fig 30] La figure 30 représente schématiquement et en perspective une variante de bobine.
Description détaillée
On a illustré à la figure IA un bobinage 10 disposés selon l’agencement qu’il aurait dans le stator (non apparent) de la machine.
La figure IB représente des bobines 20 insérées dans es encoches 62 du stator 60.
Les figures 2 et 3 représentent une bobine 20 isolément.
Chaque bobine 20 présente deux portions droite 22 destinées à s’insérer dans les encoches 62 du stator 60, comme cela est illustré sur la figure IB, et reliées entre elles à chacune de leurs extrémités par les chignons 24 destinés à s’étendre hors des encoches, de part et d’autre de celles-ci.
Les bobines 20 sont cintrées préalablement à leur insertion dans les encoches 62 du stator 60 pour permettre leur insertion dans ces dernières. Comme cela est illustré sur la figure 4, les bobines 20 s’étendent selon une cylindre médian P de même courbure que celle de la surface extérieure du stator sur lequel elles sont destinées à être montées, les portions droites 22 étant rectilignes et les chignons 24 s’étendant en vue du dessus selon un arc de cercle. Les bobines peuvent présenter une étendue angulaire comprise entre 20° et 180°, mieux comprise entre 50° et 80°, de préférence sensiblement égale à 65°. Avant le cintrage de la bobine 20, comme cela est illustré sur les figures 6 et 7, le cylindre P a la forme d’un plan médian P.
Dans la suite de la description, nous parlerons du plan médian P pour désigner le plan ou le cylindre médian de la bobine indifféremment de sa configuration.
Dans l’exemple illustré, les bobines 20 sont de forme sensiblement hexagonale en vue de face et sont formées de l’enroulement d’un fil conducteur 30 en une pluralité de spires formées chacune d’une première demi-spire 32a et d’une seconde demi-spire 32b reliées entre elles par une portion de jonction 40, les spires étant également reliées entre elles par des portions de jonction 40. Le premières demi- spires 32a s’étendent toutes majoritairement d’un côté d’un plan transversal T perpendiculaire au plan médian P et les secondes demi-spires 32b s’étendent majoritairement du côté opposé de ce plan transversal T par rapport aux premières demi-spires 32a. Le fil conducteur 30 est de section rectangulaire, son plus petit côté formant le chant et son grand côté formant le plat.
Les premières demi-spires 32a sont toutes de forme identique et se superposent en étant en contact deux à deux, de préférence sur toute leur longueur. Les fils conducteurs 30 des premières demi-spires 32a se superposent les uns sur les autres sur leur plat. H en est de même des secondes demi-spires.
La première demi-spire la plus proche du plan médian P et la seconde demi-spire la plus proche du plan médian P peuvent se superposer en étant au moins partiellement jointives, notamment à leurs extrémités, comme cela est notamment visible sur les figures 7 et 8.
Les premières demi-spires 32a s’étendent toutes d’un premier côté du plan médian P et majoritairement d’un premier côté du plan transversal T en se superposant les unes aux autres dans une direction X perpendiculaire au plan médian P et les secondes demi- spires 32b s’étendent toutes d’un second côté du plan médian P opposé au premier et majoritairement d’un second côté du plan transversal T opposé au premier.
Les bobines 20 peuvent comporter entre 1 et 20, notamment entre 5 et 15, premières demi-spires 32a, par exemple 7 premières demi-spires 32a comme cela est illustré, et autant de secondes demi-spires 32b.
Les premières et secondes demi- spires 32a et 32b comportent des portions d’encoche respectives 34a et 34b rectilignes. Ces portions d’encoche sont reliées par des coudes respectifs 38a et 38b à des portions de chignon respectives 36a et 36b, rectilignes également. Les portions de chignon 36a des premières demi-spires sont reliées aux portions de chignon 36b des secondes demi-spires adjacentes par les portions de jonction 40 en forme de boucle.
Les portions de chignon 36a et 36b forment chacune un angle a, visible notamment sur la figure 3, avec la portion d’encoche correspondante 34a ou 34b. L’angle a est par exemple compris entre 90° et 150°, étant de préférence de l’ordre de 120°.
Les portions droites 22 des bobines 20 sont formées respectivement par la superposition des portions d’encoche 34a des premières demi-spires 32a et la superposition des secondes premières portions d’encoche 34b des secondes demi-spires 32b. Les chignons 24 des bobines 20 de part et d’autre des portions droites 22 des bobines 20 sont formés par la superposition des portions de chignon 36a et 36b et des portions de jonction 40 s’étendant du côté correspondant audit chignon 24.
L’ordre de la superposition des premières portions d’encoche 34a dans la portion droite 22 et opposée à l’ordre de la superposition des secondes portions d’encoche 34b dans la portion droite 22 de sorte que si la première portion d’encoche 32a d’une spire est la plus radialement intérieur dans l’encoche correspondante, la seconde portion d’encoche 34b de la même spire sera la plus radialement extérieur dans l’encoche et inversement.
Les premières et secondes demi- spires 32a et 32b sont de même longueur S, mesurée entre les extrémités des portions de chignon 36a ou 36b et les portions d’encoche 34a et 34b sont d’une même longueur m sensiblement égale à la hauteur des encoches du stator.
Les premières et secondes demi-spires peuvent être d’une même largeur Q, illustré notamment sur la figure 6, mesurée entre le plan transversal T et le barycentre de la portion intermédiaire 32a ou 32b. En variante, les premières demi-spires 32a peuvent être d’une largeur Q différente des secondes demi- spires 32b.
