EP3798413B1 - Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage - Google Patents

Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage Download PDF

Info

Publication number
EP3798413B1
EP3798413B1 EP19200418.2A EP19200418A EP3798413B1 EP 3798413 B1 EP3798413 B1 EP 3798413B1 EP 19200418 A EP19200418 A EP 19200418A EP 3798413 B1 EP3798413 B1 EP 3798413B1
Authority
EP
European Patent Office
Prior art keywords
valve
valve seat
valve body
control valve
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19200418.2A
Other languages
English (en)
French (fr)
Other versions
EP3798413A1 (de
Inventor
Robert Duschl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RD Estate GmbH and Co KG
Original Assignee
RD Estate GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RD Estate GmbH and Co KG filed Critical RD Estate GmbH and Co KG
Priority to EP19200418.2A priority Critical patent/EP3798413B1/de
Publication of EP3798413A1 publication Critical patent/EP3798413A1/de
Application granted granted Critical
Publication of EP3798413B1 publication Critical patent/EP3798413B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • F01B29/12Steam engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L23/00Valves controlled by impact by piston, e.g. in free-piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/08Valves guides; Sealing of valve stem, e.g. sealing by lubricant
    • F01L3/085Valve cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats

Definitions

  • the present disclosure relates to a control valve for a steam engine, for example a steam engine that performs mechanical work using steam as its working fluid. More specifically, the present disclosure relates to a control valve for a reciprocating steam engine, preferably having application in electric power generation. Furthermore, the present disclosure relates to a steam engine having the aforementioned control valve and a combined heat and power plant having the steam engine.
  • CHP plants Decentralized combined heat and power plants
  • CHP plants have long been established as an advantageous alternative to the conventional combination of local heating and central power plant.
  • CHP plants are used to generate electrical energy and to generate useful heat, in particular CHP plants are preferably operated on site or in the vicinity of the useful heat sink.
  • Combustion engines such as diesel or Otto engines, Stirling engines, steam engines, internal combustion turbines or steam engines can be used, for example, to drive the power generator.
  • Well-known steam engines such as the in WO 2016/146159 A1 described, which are used in particular for power generation, however, have the disadvantage that, for example, a relatively high level of leakage occurs during a cold start. This is due in particular to the fact that the steam injected into the steam engine (superheated steam or live steam) at a pressure of 40 bar to 150 bar is injected into the piston chamber in a relatively short time and acts there for a long time, which places high demands on the piston ring seal, which separates the water vapor from the lubricating oil in the crankshaft space or in the oil pan.
  • Such valves for controlling and/or regulating a fluid flow generally include a valve seat and a valve member that is mounted so that it can move axially.
  • the valve member typically includes a valve stem and a valve body at one end thereof.
  • a valve drive is also provided, which is directly or indirectly connected to the valve stem in a force-transmitting manner.
  • the valve body can be lifted off the valve seat to open the valve and flow through the pipeline or the valve can be made possible.
  • the valve body is brought back into contact with the valve seat, thus blocking fluid flow through the tubing.
  • Valves for controlling or regulating a fluid flow are known in the prior art, which are intended to enable simplified interaction of the valve body and the valve seat by means of a conical valve seat. In particular, this guides the valve body into the valve seat, which should lead to reliable and low-wear closing even with high forces. Nevertheless, even these valves do not provide a satisfactory result at high temperatures and pressures.
  • the object of the invention is to provide a control valve for controlling and/or regulating a steam flow in a steam engine, which is capable of reliably and permanently closing or shutting off the steam engine, despite the high temperatures and pressures present in the working cycle of a steam engine to ensure the valve while realizing ease of manufacture and easy maintenance.
  • One of the basic ideas of the present disclosure is to create a defined contact surface, in particular an annular contact surface between the valve body and the valve seat, with which a reliable and permanent closing or shutting off of the valve is ensured despite the high temperatures and pressures present in the working cycle of a steam engine can be performed while realizing ease of manufacture and maintenance.
  • the present disclosure provides a control valve in which an easily definable and manufacturable annular surface is realized between a conical component and a flat component.
  • a control valve for controlling and/or regulating a steam flow in a steam engine has: a valve seat, a valve body, which is guided in translation along a central axis CA of the control valve and is preferably subjected to a force against the valve seat by means of an elastic element , with a the valve seat axial end of the valve body facing toward the central axis of the valve body has a surface tapered toward the center axis of the valve body, thereby forming an annular contact surface with the valve seat, or an axial end of the valve seat facing the valve body has a surface tapered toward the central axis of the valve seat, thereby forming an annular contact surface with the Valve body is formed.
  • axial can be understood here as along the main axis of the valve member or the valve train or along the central axis of the control valve itself and corresponds to the longitudinal direction of said elements.
  • a slanted surface of the valve seat or that of the valve body is slanted inward toward the central axis, whereby the annular contact surface is formed in the region of the outer circumference of the slanted surface, the central axis of the valve seat and/or the central axis of the valve body runs parallel to the central axis CA, in particular approximately aligned with it.
  • the term "inwards” can be understood in such a way that the surface is beveled in the direction of the material of the respective element, e.g. the valve body, which forms a depression in the middle of the valve body.
  • the surface of the valve body, the facing the valve seat, funnel-shaped, ie has a conical shape.
  • an angle of inclination ⁇ of the slanted surface of the valve seat or of the valve body to a plane that is defined by the contact surface between the valve body and the valve seat and runs perpendicular to the central axis is between 0.5° and 1.5° 1°, is.
  • the conical surface produced in this way and the contact surface connected thereto can easily be brought back to size after an optional heat treatment, in particular hardening, which can be achieved, for example, by grinding.
  • the contact surface created in this way can also be easily repaired by grinding after a long period of use and the associated wear and tear.
  • valve seat is formed by a valve seat disk, which has a flat surface, at least in the region of the contact surface with the valve body, which is preferably aligned perpendicularly to the central axis CA.
  • valve seat from a valve seat disc also brings with it the advantage that it is easy to produce and to repair. Furthermore, the valve seat can be easily replaced in this way.
  • valve body has a projection on the axial end facing the valve seat, which is set up to interact with a valve drive in a force-transmitting manner in order to lift the valve body from the valve seat and thereby open the control valve, the valve drive and the Valve body are preferably formed decoupled.
  • a decoupling is to be understood here as meaning that the valve train and the valve body can move relative to one another and independently of one another.
  • valve body is made of a tough material, for example HSS steel (high-speed steel or high-alloy tool steel), which preferably has an elongation at break of at least 5%, more preferably at least 10%. It is also advantageous if at least one of the contact surfaces is plated.
