EP3772070B1 - Verfahren zur herstellung eines induktiven bauteils sowie induktives bauteil - Google Patents

Verfahren zur herstellung eines induktiven bauteils sowie induktives bauteil Download PDF

Info

Publication number
EP3772070B1
EP3772070B1 EP20184972.6A EP20184972A EP3772070B1 EP 3772070 B1 EP3772070 B1 EP 3772070B1 EP 20184972 A EP20184972 A EP 20184972A EP 3772070 B1 EP3772070 B1 EP 3772070B1
Authority
EP
European Patent Office
Prior art keywords
sintered particles
binder
coil
magnetic core
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20184972.6A
Other languages
English (en)
French (fr)
Other versions
EP3772070A1 (de
Inventor
Arpankumar Patel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuerth Elektronik Eisos GmbH and Co KG
Original Assignee
Wuerth Elektronik Eisos GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuerth Elektronik Eisos GmbH and Co KG filed Critical Wuerth Elektronik Eisos GmbH and Co KG
Publication of EP3772070A1 publication Critical patent/EP3772070A1/de
Application granted granted Critical
Publication of EP3772070B1 publication Critical patent/EP3772070B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the invention relates to a method for producing an inductive component and an inductive component.
  • a method for producing an inductive component is known.
  • a solid body is successively formed from a coil and several magnetic powders.
  • the body is then placed in a furnace and sintered at around 900°C to form the inductive component.
  • a method for producing an inductive component is known.
  • a coil is placed in a first ceramic suspension with a first ceramic powder, and the first ceramic suspension is cured to form a first ceramic molded body.
  • the first ceramic shaped body with the coil is then placed in a second ceramic suspension with a second ceramic powder and the second ceramic suspension is cured to form a second ceramic shaped body.
  • the inductive component is formed by firing the shaped bodies.
  • a coil device comprising a substrate, a coil, an insulator, a magnetic flux control device and electrodes.
  • the substrate, the coil, the insulation and the control component are arranged within a base body made of a magnetic material.
  • the invention is based on the object of creating a method that enables simple and inexpensive production of an inductive component with improved electromagnetic properties.
  • a base body which includes a magnetic material.
  • the magnetic material can be produced, for example, by recycling waste magnetic material or by processing raw material. For example, waste magnetic material may be crushed, filtered, and/or blended and activated into the magnetic material.
  • the base body is formed from the magnetic material.
  • the base body can be sintered in a simple and cost-effective manner at a comparatively high temperature, since the sintering takes place without the at least one coil and the melting temperature of the material of the at least one coil does not have to be taken into account. After sintering, the sintered base body is crushed, resulting in sintered particles.
  • the electromagnetic properties of the inductive component can be influenced by crushing and/or selecting the sintered particles for producing the at least one mixture. At least one mixture is then produced from the sintered particles and a binder. The at least one mixture is arranged in a mold together with the at least one coil and the binder is then activated so that the binder binds the sintered particles together to form at least one magnetic core.
  • the formed magnetic core surrounds the at least one coil in the desired manner.
  • the at least one magnetic core preferably surrounds the at least one coil with the exception of connection contacts complete. Due to the fact that the sintering takes place without the at least one coil and the sintered particles are connected to the at least one magnetic core by means of the binding agent, the production of the inductive component is simple and inexpensive.
  • the sintered particles are preferably separated into first sintered particles and second sintered particles according to their particle shape and/or their particle size.
  • the sintered particles are separated according to their particle size, in particular their minimum dimension and/or their maximum dimension, into a first coarse fraction with the first sintered particles and a second fine fraction with second sintered particles that are smaller than the first sintered particles.
  • a first mixture is produced from the first sintered particles and a binder.
  • a second mixture is correspondingly produced from the second sintered particles and a binder.
  • the at least one coil and the first mixture are arranged in a first mold and then the binder in the first mixture is activated so that the first sintered particles with the binder form the first magnetic core.
  • the first magnetic core at least partially surrounds the at least one coil.
  • the resulting component with the at least one coil and the first magnetic core and the second mixture are arranged in a second mold and then the binder in the second mixture is activated so that the second sintered particles with the binder form the second magnetic core.
  • the first magnetic core preferably completely surrounds the at least one coil, with the exception of connection contacts. With the exception of connection contacts, the second magnetic core completely surrounds the first magnetic core and the at least one coil.
  • the electromagnetic and/or mechanical properties of the component can be influenced in a desired manner by producing a plurality of magnetic cores with different sintered particles.
  • a method according to claim 2 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the at least one ferrite material is easily and inexpensively available.
  • the at least one ferrite material enables high inductance and/or soft saturation.
  • the at least one ferrite material enables comparatively lower AC voltage losses (AC losses) and/or comparatively higher voltages in high-voltage tests (AC HiPot test).
  • the at least one ferrite material includes in particular manganese (Mn), zinc (Zn) and/or nickel (Ni), for example NiZn and/or MnZn.
  • a method according to claim 3 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintering takes place without the at least one coil, sintering is possible at a comparatively high temperature T S . The duration of the sintering process is shorter, the higher the temperature T S is. The sintering time can be shortened accordingly. Sintering affects the electromagnetic properties of the sintered particles. Due to the fact that the temperature T S and the duration of the sintering can be easily and flexibly selected or adjusted are, the electromagnetic properties can be influenced in the desired way.
  • a method according to claim 4 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the sintered particles are processed in such a way that their shape approaches a spherical shape and/or a cube shape.
  • the aspect ratios of the sintered particles are at least partially reduced by processing. Due to the fact that the sintered particles approximate the shape of a sphere or cube, the at least one magnetic core has an essentially uniform density and thus essentially uniform electromagnetic properties. In addition, the at least one magnetic core has high mechanical stability since the sintered particles are evenly wetted by the binder.
  • a method according to claim 5 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintered particles are processed by means of a ball mill, their shape approaches a spherical shape and/or a cube shape. The aspect ratios of the sintered particles are preferably at least partially reduced as a result of the processing.
  • the ball mill comprises a rotating drum in which balls, for example metal balls, are located. The sintered particles are fed to the ball mill as ground material and processed by the balls in the drum in the manner described.
  • a method according to claim 6 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintered particles are separated on the basis of particle shape and/or particle size, the sintered particles used for the at least one mixture can be selected in a desired manner. The separation or selection based on the particle shape takes place, for example, such that sintered particles with an aspect ratio A of at least 0.5, in particular at least 0.6, in particular at least 0.7, in particular at least 0.8, and in particular at least 0.9 are separated and used for creating the at least one mixture. Furthermore, the sintered particles are separated based on the particle size, for example, in such a way that a first coarse fraction and a second fine fraction of sintered particles are produced.
  • the sintered particles are separated based on the particle size, for example, in such a way that the particle size is in a desired range.
  • the electromagnetic properties of the at least one core can be specifically influenced.
  • a method according to claim 7 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used to produce the at least one mixture have the respective aspect ratio A.
  • Aspect ratio A ensures that the sintered particles come as close as possible in shape to a spherical or cube shape.
  • the aspect ratio A characterizes the ratio of a minimum dimension A min to a maximum dimension A max of the respective sintered particle.
  • the following applies to the aspect ratio A: A A min /A max .
  • the aspect ratio A is preferably: 0.5 ⁇ A ⁇ 1, in particular 0.6 ⁇ A ⁇ 0.9, and in particular 0.7 ⁇ A ⁇ 0.8.
  • the aspect ratio A can be chosen depending on the desired distribution of the magnetic flux.
  • Advantageous properties result from an aspect ratio A ⁇ 0.75.