Les portions de jonction 40 forment des boucles superposées dans les chignons présentant en leur centre une ouverture 42 de largeur 1, notamment visible sur les figures 7 et 8. Les boucles présentent une ouverture angulaire supérieure ou égale à 180°. De préférence, la boucle de la portion de jonction 40 la plus intérieure est quasiment une boule fermée, ceci résultant du fait que les portions d’encoches 34a et 34b les plus intérieures présentent des surfaces s’étendant selon le plan médian P. Les chignons présentent une plus grande largeur L, prise perpendiculairement au plan médian P, supérieure à l’épaisseur e des bobines 20 boucles 40 exclues, comme cela est illustré sur la figure 9.
Chaque bobine 20 présente deux extrémités de connexion 28 et 29, s’étendant chacune dans un chignon 24, de préférence dans le même chignon 24. Une première extrémité libre 28 du fil conducteur s’étend de la première ou seconde demi- spire 32a ou 32b la plus proche du plan médian P et la seconde extrémité libre 29 du fil conducteur s’étend de la première ou de la seconde demi-spire 32a ou 32b la plus éloignée du plan médian P. De la sorte, la bobine 20 est obtenue par enroulement du fil conducteur 30 toujours dans le même sens comme cela sera expliqué ultérieurement.
Dans le bobinage 10, les bobines 20 adjacentes se superposent partiellement par leurs chignons 24 en s’imbriquant les unes dans les autres, les chignons 24 étant décalés circonférentiellement les uns des autres. Les bobines 20 sont configurées pour que la portion droite 22 formée par les portions d’encoche 34a des premières demi-spires 32a d’une bobine 20 se superposent dans les encoches du stator avec la portion droite 22 formée par les portions d’encoche 34b des secondes demi-spires 32b d’une autre bobine 20.
Dans l’exemple illustré, les extrémités libres 28 et 29 du fil conducteur s’étendent toutes du même côté du stator.
On va maintenant décrire, en se référant aux figures 10 à 15, un procédé de réalisation des bobines 20 par un système de formage 50.
Dans l’exemple illustré sur les figures 10 et 11, le système de formage 50 comporte deux galets d’axe fixe 52 d’un premier côté d’un axe longitudinal X et deux galets d’axe mobile 54 disposés entre les galets d’axe fixe 52 de l’autre côté de l’axe X. Les galets 54 sont mobiles en direction des galets 52 perpendiculairement à l’axe X, comme cela est illustré sur la figure 11. Les galets 52 sont espacés entre eux d’une distance d sensiblement égale à la longueur S des premières demi- spires 32a. Les axes des galets 54 sont espacés entre eux d’une distance k sensiblement égale à la longueur m de la portion principale des premières demi- spires 32a.
Selon une première opération de mise en forme, illustrée à la figure 10, une première partie rectiligne du fil conducteur 30 est positionnée le long de l’axe X entre les galets 52 et les galets 54. Puis, les galets 54 sont déplacés d’une première position, en direction des galets 52 perpendiculairement à l’axe X d’une même distance b sensiblement égale à la largeur Q des premières demi-spires 32a, vers une seconde position. Les galets 54 déforment le fil conducteur 30 lors de leur déplacement, lui donnant la forme de la première demi-spire 32a. Cette dernière est alors retirée du système de formage. Pour faciliter le retrait, les galets 54 sont escamotables.
Selon une seconde opération de mise en forme, les galets 52 et les galets 54 sont déplacés de telle sorte qu’ils soient positionnés du côté opposé de l’axe X par rapport à la position occupée lors de l’opération précédente. Une seconde partie rectiligne du fil conducteur 30, adjacente à la première partie mise en forme à l’opération précédente, est positionnée le long de l’axe X entre les galets 52 et les galets 54. Puis, les galets 34 sont déplacés de leur première position en direction des galets 52, perpendiculairement à l’axe X, d’une même distance b sensiblement égale à la largeur Q des secondes demi- spires 32a, vers une seconde position. Les galets 54 déforment le fil conducteur 30 lors de leur déplacement, leur donnant la forme d’une seconde demi-spire 32b. Comme cela est visible sur la figure 12, la première demi-spire 32a mise en forme précédemment et la seconde demi-spire 32b ici formée sont reliées entre elles par une portion rectiligne. La seconde demi-spire mise en forme est alors retirée du système de formage.
Dans une troisième opération de mise en forme, les galets 52 et 54 sont repositionnés comme selon la première opération et une nouvelle première demi-spire 32a est mise en forme sur une partie du fil conducteur 30 adjacente à la partie précédente.
Dans une quatrième opération de mise en forme, la seconde opération est reproduite sur une partie du fil 30 adjacente à la partie précédente.
Il est ainsi possible de mettre en forme successivement les premières et secondes demi-spires 32a et 32b. Le fil conducteur 30 présente alors une succession de premières et secondes demi-spires 32a et 32b le long de l’axe X, reliées entre elles par des portions rectilignes, comme cela est illustré sur la figure 12.
De préférence, les portions rectilignes sont de plus en plus longues le long du fil conducteur, ceci afin de permettre leur superposition en boucles 40 sans décaler les premières et secondes demi-spires successives. En effet, la portion de jonction 40 la plus intérieure des chignons est nécessairement plus courte que la portion de jonction 40 la plus extérieure des chignons.
Les premières et secondes demi- spires 32a et 32b sont ensuite repliées les unes sur les autres, comme cela est illustré sur les figures 13 à 15. Pour ce faire, dans une première étape de repliement, la première demi- spire 32a mise en forme à la première étape ci-dessus est repliée sur la seconde demi-spire 32b mise en forme à la seconde étape au niveau de la portion rectiligne, par rotation autour d’un axe Y1 perpendiculaire à l’axe X, comme cela est illustré sur la figure 13. La première demi- spire 32a et la seconde demi-spire forment alors une spire complète et la portion rectiligne prend la forme d’une portion de boucle 40.