  • the contact surfaces are the upper surface of the valve body which comes into contact with the elastic element, the lower surface of the valve body which comes into contact with the valve train, and the contact surface with the valve seat.
  • the plating is carried out using a build-up welding process such as, for example, plasma powder build-up welding, also known as the PTA process.
  • a build-up welding process such as, for example, plasma powder build-up welding, also known as the PTA process.
  • nickel martensite, tungsten carbide or stellite or a cobalt-chromium hard alloy can be used as the coating material.
  • the contact surfaces which are thus provided with an anti-wear coating, are preferably ground.
  • a wear ring made of nickel martensite, tungsten carbide, stellite or a cobalt-chromium hard alloy or a composite of ceramic and metal onto a base body of the valve body made of HSS steel, for example.
  • the shrunk-on ring can then be provided with the beveled surface described above to form the annular contact surface between valve seat and valve body.
  • valve seat or valve seat disc is preferably made of a very hard, wear-resistant material that is impact-resistant. There is no need for a tough core, as there is no bending stress (fracture stress).
  • the valve seat or the valve seat disc can also be made from a composite of ceramic and metal.
  • valve seat disc has an inner diameter that is at least large enough for the projection of the valve body and/or the valve drive to extend/protrude at least partially into the inner bore of the valve seat disc in the axial direction, i.e. in the direction of the central axis CA. preferably reach/stand through them, can/can.
  • the valve body is biased against the valve seat by steam pressure and the elastic member functions only as a damper.
  • the spring force of the elastic element which presses the valve body against the valve seat, is adjusted so that the valve only opens when a certain force is applied by the valve drive, which means that the valve can be prevented from opening too early. A targeted opening of the valve can thus be achieved.
  • the closing force of the control valve regulates itself in this way independently or automatically.
  • the necessary closing forces of the control valve which can be used to ensure adequate tightness/sealing of the control valve, increase.
  • the vapor pressure of the working fluid is used directly to provide the necessary closing force of the control valve, the available closing force also increases with higher working pressure.
  • live steam is to be understood in the present disclosure as steam/superheated steam which for example, from a steam generator to a steam engine for operating the steam engine.
  • the live steam usually has pressures in the range from 40 to 140 bar and temperatures above 500°C.
  • the contact surface of the valve seat and/or the valve body is hardened, and preferably the hardness of the valve body is greater than the hardness of the valve seat. In this way, a sufficiently high hardness/strength of the contact surface can be ensured, which is necessary to be able to withstand the high surface pressure.
  • the annular contact surface between the valve body and the valve seat has an annular width of 0.2 mm to 3 mm, preferably 0.5 mm to 2 mm, more preferably 1 mm.
  • the present disclosure relates to a steam engine, in particular a piston steam engine, which is preferably used for generating electric power, having: at least one cylinder which encloses a working space, one in the working space between a top dead center OT and a bottom dead center UT along a central axis CA of the cylinder reciprocating piston, and the control valve described above, wherein the control valve serves to control and/or regulate a fluid flow, in particular a steam flow, which acts as the working fluid (flow) of the steam engine.
  • valve drive of the control valve is designed as a projection of the piston, which is arranged on an upper end of the piston that faces the control valve, the projection lifting the valve body from the valve seat when the piston moves in the area / near the top dead center to open the control valve.
  • the projection has a conical shape, which has a flat contact surface, in particular aligned perpendicularly to the central axis CA, in particular on the side facing the valve body. In this way it is possible to form a circular contact surface between the valve body and the valve train and thus to reduce the surface pressure that occurs and the associated wear.
  • the contact surface of the valve train is plated, in particular using a build-up welding process such as plasma powder build-up welding, also known as the PTA process.
  • the piston is provided with a concave recess on its upper side, into which the coating material is introduced by means of build-up welding and is then ground to form a flat contact surface.
  • nickel martensite, tungsten carbide or stellite or a cobalt-chromium hard alloy can be used as the coating material.
  • the steam engine has an antechamber that can be supplied with fresh steam from the outside, wherein the antechamber has an opening for introducing the live steam into the working space, and the opening can be opened and closed by the control valve.
  • valve body is designed in the form of a cylindrical plunger, which can be moved in translation by an axial guide along the central axis CA of the control valve, which is preferably approximately aligned with a central axis CA of the cylinder 10, and preferably by pressure of the live steam that is applied to a side of the valve body facing away from the valve seat, a force is applied against the valve seat.
  • the present disclosure relates to a combined heat and power plant that has a steam generator and the steam engine described above, wherein the steam engine is coupled to a generator for generating electrical power.
  • the CHP system 100 shown consists of a steam generator 110, which is connected via a valve 180 to an inlet of a steam engine 1, 120, which drives a generator 130 to generate electricity.
  • a steam generator 110 which is connected via a valve 180 to an inlet of a steam engine 1, 120, which drives a generator 130 to generate electricity.
  • oil which, however, mixes with the expanded water vapor during the operation of the steam engine 1, 120 and is discharged with it.
  • the expanded steam discharged from the steam engine 1, 120 has a relatively large amount of oil.
  • the steam engine 1, 120 is followed by a condenser 150 for condensing the expanded steam, which has a pressure of approximately 0.15 bar and a temperature of approximately 55° C. when it leaves the steam engine 120.
  • the condensed water vapor which also contains a large proportion of oil, is fed to a condensate suction pump (or circulation pump) 170, in particular a piston pump, via a water column 190, which increases the pressure of the condensed water vapor to approx. 0.25 bar .sucked in by this one.
  • the condensate suction pump increases the pressure of the condensed water vapor or the oil-water mixture that is now present to approximately 1.50 bar and conveys the oil-water mixture to a device 140 for separating oil and water.
  • the separated or separated oil is routed back to a crankshaft chamber of the steam engine or injected into the steam engine for fine sealing and the cleaned water is routed to a feed water tank 160, which feeds the treated or cleaned water to the steam generator 110 again for steam generation Provides, so the cycle is closed.
  • FIG 2 1 shows a schematic sectional view of a steam engine 1 equipped with a control valve 50 according to an embodiment of the present invention.
  • the steam engine 1 shown has a cylinder 10 which has an upper end 11 and a lower end 12 .
  • the cylinder 10 is connected to a crankcase 20 at the lower end 12 .
  • a plurality of outlet openings 13 are provided in the circumferential direction in the cylinder wall/working space wall 14 of the cylinder 10 .
  • the outlet openings 13 connect a cylinder chamber or a working space 15 with an annular chamber 16 in order to discharge or discharge used steam from the working space 15 .
  • the outlet openings 13 are arranged close to a bottom dead center UT of a piston 30, which is located at bottom dead center UT in the view shown.
