EP3772070B1 - Inductive component and method for manufacturing an inductive component - Google Patents

Inductive component and method for manufacturing an inductive component Download PDF

Info

Publication number
EP3772070B1
EP3772070B1 EP20184972.6A EP20184972A EP3772070B1 EP 3772070 B1 EP3772070 B1 EP 3772070B1 EP 20184972 A EP20184972 A EP 20184972A EP 3772070 B1 EP3772070 B1 EP 3772070B1
Authority
EP
European Patent Office
Prior art keywords
sintered particles
binder
coil
magnetic core
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20184972.6A
Other languages
German (de)
French (fr)
Other versions
EP3772070A1 (en
Inventor
Arpankumar Patel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuerth Elektronik Eisos GmbH and Co KG
Original Assignee
Wuerth Elektronik Eisos GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuerth Elektronik Eisos GmbH and Co KG filed Critical Wuerth Elektronik Eisos GmbH and Co KG
Publication of EP3772070A1 publication Critical patent/EP3772070A1/en
Application granted granted Critical
Publication of EP3772070B1 publication Critical patent/EP3772070B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the invention relates to a method for producing an inductive component and an inductive component.
  • a method for producing an inductive component is known.
  • a solid body is successively formed from a coil and several magnetic powders.
  • the body is then placed in a furnace and sintered at around 900°C to form the inductive component.
  • a method for producing an inductive component is known.
  • a coil is placed in a first ceramic suspension with a first ceramic powder, and the first ceramic suspension is cured to form a first ceramic molded body.
  • the first ceramic shaped body with the coil is then placed in a second ceramic suspension with a second ceramic powder and the second ceramic suspension is cured to form a second ceramic shaped body.
  • the inductive component is formed by firing the shaped bodies.
  • a coil device comprising a substrate, a coil, an insulator, a magnetic flux control device and electrodes.
  • the substrate, the coil, the insulation and the control component are arranged within a base body made of a magnetic material.
  • the invention is based on the object of creating a method that enables simple and inexpensive production of an inductive component with improved electromagnetic properties.
  • a base body which includes a magnetic material.
  • the magnetic material can be produced, for example, by recycling waste magnetic material or by processing raw material. For example, waste magnetic material may be crushed, filtered, and/or blended and activated into the magnetic material.
  • the base body is formed from the magnetic material.
  • the base body can be sintered in a simple and cost-effective manner at a comparatively high temperature, since the sintering takes place without the at least one coil and the melting temperature of the material of the at least one coil does not have to be taken into account. After sintering, the sintered base body is crushed, resulting in sintered particles.
  • the electromagnetic properties of the inductive component can be influenced by crushing and/or selecting the sintered particles for producing the at least one mixture. At least one mixture is then produced from the sintered particles and a binder. The at least one mixture is arranged in a mold together with the at least one coil and the binder is then activated so that the binder binds the sintered particles together to form at least one magnetic core.
  • the formed magnetic core surrounds the at least one coil in the desired manner.
  • the at least one magnetic core preferably surrounds the at least one coil with the exception of connection contacts complete. Due to the fact that the sintering takes place without the at least one coil and the sintered particles are connected to the at least one magnetic core by means of the binding agent, the production of the inductive component is simple and inexpensive.
  • the sintered particles are preferably separated into first sintered particles and second sintered particles according to their particle shape and/or their particle size.
  • the sintered particles are separated according to their particle size, in particular their minimum dimension and/or their maximum dimension, into a first coarse fraction with the first sintered particles and a second fine fraction with second sintered particles that are smaller than the first sintered particles.
  • a first mixture is produced from the first sintered particles and a binder.
  • a second mixture is correspondingly produced from the second sintered particles and a binder.
  • the at least one coil and the first mixture are arranged in a first mold and then the binder in the first mixture is activated so that the first sintered particles with the binder form the first magnetic core.
  • the first magnetic core at least partially surrounds the at least one coil.
  • the resulting component with the at least one coil and the first magnetic core and the second mixture are arranged in a second mold and then the binder in the second mixture is activated so that the second sintered particles with the binder form the second magnetic core.
  • the first magnetic core preferably completely surrounds the at least one coil, with the exception of connection contacts. With the exception of connection contacts, the second magnetic core completely surrounds the first magnetic core and the at least one coil.
  • the electromagnetic and/or mechanical properties of the component can be influenced in a desired manner by producing a plurality of magnetic cores with different sintered particles.
  • a method according to claim 2 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the at least one ferrite material is easily and inexpensively available.
  • the at least one ferrite material enables high inductance and/or soft saturation.
  • the at least one ferrite material enables comparatively lower AC voltage losses (AC losses) and/or comparatively higher voltages in high-voltage tests (AC HiPot test).