Puis, dans une seconde étape de repliement, la spire complète formée est elle- même repliée sur la première demi-spire 32a adjacente mise en forme à la troisième étape au niveau de la portion rectiligne entre la seconde demi-spire 32b mise en forme à la seconde étape et la première demi- spire 32a mise en forme à la troisième étape, par rotation autour d’un axe Y2 perpendiculaire à l’axe X, comme cela est illustré sur la figure 14. La spire complète et la première demi-spire forment alors un enroulement d’une spire et demie et la portion rectiligne forme une portion de boucle 40, comme cela est illustré sur la figure 15.
Dans une troisième étape de repliement, l’enroulement formé précédemment est lui-même replié sur la demi-spire adjacente au niveau de la portion rectiligne entre la demi- spire adjacente à l’enroulement et la demi-spire précédente par rotation autour d’un axe Yi perpendiculaire à l’axe X, la portion rectiligne se repliant sur la portion de boucle 40 formée lors de la première étape de repliement, et ainsi de suite jusqu’au repliement de l’enroulement sur la dernière demi-spire 32a ou 32b, de préférence 32b, de la bobine 20, les portions rectilignes se repliant les unes sur les autres.
Les étapes de repliement ci-dessus se font toujours dans le même sens de sorte que les portions rectilignes s’enroulent les unes sur les autres à chaque chignon de la bobine.
En variante, les étapes de repliement ci-dessus sont effectuées entre les opérations de mise en forme ci-dessus. L’étape de repliement sur une demi-spire 32a ou 32b est réalisée après sa mise en forme. Par exemple, les opérations sont réalisées dans l’ordre suivant : première et seconde opérations de mise en forme/première étape de repliement/troisième opération de mise en forme/seconde étape de repliement/alternance d’opérations de mise en forme et d’étapes de repliement, ou première et seconde opérations de mise en forme/première étape de repliement/troisième et quatrième opérations de mise en forme/seconde et troisième étapes de repliement/altemance de deux opérations de mise en forme et de deux étapes de repliement.
Dans la variante illustrée sur les figures 16 et 17, le système de formage 50 est différent.
Dans le mode de réalisation de la figure 16, le système de formage 50 permet de mettre en forme en une seule opération de mise en forme une première et une seconde demi- spires 32a et 32b le long de l’axe X. Il comporte le long de cet axe X : un premier ensemble de galets comportant deux galets d’axes fixes 52a d’un côté de l’axe X et deux galets d’axes mobiles 54a disposés entre les galets 52a de l’autre côté de l’axe X par rapport aux galets 52a, les galets 54a étant mobiles vers les galets 52a perpendiculairement à l’axe X et un second ensemble de galets comportant deux galets d’axes fixes 52b du côté de l’axe X opposé aux galets 52a du premier enroulement et deux galets d’axes mobiles 54b disposés entre les galets 52b du même côté de l’axe X que les galets 52a du premier enroulement, les galets 54b étant mobiles vers les galets 52b perpendiculairement à l’axe X. Les galets 52a et 52b de chaque ensemble de galets sont espacés entre eux d’une distance d sensiblement égale à la longueur S des premières et secondes demi- spires 32a et 32b respectivement. Les galets 54a et 54b sont espacés entre eux d’une distance k, entre leurs axes, sensiblement égale à la longueur m des portions principales respectives 32a et 32b des premières et secondes demi-spires.
Selon une première opération de mise en forme illustrée sur la figure 16, une première partie rectiligne du fil conducteur 30 est positionnée le long de l’axe X entre les galets 52a et 52b et les galets 54a et 54b. Puis, les galets 54a et 54b sont déplacés en direction des galets 52a et 52b d’une distance b sensiblement égale à la largeur Q des premières et secondes demi-spires 32a et 32b. Les galets 54a et 54b déforment le fil conducteur 30 lors de leur déplacement, lui donnant la forme d’une succession d’une première demi-spire 32a mise en forme par le premier ensemble de galets et d’une seconde demi-spire 32b mise en forme par le second ensemble de galets. Cette opération peut être répétée autant de fois qu’il y a de spires sur des parties successives du fil conducteur 30. Les étapes de repliement sont identiques à celles décrites précédemment.
Dans le mode de réalisation de la figure 17, l’axe X s’étend le long de la portion principale des secondes demi-spires 32b et le système de formage 50 permet de mettre en forme en une seule opération une moitié de seconde demi-spire 32b, une première demi- spire 32a et une moitié de seconde demi-spire le long de l’axe X. Le système de formage comporte le long de l’axe X : deux galets d’axes fixes 52b d’un côté de l’axe X, deux galets d’axes mobiles 54b disposés entre les galets 52b, de l’autre côté de l’axe X par rapport aux galets 52b, deux galets d’axes fixes 52a disposés, en projection sur l’axe X, entre les galets 54b, du côté des galets 52b et espacés de l’axe X transversalement à ce dernier d’une distance r sensiblement égale à la largeur Q des secondes demi-spires 32b, et deux galets d’axes mobiles 54a disposés, en projection sur l’axe X, entre les galets 52a et du côté des galets 54b.
Les galets 54a sont espacés entre eux d’une distance k entre leurs axes, sensiblement égale à la longueur m-S de la portion intermédiaire des premières demi-spires 32a. Les galets 52a sont espacés du galet 54a adjacent le long de l’axe X d’une distance sensiblement égale à la longueur S-m le long de l’axe X de la portion de chignon 36a des premières demi- spires 32a. Les galets 54b sont espacés du galet fixes 52a adjacent le long de l’axe X d’une distance sensiblement égale à la longueur m-S de la portion principale des secondes demi- spires 32b.