  • the piston 30 is translationally movable along a central axis CA of the cylinder 10 between the bottom dead center UT and a top dead center OT.
  • the piston 30 is connected to a crankshaft (not shown) housed in the crankcase 20 via a piston connecting rod or piston control rod (not shown).
  • the piston 30 has a sealing ring 31 at its lower end 32 and a plurality of sealing rings 31 at its upper end 33 .
  • the engine further includes a cylinder head unit 40 .
  • the cylinder head unit 40 has a first case body 41 and a second case body 42 . Furthermore, in the first housing body 41 is provided with an antechamber (vapor chamber) 44 which communicates with the working space 15 via an opening 43 .
  • the opening can be opened and closed by means of the control valve 50, which has a valve seat 51 and a valve body 52, with which the inflow of live steam (superheated steam that is under high pressure) into the working chamber can be controlled.
  • the control valve 50 is in the closed state, ie the valve body 52 is pressed against the valve seat 51 in order to prevent the flow of live steam into the working chamber 15 .
  • the valve body 52 is guided in translation along the central axis CA by means of an axial guide 55 and is subjected to a force or pressed against the valve seat 51 by an elastic element 54, which is implemented by a compression spring in the illustrated embodiment. Furthermore, the second housing body 42 contains fluid channels, not shown, with which the valve body 52 can be acted upon on its side facing away from the valve seat 51 with the working fluid, i.e. the superheated steam, in order to increase the closing force between the valve seat 51 and the valve body 52 and thus a tight Complete the opening 43 to ensure.
  • the working fluid i.e. the superheated steam
  • valve body 52 has, on an end facing valve seat 51, a surface 52A that is beveled inward toward a central axis of valve seat 51 or toward central axis CA, as a result of which the surface of valve body 52 facing valve seat 51 is funnel-shaped. In this way it is possible to realize a defined annular contact surface between the valve seat 51 and the valve body 52 .
  • FIG figure 3 shows an enlarged partial view of the schematic sectional view of FIG figure 2 , to the training of Control valve, in particular the valve seat 51 and the valve body 52 further to clarify.
  • the valve seat 51 is formed of a simple valve seat disk which is inserted into the first housing body 41. This makes it possible to easily replace the valve seat 41 after a long period of use and the associated wear. In this case, the valve seat 51 can be repaired for reuse by simply grinding it again.
  • the inwardly tapered surface 52A forms with the plane defined by the contact area between valve body 52 and valve seat 51 and in which figure 3 is oriented horizontally, an inclination angle ⁇ , which is actually extremely flat, in a range of 0.5 ° to 1.5 °. However, to better illustrate the invention, the angle is shown much larger.
  • the valve body 52 has a projection 52B which is provided on the slanted surface 52A facing the valve seat 51 and projects into the opening 43. As shown in FIG.
  • the projection 52B makes it possible for the piston 30 to move the valve body 52 against the applied steam pressure and against the applied spring force of the Valve seat 52 is lifted and thus the opening 43 is released, whereby live steam can flow from the antechamber 44 into the working chamber 15 and thus the piston 30 can cause a downward movement from top dead center OT to bottom dead center UT.
  • the projection (valve drive 53) of the piston 30 has a spherical or curved surface/shape, whereby between the projection 52B of the valve body 52 and the projection of the Piston 30 a point contact point is realized and thus only forces in the axial direction, ie along the central axis CA, can be transmitted from the piston 30 to the valve body 52, but no transverse forces can be introduced into the valve body 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Lift Valve (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Offenbarung betrifft ein Steuerventil für einen Dampfmotor, zum Beispiel einen Dampfmotor der mechanische Arbeit unter Verwendung von Dampf als sein Arbeitsfluid verrichtet. Genauer betrifft die vorliegende Offenbarung ein Steuerventil für einen Kolbendampfmotor, der bevorzugt in der Erzeugung elektrischen Stroms Anwendung findet. Des Weiteren betrifft die vorliegende Offenbarung einen das vorher genannte Steuerventil aufweisenden Dampfmotor sowie eine den Dampfmotor aufweisende Kraft-Wärme-Kopplungsanlage.
  • Hintergrund
  • Dezentrale Kraft-Wärme-Kopplungsanlagen (KWK-Anlagen) haben sich bereits seit längerer Zeit als vorteilhafte Alternative zur herkömmlichen Kombination von lokaler Heizung und zentralem Stromkraftwerk etabliert. KWK-Anlagen werden zur Gewinnung von elektrischer Energie und der Gewinnung von Nutzwärme genutzt, insbesondere werden KWK-Anlagen vorzugweise am Ort oder in der Nähe der Nutzwärmesenke betrieben. Als Antrieb für den Stromerzeuger können zum Beispiel Verbrennungsmotoren, wie Diesel- oder Ottomotoren, Stirlingmotoren, Dampfmotoren, Brennkraftturbinen oder Dampfmaschinen verwendet werden.
  • Hinsichtlich KWK-Anlagen hat in jüngster Zeit insbesondere die Verwendung von Dampfmotoren an Interesse gewonnen. Dies liegt vorrangig an dem erzielbaren hohen Gesamtwirkungsgrad bei gleichzeitig geringem Schadstoffausstoß und der fast freien Wahl des flüssigen oder festen Brennstoffs, wie beispielsweise Holz, Pellets, Biogas, oder Biomasse. Der hohe Wirkungsgrad kann durch Dampfdrücke von 40 bar bis 150 bar und Dampftemperaturen von ca. 300 bis 600 °C erzielt werden. Dampfmotoren finden aufgrund der genannten Vorteile auch Anwendung in kleineren Anlagen zur Biomasseverstromung, Abwärmeverstromungsanlagen, Abfallverbrennungsanlagen und thermischen Nachverbrennungsanlagen.
  • Bekannte Dampfmotoren, wie beispielsweise der in WO 2016/146159 A1 beschriebene, welche insbesondere für die Stromerzeugung verwendet werden, weisen jedoch den Nachteil auf, dass zum Beispiel beim Kaltstart eine relativ hohe Undichtigkeit auftritt. Dies liegt insbesondere daran, dass der in den Dampfmotor eingespritzte Wasserdampf (Heißdampf bzw. Frischdampf) mit einem Druck von 40 bar bis 150 bar in relativ kurzer Zeit in den Kolbenraum eingespritzt wird und dort lange wirkt, was eine hohe Anforderung an die Kolbenringdichtung, welche den Wasserdampf vom Schmieröl im Kurbelwellenraum bzw. in der Ölwanne trennt, stellt.
  • Um den Dampfmotor, insbesondere den Kolben des Dampfmotors mit einer ausreichenden Dampfmenge, welche unter einem entsprechend hohem Druck steht, effizient betreiben zu können, ist es notwendig, den unter Druck stehenden Dampf/Frischdampf in einer sehr kurzen Zeit und mit präzisem Timing einem Arbeitsraum des Dampfmotors zuzuführen, um den Arbeitszyklus des Kolbens ohne Störungen (mit Rundlauf) betreiben zu können. Hierzu ist ein Steuerventil notwendig, um die Fluidströmung des Frischdampfs zu dem Arbeitsraum des Dampfmotors optimal steuern beziehungsweise regeln zu können.
  • Solche Ventile zur Steuerung und/oder Regelung einer Fluidströmung umfassen in der Regel einen Ventilsitz und ein Ventilglied, das axial beweglich gelagert ist. Das Ventilglied weist üblicherweise einen Ventilschaft und an einem Ende davon einen Ventilkörper auf. Zur Betätigung des Ventils, d.h. zur axialen Bewegung des Ventilglieds, insbesondere des Ventilkörpers, ist ferner ein Ventiltrieb vorgesehen, der unmittelbar oder mittelbar kraftübertragend mit dem Ventilschaft verbunden ist. Dadurch kann der Ventilkörper zum Öffnen des Ventils von dem Ventilsitz abgehoben und ein Durchfluss durch die Rohrleitung bzw. das Ventil ermöglicht werden. Um das Ventil in eine geschlossene Stellung zu bringen wird der Ventilkörper wieder in Kontakt mit dem Ventilsitz gebracht und sperrt somit eine Fluidströmung durch die Rohrleitung.
  • Durch die oben beschriebenen hohen Temperaturen beim Betrieb eines Dampfmotors treten thermische Veränderungen, insbesondere Materialausdehnungen, auf, welche zur Veränderung des Betriebspunkts des Ventils führen können. Dadurch kann es vorkommen, dass das Ventilglied, insbesondere der Ventilkörper mit einer zu großen Kraft in den Ventilsitz gedrückt wird. Bei einer wiederholten Betätigung des Ventils hat dies jedoch einen hohen Verschleiß des Ventilkörpers und/oder des Ventilsitzes zur Folge, der zu einer Leckage des Ventils im geschlossenen Zustand führen kann. Zudem kann der Verschleiß Bypassströme im Ventil und Störungen im Gesamtsystem, in dem das Ventil zur Steuerung und/oder Regelung eines Fluidstroms eingesetzt wird, zur Folge haben. Ferner kann es auch vorkommen, dass herkömmliche Ventile aufgrund von Materialausdehnungen nicht vollständig schließen und folglich eine Leckage auftritt.