  • the at least one ferrite material includes in particular manganese (Mn), zinc (Zn) and/or nickel (Ni), for example NiZn and/or MnZn.
  • a method according to claim 3 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintering takes place without the at least one coil, sintering is possible at a comparatively high temperature T S . The duration of the sintering process is shorter, the higher the temperature T S is. The sintering time can be shortened accordingly. Sintering affects the electromagnetic properties of the sintered particles. Due to the fact that the temperature T S and the duration of the sintering can be easily and flexibly selected or adjusted are, the electromagnetic properties can be influenced in the desired way.
  • a method according to claim 4 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the sintered particles are processed in such a way that their shape approaches a spherical shape and/or a cube shape.
  • the aspect ratios of the sintered particles are at least partially reduced by processing. Due to the fact that the sintered particles approximate the shape of a sphere or cube, the at least one magnetic core has an essentially uniform density and thus essentially uniform electromagnetic properties. In addition, the at least one magnetic core has high mechanical stability since the sintered particles are evenly wetted by the binder.
  • a method according to claim 5 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintered particles are processed by means of a ball mill, their shape approaches a spherical shape and/or a cube shape. The aspect ratios of the sintered particles are preferably at least partially reduced as a result of the processing.
  • the ball mill comprises a rotating drum in which balls, for example metal balls, are located. The sintered particles are fed to the ball mill as ground material and processed by the balls in the drum in the manner described.
  • a method according to claim 6 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintered particles are separated on the basis of particle shape and/or particle size, the sintered particles used for the at least one mixture can be selected in a desired manner. The separation or selection based on the particle shape takes place, for example, such that sintered particles with an aspect ratio A of at least 0.5, in particular at least 0.6, in particular at least 0.7, in particular at least 0.8, and in particular at least 0.9 are separated and used for creating the at least one mixture. Furthermore, the sintered particles are separated based on the particle size, for example, in such a way that a first coarse fraction and a second fine fraction of sintered particles are produced.
  • the sintered particles are separated based on the particle size, for example, in such a way that the particle size is in a desired range.
  • the electromagnetic properties of the at least one core can be specifically influenced.
  • a method according to claim 7 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used to produce the at least one mixture have the respective aspect ratio A.
  • Aspect ratio A ensures that the sintered particles come as close as possible in shape to a spherical or cube shape.
  • the aspect ratio A characterizes the ratio of a minimum dimension A min to a maximum dimension A max of the respective sintered particle.
  • the following applies to the aspect ratio A: A A min /A max .
  • the aspect ratio A is preferably: 0.5 ⁇ A ⁇ 1, in particular 0.6 ⁇ A ⁇ 0.9, and in particular 0.7 ⁇ A ⁇ 0.8.
  • the aspect ratio A can be chosen depending on the desired distribution of the magnetic flux.
  • Advantageous properties result from an aspect ratio A ⁇ 0.75.
  • a method according to claim 8 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the respective minimum dimension A min .
  • the sintered particles used are preferably separated according to their particle size into a first fraction containing first sintered particles and a second fraction containing second sintered particles.
  • For a minimum dimension A 1min of the first sintered particles the following preferably applies: 500 ⁇ m ⁇ A 1min ⁇ 1000 ⁇ m, in particular 600 ⁇ m ⁇ A 1min ⁇ 900 ⁇ m, and in particular 700 ⁇ m ⁇ A 1min ⁇ 800 ⁇ m.
  • a minimum dimension A 2min of the second sintered particles the following preferably applies: 10 ⁇ m ⁇ A 2min ⁇ 500 ⁇ m, in particular 100 ⁇ m ⁇ A 1min ⁇ 400 ⁇ m, and in particular 200 ⁇ m ⁇ A 1min ⁇ 300 ⁇ m.
  • Preferably at least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the minimum dimension A 1min or A 2min .
  • a method according to claim 9 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the first sintered particles and the second sintered particles preferably differ in their particle shape and/or in their particle size.
  • the sintered particles are preferably separated according to their aspect ratio and/or their particle size, in particular their minimum dimension and/or their maximum dimension.
  • the electromagnetic properties of the inductive component can be influenced in the desired manner through the targeted selection of the sintered particles used.
  • the sintered particles are separated into a first coarse fraction containing first sintered particles and into a second fine fraction containing second sintered particles which are smaller than the first sintered particles.
  • a first mixture for forming a first magnetic core and a second mixture for forming a second magnetic core can be produced.
  • the first sintered particles are mixed with a binder.
  • the second sintered particles are mixed with a binder. The at least one coil and the first mixture are arranged in a mold and then the binder of the first mixture is activated so that the first sintered particles with the binder form the first magnetic core.