  • a method according to claim 8 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the respective minimum dimension A min .
  • the sintered particles used are preferably separated according to their particle size into a first fraction containing first sintered particles and a second fraction containing second sintered particles.
  • For a minimum dimension A 1min of the first sintered particles the following preferably applies: 500 ⁇ m ⁇ A 1min ⁇ 1000 ⁇ m, in particular 600 ⁇ m ⁇ A 1min ⁇ 900 ⁇ m, and in particular 700 ⁇ m ⁇ A 1min ⁇ 800 ⁇ m.
  • a minimum dimension A 2min of the second sintered particles the following preferably applies: 10 ⁇ m ⁇ A 2min ⁇ 500 ⁇ m, in particular 100 ⁇ m ⁇ A 1min ⁇ 400 ⁇ m, and in particular 200 ⁇ m ⁇ A 1min ⁇ 300 ⁇ m.
  • Preferably at least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the minimum dimension A 1min or A 2min .
  • a method according to claim 9 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the first sintered particles and the second sintered particles preferably differ in their particle shape and/or in their particle size.
  • the sintered particles are preferably separated according to their aspect ratio and/or their particle size, in particular their minimum dimension and/or their maximum dimension.
  • the electromagnetic properties of the inductive component can be influenced in the desired manner through the targeted selection of the sintered particles used.
  • the sintered particles are separated into a first coarse fraction containing first sintered particles and into a second fine fraction containing second sintered particles which are smaller than the first sintered particles.
  • a first mixture for forming a first magnetic core and a second mixture for forming a second magnetic core can be produced.
  • the first sintered particles are mixed with a binder.
  • the second sintered particles are mixed with a binder. The at least one coil and the first mixture are arranged in a mold and then the binder of the first mixture is activated so that the first sintered particles with the binder form the first magnetic core.
  • the component obtained with the at least one coil and the first magnetic core is arranged in a second mold together with the second mixture. Then the binder is activated in the second mixture, so that the second sintered particles with the binder have a second form a magnetic core.
  • the second magnetic core at least partially surrounds the first magnetic core and the at least one coil.
  • a minimum dimension A 1min of the first sintered particles the following preferably applies: 500 ⁇ m ⁇ A 1min ⁇ 1000 ⁇ m, in particular 600 ⁇ m ⁇ A 1min ⁇ 900 ⁇ m, and in particular 700 ⁇ m ⁇ A 1min ⁇ 800 ⁇ m.
  • a minimum dimension A 2min of the second sintered particles the following preferably applies: 10 ⁇ m ⁇ A 1min ⁇ 500 ⁇ m, in particular 100 ⁇ m ⁇ A 2min ⁇ 400 ⁇ m, and in particular 200 ⁇ m ⁇ A 1min ⁇ 300 ⁇ m.
  • Preferably at least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the minimum dimension A 1min or A 2min .
  • the two-stage manufacturing process optimizes the electromagnetic and mechanical properties of the inductive component.
  • the electromagnetic properties can be influenced in a desired manner.
  • the first magnetic core preferably completely surrounds the at least one coil, with the exception of connection contacts.
  • the second magnetic core preferably completely surrounds the first magnetic core and the at least one coil, with the exception of connection contacts.
  • the electromagnetic and/or mechanical properties of the component can be influenced in a desired manner by producing a plurality of magnetic cores with different sintered particles. Due to the fact that the comparatively smaller second sintered particles form the second magnetic core lying on the outside, the component has in particular a smooth surface.
  • a method according to claim 10 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the binder is activated in a simple manner by increasing the temperature of the at least one mixture and/or by increasing the pressure on the at least one mixture. By activating the binder, the sintered particles are connected to one another to form the at least one core.
  • a polymer material and/or a resin, for example, is used as the binder.
  • a method according to claim 11 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the mass ratio m adjusts the density and/or the air gap of the inductive component in the desired manner.
  • a method according to claim 12 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the base body is easily produced by pressing the magnetic material.
  • the magnetic material is preferably in the form of granules and/or powder.
  • the magnetic material includes at least one ferrite material.
  • the magnetic material is provided such that at least one raw material and/or at least one waste material is processed and/or activated.
  • multiple raw materials and/or multiple waste materials are mixed and/or processed.
  • waste magnetic materials are recycled.
  • the invention is also based on the object of creating an inductive component that can be produced simply, inexpensively and with improved electromagnetic properties.
  • the advantages of the inductive component correspond to the advantages of the method already described.
  • the inductive component can in particular also be developed with the features of at least one of claims 1 to 12.
  • the sintered particles are connected to the activated binder to form the at least one core.
  • the sintered particles comprise a magnetic material, in particular at least one ferrite material.
  • the sintered particles have a particular particle shape, in particular a particular aspect ratio, and/or a particular particle size, as has already been described in relation to claims 1 to 12 . Reference is made to the relevant features.
  • the electromagnetic properties can be influenced in a desired manner by the formation of a plurality of magnetic cores and the selection of the sintered particles used for this purpose.
  • An inductive component 1 comprises a coil 2, a first magnetic core 3 and a second magnetic core 4.
  • the coil 2 is designed as a cylindrical coil, for example.
  • the coil 2 consists of an electrically conductive material.
  • the coil 2 has connection contacts 5, 6.
  • the first magnetic core 3 surrounds the coil 2.
  • the first magnetic core 3 comprises first sintered particles P 1 which are bonded to one another by means of a first binder B 1 .
  • the second magnetic core 4 surrounds the first magnetic core 3 and the coil 2.
  • the second magnetic core 4 comprises second sintered particles P 2 bonded together by a second binder B 2 .
  • the connection contacts 5, 6 are led through the first magnetic core 3 and the second magnetic core 4 to the outside.
  • the first sintered particles P 1 each have a minimum dimension A 1min and a maximum dimension A 1max .
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the first sintered particles P 1 each have a minimum dimension A 1min . where: 500 ⁇ m ⁇ A 1min ⁇ 1000 ⁇ m, in particular 600 ⁇ m ⁇ A 1min ⁇ 900 ⁇ m, and in particular 700 ⁇ m ⁇ A 1min ⁇ 800 ⁇ m.
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the first sintered particles P 1 have a respective aspect ratio A 1 , where the following applies: 0.5 ⁇ A 1 ⁇ 1, in particular 0.6 ⁇ A 1 ⁇ 1, in particular 0.7 ⁇ A 1 ⁇ 1, in particular 0.8 ⁇ A 1 ⁇ 1, and in particular 0.9 ⁇ A 1 ⁇ 1.
  • the aspect ratio A 1 is preferably 0.5 ⁇ A 1 ⁇ 1, in particular 0.6 ⁇ A 1 ⁇ 0.9, and in particular 0.7 ⁇ A 1 ⁇ 0.8.
  • the aspect ratio A 1 can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A 1 ⁇ 0.75.
  • the second sintered particles P 2 each have a minimum dimension A 2min and a maximum dimension A 2max .
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the second sintered particles P 2 have a respective minimum dimension A 2min , where the following applies: 10 ⁇ m ⁇ A 2min ⁇ 500 ⁇ m, in particular 100 ⁇ m ⁇ A 2min ⁇ 400 ⁇ m, and in particular 200 ⁇ m ⁇ A 2min ⁇ 300 ⁇ m.
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the second sintered particles P 2 have a respective aspect ratio A 2 , where: 0.5 ⁇ A 2 ⁇ 1, in particular 0.6 ⁇ A 2 ⁇ 1, in particular 0.7 ⁇ A 2 ⁇ 1, in particular 0.8 ⁇ A 2 ⁇ 1, and in particular 0.9 ⁇ A 2 ⁇ 1.
  • the aspect ratio A 2 is preferably 0.5 ⁇ A 2 ⁇ 1, in particular 0.6 ⁇ A 2 ⁇ 0.9, and in particular 0.7 ⁇ A 2 ⁇ 0.8.
  • the aspect ratio A 2 can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A 2 ⁇ 0.75.
  • the first sintered particles P 1 and the second sintered particles P 2 differ in their particle shape or in their aspect ratio A 1 or A 2 and/or in their particle size or in their minimum dimension A 1min or A 2min .
  • starting materials R 1 to R n are first mixed together to form a starting material mixture R M .
  • the starting materials R 1 to R n are, for example, raw materials and/or waste materials that are to be recycled or reprocessed.
  • the Starting materials R 1 to R n include, for example, zinc oxide (ZnO), manganese oxide (MnO) and/or iron oxide.
  • the starting material mixture R M is activated and/or calcined in a step S 2 .
  • a starting material mixture R M containing calcium and magnesium carbonate is heated for dewatering and/or for decomposition.
  • the activated raw material mixture R M forms a magnetic material M from.
  • the magnetic material M is, for example, in the form of a powder and/or granules.
  • the magnetic material M comprises at least one ferrite material, for example MnZn ferrite material and/or NiZn ferrite material.
  • the magnetic material M is pressed into a base body G in a step S 3 .
  • the base body G is also referred to as a green body.
  • a subsequent step S 4 the base body G is sintered.
  • the sintering takes place at a temperature T S , where: T S ⁇ 1000° C., in particular T S ⁇ 1100° C., in particular T S ⁇ 1200° C.