  • Im Stand der Technik sind bisher Ventile zur Steuerung beziehungsweise Regelung einer Fluidströmung bekannt, die mittels eines kegelförmigen Ventilsitzes ein vereinfachtes Zusammenwirken des Ventilkörpers und des Ventilsitzes ermöglichen sollen. Insbesondere wird dadurch der Ventilkörper in den Ventilsitz geführt, was auch bei hohen Kräften zu einem sicheren und verschleißarmen Schließen führen soll. Dennoch liefern auch diese Ventile bei hohen Temperaturen und Drücken kein zufriedenstellendes Ergebnis.
  • Weitere verwandte Techniken sind in der US 4 050 357 A , die auf eine Hochgeschwindigkeits-Dampfeinlass-Tellerventilstruktur für eine Dampfmaschine gerichtet ist, in der JP S 59-99016 A , die einen Dampfmotor mit Impulsventil das durch einen Vorsprung des Kolbens kurz vor Erreichen des oberen Totpunkts geöffnet wird, beschreibt und in der US 4 766 924 A , die auf ein Überdruckventil mit stationärem Ventilsitz und Tellerelement gerichtet ist, zu finden.
  • Gegenstand der Erfindung
  • Der Erfindung liegt die Aufgabe zu Grunde, ein Steuerventil zur Steuerung und/oder Regelung einer Dampfströmung, in einem Dampfmotor bereitzustellen, das in der Lage ist, trotz der im Arbeitszyklus eines Dampfmotors vorliegenden hohen Temperaturen und Drücke ein zuverlässiges und dauerhaftes Schließen bzw. Absperren des Ventils zu gewährleisten, während eine einfache Herstellung sowie leichte Instandhaltung realisiert werden.
  • Diese Aufgabe wird gelöst durch ein Steuerventil nach Anspruch 1, einen das Steuerventil aufweisenden Dampfmotor nach Anspruch 10 sowie eine den Dampfmotor aufweisende Kraft-Wärme-Kopplungsanlage nach Anspruch 14. Bevorzugte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen gegeben, wobei der Gegenstand der das Steuerventil betreffenden Ansprüche im Rahmen des Dampfmotors zu Einsatz kommen kann und umgekehrt.
  • Hierbei ist einer der Grundgedanken der vorliegenden Offenbarung, eine definierte Kontaktfläche, insbesondere eine ringförmige Kontaktfläche zwischen dem Ventilkörper und dem Ventilsitz zu schaffen, mit der trotz der im Arbeitszyklus eines Dampfmotors vorliegenden hohen Temperaturen und Drücke ein zuverlässiges und dauerhaftes Schließen bzw. Absperren des Ventils gewährleistet werden kann, während eine einfache Herstellung sowie leichte Instandhaltung realisiert werden.
  • Wird bei der vorliegenden Anmeldung von hohen Temperaturen gesprochen, so gilt dies insbesondere für einen Dampfstrom, d. h. Temperaturen jenseits der 100°C. Für den effizienten Betrieb eines Dampfmotors sind darüber hinaus Betriebsparameter mit einem Fluiddruck (Dampfdruck) von wie oben bereits angeführt 40 bis 150 bar und Fluidtemperaturen (Dampftemperaturen) von über 500°C nicht unüblich. Bei derartigen Betriebsparametern, ist mit einer hohen thermischen Beanspruchung sämtlicher Bauteile, insbesondere hohen thermischen Spannungen, zu rechnen. Ferner ist bei Dampfmotoren aufgrund der geringeren Molekülgröße (H2O) des Wasserdampfs im Vergleich zu den Verbrennungsgasen (CO2) beim Verbrennungsmotor eine sichere Abdichtung schwieriger zu realisieren.
  • Um dennoch ein dichtes Verschließen des Steuerventils zu ermöglichen, ist es notwendig, äußert große Schließkräfte des Steuerventils zu realisieren, was nur durch eine entsprechend kleine Kontaktfläche zwischen Ventilkörper und Ventilsitz und dementsprechend hoher Flächenpressung realisierbar ist. Dies führt jedoch zu hohen Anforderungen an die Güte der Kontaktflächen der beiden Schließelementen sowie zu hohem Verschleiß.
  • Um den oben geschilderten Anforderungen gerecht zu werden, stellt die vorliegende Offenbarung ein Steuerventil bereit, bei dem eine leicht definierbare und herstellbare Ringfläche zwischen einem konischen Bauteil und einem flachen Bauteil realisiert wird.
  • Gemäß einem Aspekt der Offenbarung weist ein Steuerventil zur Steuerung und/oder Regelung einer Dampfströmung, in einem Dampfmotor, auf: einen Ventilsitz, einen Ventilkörper, der entlang einer Zentralachse CA des Steuerventils translatorisch geführt ist und bevorzugt mittels eines elastischen Elements gegen den Ventilsitz kraftbeaufschlagt ist, wobei ein dem Ventilsitz zugewandtes axiales Ende des Ventilkörpers eine zur Mittelachse des Ventilkörpers hin abgeschrägte Oberfläche aufweist, wodurch eine ringförmige Kontaktfläche mit dem Ventilsitz ausgebildet ist, oder ein dem Ventilkörper zugewandtes axiales Ende des Ventilsitzes eine zur Mittelachse des Ventilsitzes hin abgeschrägte Oberfläche aufweist, wodurch eine ringförmige Kontaktfläche mit dem Ventilkörper ausgebildet ist.
  • Der Begriff "axial" kann hierbei als entlang der Hauptachse des Ventilglieds oder des Ventiltriebs oder entlang der Zentralachse des Steuerventils selbst verstanden werden und entspricht der Längsrichtung der besagten Elemente.
  • Gemäß einem weiteren Aspekt der vorliegenden Offenbarung ist eine abgeschrägte Oberfläche des Ventilsitzes oder die des Ventilkörpers zur Mittelachse hin nach innen abgeschrägt, wodurch die ringförmige Kontaktfläche im Bereich des Außenumfangs der abgeschrägten Oberfläche ausgebildet ist, wobei die Mittelachse des Ventilsitzes und/oder die Mittelachse des Ventilkörpers parallel zur Zentralachse CA verläuft, insbesondere mit dieser in etwa fluchtet. Hierbei kann der Begriff ʺnach innen" so verstanden werden, dass die Oberfläche in Richtung des Materials des jeweiligen Elements, z.B. des Ventilkörpers hin abgeschrägt ist, womit in der Mitte des Ventilkörpers eine Vertiefung gebildet ist. Mit anderen Worten wird die Oberfläche des Ventilkörpers, die dem Ventilsitz zugewandt ist, trichterförmig, weist also eine konische Form auf.
  • Des Weiteren ist es vorteilhaft, wenn ein Neigungswinkel α der abgeschrägten Oberfläche des Ventilsitzes oder des Ventilkörpers zu einer Ebene, die durch die Kontaktfläche zwischen Ventilkörper und Ventilsitz definiert ist und senkrecht zur Zentralachse verläuft, zwischen 0,5° und 1,5°, bevorzugt 1°, beträgt.
  • Auf diese Weise wird eine in Radialrichtung gesehene sehr dünne ringförmige Kontaktfläche zwischen Ventilsitz und Ventilkörper gebildet, welcher ferner leicht herstellbar ist.
  • Ferner ist die auf diese Weise hergestellte konische Oberfläche und die damit verbundene Kontaktfläche nach einer gegebenenfalls durchgeführten Wärmebehandlung, insbesondere Härten, leicht wieder auf Maß bringbar, was zum Beispiel durch Schleifen erzielt werden kann. Ebenfalls ist die auf diese Art erzeugte Kontaktfläche nach längerem Gebrauch und damit verbundenem Verschleiß durch Schleifen einfach wieder in Stand zusetzen.
  • Ferner ist es bevorzugt, dass der Ventilsitz durch eine Ventilsitzscheibe ausgebildet ist, die zumindest im Bereich der Kontaktfläche mit dem Ventilkörper eine ebene Fläche aufweist, die bevorzugt senkrecht zur Zentralachse CA ausgerichtet ist.
  • Die Ausbildung des Ventilsitzes aus Ventilsitzscheibe bringt ebenfalls die Vorteile mit sich, dass sie einfach herstellbar und wieder in Stand setzbar ist. Ferner kann auf diese Weise der Ventilsitz auf einfache Weise ausgetauscht werden.
  • Des Weiteren ist es vorteilhaft, dass der Ventilkörper auf dem dem Ventilsitz zugewandten axialen Ende einen Vorsprung aufweist, der dazu eingerichtet ist, mit einem Ventiltrieb kraftübertragend zusammenzuwirken, um den Ventilkörper von dem Ventilsitz abzuheben und dadurch das Steuerventil zu öffnen, wobei der Ventiltrieb und der Ventilkörper bevorzugt entkoppelt ausgebildet sind.
  • Unter einer Entkopplung ist hierbei zu verstehen, dass sich der Ventiltrieb und der Ventilkörper relativ zueinander und unabhängig voneinander bewegen können.
  • Ferner ist es bevorzugt, dass der Ventilkörper aus einem zähen Material, beispielsweise HSS-Stahl (Schnellarbeitsstahl bzw. hochligierter Werkzeugstahl) hergestellt ist, der bevorzugt eine Bruchdehnung von mindestens 5%, weiter bevorzugt von mindestens 10%, aufweist. Dabei ist es ferner vorteilhaft, wenn zumindest eine der Kontaktflächen plattiert ist. Bei den Kontaktflächen handelt es sich um die Oberseite des Ventilkörpers, welche mit dem elastischen Element in Kontakt kommt, um die Unterseite des Ventilkörpers, welche mit dem Ventiltrieb in Kontakt kommt, und um die Kontaktfläche mit dem Ventilsitz.