  • the component obtained with the at least one coil and the first magnetic core is arranged in a second mold together with the second mixture. Then the binder is activated in the second mixture, so that the second sintered particles with the binder have a second form a magnetic core.
  • the second magnetic core at least partially surrounds the first magnetic core and the at least one coil.
  • a minimum dimension A 1min of the first sintered particles the following preferably applies: 500 ⁇ m ⁇ A 1min ⁇ 1000 ⁇ m, in particular 600 ⁇ m ⁇ A 1min ⁇ 900 ⁇ m, and in particular 700 ⁇ m ⁇ A 1min ⁇ 800 ⁇ m.
  • a minimum dimension A 2min of the second sintered particles the following preferably applies: 10 ⁇ m ⁇ A 1min ⁇ 500 ⁇ m, in particular 100 ⁇ m ⁇ A 2min ⁇ 400 ⁇ m, and in particular 200 ⁇ m ⁇ A 1min ⁇ 300 ⁇ m.
  • Preferably at least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the minimum dimension A 1min or A 2min .
  • the two-stage manufacturing process optimizes the electromagnetic and mechanical properties of the inductive component.
  • the electromagnetic properties can be influenced in a desired manner.
  • the first magnetic core preferably completely surrounds the at least one coil, with the exception of connection contacts.
  • the second magnetic core preferably completely surrounds the first magnetic core and the at least one coil, with the exception of connection contacts.
  • the electromagnetic and/or mechanical properties of the component can be influenced in a desired manner by producing a plurality of magnetic cores with different sintered particles. Due to the fact that the comparatively smaller second sintered particles form the second magnetic core lying on the outside, the component has in particular a smooth surface.
  • a method according to claim 10 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the binder is activated in a simple manner by increasing the temperature of the at least one mixture and/or by increasing the pressure on the at least one mixture. By activating the binder, the sintered particles are connected to one another to form the at least one core.
  • a polymer material and/or a resin, for example, is used as the binder.
  • a method according to claim 11 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the mass ratio m adjusts the density and/or the air gap of the inductive component in the desired manner.
  • a method according to claim 12 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties.
  • the base body is easily produced by pressing the magnetic material.
  • the magnetic material is preferably in the form of granules and/or powder.
  • the magnetic material includes at least one ferrite material.
  • the magnetic material is provided such that at least one raw material and/or at least one waste material is processed and/or activated.
  • multiple raw materials and/or multiple waste materials are mixed and/or processed.
  • waste magnetic materials are recycled.
  • the invention is also based on the object of creating an inductive component that can be produced simply, inexpensively and with improved electromagnetic properties.
  • the advantages of the inductive component correspond to the advantages of the method already described.
  • the inductive component can in particular also be developed with the features of at least one of claims 1 to 12.
  • the sintered particles are connected to the activated binder to form the at least one core.
  • the sintered particles comprise a magnetic material, in particular at least one ferrite material.
  • the sintered particles have a particular particle shape, in particular a particular aspect ratio, and/or a particular particle size, as has already been described in relation to claims 1 to 12 . Reference is made to the relevant features.
  • the electromagnetic properties can be influenced in a desired manner by the formation of a plurality of magnetic cores and the selection of the sintered particles used for this purpose.
  • An inductive component 1 comprises a coil 2, a first magnetic core 3 and a second magnetic core 4.
  • the coil 2 is designed as a cylindrical coil, for example.
  • the coil 2 consists of an electrically conductive material.
  • the coil 2 has connection contacts 5, 6.
  • the first magnetic core 3 surrounds the coil 2.
  • the first magnetic core 3 comprises first sintered particles P 1 which are bonded to one another by means of a first binder B 1 .
  • the second magnetic core 4 surrounds the first magnetic core 3 and the coil 2.
  • the second magnetic core 4 comprises second sintered particles P 2 bonded together by a second binder B 2 .
  • the connection contacts 5, 6 are led through the first magnetic core 3 and the second magnetic core 4 to the outside.
  • the first sintered particles P 1 each have a minimum dimension A 1min and a maximum dimension A 1max .
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the first sintered particles P 1 each have a minimum dimension A 1min . where: 500 ⁇ m ⁇ A 1min ⁇ 1000 ⁇ m, in particular 600 ⁇ m ⁇ A 1min ⁇ 900 ⁇ m, and in particular 700 ⁇ m ⁇ A 1min ⁇ 800 ⁇ m.
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the first sintered particles P 1 have a respective aspect ratio A 1 , where the following applies: 0.5 ⁇ A 1 ⁇ 1, in particular 0.6 ⁇ A 1 ⁇ 1, in particular 0.7 ⁇ A 1 ⁇ 1, in particular 0.8 ⁇ A 1 ⁇ 1, and in particular 0.9 ⁇ A 1 ⁇ 1.