  • the sintered body is denoted by G S .
  • a step S 5 the sintered base body G S is crushed.
  • the crushing takes place, for example, by means of a crushing machine or crushing machine (crusher).
  • the comminution produces sintered particles, which are generally denoted by P.
  • the sintered particles P each have a minimum dimension A min and a maximum dimension A max that define a respective aspect ratio A .
  • A A min /A max .
  • the aspect ratios A of the sintered particles P are widely scattered.
  • sintered particles P with an elongated shape, which each have a small aspect ratio A also arise during comminution.
  • a shape that essentially corresponds to a spherical shape and/or a cube shape is desired.
  • a step S 6 the aspect ratios A of the sintered particles P are reduced.
  • the maximum dimension A max of each sintered particle P is adjusted to the minimum dimension A min .
  • the sintered particles P are processed, for example, using a ball mill.
  • the ball mill comprises a drum and metal balls arranged therein.
  • the sintered particles P are placed in the drum and processed by further comminution and/or friction due to rotation of the drum by means of the metal balls, so that the aspect ratios A of the sintered particles P are at least partially reduced.
  • the sintered particles P are separated based on their particle shape and/or based on their particle size.
  • the sintered particles P are separated into a first fraction with first sintered particles P 1 and a second fraction with second sintered particles P 2 .
  • the first sintered particles P 1 have the minimum dimension A 1min and the maximum dimension A 1max and the aspect ratio A 1
  • the second sintered particles P 2 have the minimum dimension A 2min , the maximum dimension A 2max and the aspect ratio A 2
  • the first fraction comprises coarser particles compared to the second fraction. Accordingly, the following applies to at least 70% of the sintered particles P 1 , P 2 : A 1min >A 2min and/or A 1max >A 2min and/or A 1min >A 2max .
  • Sintered particles P sorted out in step S 7 which belong neither to the first fraction nor to the second fraction, can be returned and further comminuted in step S 5 and/or further processed in step S 6 . This is in 2 illustrated by the dashed lines.
  • a first mixture X 1 is produced from the first sintered particles P 1 and the first binder B 1 .
  • a second mixture X 2 is produced from the second sintered particles P 2 and the second binder B 2 .
  • the binders B 1 and B 2 can be the same or different.
  • the binders B 1 , B 2 are, for example, a polymer plastic and/or a resin.
  • the first mixture X 1 has a mass ratio m 1 of the mass m P1 of the first sintered particles P 1 to the mass m B1 of the first binder B 1 .
  • the following preferably applies to the mass ratio m 1 : 75/25 ⁇ m 1 ⁇ 99/1, in particular 80/20 ⁇ m 1 ⁇ 98/2, and 85/15 ⁇ m 1 ⁇ 95/5.
  • the second mixture X 2 has a mass ratio m 2 of the mass m P2 of the second sintered particles P 2 to the mass m B2 of the second binder B 2 .
  • m 2 m P2 /m B2 applies to the mass ratio m 2 .
  • the mass ratio m 2 is preferably: 75/25 ⁇ m 2 ⁇ 99/1, in particular 80/20 ⁇ m 2 ⁇ 98/2, and 85/15 ⁇ m 2 ⁇ 95/5.
  • the mass ratio is generally denoted by m.
  • a step S 9 the first mixture X 1 and the coil 2 are arranged in a first mold Fi.
  • the first binder B 1 is activated so that the first binder B 1 binds the first sintered particles P 1 to form the first magnetic core 3 .
  • a pressure p 1 on the first mixture X 1 and/or a temperature T 1 of the first mixture X 1 is increased.
  • the first magnetic core 3 with the coil 2 is removed from the mold.
  • a subsequent step S 10 the first magnetic core 3 with the coil 2 and the second mixture X 2 is arranged in a second mold F 2 .
  • the second binder B 2 is activated so that the second binder B 2 binds the second sintered particles P 2 into the second magnetic core 4 .
  • the second binder B 2 is activated by increasing a pressure p 2 on the second mixture X 2 and/or by increasing a temperature T 2 of the second mixture X 2 .
  • the second core 4 is demoulded with the first magnetic core 3 and the coil 2 .
  • the inductive component 1 is provided by demoulding.
  • 3 illustrates measurement curves for the quality factor Q (Q value) at frequencies f of 100 kHz, 500 kHz and 1 MHz over time t.
  • the quality factor Q of the inductive components 1 according to the invention (cf. middle and lower diagram) is more constant over time t than the inductive component according to the prior art (cf. upper diagram).
  • 3 smoothed measurement curves which should enable a simpler comparison with regard to the constancy of the quality factors Q.
  • the components 1 according to the invention hardly age thermally and thus ensure that the behavior of an electrical circuit with the inductive components 1 according to the invention does not change as a result of parameters changing over time t, such as the quality factor Q or the AC power loss P AC and their function does not is impaired.
  • a comparison of the measurement curves in figure 5 with the measurement curves in 6 makes it clear that the quality factor Q of the inductive component 1 according to the invention hardly changes over time t and the components 1 according to the invention hardly age thermally.
  • the inductive component 1 has at least one coil 2 .
  • the inductive component 1 preferably has exactly one coil or exactly two coils.
  • the sintered particles P produced by crushing the sintered base body Gs can be processed, separated and/or selected in any way.
  • the order of the steps mentioned is arbitrary.
  • Known filters and/or sieves and/or separators can be used for separating and/or selecting.
  • the electromagnetic properties of the inductive component 1 can be set in the desired manner. In particular, the inductance, the saturation behavior and/or the air gap can be adjusted.
  • the binder B can be activated by cold pressing or hot pressing.
  • the magnetic material M and thus the at least one magnetic core 3, 4 preferably includes at least one ferrite material.
  • Ferrite material is inexpensive and readily available. Comparatively good electromagnetic properties of the inductive component 1 are achieved through the use of ferrite material.
  • the inductive component 1 has a high inductance, a desired saturation behavior, low losses and/or can be operated with a high voltage.
  • Such inductive components 1 pass, for example, a high-voltage test (AC HiPot test) at a voltage of 3 kV AC (3 mA, 3 seconds).
  • the sintered particles are generally denoted by P.
  • the aspect ratio is generally denoted by A.
  • the minimum dimension is generally denoted A min .
  • the maximum dimension is generally denoted by A max .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Magnetic Ceramics (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines induktiven Bauteils sowie ein induktives Bauteil.
  • Aus der EP 2 211 360 A2 ist ein Verfahren zur Herstellung eines induktiven Bauteils bekannt. Aus einer Spule und mehreren magnetischen Pulvern wird sukzessive ein fester Körper geformt. Der Körper wird daraufhin in einem Ofen angeordnet und bei ca. 900 °C zu dem induktiven Bauteil gesintert.
  • Aus der EP 2 302 647 A1 ist ein Verfahren zur Herstellung eines induktiven Bauteils bekannt. Zur Herstellung des induktiven Bauteils wird eine Spule in einer ersten keramischen Suspension mit einem ersten keramischen Pulver angeordnet und die erste keramische Suspension zur Ausbildung eines ersten keramischen Formkörpers ausgehärtet. Anschließend wird der erste keramische Formkörper mit der Spule in einer zweiten keramischen Suspension mit einem zweiten keramischen Pulver angeordnet und die zweite keramische Suspension zu einem zweiten keramischen Formkörper ausgehärtet. Durch Brennen der Formkörper wird das induktive Bauteil ausgebildet.
  • Aus der US 2016/0351318 A1 ist ein Spulenbauteil mit einem Substrat, einer Spule, einer Isolation, einem Kontrollbauteil für den magnetischen Fluss und Elektroden bekannt. Das Substrat, die Spule, die Isolation und das Kontrollbauteil sind innerhalb eines Grundkörpers aus einem magnetischen Material angeordnet.
  • Aus der CN 103 304 186 B ist ein Verfahren zur Herstellung eines ferritbasierten Substratmaterials bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, das eine einfache und kostengünstige Herstellung eines induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften ermöglicht.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Zunächst wird ein Grundkörper bereitgestellt, der ein magnetisches Material umfasst. Das magnetische Material kann beispielsweise durch das Wiederaufbereiten von magnetischem Abfallmaterial oder durch das Aufbereiten von Rohmaterial erzeugt werden. Beispielsweise kann magnetisches Abfallmaterial zerkleinert, gefiltert und/oder gemischt werden und zu dem magnetischen Material aktiviert werden. Der Grundkörper wird insbesondere aus dem magnetischen Material geformt. Das Sintern des Grundkörpers kann in einfacher und kostengünstiger Weise bei einer vergleichsweise hohen Temperatur erfolgen, da das Sintern ohne die mindestens eine Spule erfolgt und die Schmelztemperatur des Materials der mindestens einen Spule nicht beachtet werden muss. Nach dem Sintern wird der gesinterte Grundkörper zerkleinert, so dass gesinterte Partikel entstehen. Durch das Zerkleinern und/oder das Auswählen der gesinterten Partikel für das Erzeugen der mindestens einen Mischung können die elektromagnetischen Eigenschaften des induktiven Bauteils beeinflusst werden. Anschließend wird aus den gesinterten Partikeln und einem Bindemittel mindestens eine Mischung erzeugt. Die mindestens eine Mischung wird zusammen mit der mindestens einer Spule in einer Form angeordnet und anschließend das Bindemittel aktiviert, so dass das Bindemittel die gesinterten Partikel zu mindestens einem magnetischen Kern verbindet. Der ausgebildete magnetische Kern umgibt die mindestens eine Spule in der gewünschten Weise. Vorzugsweise umgibt der mindestens eine magnetische Kern die mindestens eine Spule mit Ausnahme von Anschlusskontakten vollständig. Dadurch, dass das Sintern ohne die mindestens eine Spule erfolgt und die gesinterten Partikel mittels des Bindemittels zu dem mindestens einen magnetischen Kern verbunden werden, ist die Herstellung des induktiven Bauteils einfach und kostengünstig. Durch das Zerkleinern des gesinterten Grundkörpers und die Auswahl der zum Erzeugen der mindestens einen Mischung verwendeten gesinterten Partikel können die elektromagnetischen Eigenschaften des induktiven Bauteils gezielt beeinflusst werden.