  • Hierbei ist es vorteilhaft, wenn das Plattieren anhand eines Auftragschweißverfahrens wie beispielsweise dem Plasma-Pulver-Auftragschweißen auch PTA-Verfahren genannt durchgeführt wird. Aus Beschichtungsmaterial kann beispielsweise Nickelmartensit, Wolframkarbid oder Stellite bzw. eine Cobalt-Chrom-Hartlegierung verwendet werden. Nach dem Plattieren werden die somit mit einer Verschleißschutzbeschichtung versehenen Kontaktflächen bevorzugt geschliffen.
  • Alternativ besteht auch die Möglichkeit, auf einen aus beispielsweise HSS-Stahl hergestellten Grundkörper des Ventilkörpers einen Verschleißring aufzuschrumpfen, der beispielsweise aus Nickelmartensit, Wolframkarbid, Stellite bzw. einer Cobalt-Chrom-Hartlegierung oder einem Verbund aus Keramik und Metall hergestellt ist. Der aufgeschrumpfte Ring kann dann mit der oben beschriebenen abgeschrägten Oberfläche versehen werden, um die ringförmige Kontaktfläche zwischen Ventilsitz und Ventilkörper auszubilden.
  • Der Ventilsitz bzw. die Ventilsitzscheibe ist bevorzugt aus einem sehr harten verschleißfesten Material hergestellt, das stoßfest ist. Auf einen zähen Kern kann hierbei verzichtet werden, da keine Biegespannung (Bruchbeanspruchung) anliegt. Der Ventilsitz bzw. die Ventilsitzscheibe kann ebenfalls aus einem Verbund aus Keramik und Metall hergestellt werden.
  • Ferner ist es bevorzugt, wenn die Ventilsitzscheibe einen Innendurchmesser aufweist, der zumindest so groß ist, dass der Vorsprung des Ventilkörpers und/oder der Ventiltrieb in axialer Richtung, d.h. in Richtung der Zentralachse CA, zumindest teilweise in die Innenbohrung der Ventilsitzscheibe hineinreichen/hineinstehen, bevorzugt durch diese hindurchreichen/hindurchstehen, kann/können.
  • Gemäß einem weiteren Aspekt der vorliegenden Offenbarung, ist der Ventilkörper durch Dampfdruck gegen den Ventilsitz kraftbeaufschlagt, und das elastische Element fungiert lediglich als Dämpfer. Hierbei ist die Federkraft des elastischen Elements, welche den Ventilkörper gegen den Ventilsitz drückt, so eingestellt, dass das Ventil erst ab einer bestimmten Kraftbeaufschlagung durch den Ventiltrieb öffnet, wodurch ein zu frühes Öffnen des Ventils vermieden werden kann. Es kann somit ein gezieltes Öffnen des Ventils erzielt werden.
  • Durch beaufschlagen des Ventilkörpers mit Dampfdruck, insbesondere mit Druck des Arbeitsfluids, dem zugeführten Frischdampf, kann eine ausreichend hohe Kraftbeaufschlagung des Ventilkörpers gegen den Ventilsitz gewährleistet werden. Ferner reguliert sich auf diese Weise die Schließkraft des Steuerventils selbstständig bzw. automatisch. Mit anderen Worten, in dem Fall, dass der Dampfmotor unter höhend Drücken (Dampfdrücken) und damit höherer Leistung betrieben wird, steigen die notwendigen Schließkräfte des Steuerventils, anhand deren eine ausreichende Dichtheit/Abdichtung des Steuerventils gewährleistet werden kann, an. Da jedoch der Dampfdruck des Arbeitsfluids direkt verwendet wird, um die notwendige Schließkraft des Steuerventils bereitzustellen, steigt mit höherem Arbeitsdruck auch die zur Verfügung stehende Schließkraft an.
  • Unter dem Begriff "Frischdampf" ist in der vorliegenden Offenbarung ein Dampf/Heißdampf zu verstehen, der beispielsweise von einem Dampferzeuger einem Dampfmotor zum betrieb des Dampfmotors zugeführt wird. Der Frischdampf weißt hierbei in der Regel Drücke im Bereich von 40 bis 140 bar und Temperaturen über 500°C auf.
  • Des Weiteren ist es bevorzugt, wenn zumindest die Kontaktfläche des Ventilsitzes und/oder des Ventilkörpers gehärtet ist, und bevorzugt die Härte des Ventilkörpers größer als die Härte des Ventilsitzes ist. Auf diese Weise kann eine ausreichend hohe Härte/Festigkeit der Kontaktfläche sichergestellt werden, die notwendig ist, um der hohen Flächenpressung standhalten zu können.
  • Gemäß einem weiteren Aspekt der vorliegenden Offenbarung weist die ringförmige Kontaktfläche zwischen Ventilkörper und Ventilsitz eine Ringbreite von 0,2 mm bis 3 mm, bevorzugt 0,5 mm bis 2 mm, weiter bevorzugt 1 mm, auf.
  • Ferner betrifft die vorliegende Offenbarung einen Dampfmotor, insbesondere Kolbendampfmotor der bevorzugt für die Erzeugung elektrischen Stroms verwendet wird, aufweisend: mindestens einen Zylinder, der einen Arbeitsraum umschließt, einen im Arbeitsraum zwischen einem oberen Totpunkt OT und einem unteren Totpunkt UT entlang einer Zentralachse CA des Zylinders hin und her beweglichen Kolben, und das oben beschriebene Steuerventil, wobei das Steuerventil zur Steuerung und/oder Regelung einer Fluidströmung, insbesondere einer Dampfströmung, die als Arbeitsfluid(strömung) des Dampfmotors fungiert, dient.
  • Des Weiteren ist es bevorzugt, dass der Ventiltrieb des Steuerventils als Vorsprung des Kolbens ausgebildet ist, der an einem oberen Ende des Kolbens, das dem Steuerventil zugewandt ist, angeordnet ist, wobei der Vorsprung den Ventilkörper von dem Ventilsitz abhebt, wenn sich der Kolben in dem Bereich / in der Nähe des oberen Totpunkts befindet, um das Steuerventil zu öffnen.
  • Auf diese Weise ist es ermöglicht, auf einen zusätzlichen Ventiltrieb wie beispielsweis ein Piezoelement bzw. einen Piezoantrieb zu verzichten. Ferner können auf diese Weise kurze Öffnungs- und Schließzeiten erreicht werden, ohne eine extrem hohe Beanspruchung der Ventiltriebkomponenten in Kauf nehmen zu müssen. Dies liegt insbesondere daran, dass die Öffnungs- und Schließkräfte des Steuerventils einerseits durch die Fluidströmung zur Verfügung gestellt werden und andererseits durch den Kolben, insbesondere den Vorsprung des Kolbens eingeleitet werden. Entsprechend werden die Öffnungskräfte von der Pleuelstange und deren Lagerung aufgenommen, welche aufgrund des hohen Drehmoments des Dampfmotors sehr robust ausgelegt sind.
  • Hierbei ist es ferner vorteilhaft, wenn der Vorsprung eine konusförmige Form aufweist, welche insbesondere an der dem Ventilkörper zugewandten Seite eine ebene, insbesondere zur Zentralachse CA senkrecht ausgerichtete, Kontaktfläche aufweist. Auf diese Weise ist es möglich, eine kreisförmige Kontaktfläche zwischen Ventilkörper und Ventiltrieb auszubilden und somit die auftretende Flächenpressung und den damit verbundenen Verschleiß zu reduzieren.
  • Des Weiteren ist es vorteilhaft, wenn die Kontaktfläche des Ventiltriebs plattiert ist, insbesondere anhand eines Auftragschweißverfahren wie beispielsweise das Plasma-Pulver-Auftragschweißen auch PTA-Verfahren genannt. Hierbei wird der Kolben an seiner Oberseite mit einer konkaven Aussparung versehen, in welche das Beschichtungsmaterial mittels Auftragsscheißen eingebracht wird und anschließend zu einer ebenen Kontaktfläche geschliffen wird. Aus Beschichtungsmaterial kann beispielsweise Nickelmartensit, Wolframkarbid oder Stellite bzw. eine Cobalt-Chrom-Hartlegierung verwendet werden.
  • Ferner ist es vorteilhaft, wenn der Dampfmotor eine Vorkammer aufweist, die von außen mit Frischdampf versorgbar ist, wobei die Vorkammer eine Öffnung zum Einleiten des Frischdampfs in den Arbeitsraum aufweist, und die Öffnung durch das Steuerventil geöffnet und geschlossen werden kann.
  • Gemäß einem weiteren Aspekt ist der Ventilkörper in Form eines zylindrischen Druckstempels ausgebildet, der durch eine Axialführung translatorisch entlang der Zentralachse CA des Steuerventils, welche bevorzugt mit einer Zentralachse CA des Zylinders 10 in etwa fluchtet, beweglich ist, und bevorzugt durch Druck des Frischdampfs, der auf eine dem Ventilsitz abgewandten Seite des Ventilkörpers beaufschlagt ist, gegen den Ventilsitz kraftbeaufschlagt ist.
  • Ferner betrifft die vorliegende Offenbarung eine Kraft-Wärme-Kopplungsanlage, die einen Dampferzeuger und den oben beschriebenen Dampfmotor aufweist, wobei der Dampfmotor mit einem Generator zur Erzeugung elektrischen Stroms gekoppelt ist.
  • Kurze Beschreibung der Figuren
    • Fig. 1 zeigt ein schematisches Diagramm einer Kraft-Wärme-Kopplungsanlage,
    • Fig. 2 zeigt eine schematische Schnittdarstellung eines Dampfmotors gemäß einer Ausführungsform der vorliegenden Erfindung, wobei das Steuerventil in der geschlossenen Position ist und der Kolben sich im unteren Totpunkt befindet, und
    • Fig. 3 zeigt eine vergrößerte Teilansicht der schematischen Schnittdarstellung von Fig. 2, um die Ausbildung des Steuerventils zu verdeutlichen.
    Detaillierte Beschreibung der bevorzugten Ausführungsformen