  • the aspect ratio A 1 is preferably 0.5 ⁇ A 1 ⁇ 1, in particular 0.6 ⁇ A 1 ⁇ 0.9, and in particular 0.7 ⁇ A 1 ⁇ 0.8.
  • the aspect ratio A 1 can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A 1 ⁇ 0.75.
  • the second sintered particles P 2 each have a minimum dimension A 2min and a maximum dimension A 2max .
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the second sintered particles P 2 have a respective minimum dimension A 2min , where the following applies: 10 ⁇ m ⁇ A 2min ⁇ 500 ⁇ m, in particular 100 ⁇ m ⁇ A 2min ⁇ 400 ⁇ m, and in particular 200 ⁇ m ⁇ A 2min ⁇ 300 ⁇ m.
  • At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the second sintered particles P 2 have a respective aspect ratio A 2 , where: 0.5 ⁇ A 2 ⁇ 1, in particular 0.6 ⁇ A 2 ⁇ 1, in particular 0.7 ⁇ A 2 ⁇ 1, in particular 0.8 ⁇ A 2 ⁇ 1, and in particular 0.9 ⁇ A 2 ⁇ 1.
  • the aspect ratio A 2 is preferably 0.5 ⁇ A 2 ⁇ 1, in particular 0.6 ⁇ A 2 ⁇ 0.9, and in particular 0.7 ⁇ A 2 ⁇ 0.8.
  • the aspect ratio A 2 can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A 2 ⁇ 0.75.
  • the first sintered particles P 1 and the second sintered particles P 2 differ in their particle shape or in their aspect ratio A 1 or A 2 and/or in their particle size or in their minimum dimension A 1min or A 2min .
  • starting materials R 1 to R n are first mixed together to form a starting material mixture R M .
  • the starting materials R 1 to R n are, for example, raw materials and/or waste materials that are to be recycled or reprocessed.
  • the Starting materials R 1 to R n include, for example, zinc oxide (ZnO), manganese oxide (MnO) and/or iron oxide.
  • the starting material mixture R M is activated and/or calcined in a step S 2 .
  • a starting material mixture R M containing calcium and magnesium carbonate is heated for dewatering and/or for decomposition.
  • the activated raw material mixture R M forms a magnetic material M from.
  • the magnetic material M is, for example, in the form of a powder and/or granules.
  • the magnetic material M comprises at least one ferrite material, for example MnZn ferrite material and/or NiZn ferrite material.
  • the magnetic material M is pressed into a base body G in a step S 3 .
  • the base body G is also referred to as a green body.
  • a subsequent step S 4 the base body G is sintered.
  • the sintering takes place at a temperature T S , where: T S ⁇ 1000° C., in particular T S ⁇ 1100° C., in particular T S ⁇ 1200° C.
  • the sintered body is denoted by G S .
  • a step S 5 the sintered base body G S is crushed.
  • the crushing takes place, for example, by means of a crushing machine or crushing machine (crusher).
  • the comminution produces sintered particles, which are generally denoted by P.
  • the sintered particles P each have a minimum dimension A min and a maximum dimension A max that define a respective aspect ratio A .
  • A A min /A max .
  • the aspect ratios A of the sintered particles P are widely scattered.
  • sintered particles P with an elongated shape, which each have a small aspect ratio A also arise during comminution.
  • a shape that essentially corresponds to a spherical shape and/or a cube shape is desired.
  • a step S 6 the aspect ratios A of the sintered particles P are reduced.
  • the maximum dimension A max of each sintered particle P is adjusted to the minimum dimension A min .
  • the sintered particles P are processed, for example, using a ball mill.
  • the ball mill comprises a drum and metal balls arranged therein.
  • the sintered particles P are placed in the drum and processed by further comminution and/or friction due to rotation of the drum by means of the metal balls, so that the aspect ratios A of the sintered particles P are at least partially reduced.
  • the sintered particles P are separated based on their particle shape and/or based on their particle size.
  • the sintered particles P are separated into a first fraction with first sintered particles P 1 and a second fraction with second sintered particles P 2 .
  • the first sintered particles P 1 have the minimum dimension A 1min and the maximum dimension A 1max and the aspect ratio A 1
  • the second sintered particles P 2 have the minimum dimension A 2min , the maximum dimension A 2max and the aspect ratio A 2
  • the first fraction comprises coarser particles compared to the second fraction. Accordingly, the following applies to at least 70% of the sintered particles P 1 , P 2 : A 1min >A 2min and/or A 1max >A 2min and/or A 1min >A 2max .