Selon une première opération de mise en forme, illustrée sur la figure 17, une première partie rectiligne du fil conducteur 30 est positionnée le long de l’axe X entre les galets 52a et 52b et les galets 54a et 54b. Puis, les galets 54b sont déplacés d’une première position en direction des galets 52a, perpendiculairement à l’axe X, d’une distance bl sensiblement égale à la largeur Q des secondes demi-spires 32b, en une seconde position, et les galets 54a sont déplacés d’une première position en direction des galets 52a perpendiculairement à l’axe X d’une distance b2 sensiblement égale à la largeur totale de la bobine 20 en une seconde position. Les galets 54a et 54b déforment le fil conducteur 30 lors de leur déplacement, lui donnant la forme d’une succession de motifs composés d’une moitié de seconde demi-spire 32b, d’une première demi-spire 32a et d’une moitié de seconde demi- spire le long de l’axe X, comme cela est illustré sur la figure 17.
Cette opération est répétée et les moitiés de secondes demi-spires adjacentes se complètent pour former une seconde demi-spire complète. Les étapes de repliement sont identiques à celles décrites précédemment. Dans la variante illustrée sur les figures 18 et 19, les portions rectilignes se replient alternativement sur deux zones de superposition pour former deux têtes de chignon 26a et 26b juxtaposées. Un tel agencement avec deux têtes de chignon 26a et 26b formées par la superposition d’une portion de jonction 40 sur deux permet notamment de diminuer l’encombrement des chignons dans le plan transversal T, ces derniers ne s’étendant pas transversalement sur une largeur supérieure à l’épaisseur de la bobine, comme cela est particulièrement visible sur la figure 19. La bobine 20 est alors entièrement incluse, avant cintrage, entre les plans V et R avant cintrage de la bobine définis par les plats les plus extérieurs des première et seconde portions d’encoche 32a et 32b les plus extérieurs de la bobine 20, comme cela est visible sur la figure 19. Les plans V et R deviennent des cylindres extérieurs après cintrage de la bobine. Le mode de réalisation des figures 20 à 25 se distingue des modes de réalisation précédents en ce que les premières et deuxièmes portions d’encoche 34a et 34b s’empilent sur le plat du fil conducteur selon deux colonnes 22a et 22b juxtaposées et en contact l’une avec l’autre par le chant du fil conducteur.
D’un côté des portions d’encoche 34a et 34b, le chignon 24 comporte deux têtes de chignon 26a et 26b, l’une 26a reliant les premières portions d’encoche 34a de la colonne intérieure 22b aux deuxièmes portions d’encoche 34b de la colonne extérieure 22b et l’autre reliant les premières portions d’encoche 34a de la colonne extérieure 22a aux deuxièmes portions d’encoche 34b de la colonne intérieure 22a. De l’autre côté des portions d’encoche 34a et 34b, le chignon 24 comporte trois têtes de chignon 26c, 26d et 26e, les premières portions d’encoche 34a de la colonne intérieure 22b étant reliées alternativement aux deuxièmes portions d’encoche 34b de la colonne extérieure 22a et de la colonne intérieure 22b par l’intermédiaire des portions de jonction respectivement de la tête 26d centrale et de la tête 26e du côté duquel s’étendent les deuxièmes demi-spires et les premières portions d’encoche 34a de la colonne extérieure 22b étant reliées alternativement aux deuxièmes portions d’encoche 34b de la colonne extérieure 22a et de la colonne intérieure 22b par l’intermédiaire des portions de jonction respectivement de la tête 26d centrale et de la tête 26b du côté duquel s’étendent les premières demi-spires.
Dans ce mode de réalisation, les extrémités de connexion 28 et 29 sont de part et d’autre des trois têtes de chignon 26c, 26d et 26e.
Comme cela est visible sur la figure 21, les première et deuxième demi-spires 32a et 32b les plus intérieures peuvent être distantes l’une de l’autre transversalement au plan médian P de la bobine d’une distance m nulle ou non nulle, notamment telle que les première et deuxième demi- spires 32a et 32b soient reliés entre elles par une portion de jonction formant une portion de boucle s’étendant sur 180° avec le plus petit rayon de courbure possible sans endommager le fil conducteur.
Comme cela est visible sur les figures 23 et 24, une fois une bobine 20a enroulée, le fil conducteur peut être encore enroulé pour former d’autres bobines 20b et 20c, les différentes bobines 20a, 20b et 20c étant rattachées entre elles par continuité du fil conducteur. Dans l’exemple illustré, l’ensemble de ces bobines 20a, 20b et 20c formées à partir du même fil sont configurés pour s’insérer dans des encoches du stator adjacentes, comme cela est illustré sur la figure 25. Elles sont imbriquées les unes sur les autres et forment une grappe de bobines adjacentes. Les extrémités 28 et 29 du fil conducteur s’étendent de préférence de part et d’autre des têtes de bobines d’un même chignon. Les portions du fil électrique permettant la jonction entre les différentes bobines 50 sont, de préférence, en forme de boucle s’étendant parallèlement aux boucles des têtes de chignon entre ces dernières, sans dépasser transversalement e ses dernières.
Les bobines 20 telles qu’illustrées peuvent s’insérer dans les encoches 62 de tout stator 60 présentant des encoches 62 ouvertes. Dans l’exemple illustré sur les figures IB et 25, le stator 60 comporte une couronne 65 dans laquelle sont réalisée les encoches 62 s’ouvrant vers l’extérieur, et une culasse 68 rapportée sur la couronne 65 permettant de fermer radialement les encoches 62 après insertion du bobinage. Les encoches 62 sont formées entre des dents reliés entre elles par des ponts de matière formant le fond des encoches 62. Les ponts de matière formant le fond des encoches peuvent être déformable. La couronne 65 peut être d’un seul bloc comme représentée sur la figure 1 B ou en plusieurs secteurs, non illustré.