  • Nachfolgend werden anhand der beigefügten Figuren bevorzugte Ausführungsformen der vorliegenden Erfindung im Detail beschrieben. Weitere in diesem Zusammenhang genannte Modifikationen bestimmter Merkmale können jeweils einzeln miteinander kombiniert werden, um weitere Ausführungsformen auszubilden.
  • Dabei sind in den verschiedenen Figuren gleiche oder entsprechende Elemente jeweils mit den gleichen oder ähnlichen Bezugszeichen bezeichnet.
  • Fig. 1 zeigt ein schematisches Diagramm einer Kraft-Wärme-Kopplungsanlage (KWK-Anlagen). Die gezeigte KWK-Anlage 100 besteht aus einem Dampferzeuger 110, welcher über ein Ventil 180 mit einem Einlass eines Dampfmotors 1, 120 verbunden ist, welcher einen Generator 130 zur Erzeugung von Strom antreibt. Wie oben bereits erläutert, ist es zur Feinabdichtung des Dampfmotors 1, 120 notwendig, diesen mit Öl zu versorgen, welches sich während des Betriebs des Dampfmotors 1, 120 jedoch mit dem entspannten Wasserdampf vermischt und mit diesem ausgegeben wird. Aus diesem Grund weist der vom Dampfmotor 1, 120 ausgegebene entspannte Wasserdampf eine relativ große Menge an Öl auf.
  • Dem Dampfmotor 1, 120 ist ein Kondensator 150 zur Kondensation des entspannten Wasserdampfs, welcher einen Druck von ca. 0,15 bar und eine Temperatur von ca. 55°C aufweist, wenn dieser den Dampfmotor 120 verlässt, nachgeschalten.
  • Der kondensierte Wasserdampf, welcher weiterhin einen großen Anteil an Öl enthält, wird über eine Wassersäule 190, welche den Druck des kondensierten Wasserdampfs auf ca. 0,25 bar erhöht, einer Kondensat-Absaugpumpe (bzw. Zirkulationspumpe) 170, insbesondere Kolbenpumpe, zugeführt bzw. von dieser angesaugt. Die Kondensat-Absaugpumpe erhöht den Druck des kondensierten Wasserdampfs bzw. des nun vorliegenden Öl-Wassers-Gemischs auf ungefähr 1,50 bar und fördert das Öl-Wasser-Gemisch zu einer Vorrichtung 140 zum Trennen von Öl und Wasser.
  • Wie der Fig. 1 ferner entnommen werden kann, wird das getrennte bzw. abgeschiedene Öl zurück zu einem Kurbelwellenraum des Dampfmotors geleitet oder zur Feinabdichtung in den Dampfmotor eingespritzt und das gereinigte Wasser an einen Speisewassertank 160 geleitet, welcher das aufbereitete bzw. gereinigte Wasser dem Dampferzeuger 110 erneut zur Dampferzeugung zur Verfügung stellt, womit der Kreislauf geschlossen ist.
  • Figur 2 zeigt eine schematische Schnittdarstellung eines Dampfmotors 1, der mit einem Steuerventil 50 gemäß einer Ausführungsform der vorliegenden Erfindung ausgestattet ist. Der gezeigte Dampfmotor 1 weist einen Zylinder 10 der ein oberes Ende 11 und ein unteres Ende 12 aufweist. Am unteren Ende 12 ist der Zylinder 10 mit einem Kurbelgehäuse 20 verbunden. Mehrere Auslassöffnungen 13 sind in Umfangsrichtung in der Zylinderwand/Arbeitsraumwand 14 des Zylinders 10 vorgesehen. Die Auslassöffnungen 13 verbinden eine Zylinderkammer bzw. einen Arbeitsraum 15 mit einer Ringkammer 16, um verbrauchten Dampf von dem Arbeitsraum 15 abzulassen bzw. abzuführen. Die Auslassöffnungen 13 sind nahe einem unteren Totpunkt UT eines Kolbens 30 angeordnet, welcher sich in der gezeigten Ansicht im unteren Totpunkt UT befindet.
  • Der Kolben 30 ist translatorisch entlang einer Mittelachse CA des Zylinders 10 zwischen dem unten Totpunkt UT und einem oberen Totpunkt OT beweglich. Der Kolben 30 ist über eine nichtdargestellte Kolbenverbindungsstange oder Kolbensteuerungsstange mit einer nicht gezeigten Kurbelwelle verbunden, die in dem Kurbelgehäuse 20 untergebracht ist. Der Kolben 30 weist an seinem unteren Ende 32 einen Dichtring 31 und an seinem oberen Ende 33 mehrere Dichtringe 31 auf.
  • Der Motor umfasst ferner eine Zylinderkopfeinheit 40. Die Zylinderkopfeinheit 40 weist einen ersten Gehäusekörper 41 und einen zweiten Gehäusekörper 42 auf. Ferner ist in dem ersten Gehäusekörper 41 eine Vorkammer (Dampfkammer) 44 vorgesehen, welche über eine Öffnung 43 mit dem Arbeitsraum 15 kommuniziert. Die Öffnung kann mittels des Steuerventils 50, das einen Ventilsitz 51 und einen Ventilkörper 52 aufweist, geöffnet und verschlossen werden, womit das Einströmen von Frischdampf (Heißdampf, der unter Hochdruck steht) in den Arbeitsraum gesteuert werden kann. In Figur 2 befindet sich das Steuerventil 50 im geschlossenen Zustand, d.h., der Ventilkörper 52 wird gegen den Ventilsitz 51 gedrückt, um den Durchfluss von Frischdampf in den Arbeitsraum 15 zu unterbinden.
  • Der Ventilkörper 52 ist mittels einer Axialführung 55 entlang der Zentralachse CA translatorisch geführt und wird durch ein elastisches Element 54, welches in der dargestellten Ausführungsform durch eine Druckfeder realisiert ist, gegen den Ventilsitz 51 kraftbeaufschlagt beziehungsweise gedrückt. Ferner befinden sich im zweiten Gehäusekörper 42 nicht dargestellte Fluidkanäle, mit welchen der Ventilkörper 52 auf seiner dem Ventilsitz 51 abgewandten Seite mit dem Arbeitsfluid, d.h. dem Heißdampf, beaufschlagt werden kann, um die Schließkraft zwischen Ventilsitz 51 und Ventilkörper 52 zu erhöhen und somit ein dichtes Abschließen der Öffnung 43 zu gewährleisten.
  • Wie der Figur 2 weiter entnommen werden kann, weist der Ventilkörper 52 auf einem dem Ventilsitz 51 zugewandten Ende eine zu einer Mittelachse des Ventilsitzes 51 beziehungsweise zur Zentralachse CA hin nach innen abgeschrägte Oberfläche 52A auf, wodurch die dem Ventilsitz 51 zugewandte Oberfläche des Ventilkörpers 52 trichterförmig ausgebildet ist. Auf diese Weise ist es möglich, eine definierte ringförmige Kontaktfläche zwischen dem Ventilsitz 51 und dem Ventilkörper 52 zu realisieren.
  • Figur 3 zeigt eine vergrößerte Teilansicht der schematischen Schnittdarstellung von Figur 2, um die Ausbildung des Steuerventils, insbesondere des Ventilsitzes 51 und des Ventilkörpers 52 weiter zu verdeutlichen. Wie der Figur 3 entnommen werden kann, ist der Ventilsitz 51 aus einer einfachen Ventilsitzscheibe ausgebildet, welche in den ersten Gehäusekörper 41 eingesetzt ist. Dadurch ist es möglich, den Ventilsitz 41 nach länger Nutzung und damit verbundenem Verschleiß einfach auszutauschen. Hierbei kann der Ventilsitz 51 durch einfaches Nachschleifen zur Wiederverwendung in Stand gesetzt werden.
  • Wie in der Figur 3 weiter gezeigt ist, bildet die nach innen abgeschrägte Oberfläche 52A mit der Ebene, die durch die Kontaktfläche zwischen Ventilkörper 52 und Ventilsitz 51 definiert ist und in der Figur 3 horizontal ausgerichtet ist, einen Neigungswinkel α, welcher in Wirklichkeit äußert flach ausgebildet ist, in einem Bereich von 0,5° bis 1,5°. Zur besseren Veranschaulichung der Erfindung ist der Winkel jedoch wesentlich größer dargestellt. Wie der Figur 3 ebenfalls entnommen werden kann, weist der Ventilkörper 52 einen Vorsprung 52B auf, welcher an der dem Ventilsitz 51 zugewandten abgeschrägten Oberfläche 52A vorgesehen ist und in die Öffnung 43 vorsteht bzw. hineinsteht. Anhand des Vorsprungs 52B ist es ermöglicht, dass der Kolben 30 anhand des am oberen Ende 33 vorgesehen Vorsprungs (Ventiltrieb 53), wenn sich der Kolben 30 dem oberen Totpunkt OT annähert, den Ventilkörper 52 gegen den aufgebrachten Dampfdruck sowie gegen die angelegte Federkraft von dem Ventilsitz 52 abgehoben wird und somit die Öffnung 43 freigegeben wird, womit Frischdampf aus der Vorkammer 44 in den Arbeitsraum 15 strömen kann und somit den Kolben 30 in eine Abwärtsbewegung von dem oberen Totpunkt OT zum unteren Totpunkt UT bringen kann. Um ein mögliches Verkanten des Ventilkörpers 52 in der Axialführung 55 zu vermeiden, wenn der Vorsprung (Ventiltrieb 53) in Kontakt mit dem Ventilkörper 52 bekommt, weist der Vorsprung (Ventiltrieb 53) des Kolbens 30 eine kugelförmige bzw. gekrümmte Oberfläche/Form auf, wodurch zwischen dem Vorsprung 52B des Ventilkörpers 52 und dem Vorsprung des Kolbens 30 eine punktförmige Kontaktstelle realisiert wird und somit lediglich Kräfte in Axialrichtung, d.h. entlang der Zentralachse CA, von dem Kolben 30 auf den Ventilkörper 52 übertragbar sind, jedoch keine Querkräfte in den Ventilkörper 52 eingeleitet werden können.
  • Aus der vorhergehenden Beschreibung erkennt der Fachmann, dass verschiedene Modifikationen und Variationen der Vorrichtung und des Verfahrens der Erfindung durchgeführt werden können, ohne den Umfang der Erfindung zu verlassen. Ferner wurde die Erfindung in Bezug auf bestimmte Ausführungsformen beschrieben, die jedoch nur zum besseren Verständnis der Erfindung dienen sollen, und diese nicht einschränken sollen. Der Fachmann erkennt auch sofort, dass viele verschiedene Kombinationen der Elemente zur Ausführung der vorliegenden Erfindung verwendet werden können.