  • Sintered particles P sorted out in step S 7 which belong neither to the first fraction nor to the second fraction, can be returned and further comminuted in step S 5 and/or further processed in step S 6 . This is in 2 illustrated by the dashed lines.
  • a first mixture X 1 is produced from the first sintered particles P 1 and the first binder B 1 .
  • a second mixture X 2 is produced from the second sintered particles P 2 and the second binder B 2 .
  • the binders B 1 and B 2 can be the same or different.
  • the binders B 1 , B 2 are, for example, a polymer plastic and/or a resin.
  • the first mixture X 1 has a mass ratio m 1 of the mass m P1 of the first sintered particles P 1 to the mass m B1 of the first binder B 1 .
  • the following preferably applies to the mass ratio m 1 : 75/25 ⁇ m 1 ⁇ 99/1, in particular 80/20 ⁇ m 1 ⁇ 98/2, and 85/15 ⁇ m 1 ⁇ 95/5.
  • the second mixture X 2 has a mass ratio m 2 of the mass m P2 of the second sintered particles P 2 to the mass m B2 of the second binder B 2 .
  • m 2 m P2 /m B2 applies to the mass ratio m 2 .
  • the mass ratio m 2 is preferably: 75/25 ⁇ m 2 ⁇ 99/1, in particular 80/20 ⁇ m 2 ⁇ 98/2, and 85/15 ⁇ m 2 ⁇ 95/5.
  • the mass ratio is generally denoted by m.
  • a step S 9 the first mixture X 1 and the coil 2 are arranged in a first mold Fi.
  • the first binder B 1 is activated so that the first binder B 1 binds the first sintered particles P 1 to form the first magnetic core 3 .
  • a pressure p 1 on the first mixture X 1 and/or a temperature T 1 of the first mixture X 1 is increased.
  • the first magnetic core 3 with the coil 2 is removed from the mold.
  • a subsequent step S 10 the first magnetic core 3 with the coil 2 and the second mixture X 2 is arranged in a second mold F 2 .
  • the second binder B 2 is activated so that the second binder B 2 binds the second sintered particles P 2 into the second magnetic core 4 .
  • the second binder B 2 is activated by increasing a pressure p 2 on the second mixture X 2 and/or by increasing a temperature T 2 of the second mixture X 2 .
  • the second core 4 is demoulded with the first magnetic core 3 and the coil 2 .
  • the inductive component 1 is provided by demoulding.
  • 3 illustrates measurement curves for the quality factor Q (Q value) at frequencies f of 100 kHz, 500 kHz and 1 MHz over time t.
  • the quality factor Q of the inductive components 1 according to the invention (cf. middle and lower diagram) is more constant over time t than the inductive component according to the prior art (cf. upper diagram).
  • 3 smoothed measurement curves which should enable a simpler comparison with regard to the constancy of the quality factors Q.
  • the components 1 according to the invention hardly age thermally and thus ensure that the behavior of an electrical circuit with the inductive components 1 according to the invention does not change as a result of parameters changing over time t, such as the quality factor Q or the AC power loss P AC and their function does not is impaired.
  • a comparison of the measurement curves in figure 5 with the measurement curves in 6 makes it clear that the quality factor Q of the inductive component 1 according to the invention hardly changes over time t and the components 1 according to the invention hardly age thermally.
  • the inductive component 1 has at least one coil 2 .
  • the inductive component 1 preferably has exactly one coil or exactly two coils.
  • the sintered particles P produced by crushing the sintered base body Gs can be processed, separated and/or selected in any way.
  • the order of the steps mentioned is arbitrary.
  • Known filters and/or sieves and/or separators can be used for separating and/or selecting.
  • the electromagnetic properties of the inductive component 1 can be set in the desired manner. In particular, the inductance, the saturation behavior and/or the air gap can be adjusted.
  • the binder B can be activated by cold pressing or hot pressing.
  • the magnetic material M and thus the at least one magnetic core 3, 4 preferably includes at least one ferrite material.
  • Ferrite material is inexpensive and readily available. Comparatively good electromagnetic properties of the inductive component 1 are achieved through the use of ferrite material.
  • the inductive component 1 has a high inductance, a desired saturation behavior, low losses and/or can be operated with a high voltage.
  • Such inductive components 1 pass, for example, a high-voltage test (AC HiPot test) at a voltage of 3 kV AC (3 mA, 3 seconds).
  • the sintered particles are generally denoted by P.
  • the aspect ratio is generally denoted by A.
  • the minimum dimension is generally denoted A min .
  • the maximum dimension is generally denoted by A max .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Magnetic Ceramics (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines induktiven Bauteils sowie ein induktives Bauteil.The invention relates to a method for producing an inductive component and an inductive component.