La culasse 68 peut comporter des reliefs complémentaires de reliefs de la couronne 65 permettant de faciliter l’assemblage. Les reliefs sont par exemple des tenons et mortaises ou des encoches et des rainures complémentaires.
Les portions droites 22 des bobines destinées à s’insérer dans les encoches 62 du stator 60 peuvent être recouverte d’un isolant en feuille 53 permettant de les isoler de l’intérieur de l’encoche et entre elles.
Le procédé peut comporter une étape supplémentaire d’écartement des portions droites 22 des bobines 20 les unes par rapport aux autres. Un tel écartement permet d’ouvrir la ou les portions de boucle dans les chignons 24. Ceci permet de réduire l’encombrement de la bobine, notamment des chignons 24, de faciliter leur refroidissement et de réduire la longueur de fil nécessaire à la fabrication de chaque bobine.
Le procédé peut également comporter une étape supplémentaire d’écrasement des têtes 26 de bobines permettant de les incliner relativement au plan transversal T.
Dans la variante de la figure 26, la bobine 20 présente des portions droites 22 en une unique colonne. D’un côté des portions droites 22, la bobine présente les deux extrémités 28 et 29 et une unique tête de chignon 26. De l’autre côté des portions droites 22, la bobine présente deux têtes de chignons 26a et 26b sur lesquelles les portions de jonctions se replient alternativement. Les première et deuxième demi-spires 32a et 32b les plus intérieures présentent toutes deux une surface s’étendant selon le plan médian P de la bobine.
La variante de la figure 27 diffère de celle de la figure 26 en ce que la bobine présente trois têtes de chignons 26a à 26c sur lesquelles les portions de jonctions se replient alternativement. Les première et deuxième demi-spires 32a et 32b les plus intérieures sont distantes l’une de l’autre transversalement au plan médian P de la bobine d’une distance m nulle.
Dans la variante des figures 28 et 29, la bobine 20 présente des portions droites 22 en deux colonnes 22a et 22b. D’un côté des portions droites 22, la bobine présente une unique tête de chignon 26. De l’autre côté des portions droites 22, la bobine présente les deux extrémités 28 et 29 et trois têtes de chignons 26a à 26c sur lesquelles les portions de jonctions se replient alternativement. Les première et deuxième demi- spires 32a et 32b les plus intérieures peuvent être distantes l’une de l’autre transversalement au plan médian P de la bobine d’une distance m nulle ou non nulle.
La tête de chignon 26 présente un encombrement transversal t beaucoup plus grand que celui de la bobine b du côté des trois têtes de chignons 26a à 26c. Un tel encombrement empêche l’insertion de la culasse du côté de l’unique tête de chignon. Cependant, la culasse peut être insérée de l’autre côté.
Dans la variante de la figure 30, la bobine 20 présente des portions droites 22 en deux colonnes 22a et 22b. D’un côté des portions droites 22, la bobine présente les deux extrémités 28 et 29 et trois têtes de chignon 26a à 26c sur lesquelles les portions de jonctions se replient alternativement. De l’autre côté des portions droites 22, la bobine présente quatre têtes de chignons 26d à 26g sur lesquelles les portions de jonctions se replient alternativement. Les première et deuxième demi-spires 32a et 32b les plus intérieures peuvent être distantes l’une de l’autre transversalement au plan médian P de la bobine d’une distance m nulle ou non nulle.
L’invention n’est pas limitée aux exemples qui ont été décrits ci-dessus. Par exemple, les premières et secondes demi-spires peuvent prendre des formes différentes, les grappes de bobines peuvent être réalisés avec des premières et secondes portions d’encoche en une seule colonne et avec une ou plusieurs têtes de chignon, l’écartement central des première et secondes demi-spires peut être présent sur une bobine dont les premières et deuxièmes portions d’encoche sont en une seule colonne.

Claims

Revendications
1. Bobine (20) destinée à être cintrée pour être insérée dans une première et une seconde encoche d’un stator d’une machine électrique tournante, la bobine (20) étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi-spire (32a) comportant une première portion d’encoche (34a) configurée pour être insérée dans la première encoche du stator, une seconde demi- spire (32b) comportant une seconde portion d’encoche (34b) configurée pour être insérée dans la seconde encoche du stator, les premières portions d’encoche (34a) étant empilées selon une ou plusieurs colonnes (22 ; 22a, 22b) chacune configurée pour s’étendre radialement dans la première encoche du stator, et les secondes portions d’encoches (34b) étant empilées selon un même nombre de colonnes (22 ; 22a, 22b) chacune configurée pour s’étendre radialement dans la seconde encoche du stator, les premières portions d’encoche (34a) et les secondes portions d’encoche (34b) étant empilées selon un ordre identique en partant d’un plan médian (P) de la bobine (20) vers les plans externes (V, R), les secondes demi-spires (32b) étant chacune reliées à la première demi-spire (32a) de la même spire et à la première demi-spire de la spire suivante par des portions de jonction (40), les portions de jonction (40) s’étendant d’un des côtés des première et deuxième portions d’encoche (34a, 34b) s’empilant selon un nombre de têtes (26a, 26b, 26c, 26d, 26e) juxtaposées strictement supérieur au nombre de colonnes (22 ; 22a, 22b) des première et deuxième portions d’encoche (34a, 34b).
2. Bobine selon la revendication 1, dans laquelle le nombre de colonne(s) (22 ; 22a, 22b) est supérieur ou égal à 1, de préférence entre 1 et 3, par exemple égal à 1 ou 2.
3. Bobine selon la revendication 1 ou 2, dans laquelle le nombre de colonnes (22 ; 22a, 22b) est supérieur ou égal à 2 et les premières portions d’encoche (34a) et deuxièmes portions d’encoche (34b) des spires successives s’empilent alternativement sur les différentes colonnes (22 ; 22a, 22b) correspondantes.