Claims (14)

  1. Steuerventil (50) zur Steuerung und/oder Regelung einer Dampfströmung, in einem Dampfmotor (1), umfassend:
    einen Ventilsitz (51),
    einen Ventilkörper (52), der entlang einer Zentralachse (CA) des Steuerventils (50) translatorisch geführt ist und mittels eines elastischen Elements (54) gegen den Ventilsitz (51) kraftbeaufschlagt ist,
    dadurch gekennzeichnet, dass
    ein dem Ventilsitz (51) zugewandtes axiales Ende des Ventilkörpers (52) eine zur Mittelachse des Ventilkörpers (52) hin abgeschrägte Oberfläche (52A) aufweist, die eine ringförmige Kontaktfläche mit dem Ventilsitz (51) ausbildet, oder
    ein dem Ventilkörper (52) zugewandtes axiales Ende des Ventilsitzes (51) eine zur Mittelachse des Ventilsitzes (51) hin abgeschrägte Oberfläche (51A) aufweist, die eine ringförmige Kontaktfläche mit dem Ventilkörper (52) ausbildet.
  2. Steuerventil (50) nach Anspruch 1, bei dem eine
    abgeschrägte Oberfläche (51A, 52A) des Ventilsitzes (51) oder die
    des Ventilkörpers (52) zur Mittelachse hin nach innen abgeschrägt ist, wodurch die ringförmige Kontaktfläche im Bereich des Außenumfangs der abgeschrägten Oberfläche (51A, 52A) ausgebildet ist, wobei die Mittelachse des Ventilsitzes (51) und/oder die Mittelachse des Ventilkörpers (52) parallel zur Zentralachse (CA) verläuft, insbesondere mit dieser in etwa fluchtet.
  3. Steuerventil (50) nach Anspruch 1 oder 2, bei dem ein Neigungswinkel α der abgeschrägten Oberfläche (51A, 52A) des Ventilsitzes (51) oder des Ventilkörpers (52) zu einer Ebene, die durch die Kontaktfläche zwischen Ventilkörper (52) und Ventilsitz (51) definiert ist und senkrecht zur Zentralachse (CA) verläuft, zwischen 0,5° und 1,5°, bevorzugt 1°, beträgt.
  4. Steuerventil (50) nach einem der vorhergehenden Ansprüche, bei dem der Ventilsitz (51) durch eine Ventilsitzscheibe ausgebildet ist, die bevorzugt zumindest im Bereich der Kontaktfläche mit dem Ventilkörper (52) eine ebene Fläche aufweist, die bevorzugt senkrecht zur Zentralachse (CA) ausgerichtet ist.
  5. Steuerventil (50) nach einem der vorhergehenden Ansprüche, bei dem der Ventilkörper (52) auf dem dem Ventilsitz (51) zugewandten axialen Ende einen Vorsprung (52B) aufweist, der dazu eingerichtet ist, mit einem Ventiltrieb (53) kraftübertragend zusammenzuwirken, um den Ventilkörper (52) von dem Ventilsitz (51) abzuheben und dadurch das Steuerventil (50) zu öffnen, wobei der Ventiltrieb (53) und der Ventilkörper (22) bevorzugt entkoppelt ausgebildet sind.
  6. Steuerventil (50) nach Anspruch 5, der auf Anspruch 4 rückbezogen ist, wobei die Ventilsitzscheibe einen Innendurchmesser (D1) aufweist, der zumindest so groß ist, dass der Vorsprung (52B) des Ventilkörpers (52) und/oder der Ventiltrieb (53) in axialer Richtung zumindest teilweise in die Innenbohrung der Ventilsitzscheibe hineinreichen/hineinstehen, bevorzugt durch diese hindurchreichen/hindurchstehen, kann/können.
  7. Steuerventil (50) nach einem der vorhergehenden Ansprüche, bei dem der Ventilkörper (52) durch Dampfdruck gegen den Ventilsitz (51) kraftbeaufschlagt ist, und das elastische Element (54) als Dämpfer fungiert.
  8. Steuerventil (50) nach einem der vorhergehenden Ansprüche, bei dem zumindest die Kontaktfläche des Ventilsitzes (51) und/oder des Ventilkörpers (52) gehärtet ist, und bevorzugt die Härte des Ventilkörpers (52) größer als die Härte des Ventilsitzes (51) ist.
  9. Steuerventil (50) nach einem der vorhergehenden Ansprüche, bei dem die ringförmige Kontaktfläche eine Ringbreite von 0,2 mm bis 3 mm, bevorzugt 0,5 mm bis 2 mm, weiter bevorzugt 1 mm, aufweist.
  10. Dampfmotor (1), insbesondere Kolbendampfmotor der bevorzugt für die Erzeugung elektrischen Stroms verwendet wird, umfassend:
    mindestens einen Zylinder (10), der einen Arbeitsraum (15) umschließt,
    einen im Arbeitsraum (15) zwischen einem oberen Totpunkt (OT) und einem unteren Totpunkt (UT) entlang einer Zentralachse (CA) des Zylinders (10) hin und her beweglichen Kolben (30), und
    ein Steuerventil (50) nach einem der vorhergehenden Ansprüche 1 bis 9, wobei das Steuerventil (50) zur Steuerung und/oder Regelung einer Dampfströmung, die als Arbeitsfluid des Dampfmotors fungiert, dient.
  11. Dampfmotor (1) nach Anspruch 10, bei dem der Ventiltrieb (53) des Steuerventils (50) als Vorsprung des Kolbens (30) ausgebildet ist, der an einem oberen Ende (33) des Kolbens, das dem Steuerventil (50) zugewandt ist, angeordnet ist, wobei der Vorsprung den Ventilkörper (52) von dem Ventilsitz (51) abhebt, wenn sich der Kolben (30) in dem Bereich oder in der Nähe des oberen Totpunkts (OT) befindet, um das Steuerventil (50) zu öffnen.
  12. Dampfmotor (1) nach einem der Ansprüche 10 oder 11, ferner umfassend:
    eine Vorkammer (44), die von außen mit Frischdampf versorgbar ist, wobei die Vorkammer (44) eine Öffnung (43) zum Einleiten des Frischdampfs in den Arbeitsraum (15) aufweist, wobei die Öffnung (43) durch das Steuerventil (50) geöffnet und geschlossen werden kann.
  13. Dampfmotor (1) nach einem der Ansprüche 10 bis 12, wobei der Ventilkörper (52) in Form eines zylindrischen Druckstempels ausgebildet ist, der durch eine Axialführung (55) translatorisch entlang der Zentralachse (CA) des Steuerventils, welche bevorzugt mit einer Zentralachse (CA) des Zylinders (10) in etwa fluchtet, beweglich ist, und bevorzugt durch Druck des Frischdampfs, der auf eine dem Ventilsitz (51) abgewandten Seite des Ventilkörpers (52) beaufschlagt ist, gegen den Ventilsitz (51) kraftbeaufschlagt ist.
  14. Kraft-Wärme-Kopplungsanlage, umfassend:
    einen Dampferzeuger (110), und
    einen Dampfmotor (1, 120) nach einem der vorhergehenden Ansprüche 10 bis 13, wobei der Dampfmotor mit einem Generator (130) zur Erzeugung elektrischen Stroms gekoppelt ist.
EP19200418.2A 2019-09-30 2019-09-30 Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage Active EP3798413B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19200418.2A EP3798413B1 (de) 2019-09-30 2019-09-30 Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19200418.2A EP3798413B1 (de) 2019-09-30 2019-09-30 Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage

Publications (2)

Publication Number Publication Date
EP3798413A1 EP3798413A1 (de) 2021-03-31
EP3798413B1 true EP3798413B1 (de) 2022-08-10

Family

ID=68104429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19200418.2A Active EP3798413B1 (de) 2019-09-30 2019-09-30 Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage

Country Status (1)

Country Link
EP (1) EP3798413B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245969B1 (de) 2022-03-16 2024-04-17 RD Estate GmbH & Co. KG Dampfmotor
CN115110999A (zh) * 2022-06-24 2022-09-27 何致远 蒸汽发动机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1630750A (en) * 1925-06-15 1927-05-31 Krasno Philip Internal-combustion-engine valve
GB1163211A (en) * 1967-01-19 1969-09-04 Chadburns Res & Dev Ltd Improvements in or relating to Apparatus for Dispensing Liquids Incorporating a Reciprocating Pump
US4050357A (en) * 1974-06-25 1977-09-27 Carter Sr J Warne Steam admission valve and variable clearance volume steam cylinder
JPS5999016A (ja) * 1982-11-29 1984-06-07 Komatsu Ltd 蒸気エンジンのインパルス弁
US4766924A (en) * 1986-12-08 1988-08-30 The Lee Company Pressure relief valve
DE3913351A1 (de) * 1989-04-22 1990-10-25 Teves Gmbh Alfred Vorrichtung zur hilfsdruckerzeugung
EP3271557B1 (de) 2015-03-16 2020-11-25 RD Estate GmbH & Co. KG Dampfmotor

Also Published As

Publication number Publication date
EP3798413A1 (de) 2021-03-31

Similar Documents

Publication Publication Date Title
EP1330592B1 (de) Verfahren zum betreiben einer dampf-wärmekraftmaschine, insbesondere als fahrzeug-antriebsaggregat
EP2394049B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
AT500773B1 (de) Einspritzdüse für brennkraftmaschinen
EP0546985A1 (de) Brennstoffeinspritzventil für eine Hubkolbenbrennkraftmaschine für wahlweisen Betrieb mit Dieselöl oder mit einem gasförmigen Brennstoff
EP1778968B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP0908617A1 (de) Kraftstoffeinspritzvorrichtung
EP3169889A1 (de) Dual-fuel-kraftstoffinjektor
EP3798413B1 (de) Steuerventil für einen dampfmotor, ein das steuerventil aufweisender dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage
WO2017121427A1 (de) Verfahren zum betrieb eines axialkolbenmotors sowie axialkolbenmotor
EP4001587A1 (de) Steuerventil mit optimiertem strömungsfluss für einen kolbendampfmotor, ein das steuerventil aufweisender kolbendampfmotor, eine den kolbendampfmotor aufweisende kraft-wärme-kopplungsanlage sowie ein verfahren zum betreiben des kolbendampfmotors
EP4001586A1 (de) Steuerventil mit optimierter thermischer beanspruchung, ein das steuerventil aufweisender kolbendampfmotor, eine den kolbendampfmotor aufweisende kraft-wärme-kopplungsanlage sowie ein verfahren zum betreiben des kolbendampfmotors
EP3128137B1 (de) Anordnung zur steuerung eines volumenstroms aus arbeitsmitteldampf mit hohem druck
EP3798412B1 (de) Dampfmotor sowie eine den dampfmotor aufweisende kraft-wärme-kopplungsanlage
AT512422B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1483499B1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
EP4001709A1 (de) Federloses steuerventil für einen kolbendampfmotor, ein das steuerventil aufweisender kolbendampfmotor, eine den kolbendampfmotor aufweisende kraft-wärme-kopplungsanlage sowie ein verfahren zum betreiben des kolbendampfmotors
EP4245969B1 (de) Dampfmotor
EP1978230B1 (de) Wärmekraftanlage, insbesondere zur Nutzung von Wärmequellen niedriger Temperatur
DE102008060063A1 (de) Verbrennungsmotor
EP1320677B1 (de) Ventilanordnung
EP2410140B1 (de) Schmiereinrichtung für einen Kolben
EP1546545B1 (de) Pumpe-düse-einheit und verfahren zur einstellung der härte von anlagebereichen eines steuerventils
WO2025021292A1 (de) Kolbendampfmotor mit überhitzer, eine den kolbendampfmotor aufweisende kraft-wärme-kopplungsanlage, ein computerimplementiertes verfahren zur steuerung des kolbendampfmotors sowie eine steuerung zum steuern des kolbendampfmotors
EP1763629A1 (de) Kraftstoffeinspritzvorrichtung
WO2025021291A1 (de) Kolbendampfmotor mit zusatzauslassventil, eine den kolbendampfmotor aufweisende kraft-wärme-kopplungsanlage, ein computerimplementiertes verfahren zur steuerung des kolbendampfmotors sowie eine steuerung zum steuern des kolbendampfmotors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210917

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1510683

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019005222

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220810

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221110

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019005222

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

26N No opposition filed

Effective date: 20230511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20241001

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: U11

Free format text: ST27 STATUS EVENT CODE: U-0-0-U10-U11 (AS PROVIDED BY THE NATIONAL OFFICE)

Effective date: 20251001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20250926

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250926

Year of fee payment: 7

Ref country code: AT

Payment date: 20250926

Year of fee payment: 7