Aus der EP 2 211 360 A2 ist ein Verfahren zur Herstellung eines induktiven Bauteils bekannt. Aus einer Spule und mehreren magnetischen Pulvern wird sukzessive ein fester Körper geformt. Der Körper wird daraufhin in einem Ofen angeordnet und bei ca. 900 °C zu dem induktiven Bauteil gesintert.From the EP 2 211 360 A2 a method for producing an inductive component is known. A solid body is successively formed from a coil and several magnetic powders. The body is then placed in a furnace and sintered at around 900°C to form the inductive component.

Aus der EP 2 302 647 A1 ist ein Verfahren zur Herstellung eines induktiven Bauteils bekannt. Zur Herstellung des induktiven Bauteils wird eine Spule in einer ersten keramischen Suspension mit einem ersten keramischen Pulver angeordnet und die erste keramische Suspension zur Ausbildung eines ersten keramischen Formkörpers ausgehärtet. Anschließend wird der erste keramische Formkörper mit der Spule in einer zweiten keramischen Suspension mit einem zweiten keramischen Pulver angeordnet und die zweite keramische Suspension zu einem zweiten keramischen Formkörper ausgehärtet. Durch Brennen der Formkörper wird das induktive Bauteil ausgebildet.From the EP 2 302 647 A1 a method for producing an inductive component is known. To produce the inductive component, a coil is placed in a first ceramic suspension with a first ceramic powder, and the first ceramic suspension is cured to form a first ceramic molded body. The first ceramic shaped body with the coil is then placed in a second ceramic suspension with a second ceramic powder and the second ceramic suspension is cured to form a second ceramic shaped body. The inductive component is formed by firing the shaped bodies.

Aus der US 2016/0351318 A1 ist ein Spulenbauteil mit einem Substrat, einer Spule, einer Isolation, einem Kontrollbauteil für den magnetischen Fluss und Elektroden bekannt. Das Substrat, die Spule, die Isolation und das Kontrollbauteil sind innerhalb eines Grundkörpers aus einem magnetischen Material angeordnet.From the U.S. 2016/0351318 A1 there is known a coil device comprising a substrate, a coil, an insulator, a magnetic flux control device and electrodes. The substrate, the coil, the insulation and the control component are arranged within a base body made of a magnetic material.

Aus der CN 103 304 186 B ist ein Verfahren zur Herstellung eines ferritbasierten Substratmaterials bekannt.From the CN 103 304 186 B a method for producing a ferrite-based substrate material is known.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, das eine einfache und kostengünstige Herstellung eines induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften ermöglicht.The invention is based on the object of creating a method that enables simple and inexpensive production of an inductive component with improved electromagnetic properties.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Zunächst wird ein Grundkörper bereitgestellt, der ein magnetisches Material umfasst. Das magnetische Material kann beispielsweise durch das Wiederaufbereiten von magnetischem Abfallmaterial oder durch das Aufbereiten von Rohmaterial erzeugt werden. Beispielsweise kann magnetisches Abfallmaterial zerkleinert, gefiltert und/oder gemischt werden und zu dem magnetischen Material aktiviert werden. Der Grundkörper wird insbesondere aus dem magnetischen Material geformt. Das Sintern des Grundkörpers kann in einfacher und kostengünstiger Weise bei einer vergleichsweise hohen Temperatur erfolgen, da das Sintern ohne die mindestens eine Spule erfolgt und die Schmelztemperatur des Materials der mindestens einen Spule nicht beachtet werden muss. Nach dem Sintern wird der gesinterte Grundkörper zerkleinert, so dass gesinterte Partikel entstehen. Durch das Zerkleinern und/oder das Auswählen der gesinterten Partikel für das Erzeugen der mindestens einen Mischung können die elektromagnetischen Eigenschaften des induktiven Bauteils beeinflusst werden. Anschließend wird aus den gesinterten Partikeln und einem Bindemittel mindestens eine Mischung erzeugt. Die mindestens eine Mischung wird zusammen mit der mindestens einer Spule in einer Form angeordnet und anschließend das Bindemittel aktiviert, so dass das Bindemittel die gesinterten Partikel zu mindestens einem magnetischen Kern verbindet. Der ausgebildete magnetische Kern umgibt die mindestens eine Spule in der gewünschten Weise. Vorzugsweise umgibt der mindestens eine magnetische Kern die mindestens eine Spule mit Ausnahme von Anschlusskontakten vollständig. Dadurch, dass das Sintern ohne die mindestens eine Spule erfolgt und die gesinterten Partikel mittels des Bindemittels zu dem mindestens einen magnetischen Kern verbunden werden, ist die Herstellung des induktiven Bauteils einfach und kostengünstig. Durch das Zerkleinern des gesinterten Grundkörpers und die Auswahl der zum Erzeugen der mindestens einen Mischung verwendeten gesinterten Partikel können die elektromagnetischen Eigenschaften des induktiven Bauteils gezielt beeinflusst werden.This object is achieved by a method having the features of claim 1. First, a base body is provided, which includes a magnetic material. The magnetic material can be produced, for example, by