  • Die gesinterten Partikel werden vorzugsweise nach ihrer Partikelform und/oder ihrer Partikelgröße in erste gesinterte Partikel und zweite gesinterte Partikel separiert. Die gesinterten Partikel werden nach ihrer Partikelgröße, insbesondere ihrer minimalen Abmessung und/oder ihrer maximalen Abmessung, in eine erste grobe Fraktion mit den ersten gesinterten Partikeln und eine zweite feine Fraktion mit im Vergleich zu den ersten gesinterten Partikeln kleineren zweiten gesinterten Partikeln separiert. Aus den ersten gesinterten Partikeln und einem Bindemittel wird eine erste Mischung erzeugt. Entsprechend wird aus den zweiten gesinterten Partikeln und einem Bindemittel eine zweite Mischung erzeugt. Die mindestens eine Spule und die erste Mischung werden in einer ersten Form angeordnet und anschließend das Bindemittel in der ersten Mischung aktiviert, so dass die ersten gesinterten Partikel mit dem Bindemittel den ersten magnetischen Kern ausbilden. Der erste magnetische Kern umgibt die mindestens eine Spule zumindest teilweise. Das entstandene Bauteil mit der mindestens einen Spule und dem ersten magnetischen Kern und die zweite Mischung werden in einer zweiten Form angeordnet und anschließend das Bindemittel in der zweiten Mischung aktiviert, so dass die zweiten gesinterten Partikel mit dem Bindemittel den zweiten magnetischen Kern ausbilden. Vorzugsweise umgibt der erste magnetische Kern die mindestens eine Spule mit Ausnahme von Anschlusskontakten vollständig. Der zweite magnetische Kern umgibt mit Ausnahme von Anschlusskontakten den ersten magnetischen Kern und die mindestens eine Spule vollständig. Durch das Erzeugen mehrerer magnetischer Kerne mit sich unterscheidenden gesinterten Partikeln können die elektromagnetischen und/oder mechanischen Eigenschaften des Bauteils in gewünschter Weise beeinflusst werden.
  • Ein Verfahren nach Anspruch 2 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Das mindestens eine Ferritmaterial ist einfach und kostengünstig verfügbar. Das mindestens eine Ferritmaterial ermöglicht eine hohe Induktivität und/oder eine weiche Sättigung. Das mindestens eine Ferritmaterial ermöglicht vergleichsweise geringere Wechselspannungsverluste (AC Losses) und/oder vergleichsweise höhere Spannungen bei Hochspannungstests (AC HiPot test). Das mindestens eine Ferritmaterial umfasst insbesondere Mangan (Mn), Zink (Zn) und/oder Nickel (Ni), beispielsweise NiZn und/oder MnZn.
  • Ein Verfahren nach Anspruch 3 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Dadurch, dass das Sintern ohne die mindestens eine Spule erfolgt, ist das Sintern mit einer vergleichsweise hohen Temperatur TS möglich. Die Zeitdauer des Sintervorgangs ist umso kürzer, je höher die Temperatur TS ist. Die Zeitdauer des Sintervorgangs kann dementsprechend verkürzt werden. Das Sintern beeinflusst die elektromagnetischen Eigenschaften der gesinterten Partikel. Dadurch, dass die Temperatur TS und die Zeitdauer des Sinterns einfach und flexibel wählbar bzw. einstellbar sind, können die elektromagnetischen Eigenschaften in gewünschter Weise beeinflusst werden.
  • Ein Verfahren nach Anspruch 4 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Das Aspektverhältnis charakterisiert das Verhältnis einer minimalen Abmessung Amin zu einer maximalen Abmessung Amax des jeweiligen gesinterten Partikels. Für das Aspektverhältnis A gilt somit: A = Amin/Amax. Vor dem Erzeugen der mindestens einen Mischung werden die gesinterten Partikel derart bearbeitet, dass sich ihre Form einer Kugelform und/oder Würfelform annähert. Die Aspektverhältnisse der gesinterten Partikel werden durch eine Bearbeitung zumindest teilweise verkleinert. Dadurch, dass die gesinterten Partikel ihre Form einer Kugelform bzw. Würfelform annähern, weist der mindestens eine magnetische Kern eine im Wesentlichen gleichmäßige Dichte und somit im Wesentlichen gleichmäßige elektromagnetische Eigenschaften auf. Darüber hinaus weist der mindestens eine magnetische Kern eine hohe mechanische Stabilität auf, da die gesinterten Partikel von dem Bindemittel gleichmäßig benetzt werden.
  • Ein Verfahren nach Anspruch 5 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Dadurch, dass die gesinterten Partikel mittels einer Kugelmühle bearbeitet werden, nähert sich ihre Form einer Kugelform und/oder Würfelform an. Durch das Bearbeiten werden vorzugsweise die Aspektverhältnisse der gesinterten Partikel zumindest teilweise verkleinert. Die Kugelmühle umfasst eine rotierende Trommel, in der sich Kugeln, beispielsweise Metallkugeln, befinden. Die gesinterten Partikel werden als Mahlgut der Kugelmühle zugeführt und von den Kugeln in der Trommel in der beschriebenen Weise bearbeitet.
  • Ein Verfahren nach Anspruch 6 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Dadurch, dass die gesinterten Partikel anhand der Partikelform und/oder der Partikelgröße separiert werden, können die für die mindestens eine Mischung verwendeten gesinterten Partikel in gewünschter Weise ausgewählt werden. Das Separieren bzw. Auswählen anhand der Partikelform erfolgt beispielsweise derart, dass gesinterte Partikel mit einem Aspektverhältnis A von mindestens 0,5, insbesondere mindestens 0,6, insbesondere mindestens 0,7, insbesondere mindestens 0,8, und insbesondere mindestens 0,9 separiert und für das Erzeugen der mindestens einen Mischung verwendet werden. Weiterhin werden die gesinterten Partikel anhand der Partikelgröße beispielsweise derart separat, dass eine erste grobe Fraktion und eine zweite feine Fraktion von gesinterten Partikeln erzeugt werden. Weiterhin werden die gesinterten Partikel anhand der Partikelgröße beispielsweise derart separiert, dass die Partikelgröße in einem gewünschten Bereich liegt. Durch die Auswahl der gesinterten Partikel nach ihrer Partikelform und/oder Partikelgröße können die elektromagnetischen Eigenschaften des mindestens einen Kerns gezielt beeinflusst werden.
  • Ein Verfahren nach Anspruch 7 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Vorzugsweise haben mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der zum Erzeugen der mindestens einen Mischung verwendeten gesinterten Partikel das jeweilige Aspektverhältnis A. Das Aspektverhältnis A gewährleistet, dass die gesinterten Partikel in ihrer Form einer Kugelform bzw. Würfelform möglichst nahekommen. Das Aspektverhältnis A charakterisiert das Verhältnis einer minimalen Abmessung Amin zu einer maximalen Abmessung Amax des jeweiligen gesinterten Partikels. Für das Aspektverhältnis A gilt: A = Amin/Amax. Vorzugsweise gilt für das Aspektverhältnis A: 0,5 ≤ A ≤ 1, insbesondere 0,6 ≤ A ≤ 0,9, und insbesondere 0,7 ≤ A ≤ 0,8. Das Aspektverhältnis A kann in Abhängigkeit der gewünschten Verteilung des magnetischen Flusses gewählt werden. Vorteilhafte Eigenschaften ergeben sich bei einem Aspektverhältnis A ≈ 0,75.
  • Ein Verfahren nach Anspruch 8 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Vorzugsweise haben mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der verwendeten gesinterten Partikel die jeweilige minimale Abmessung Amin. Vorzugsweise werden die verwendeten gesinterten Partikel nach ihrer Partikelgröße in eine erste Fraktion mit ersten gesinterten Partikeln und in eine zweite Fraktion mit zweiten gesinterten Partikeln separiert. Für eine minimale Abmessung A1min der ersten gesinterten Partikel gilt vorzugsweise: 500 µm ≤ A1min ≤ 1000 µm, insbesondere 600 µm ≤ A1min ≤ 900 µm, und insbesondere 700 µm ≤ A1min ≤ 800 µm. Für eine minimale Abmessung A2min der zweiten gesinterten Partikel gilt vorzugsweise: 10 µm ≤ A2min ≤ 500 µm, insbesondere 100 µm ≤ A1min ≤ 400 µm, und insbesondere 200 µm ≤ A1min ≤ 300 µm. Vorzugsweise haben mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der verwendeten gesinterten Partikel die minimale Abmessung A1min bzw. A2min.
  • Ein Verfahren nach Anspruch 9 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Vorzugsweise unterscheiden sich die ersten gesinterten Partikel und die zweiten gesinterten Partikel in ihrer Partikelform und/oder in ihrer Partikelgröße. Vorzugsweise werden die gesinterten Partikel nach ihrem Aspektverhältnis und/oder ihrer Partikelgröße, insbesondere ihrer minimalen Abmessung und/oder ihrer maximalen Abmessung separiert. Durch die gezielte Auswahl der verwendeten gesinterten Partikel können die elektromagnetischen Eigenschaften des induktiven Bauteils in gewünschter Weise beeinflusst werden.