4. Bobine selon l’une quelconque des revendications précédentes, dans laquelle le nombre de têtes (26a, 26b, 26c, 26d, 26e) sur lesquelles s’empilent les portions de jonction
49 (40) dudit côté des portions d’encoche (34a, 34b) est égal au nombre de colonne(s) (22 ; 22a, 22b) plus un.
5. Bobine (20) destinée à être cintrée pour être insérée dans une première et une seconde encoche d’un stator d’une machine électrique tournante, la bobine (20) étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi-spire (32a) comportant une première portion d’encoche (34a) configurée pour être insérée dans la première encoche du stator, une seconde demi- spire (32b) comportant une seconde portion d’encoche (34b) configurée pour être insérée dans la seconde encoche du stator, les première et seconde portions d’encoche (34a, 34b) les plus intérieures de la bobine (20) ayant leurs surfaces les plus intérieures s’étendant selon un même plan médian (P) de la bobine (20), la bobine (20) étant entièrement comprise entre deux plans externes parallèles (V, R) au plan médian (P) de la bobine (20) et définis par les surfaces des premières et secondes portions d’encoche (34a, 34b) les plus extérieures de la bobine (20) les plus éloignées du plan médian (P) de la bobine (20), les premières portions d’encoche (34a) et les secondes portions d’encoche (34b) étant empilées selon un ordre identique en partant du plan médian (P) de la bobine (20) vers les plans externes (V, R).
6. Bobine (20) destinée à être insérée dans une première et une seconde encoche d’un stator (60) d’une machine électrique tournante, la bobine (20) étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi-spire (32a) comportant une première portion d’encoche (34a) configurée pour être insérée dans la première encoche du stator, une seconde demi- spire (32b) comportant une seconde portion d’encoche (34b) configurée pour être insérée dans la seconde encoche du stator, les secondes demi-spires (32b) étant chacune reliées à la première demi-spire (32a) de la même spire et à la première demi-spire (32a) de la spire suivante par des portions de jonction (40), de chaque côté des premières et deuxièmes portions d’encoche (34a, 34b), les portions de jonction (40) de la bobine s’empilent selon au moins deux têtes (26a, 26b, 26c, 26d, 26e) juxtaposées s’étendant selon des plans de jonctions parallèles entre eux, dans laquelle les première et seconde portions d’encoche (34a, 34b) les plus intérieures de
50 la bobine (20) ont leurs surfaces les plus intérieures s’étendant selon un même plan médian (P) de la bobine (20).
7. Bobine (20) destinée à être insérée dans une première et une seconde encoche d’un stator (60) d’une machine électrique tournante, la bobine (20) étant enroulée selon une pluralité de spires successives, chaque spire comportant : une première demi-spire (32a) comportant une première portion d’encoche (34a) configurée pour être insérée dans la première encoche du stator, une seconde demi- spire (32b) comportant une seconde portion d’encoche (34b) configurée pour être insérée dans la seconde encoche du stator, les secondes demi-spires (32b) étant chacune reliées à la première demi-spire (32a) de la même spire et à la première demi-spire (32a) de la spire suivante par des portions de jonction (40), de chaque côté des premières et deuxièmes portions d’encoche (34a, 34b), les portions de jonction (40) de la bobine s’empilent selon au moins deux têtes (26a, 26b, 26c, 26d, 26e) juxtaposées s’étendant selon des plans de jonctions parallèles entre eux, les portions de jonction (40) se superposant entre elles alternativement sur l’une et l’autre des deux têtes (26a, 26b).
8. Bobine selon l’une quelconque des revendications 1 à 4 et 7, dans laquelle les première et seconde portions d’encoche (34a, 34b) les plus intérieures de la bobine (20) ont leurs surfaces les plus intérieures s’étendant selon un même plan médian (P) de la bobine (20).
9. Bobine selon l’une quelconque des revendications 1 à 4 et 6 à 8, dans laquelle la bobine (20) est entièrement comprise entre deux plans externes parallèles (V, R) au plan médian (P) de la bobine (20) et définis par les surfaces des premières et secondes portions d’encoche (34a, 34b) les plus extérieures de la bobine (20) les plus éloignées du plan médian (P) de la bobine (20).
10. Bobine selon l’une quelconque des revendications 1 à 6, dans laquelle les portions de jonction (40) se superposent entre elles sur le plat du fil conducteur alternativement sur l’une et l’autre des deux têtes (26a, 26b).
11. Bobine selon l’une quelconque des revendications précédentes, dans laquelle la bobine (20) est formée d’un ou plusieurs fils conducteurs (30), de préférence d’un unique fil conducteur, le ou les fils conducteurs étant, en section transversale, de forme
51 rectangulaire, les premières demi- spires (32a) étant en contact les unes avec les autres par leur plat et les secondes demi- spires (32b) étant en contact les unes avec les autres par leur plat.
12. Bobine selon l'une quelconque des revendications précédentes, dans laquelle les premières et secondes demi-spires (32a, 32b) s’étendent chacune selon un plan de demi-spire, notamment parallèle au plat du fil conducteur, les plans de demi-spire des premières et secondes demi-spires étant parallèles entre eux et parallèle au plan médian (P) de la bobine.
13. Bobine selon la revendication 6, dans laquelle les plans de demi-spire des premières demi-spires (32a) s’étendant tous d’un même côté du plan médian (P) de la bobine et les plans de demi-spire des secondes demi-spires (32b) s’étendant tous de l’autre côté du plan médian (P) de la bobine.
14. Bobine selon l'une quelconque des revendications précédentes, dans laquelle la bobine est de forme sensiblement hexagonale, notamment avec deux côtés opposés formées par les premières et secondes portions d’encoche (34a, 34b) plus longs que les autres, notamment au moins deux fois plus longs que les autres côtés, ces derniers pouvant avoir sensiblement la même longueur.