recycling waste magnetic material or by processing raw material. For example, waste magnetic material may be crushed, filtered, and/or blended and activated into the magnetic material. In particular, the base body is formed from the magnetic material. The base body can be sintered in a simple and cost-effective manner at a comparatively high temperature, since the sintering takes place without the at least one coil and the melting temperature of the material of the at least one coil does not have to be taken into account. After sintering, the sintered base body is crushed, resulting in sintered particles. The electromagnetic properties of the inductive component can be influenced by crushing and/or selecting the sintered particles for producing the at least one mixture. At least one mixture is then produced from the sintered particles and a binder. The at least one mixture is arranged in a mold together with the at least one coil and the binder is then activated so that the binder binds the sintered particles together to form at least one magnetic core. The formed magnetic core surrounds the at least one coil in the desired manner. The at least one magnetic core preferably surrounds the at least one coil with the exception of connection contacts complete. Due to the fact that the sintering takes place without the at least one coil and the sintered particles are connected to the at least one magnetic core by means of the binding agent, the production of the inductive component is simple and inexpensive. By crushing the sintered base body and selecting the sintered particles used to produce the at least one mixture, the electromagnetic properties of the inductive component can be influenced in a targeted manner.

Die gesinterten Partikel werden vorzugsweise nach ihrer Partikelform und/oder ihrer Partikelgröße in erste gesinterte Partikel und zweite gesinterte Partikel separiert. Die gesinterten Partikel werden nach ihrer Partikelgröße, insbesondere ihrer minimalen Abmessung und/oder ihrer maximalen Abmessung, in eine erste grobe Fraktion mit den ersten gesinterten Partikeln und eine zweite feine Fraktion mit im Vergleich zu den ersten gesinterten Partikeln kleineren zweiten gesinterten Partikeln separiert. Aus den ersten gesinterten Partikeln und einem Bindemittel wird eine erste Mischung erzeugt. Entsprechend wird aus den zweiten gesinterten Partikeln und einem Bindemittel eine zweite Mischung erzeugt. Die mindestens eine Spule und die erste Mischung werden in einer ersten Form angeordnet und anschließend das Bindemittel in der ersten Mischung aktiviert, so dass die ersten gesinterten Partikel mit dem Bindemittel den ersten magnetischen Kern ausbilden. Der erste magnetische Kern umgibt die mindestens eine Spule zumindest teilweise. Das entstandene Bauteil mit der mindestens einen Spule und dem ersten magnetischen Kern und die zweite Mischung werden in einer zweiten Form angeordnet und anschließend das Bindemittel in der zweiten Mischung aktiviert, so dass die zweiten gesinterten Partikel mit dem Bindemittel den zweiten magnetischen Kern ausbilden. Vorzugsweise umgibt der erste magnetische Kern die mindestens eine Spule mit Ausnahme von Anschlusskontakten vollständig. Der zweite magnetische Kern umgibt mit Ausnahme von Anschlusskontakten den ersten magnetischen Kern und die mindestens eine Spule vollständig. Durch das Erzeugen mehrerer magnetischer Kerne mit sich unterscheidenden gesinterten Partikeln können die elektromagnetischen und/oder mechanischen Eigenschaften des Bauteils in gewünschter Weise beeinflusst werden.The sintered particles are preferably separated into first sintered particles and second sintered particles according to their particle shape and/or their particle size. The sintered particles are separated according to their particle size, in particular their minimum dimension and/or their maximum dimension, into a first coarse fraction with the first sintered particles and a second fine fraction with second sintered particles that are smaller than the first sintered particles. A first mixture is produced from the first sintered particles and a binder. A second mixture is correspondingly produced from the second sintered particles and a binder. The at least one coil and the first mixture are arranged in a first mold and then the binder in the first mixture is activated so that the first sintered particles with the binder form the first magnetic core. The first magnetic core at least partially surrounds the at least one coil. The resulting component with the at least one coil and the first magnetic core and the second mixture are arranged in a second mold and then the binder in the second mixture is activated so that the second sintered particles with the binder form the second magnetic core. The first magnetic core preferably completely surrounds the at least one coil, with the exception of connection contacts. With the exception of connection contacts, the second magnetic core completely surrounds the first magnetic core and the at least one coil. The electromagnetic and/or mechanical properties of the component can be influenced in a desired manner by producing a plurality of magnetic cores with different sintered particles.