  • Vorzugsweise werden die gesinterten Partikel in eine erste grobe Fraktion mit ersten gesinterten Partikeln und in eine zweite feine Fraktion mit im Vergleich zu den ersten gesinterten Partikeln kleineren zweiten gesinterten Partikeln separiert. Dadurch, dass die gesinterten Partikel in eine erste grobe Fraktion und eine zweite feine Fraktion separiert werden, können eine erste Mischung zur Ausbildung eines ersten magnetischen Kerns und eine zweite Mischung zur Ausbildung eines zweiten magnetischen Kerns erzeugt werden. Zum Erzeugen der ersten Mischung werden die ersten gesinterten Partikel mit einem Bindemittel gemischt. Entsprechend werden zum Erzeugen der zweiten Mischung die zweiten gesinterten Partikel mit einem Bindemittel gemischt. Die mindestens eine Spule und die erste Mischung werden in einer Form angeordnet und anschließend das Bindemittel der ersten Mischung aktiviert, so dass die ersten gesinterten Partikel mit dem Bindemittel den ersten magnetischen Kern ausbilden. Das erhaltene Bauteil mit der mindestens einen Spule und dem ersten magnetischen Kern wird zusammen mit der zweiten Mischung in einer zweiten Form angeordnet. Anschließend wird das Bindemittel in der zweiten Mischung aktiviert, so dass die zweiten gesinterten Partikel mit dem Bindemittel einen zweiten magnetischen Kern ausbilden. Der zweite magnetische Kern umgibt den ersten magnetischen Kern und die mindestens eine Spule zumindest teilweise.
  • Für eine minimale Abmessung A1min der ersten gesinterten Partikel gilt vorzugsweise: 500 µm ≤ A1min ≤ 1000 µm, insbesondere 600 µm ≤ A1min ≤ 900 µm, und insbesondere 700 µm ≤ A1min ≤ 800 µm. Für eine minimale Abmessung A2min der zweiten gesinterten Partikel gilt vorzugsweise: 10 µm ≤ A1min ≤ 500 µm, insbesondere 100 µm ≤ A2min ≤ 400 µm, und insbesondere 200 µm ≤ A1min ≤ 300 µm. Vorzugsweise haben mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der verwendeten gesinterten Partikel die minimale Abmessung A1min bzw. A2min.
  • Durch das zweistufige Herstellungsverfahren werden die elektromagnetischen und mechanischen Eigenschaften des induktiven Bauteils optimiert. Durch die Aufteilung der gesinterten Partikel in mehrere Fraktionen und die Auswahl und Aufteilung der gesinterten Partikel können die elektromagnetischen Eigenschaften in gewünschter Weise beeinflusst werden. Vorzugsweise umgibt der erste magnetische Kern die mindestens eine Spule mit Ausnahme von Anschlusskontakten vollständig. Vorzugsweise umgibt der zweite magnetische Kern mit Ausnahme von Anschlusskontakten den ersten magnetischen Kern und die mindestens eine Spule vollständig. Durch das Erzeugen mehrerer magnetischer Kerne mit sich unterscheidenden gesinterten Partikeln können die elektromagnetischen und/oder mechanischen Eigenschaften des Bauteils in gewünschter Weise beeinflusst werden. Dadurch, dass die vergleichsweise kleineren zweiten gesinterten Partikel den außenliegenden zweiten magnetischen Kern ausbilden, hat das Bauteil insbesondere eine glatte Oberfläche.
  • Ein Verfahren nach Anspruch 10 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Das Bindemittel wird in einfacher Weise durch Erhöhen der Temperatur der mindestens einen Mischung und/oder durch Erhöhen des Drucks auf die mindestens eine Mischung aktiviert. Durch das Aktivieren des Bindemittels werden die gesinterten Partikel miteinander zu dem mindestens einen Kern verbunden. Als Binder wird beispielsweise ein Polymermaterial und/oder ein Harz verwendet.
  • Ein Verfahren nach Anspruch 11 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Durch das Massenverhältnis m wird die Dichte und/oder der Luftspalt des induktiven Bauteils in gewünschter Weise eingestellt. Das Massenverhältnis m beschreibt das Verhältnis der Masse mP der gesinterten Partikel zu der Masse mB des Bindemittels. Für das Massenverhältnis m gilt: m = mP/mB. Mit einem höheren Massenanteil der gesinterten Partikel zu dem Bindemittel steigt die Dichte und/oder verringert sich der Luftspalt des induktiven Bauteils und umgekehrt. Die Dichte und/oder der Luftspalt beeinflussen das Sättigungsverhalten des induktiven Bauteils.
  • Ein Verfahren nach Anspruch 12 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Der Grundkörper wird in einfacher Weise durch Pressen des magnetischen Materials erzeugt. Das magnetische Material liegt vorzugsweise als Granulat und/oder Pulver vor. Das magnetische Material umfasst mindestens ein Ferritmaterial. Vorzugsweise wird das magnetische Material derart bereitgestellt, dass mindestens ein Rohmaterial und/oder mindestens ein Abfallmaterial aufbereitet und/oder aktiviert wird. Vorzugsweise werden mehrere Rohmaterialen und/oder mehrere Abfallmaterialien gemischt und/oder aufbereitet. Vorzugsweise werden magnetische Abfallmaterialien wiederaufbereitet.
  • Der Erfindung liegt ferner die Aufgabe zugrunde, ein induktives Bauteil zu schaffen, das einfach, kostengünstig und mit verbesserten elektromagnetischen Eigenschaften herstellbar ist.
  • Diese Aufgabe wird durch ein induktives Bauteil mit den Merkmalen des Anspruchs 13 gelöst. Die Vorteile des induktiven Bauteils entsprechen den bereits beschriebenen Vorteilen des Verfahrens. Das induktive Bauteil kann insbesondere auch mit den Merkmalen mindestens eines der Ansprüche 1 bis 12 weitergebildet werden. Die gesinterten Partikel sind mit dem aktivierten Bindemittel zu dem mindestens einen Kern verbunden. Die gesinterten Partikel umfassen ein magnetisches Material, insbesondere mindestens ein Ferritmaterial. Die gesinterten Partikel haben eine jeweilige Partikelform, insbesondere ein jeweiliges Aspektverhältnis, und/oder eine jeweilige Partikelgröße, wie dies zu den Ansprüchen 1 bis 12 bereits beschrieben wurde. Auf die entsprechenden Merkmale wird Bezug genommen.
  • Durch die Ausbildung mehrerer magnetischer Kerne und die Auswahl der hierfür verwendeten gesinterten Partikel können die elektromagnetischen Eigenschaften in gewünschter Weise beeinflusst werden.
  • Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels. Es zeigen:
  • Fig. 1
    eine Schnittdarstellung eines induktiven Bauteils,
    Fig. 2A und 2B
    ein Ablaufdiagramm mit den Schritten zur Herstellung des induktiven Bauteils gemäß Fig. 1,
    Fig. 3
    Diagramme des Gütefaktors Q in Abhängigkeit der Zeit t und der Frequenz f, wobei das obere Diagramm ein induktives Bauteil umfassend eine Eisenlegierung nach dem Stand der Technik, das mittlere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Mangan und Zink und das untere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Nickel und Zink veranschaulicht,
    Fig. 4
    Diagramme der Wechselspannungsverlustleistung PAC in Abhängigkeit der Zeit t und der Frequenz f, wobei das obere Diagramm ein induktives Bauteil umfassend eine Eisenlegierung nach dem Stand der Technik, das mittlere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Mangan und Zink und das untere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Nickel und Zink veranschaulicht,
    Fig. 5
    ein Diagramm des Gütefaktors Q in Abhängigkeit der Frequenz f und der Zeit t für ein induktives Bauteil umfassend eine Eisenlegierung nach dem Stand der Technik, und
    Fig. 6
    ein Diagramm des Gütefaktors Q in Abhängigkeit der Frequenz f und der Zeit t für ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Mangan und Zink.
  • Ein induktives Bauteil 1 umfasst eine Spule 2, einen ersten magnetischen Kern 3 und einen zweiten magnetischen Kern 4. Die Spule 2 ist beispielsweise als Zylinderspule ausgebildet. Die Spule 2 besteht aus einem elektrisch leitfähigen Material. Die Spule 2 weist Anschlusskontakte 5, 6 auf.
  • Der erste magnetische Kern 3 umgibt die Spule 2. Der erste magnetische Kern 3 umfasst erste gesinterte Partikel P1, die mittels eines ersten Bindemittels B1 miteinander verbunden sind. Der zweite magnetische Kern 4 umgibt den ersten magnetischen Kern 3 und die Spule 2. Der zweite magnetische Kern 4 umfasst zweite gesinterte Partikel P2, die mittels eines zweiten Bindemittels B2 miteinander verbunden sind. Die Anschlusskontakte 5, 6 sind durch den ersten magnetischen Kern 3 und den zweiten magnetischen Kern 4 nach außen geführt.
  • Die ersten gesinterten Partikel P1 weisen jeweils eine minimale Abmessung A1min und eine maximale Abmessung A1max auf. Die ersten gesinterten Partikel P1 haben ein jeweiliges erstes Aspektverhältnis A1, wobei gilt:
    A1 = A1min/A1max. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der ersten gesinterten Partikel P1 haben eine jeweilige minimale Abmessung A1min. wobei gilt: 500 µm ≤ A1min ≤ 1000 µm, insbesondere 600 µm ≤ A1min ≤ 900 µm, und insbesondere 700 µm ≤ A1min ≤ 800 µm. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der ersten gesinterten Partikel P1 haben ein jeweiliges Aspektverhältnis A1, wobei gilt: 0,5 ≤ A1 ≤ 1, insbesondere 0,6 ≤ A1 ≤ 1, insbesondere 0,7 ≤ A1 ≤ 1, insbesondere 0,8 ≤ A1 ≤ 1, und insbesondere 0,9 ≤ A1 ≤ 1. Vorzugsweise gilt für das Aspektverhältnis A1: 0,5 ≤ A1 ≤ 1, insbesondere 0,6 ≤ A1 ≤ 0,9, und insbesondere 0,7 ≤ A1 ≤ 0,8. Das Aspektverhältnis A1 kann in Abhängigkeit der gewünschten Verteilung des magnetischen Flusses gewählt werden. Vorteilhafte Eigenschaften ergeben sich bei einem Aspektverhältnis A1 ≈ 0,75.
  • Die zweiten gesinterten Partikel P2 weisen jeweils eine minimale Abmessung A2min und eine maximale Abmessung A2max auf. Die zweiten gesinterten Partikel P2 haben ein jeweiliges zweites Aspektverhältnis A2, wobei gilt: A2 = A2min/A2max. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der zweiten gesinterten Partikel P2 haben eine jeweilige minimale Abmessung A2min, wobei gilt: 10 µm ≤ A2min ≤ 500 µm, insbesondere 100 µm ≤ A2min ≤ 400 µm, und insbesondere 200 µm ≤ A2min ≤ 300 µm. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der zweiten gesinterten Partikel P2 haben ein jeweiliges Aspektverhältnis A2, wobei gilt: 0,5 ≤ A2 ≤ 1, insbesondere 0,6 ≤ A2 ≤ 1, insbesondere 0,7 ≤ A2 ≤ 1, insbesondere 0,8 ≤ A2 ≤ 1, und insbesondere 0,9 ≤ A2 ≤ 1. Vorzugsweise gilt für das Aspektverhältnis A2: 0,5 ≤ A2 ≤ 1, insbesondere 0,6 ≤ A2 ≤ 0,9, und insbesondere 0,7 ≤ A2 ≤ 0,8. Das Aspektverhältnis A2 kann in Abhängigkeit der gewünschten Verteilung des magnetischen Flusses gewählt werden. Vorteilhafte Eigenschaften ergeben sich bei einem Aspektverhältnis A2 ~ 0,75.
  • Die ersten gesinterten Partikel P1 und die zweiten gesinterten Partikel P2 unterscheiden sich in ihrer Partikelform bzw. in ihrem Aspektverhältnis A1 bzw. A2 und/oder in ihrer Partikelgröße bzw. in ihrer minimalen Abmessung A1min bzw. A2min.
  • Nachfolgend ist das Verfahren zur Herstellung des induktiven Bauteils 1 anhand von Fig. 2 beschrieben:
    In einem Schritt S1 werden zunächst Ausgangsmaterialien R1 bis Rn zu einer Ausgangsmaterial-Mischung RM miteinander vermischt. Die Ausgangsmaterialien R1 bis Rn sind beispielsweise Rohmaterialien und/oder Abfallmaterialien, die recycelt bzw. wiederaufbereitet werden sollen. Die Ausgangsmaterialien R1 bis Rn umfassen beispielsweise Zinkoxid (ZnO), Manganoxid (MnO) und/oder Eisenoxid.
  • Die Ausgangsmaterial-Mischung RM wird in einem Schritt S2 aktiviert und/oder kalziniert. Beim Kalzinieren wird eine calcium- und magnesiumcarbonathaltige Ausgangsmaterial-Mischung RM zur Entwässerung und/oder zur Zersetzung erhitzt.
  • Die aktivierte Rohmaterial-Mischung RM bildet ein magnetisches Material M aus. Das magnetische Material M ist beispielsweise pulverförmig und/oder granulatförmig. Das magnetische Material M umfasst mindestens ein Ferritmaterial, beispielsweise MnZn-Ferritmaterial und/oder NiZn-Ferritmaterial.
  • Das magnetische Material M wird in einem Schritt S3 zu einem Grundkörper G gepresst. Der Grundkörper G wird auch als Grünkörper bezeichnet.
  • In einem nachfolgenden Schritt S4 wird der Grundkörper G gesintert. Das Sintern erfolgt bei einer Temperatur TS, wobei gilt: TS ≥ 1000 °C, insbesondere TS ≥ 1100 °C, insbesondere TS ≥ 1200 °C. Der gesinterte Grundkörper wird mit GS bezeichnet.
  • In einem Schritt S5 wird der gesinterte Grundkörper GS zerkleinert. Das Zerkleinern erfolgt beispielsweise mittels einer Brechmaschine bzw. Zerkleinerungsmaschine (crusher). Durch das Zerkleinern entstehen gesinterte Partikel, die allgemein mit P bezeichnet werden. Die gesinterten Partikel P weisen jeweils eine minimale Abmessung Amin und eine maximale Abmessung Amax auf, die ein jeweiliges Aspektverhältnis A definieren. Für das jeweilige Aspektverhältnis gilt: A = Amin/Amax. Nach dem Zerkleinern des gesinterten Grundkörpers GS sind die Aspektverhältnisse A der gesinterten Partikel P breit gestreut. Insbesondere entstehen beim Zerkleinern auch gesinterte Partikel P mit einer länglichen Form, die ein jeweiliges kleines Aspektverhältnis A haben. Für die weitere Verarbeitung der gesinterten Partikel P ist eine Form erwünscht, die im Wesentlichen einer Kugelform und/oder einer Würfelform entspricht.
  • In einem Schritt S6 werden die Aspektverhältnisse A der gesinterten Partikel P verkleinert. Das bedeutet, dass die maximale Abmessung Amax des jeweiligen gesinterten Partikels P an die minimale Abmessung Amin angeglichen wird. Hierzu werden die gesinterten Partikel P beispielsweise mittels einer Kugelmühle bearbeitet. Die Kugelmühle umfasst eine Trommel und darin angeordnete Metallkugeln. Die gesinterten Partikel P werden in die Trommel gegeben und aufgrund einer Rotation der Trommel mittels der Metallkugeln durch weitere Zerkleinerung und/oder Reibung bearbeitet, so dass sich die Aspektverhältnisse A der gesinterten Partikel P zumindest teilweise verkleinern.
  • In einem Schritt S7 werden die gesinterten Partikel P anhand ihrer Partikelform und/oder anhand ihrer Partikelgröße separiert. Die gesinterten Partikel P werden in eine erste Fraktion mit ersten gesinterten Partikeln P1 und eine zweite Fraktion mit zweiten gesinterten Partikeln P2 separiert. Die ersten gesinterten Partikel P1 haben die minimale Abmessung A1min und die maximale Abmessung A1max sowie das Aspektverhältnis A1, wohingegen die zweiten gesinterten Partikel P2 die minimale Abmessung A2min, die maximale Abmessung A2max und das Aspektverhältnis A2 haben. Die erste Fraktion umfasst im Vergleich zu der zweiten Fraktion gröbere Partikel. Dementsprechend gilt für mindestens 70 % der gesinterten Partikel P1, P2: A1min > A2min und/oder A1max > A2min und/oder A1min > A2max.
  • In Schritt S7 aussortierte gesinterte Partikel P, die weder der ersten Fraktion noch der zweiten Fraktion zugehören, können zurückgeführt werden und in Schritt S5 weiter zerkleinert und/oder in Schritt S6 weiter bearbeitet werden. Dies ist in Fig. 2 durch die gestrichelten Linien veranschaulicht.
  • In einem nachfolgenden Schritt Ssi wird aus den ersten gesinterten Partikeln P1 und dem ersten Bindemittel B1 eine erste Mischung X1 erzeugt. Entsprechend wird in einem Schritt S82 aus den zweiten gesinterten Partikeln P2 und dem zweiten Bindemittel B2 eine zweite Mischung X2 erzeugt. Die Bindemittel B1 und B2 können gleich oder unterschiedlich sein. Die Bindemittel B1, B2 sind beispielsweise ein Polymerkunststoff und/oder ein Harz.
  • Die erste Mischung X1 hat ein Massenverhältnis m1 der Masse mP1 der ersten gesinterten Partikel P1 zu der Masse mB1 des ersten Bindemittels B1. Für das Massenverhältnis m1 gilt somit m1 = mP1/mB1. Für das Massenverhältnis m1 gilt vorzugsweise: 75/25 ≤ m1 ≤ 99/1, insbesondere 80/20 ≤ m1 ≤ 98/2, und 85/15 ≤ m1 ≤ 95/5. Die zweite Mischung X2 hat ein Massenverhältnis m2 der Masse mP2 der zweiten gesinterten Partikel P2 zu der Masse mB2 des zweiten Bindemittels B2. Für das Massenverhältnis m2 gilt somit m2 = mP2/mB2. Für das Massenverhältnis m2 gilt vorzugsweise: 75/25 ≤ m2 ≤ 99/1, insbesondere 80/20 ≤ m2 ≤ 98/2, und 85/15 ≤ m2 ≤ 95/5. Das Massenverhältnis wird allgemein mit m bezeichnet.
  • In einem Schritt S9 werden die erste Mischung X1 und die Spule 2 in einer ersten Form Fi angeordnet. Anschließend wird das erste Bindemittel B1 aktiviert, so dass das erste Bindemittel B1 die ersten gesinterten Partikel P1 zu dem ersten magnetischen Kern 3 verbindet. Zum Aktivieren des ersten Bindemittels B1 wird ein Druck p1 auf die erste Mischung X1 und/oder eine Temperatur T1 der ersten Mischung X1 erhöht. Nach dem Aushärten des ersten Bindemittels B1 wird der erste magnetische Kern 3 mit der Spule 2 entformt.
  • In einem nachfolgenden Schritt S10 wird der erste magnetische Kern 3 mit der Spule 2 und die zweite Mischung X2 in einer zweiten Form F2 angeordnet. Anschließend wird das zweite Bindemittel B2 aktiviert, so dass das zweite Bindemittel B2 die zweiten gesinterten Partikel P2 zu dem zweiten magnetischen Kern 4 verbindet. Das zweite Bindemittel B2 wird durch ein Erhöhen eines Drucks p2 auf die zweite Mischung X2 und/oder durch Erhöhen einer Temperatur T2 der zweiten Mischung X2 aktiviert. Nach dem Aushärten des zweiten Bindemittels B2 wird der zweite Kern 4 mit dem ersten magnetischen Kern 3 und der Spule 2 entformt.
  • Durch das Entformen wird in einem Schritt S11 das induktive Bauteil 1 bereitgestellt.
  • Fig. 3 veranschaulicht Messkurven für den Gütefaktor Q (Q-Value) bei Frequenzen f von 100 kHz, 500 kHz und 1 MHz über der Zeit t. Der Gütefaktor Q der erfindungsgemäßen induktiven Bauteile 1 (vgl. mittleres und unteres Diagramm) ist gegenüber dem induktiven Bauteil nach dem Stand der Technik (vgl. oberes Diagramm) über die Zeit t konstanter. Ergänzend zu den Messkurven sind in Fig. 3 geglättete Messkurven veranschaulicht, die einen einfacheren Vergleich hinsichtlich der Konstanz der Gütefaktoren Q ermöglichen sollen.
  • In entsprechender Weise veranschaulicht Fig. 4 Messkurven für die Wechselspannungsverlustleistung PAC bei Frequenzen f von 400 kHz und 1,2 MHz über der Zeit t. Die Wechselspannungsverlustleistung PAC der erfindungsgemäßen induktiven Bauteile 1 (vgl. mittleres und unteres Diagramm) ist im Vergleich zu dem induktiven Bauteil nach dem Stand der Technik (vgl. oberes Diagramm) über der Zeit t konstanter. Ergänzend zu den Messkurven sind in Fig. 4 geglättete Messkurven veranschaulicht, die einen einfacheren Vergleich hinsichtlich der Konstanz der Wechselspannungsverlustleistung PAC ermöglichen sollen.
  • Die erfindungsgemäßen Bauteile 1 altern thermisch kaum und gewährleisten somit, dass sich das Verhalten einer elektrischen Schaltung mit den erfindungsgemäßen induktiven Bauteilen 1 infolge von sich über der Zeit t ändernden Parameter, wie beispielsweise dem Gütefaktor Q oder der Wechselspannungsverlustleistung PAC nicht ändert und deren Funktion nicht beeinträchtigt ist. Ein Vergleich der Messkurven in Fig. 5 mit den Messkurven in Fig. 6 verdeutlicht, dass sich der Gütefaktor Q des erfindungsgemäßen induktiven Bauteils 1 über der Zeit t kaum ändert und die erfindungsgemäßen Bauteile 1 thermisch kaum altern.
  • Allgemein gilt:
    Das induktive Bauteil 1 weist mindestens eine Spule 2 auf. Vorzugsweise weist das induktive Bauteil 1 genau eine Spule oder genau zwei Spulen auf.
  • Die durch Zerkleinern des gesinterten Grundkörpers Gs entstehenden gesinterten Partikel P können in beliebiger Weise bearbeitet, separiert und/oder ausgewählt werden. Die Reihenfolge der erwähnten Schritte ist hierbei beliebig. Zum Separieren und/oder Auswählen können bekannte Filter und/oder Siebe und/oder Separatoren verwendet werden. Durch das Bearbeiten, Separieren und/oder Auswählen der gesinterten Partikel P können die elektromagnetischen Eigenschaften des induktiven Bauteils 1 in gewünschter Weise eingestellt werden. Insbesondere können die Induktivität, das Sättigungsverhalten und/oder der Luftspalt eingestellt werden.
  • Das Aktivieren des Bindemittels B kann durch Kaltpressen oder Heißpressen erfolgen.
  • Das magnetische Material M und somit der mindestens eine magnetische Kern 3, 4 umfasst vorzugsweise mindestens ein Ferritmaterial. Ferritmaterial ist kostengünstig und einfach verfügbar. Durch die Verwendung von Ferritmaterial werden vergleichsweise gute elektromagnetische Eigenschaften des induktiven Bauteils 1 erzielt. Insbesondere weist das induktive Bauteil 1 eine hohe Induktivität, ein gewünschtes Sättigungsverhalten, geringe Verluste auf und/oder kann mit einer hohen Spannung betrieben werden. Derartige induktive Bauteile 1 bestehen beispielsweise einen Hochspannungstest (AC HiPot test) bei einer Spannung von 3 kVAC (3 mA, 3 sec).
  • Die gesinterten Partikel werden allgemein mit P bezeichnet. Das Aspektverhältnis wird allgemein mit A bezeichnet. Die minimale Abmessung wird allgemein mit Amin bezeichnet. Die maximale Abmessung wird allgemein mit Amax bezeichnet.