15. Bobine selon l'une quelconque des revendications précédentes, dans laquelle chaque portion de jonction (40) est une portion de boucle s’étendant entre la première et la seconde demi-spire (32a, 32b) qu’elle relie.
16. Bobine selon l'une quelconque des revendications précédentes, dans laquelle la portion de jonction (40) la plus intérieure de la bobine forme une boucle sensiblement complète, les autres portions de jonction (40) formant préférentiellement des portions de boucle d’étendue angulaire sensiblement égale à 180°.
17. Bobine selon l'une quelconque des revendications précédentes, dans laquelle, de chaque côté des premières et deuxièmes portions d’encoche (34a, 34b), les portions de jonction (40) de la bobine s’empilent selon au moins deux têtes (26a, 26b) juxtaposées s’étendant selon des plans de jonction parallèles entre eux, les portions de jonction (40) se superposant entre elles, notamment sur le plat du fil conducteur, alternativement sur l’une et l’autre des deux têtes (26a, 26b).
52
18. Bobine selon la revendication 17, dans laquelle les deux plans de jonction sont décalés latéralement entre eux d’une distance sensiblement égale à la largeur du plat du fil conducteur de sorte que les deux têtes (26a, 26b) adjacentes sont jointives latéralement.
19. Bobine selon l’une quelconque des revendications précédentes, dans laquelle les premières portions d’encoche (34a) se superposent selon plusieurs, notamment deux, colonnes (22a, 22b) juxtaposées s’étendant perpendiculairement au plan médian P, et les secondes portions d’encoche (34b) se superposent également selon plusieurs, notamment deux, colonnes (22a, 22b) juxtaposées s’étendant perpendiculairement au plan médian P.
20. Bobine selon la revendication 19, dans laquelle les portions de jonction (40) d’un côté des portions d’encoche s’empilent selon autant de têtes (26a, 26b) que de colonnes juxtaposées des portions de jonction (40), et les portions de jonction (40) de l’autre côté des première et secondes portions d’encoche (34a, 34b) s’empilent selon un nombre de têtes (26c, 26d, 26e) juxtaposées correspondant au nombre de colonnes des portions d’encoche plus une, les têtes (26a, 26b, 26c, 26d, 26e) s’étendant selon des plans de jonctions parallèles entre eux et préférentiellement perpendiculaire au plan médian P de la bobine.
21. Grappe de bobine comportant une pluralité de bobines (20a, 20b, 20c) selon l’une quelconque des revendications précédentes, les bobines (20a, 20b, 20c) étant reliées entre elle par continuité du fil conducteur.
22. Machine électrique tournante comportant un stator (60) présentant des encoches (62) et des bobines (20) selon l’une quelconque des revendications précédentes, dont les première portions d’encoches (34a) sont insérées dans une des encoches et les secondes portions d’encoches (34b) sont insérées dans une autre des encoche, l’ensemble des encoches recevant des premières portions d’encoches d’une bobine et des secondes portions d’encoches d’une autre bobine.
23. Procédé de fabrication de la bobine selon l’une quelconque des revendications 1 à 16 pour une machine électrique tournante, comportant les étapes consistant à :
(a) mettre en forme au moins un fil conducteur (30) à l’aide d’un système de formage (50) de façon à former une alternance, le long du fil conducteur (30), d’au moins une première demi- spire (32a) et d’au moins une seconde demi- spire (32b),
(b) replier les première(s) et seconde(s) demi-spires (32a, 32b) les unes sur les autres en partant d’une première extrémité (28) du fil conducteur vers une seconde extrémité (29) du fil conducteur, pour former un enroulement formant au moins une spire.
PCT/FR2021/052353 2020-12-17 2021-12-16 Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante WO2022129796A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180093998.2A CN116848758A (zh) 2020-12-17 2021-12-16 用于插入旋转电机定子槽中的线圈
US18/256,813 US20240030757A1 (en) 2020-12-17 2021-12-16 Coil intended to be inserted in the notches of a stator of a rotating electrical machine
EP21848280.0A EP4264795A1 (fr) 2020-12-17 2021-12-16 Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR2013503A FR3118349B1 (fr) 2020-12-17 2020-12-17 Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
FRFR2013543 2020-12-17
FR2013445A FR3118351B1 (fr) 2020-12-17 2020-12-17 Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
FR2013543A FR3118340A1 (fr) 2020-12-17 2020-12-17 Stator avec une couronne ayant des encoches ouvertes radialement vers l’extérieur et recevant des bobines et une culasse rapportée.