Claims (13)

  1. Verfahren zur Herstellung eines induktiven Bauteils mit den Schritten:
    - Bereitstellen eines ein magnetisches Material (M) umfassenden Grundkörpers (G),
    - Sintern des Grundkörpers (G), wobei das Sintern bei einer Temperatur TS erfolgt, wobei gilt: TS ≥ 1000 °C,
    - Zerkleinern des gesinterten Grundkörpers (GS) zu gesinterten Partikeln (P, P1, P2),
    - Erzeugen einer ersten Mischung (X1) aus ersten gesinterten Partikeln (P1) und einem Bindemittel (B1),
    - Anordnen der ersten Mischung (X1) und mindestens einer Spule (2) in einer ersten Form (F1),
    - Aktivieren des Bindemittels (B1) in der ersten Mischung (X1), so dass die ersten gesinterten Partikel (P1) mit dem Bindemittel (B1) einen ersten magnetischen Kern (3) ausbilden, der die mindestens eine Spule (2) zumindest teilweise umgibt,
    - Erzeugen einer zweiten Mischung (X2) aus zweiten gesinterten Partikeln (P2) und einem Bindemittel (B2), wobei die zweiten gesinterten Partikel (P2) kleiner als die ersten gesinterten Partikel (P1) sind,
    - Anordnen der zweiten Mischung (X2) und der mindestens einen Spule (2) mit dem ersten magnetischen Kern (3) in einer zweiten Form (F2), und
    - Aktivieren des Bindemittels (B2) in der zweiten Mischung (X2), so dass die zweiten gesinterten Partikel (P2) mit dem Bindemittel (B2) einen zweiten magnetischen Kern (4) ausbilden, der den ersten magnetischen Kern (3) und die mindestens eine Spule (2) mit Ausnahme von Anschlusskontakten (5, 6) vollständig umgibt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,
    dass das magnetische Material (M) mindestens ein Ferritmaterial umfasst.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet,
    dass für die Temperatur TS gilt: TS ≥ 1100 °C, insbesondere TS ≥ 1200 °C.
  4. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass die gesinterten Partikel (P, P1, P2) ein jeweiliges Aspektverhältnis (A) haben und die Aspektverhältnisse (A) vor dem Erzeugen der Mischungen (X1, X2) zumindest teilweise verkleinert werden.
  5. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass die gesinterten Partikel (P, P1, P2) vor dem Erzeugen der Mischungen (X1, X2) mittels einer Kugelmühle bearbeitet werden.
  6. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass die gesinterten Partikel (P, P1, P2) vor dem Erzeugen der Mischungen (X1, X2) anhand der Partikelform und/oder der Partikelgröße separiert werden.
  7. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens 70 % der zum Erzeugen der Mischungen (X1, X2) verwendeten gesinterten Partikel (P, P1, P2) ein jeweiliges Aspektverhältnis A haben, für das gilt: 0,5 ≤ A ≤ 1, insbesondere 0,6 ≤ A ≤ 1, insbesondere 0,7 ≤ A ≤ 1, insbesondere 0,8 ≤ A ≤ 1, und insbesondere 0,9 ≤ A ≤ 1.
  8. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens 70 % der zum Erzeugen der Mischungen (X1, X2) verwendeten gesinterten Partikel (P, P1, P2) eine jeweilige minimale Abmessung Amin haben, für die gilt: 10 µm ≤ Amin ≤ 1000 µm.
  9. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass die gesinterten Partikel (P, P1, P2) vor dem Erzeugen der Mischungen (X1, X2) in eine erste Fraktion mit den ersten gesinterten Partikeln (P1) und in eine zweite Fraktion mit den sich von den ersten gesinterten Partikeln (P1) unterscheidenden zweiten gesinterten Partikeln (P2) separiert werden.
  10. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass das Bindemittel (B1, B2) durch Erhöhen einer Temperatur (T1, T2) und/oder durch Erhöhen eines Drucks (p1, p2) aktiviert wird.
  11. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass die Mischungen (X1, X2) derart erzeugt werden, dass für ein Massenverhältnis m der gesinterten Partikel (P1, P2) zu dem Bindemittel (B1, B2) gilt: 75/25 ≤ m ≤ 99/1, insbesondere 80/20 ≤ m ≤ 98/2, und insbesondere 85/15 ≤ m ≤ 95/5.
  12. Verfahren nach mindestens einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet,
    dass der Grundkörper (G) durch Pressen des magnetischen Materials (M) bereitgestellt wird.
  13. Induktives Bauteil umfassend
    - mindestens eine Spule (2) mit Anschlusskontakten (5, 6),
    - mindestens einen magnetischen Kern (3, 4), der die mindestens eine Spule (2) zumindest teilweise umgibt,
    dadurch gekennzeichnet,
    dass der mindestens eine Kern (3, 4) mittels gesinterter Partikel (P1, P2) und eines Bindemittels (B1, B2) ausgebildet ist,
    wobei ein erster magnetischer Kern (3) mit ersten gesinterten Partikeln (P1) und einem Bindemittel (B1) die mindestens eine Spule (2) zumindest teilweise umgibt, und
    wobei ein zweiter magnetischer Kern (4) mit zweiten gesinterten Partikeln (P2), die kleiner als die ersten gesinterten Partikel (P1) sind, und einem Bindemittel (B2) den ersten magnetischen Kern (3) und die mindestens eine Spule (2) mit Ausnahme der Anschlusskontakte (5, 6) vollständig umgibt.
EP20184972.6A 2019-07-31 2020-07-09 Verfahren zur herstellung eines induktiven bauteils sowie induktives bauteil Active EP3772070B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019211439.3A DE102019211439A1 (de) 2019-07-31 2019-07-31 Verfahren zur Herstellung eines induktiven Bauteils sowie induktives Bauteil

Publications (2)

Publication Number Publication Date
EP3772070A1 EP3772070A1 (de) 2021-02-03
EP3772070B1 true EP3772070B1 (de) 2023-05-10

Family

ID=71579523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20184972.6A Active EP3772070B1 (de) 2019-07-31 2020-07-09 Verfahren zur herstellung eines induktiven bauteils sowie induktives bauteil

Country Status (9)

Country Link
US (1) US20210035734A1 (de)
EP (1) EP3772070B1 (de)
JP (1) JP7213207B2 (de)
KR (1) KR102364724B1 (de)
CN (1) CN112309675B (de)
DE (1) DE102019211439A1 (de)
ES (1) ES2946688T3 (de)
RU (1) RU2752251C1 (de)
TW (1) TWI751616B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369359A1 (de) * 2022-11-14 2024-05-15 Premo, SL Zusammengesetztes magnetisches induktorelement und herstellungsverfahren dafür

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215968A (ja) * 1993-01-21 1994-08-05 Tokin Corp 高周波用磁気素子の製造方法
JP3542319B2 (ja) * 2000-07-07 2004-07-14 昭栄化学工業株式会社 単結晶フェライト微粉末
JP3975051B2 (ja) * 2000-07-11 2007-09-12 Tdk株式会社 磁性フェライトの製造方法、積層型チップフェライト部品の製造方法及びlc複合積層部品の製造方法
JP2003109810A (ja) * 2001-09-28 2003-04-11 Nec Tokin Corp 圧粉磁芯及びその製造方法
DE10155898A1 (de) * 2001-11-14 2003-05-28 Vacuumschmelze Gmbh & Co Kg Induktives Bauelement und Verfahren zu seiner Herstellung
JP4433162B2 (ja) * 2004-02-05 2010-03-17 株式会社村田製作所 セラミックスラリー、セラミックスラリーの製造方法、及び積層セラミック電子部品の製造方法
JP2005310694A (ja) * 2004-04-26 2005-11-04 Murata Mfg Co Ltd 導電性ペースト及び積層セラミック電子部品の製造方法
JP4904159B2 (ja) * 2004-09-21 2012-03-28 住友電気工業株式会社 圧粉成形体の製造方法および圧粉成形体
SE533657C2 (sv) * 2007-10-16 2010-11-23 Magnetic Components Sweden Ab Pulverbaserad, mjukmagnetisk, induktiv komponent samt metod och anordning för tillverkning därav
JP5325799B2 (ja) 2009-01-22 2013-10-23 日本碍子株式会社 小型インダクタ及び同小型インダクタの製造方法
US20110121930A1 (en) * 2009-09-24 2011-05-26 Ngk Insulators, Ltd. Coil-buried type inductor and a method for manufacturing the same
KR101603827B1 (ko) * 2011-06-15 2016-03-16 가부시키가이샤 무라타 세이사쿠쇼 적층 코일 부품
JP2013123007A (ja) * 2011-12-12 2013-06-20 Shindengen Electric Mfg Co Ltd インダクタ、複合磁性材料及びインダクタ製造方法
CN103304186B (zh) * 2013-07-03 2014-08-13 电子科技大学 一种铁氧体基复合磁介天线基板材料及其制备方法
CN104425121B (zh) * 2013-08-27 2017-11-21 三积瑞科技(苏州)有限公司 镶埋式合金电感的制造方法
CN103915236A (zh) * 2014-04-01 2014-07-09 黄伟嫦 一种新型电感及其制造方法
DE102014207636A1 (de) * 2014-04-23 2015-10-29 Würth Elektronik eiSos Gmbh & Co. KG Verfahren zum Herstellen eines Induktionsbauteils und Induktionsbauteil
DE112016000536T5 (de) * 2015-01-30 2017-12-28 Rogers Corp. (eine Ges.n.den Gesetzen d. Staates Massachusetts) Mo-dotiertes Co2Z-Typ-Ferrit-Verbundmaterial zur Verwendung in Ultrahoch-frequenzantennen
DE102015202032A1 (de) * 2015-02-05 2016-08-11 Würth Elektronik eiSos Gmbh & Co. KG Induktor, insbesondere zur magnetisch gekoppelten Energieübertragung, sowie Verfahren zum Betreiben eines derartigen Induktors
KR101813322B1 (ko) * 2015-05-29 2017-12-28 삼성전기주식회사 코일 전자부품
JP6740817B2 (ja) * 2016-08-30 2020-08-19 Tdk株式会社 フェライト組成物,フェライト焼結体、電子部品およびチップコイル

Also Published As

Publication number Publication date
CN112309675A (zh) 2021-02-02
US20210035734A1 (en) 2021-02-04
CN112309675B (zh) 2022-09-30
TW202107497A (zh) 2021-02-16
KR20210015691A (ko) 2021-02-10
EP3772070A1 (de) 2021-02-03
JP2021027345A (ja) 2021-02-22
DE102019211439A1 (de) 2021-02-04
RU2752251C1 (ru) 2021-07-23
KR102364724B1 (ko) 2022-02-17
ES2946688T3 (es) 2023-07-24
TWI751616B (zh) 2022-01-01
JP7213207B2 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
EP2131373B1 (de) Weichmagnetischer Werkstoff und Verfahren zur Herstellung von Gegenständen aus diesem weichmagnetischen Werkstoff
DE112009000919T5 (de) Verfahren zum Herstellen eines magnetischen Verbundmaterials und magnetisches Verbundmaterial
WO2002101763A1 (de) Induktives bauelement und verfahren zu seiner herstellung
DE3527553C2 (de)
DE10207133B4 (de) Pulverhaltiger Magnetkern und Herstellung desselben
DE10314564B4 (de) Weichmagnetisches Pulvermaterial, weichmagnetischer Grünling und Herstellungsverfahren für einen weichmagnetischen Grünling
DE102008026887B4 (de) Weichmagnetischer Kompositwerkstoff
DE112009000918T5 (de) Magnetisches Verbundmaterial und Verfahren zu seiner Herstellung
DE69619460T2 (de) Seltenerd-Verbundmagnet und Zusammensetzung dafür
DE19626049A1 (de) Magnetwerkstoff und Verbundmagnet
DE10291720T5 (de) Verfahren zur Herstellung eines gesinterten Presslings für einen Seltenerdmetall-Magneten
EP3772070B1 (de) Verfahren zur herstellung eines induktiven bauteils sowie induktives bauteil
EP1168381A2 (de) Weichmagnetischer Werkstoff mit heterogenem Gefügeaufbau und Verfahren zu dessen Herstellung
EP3431209B1 (de) Verfahren und anlage zur herstellung eines ausgangsmaterials für die herstellung von seltenerdmagneten
DE68915680T2 (de) Verfahren zum Herstellen eines Dauermagneten.
DE102008048839A1 (de) Weichmagnetischer Werkstoff
DE2823054B1 (de) Verfahren zur Herstellung kunststoffgebundener anisotroper Dauermagnete
DE10042349C1 (de) Verfahren zur Herstellung eines keramischen Körpers
DE2526137A1 (de) Verfahren zur herstellung eines spannungsabhaengigen widerstandskoerpers
DE2811227A1 (de) Magnetischer kern fuer induktionsspulen und verfahren zu seiner herstellung
WO2003072525A1 (de) Keramische massen mit hohem feststoffanteil zur herstellung keramischer werkstoffe und produkte mit geringem schwund
DE102008026888B4 (de) Verfahren zur Herstellung von Gegenständen aus einem weichmagnetischen Kompositwerkstoff und nach dem Verfahren hergestellte Gegenstände
DE112022001722T5 (de) Gesinterter Ferritmagnet und Herstellungsverfahren
DE1918909C3 (de) Verfahren zur Herstellung von gesinterten Ferrit-Formkörpern
DE102022115371A1 (de) Kugeln aufweisend ein Ferritmaterial und Verwendung von Kugeln aufweisend ein Ferritmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210728

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1567549

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003227

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2946688

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 4

Ref country code: ES

Payment date: 20230821

Year of fee payment: 4

Ref country code: CH

Payment date: 20230801

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230709

26N No opposition filed

Effective date: 20240213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240913

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240722

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 5