FRFR2013503 2020-12-17
FRFR2013445 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022129796A1 true WO2022129796A1 (fr) 2022-06-23

Family

ID=80050775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/052353 WO2022129796A1 (fr) 2020-12-17 2021-12-16 Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante

Country Status (3)

Country Link
US (1) US20240030757A1 (fr)
EP (1) EP4264795A1 (fr)
WO (1) WO2022129796A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013503A1 (fr) 1968-07-23 1970-04-03 Lufttechnik Bayreuth Rus
FR2013543A1 (fr) 1968-07-23 1970-04-03 Fuji Photo Film Co Ltd
FR2013445A1 (fr) 1968-07-22 1970-04-03 Oesterr Alpine Montan
JPS62293958A (ja) * 1986-06-12 1987-12-21 Toshiba Corp コイルの製造方法
JP2001045688A (ja) * 1999-05-27 2001-02-16 Tsubakimoto Chain Co 電機子コイル及びその製造方法
JP2006340583A (ja) * 2005-06-06 2006-12-14 Masaaki Iwatani コイルおよびコイル部品
JP2011097723A (ja) 2009-10-29 2011-05-12 Honda Motor Co Ltd ステータの製造方法
EP2416471A1 (fr) 2009-12-18 2012-02-08 Toyota Jidosha Kabushiki Kaisha Stator
EP2562917A1 (fr) 2010-04-19 2013-02-27 Toyota Jidosha Kabushiki Kaisha Moteur et procédé de production du moteur
JP2015126636A (ja) * 2013-12-26 2015-07-06 株式会社豊田自動織機 回転電機のステータおよびコイルの製造方法
DE112013005097T5 (de) * 2012-10-22 2015-08-06 Mitsubishi Electric Corporation Verfahren zum Herstellen eines Wicklungskörpers, der in einer Ankerwicklung für eine elektrische Maschine verwendet wird
EP3197020A1 (fr) 2014-09-19 2017-07-26 Mitsubishi Electric Corporation Stator, machine électrique tournante utilisant ledit stator, procédé de fabrication du stator et procédé de fabrication de la machine électrique tournante
US10476337B2 (en) 2014-09-18 2019-11-12 Aisin Aw Co., Ltd. Stator

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013445A1 (fr) 1968-07-22 1970-04-03 Oesterr Alpine Montan
FR2013503A1 (fr) 1968-07-23 1970-04-03 Lufttechnik Bayreuth Rus
FR2013543A1 (fr) 1968-07-23 1970-04-03 Fuji Photo Film Co Ltd
JPS62293958A (ja) * 1986-06-12 1987-12-21 Toshiba Corp コイルの製造方法
JP2001045688A (ja) * 1999-05-27 2001-02-16 Tsubakimoto Chain Co 電機子コイル及びその製造方法
JP2006340583A (ja) * 2005-06-06 2006-12-14 Masaaki Iwatani コイルおよびコイル部品
JP2011097723A (ja) 2009-10-29 2011-05-12 Honda Motor Co Ltd ステータの製造方法
EP2416471A1 (fr) 2009-12-18 2012-02-08 Toyota Jidosha Kabushiki Kaisha Stator
EP2562917A1 (fr) 2010-04-19 2013-02-27 Toyota Jidosha Kabushiki Kaisha Moteur et procédé de production du moteur
DE112013005097T5 (de) * 2012-10-22 2015-08-06 Mitsubishi Electric Corporation Verfahren zum Herstellen eines Wicklungskörpers, der in einer Ankerwicklung für eine elektrische Maschine verwendet wird
JP2015126636A (ja) * 2013-12-26 2015-07-06 株式会社豊田自動織機 回転電機のステータおよびコイルの製造方法
US10476337B2 (en) 2014-09-18 2019-11-12 Aisin Aw Co., Ltd. Stator
EP3197020A1 (fr) 2014-09-19 2017-07-26 Mitsubishi Electric Corporation Stator, machine électrique tournante utilisant ledit stator, procédé de fabrication du stator et procédé de fabrication de la machine électrique tournante

Also Published As

Publication number Publication date
EP4264795A1 (fr) 2023-10-25
US20240030757A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
EP1829192B1 (fr) Methode d'insertion d'un bobinage dans un stator de machine electrique tournante polyphasee, et stator associe
EP1977497B1 (fr) Procede pour realiser le bobinage d'un stator de machine electrique tournante, et stator obtenu par ce procede
EP1974443B1 (fr) Procede pour realiser un stator de machine electrique tournante et agencement de conducteurs sur un support
EP1726079B1 (fr) Methode d'insertion d'un bobinage ondule dans un stator de machine electrique tounante polyphasee et son stator associe
EP3132528B1 (fr) Procede de realisation d'un bobinage d'un stator de machine electrique et stator correspondant
EP1829193A1 (fr) Procede de fabrication de stators de machines electriques tournantes polyphasees, stators obtenus par ce procede
EP3132523B1 (fr) Stator extérieur de machine electrique à facteur de remplissage d'encoches optimisé
WO2020174179A1 (fr) Stator de machine electrique tournante
FR3020194A1 (fr) Stator de machine electrique a petit rayon d'entree et procede de realisation dudit stator correspondant
FR3118340A1 (fr) Stator avec une couronne ayant des encoches ouvertes radialement vers l’extérieur et recevant des bobines et une culasse rapportée.
WO2022129796A1 (fr) Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante
WO2016009137A1 (fr) Procede de realisation d'un stator bobine de machine electrique tournante
FR3118349A1 (fr) Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
FR3118351A1 (fr) Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
FR3020199A1 (fr) Stator de machine electrique a culasse d'epaisseur reduite et procede de realisation du stator bobine correspondant.
WO2022018333A1 (fr) Stator de machine électrique tournante
WO1998059409A1 (fr) Procede de bobinage en deux plans d'encoche pour une machine electrique tournante
FR3020201A1 (fr) Stator de machine electrique muni d'au moins une soudure et procede de realisation du stator bobine par cambrage correspondant.
FR3020204A1 (fr) Procede de realisation d'un bobinage de stator de machine electrique muni d'une zone de compensation et stator bobine correspondant
FR3003104A1 (fr) Procede de bobinage d'un rotor ou d'un stator d'une machine electrique tournante et outil de bobinage correspondant
EP4371214A1 (fr) Stator de machine électrique tournante et procédé de fabrication
WO2023062313A1 (fr) Procédé de fabrication et stator de machine électrique tournante avec bobinage asymétrique
FR2867629A1 (fr) Methode d'insertion d'un bobinage dans un stator de machine electrique tournante polyphasee, et stator associe
FR3128075A1 (fr) Procédé de fabrication et stator de machine électrique tournante avec bobinage asymétrique
FR3020212A1 (fr) Machine electrique tournante a refroidissement optimise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021848280

Country of ref document: EP

Effective date: 20230717

WWE Wipo information: entry into national phase

Ref document number: 202180093998.2

Country of ref document: CN