Ein Verfahren nach Anspruch 2 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Das mindestens eine Ferritmaterial ist einfach und kostengünstig verfügbar. Das mindestens eine Ferritmaterial ermöglicht eine hohe Induktivität und/oder eine weiche Sättigung. Das mindestens eine Ferritmaterial ermöglicht vergleichsweise geringere Wechselspannungsverluste (AC Losses) und/oder vergleichsweise höhere Spannungen bei Hochspannungstests (AC HiPot test). Das mindestens eine Ferritmaterial umfasst insbesondere Mangan (Mn), Zink (Zn) und/oder Nickel (Ni), beispielsweise NiZn und/oder MnZn.A method according to claim 2 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. The at least one ferrite material is easily and inexpensively available. The at least one ferrite material enables high inductance and/or soft saturation. The at least one ferrite material enables comparatively lower AC voltage losses (AC losses) and/or comparatively higher voltages in high-voltage tests (AC HiPot test). The at least one ferrite material includes in particular manganese (Mn), zinc (Zn) and/or nickel (Ni), for example NiZn and/or MnZn.

Ein Verfahren nach Anspruch 3 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Dadurch, dass das Sintern ohne die mindestens eine Spule erfolgt, ist das Sintern mit einer vergleichsweise hohen Temperatur TS möglich. Die Zeitdauer des Sintervorgangs ist umso kürzer, je höher die Temperatur TS ist. Die Zeitdauer des Sintervorgangs kann dementsprechend verkürzt werden. Das Sintern beeinflusst die elektromagnetischen Eigenschaften der gesinterten Partikel. Dadurch, dass die Temperatur TS und die Zeitdauer des Sinterns einfach und flexibel wählbar bzw. einstellbar sind, können die elektromagnetischen Eigenschaften in gewünschter Weise beeinflusst werden.A method according to claim 3 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintering takes place without the at least one coil, sintering is possible at a comparatively high temperature T S . The duration of the sintering process is shorter, the higher the temperature T S is. The sintering time can be shortened accordingly. Sintering affects the electromagnetic properties of the sintered particles. Due to the fact that the temperature T S and the duration of the sintering can be easily and flexibly selected or adjusted are, the electromagnetic properties can be influenced in the desired way.

Ein Verfahren nach Anspruch 4 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Das Aspektverhältnis charakterisiert das Verhältnis einer minimalen Abmessung Amin zu einer maximalen Abmessung Amax des jeweiligen gesinterten Partikels. Für das Aspektverhältnis A gilt somit: A = Amin/Amax. Vor dem Erzeugen der mindestens einen Mischung werden die gesinterten Partikel derart bearbeitet, dass sich ihre Form einer Kugelform und/oder Würfelform annähert. Die Aspektverhältnisse der gesinterten Partikel werden durch eine Bearbeitung zumindest teilweise verkleinert. Dadurch, dass die gesinterten Partikel ihre Form einer Kugelform bzw. Würfelform annähern, weist der mindestens eine magnetische Kern eine im Wesentlichen gleichmäßige Dichte und somit im Wesentlichen gleichmäßige elektromagnetische Eigenschaften auf. Darüber hinaus weist der mindestens eine magnetische Kern eine hohe mechanische Stabilität auf, da die gesinterten Partikel von dem Bindemittel gleichmäßig benetzt werden.A method according to claim 4 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. The aspect ratio characterizes the ratio of a minimum dimension A min to a maximum dimension A max of the respective sintered particle. The following therefore applies to the aspect ratio A: A=A min /A max . Before the at least one mixture is produced, the sintered particles are processed in such a way that their shape approaches a spherical shape and/or a cube shape. The aspect ratios of the sintered particles are at least partially reduced by processing. Due to the fact that the sintered particles approximate the shape of a sphere or cube, the at least one magnetic core has an essentially uniform density and thus essentially uniform electromagnetic properties. In addition, the at least one magnetic core has high mechanical stability since the sintered particles are evenly wetted by the binder.

Ein Verfahren nach Anspruch 5 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Dadurch, dass die gesinterten Partikel mittels einer Kugelmühle bearbeitet werden, nähert sich ihre Form einer Kugelform und/oder Würfelform an. Durch das Bearbeiten werden vorzugsweise die Aspektverhältnisse der gesinterten Partikel zumindest teilweise verkleinert. Die Kugelmühle umfasst eine rotierende Trommel, in der sich Kugeln, beispielsweise Metallkugeln, befinden. Die gesinterten Partikel werden als Mahlgut der Kugelmühle zugeführt und von den Kugeln in der Trommel in der beschriebenen Weise bearbeitet.A method according to claim 5 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintered particles are processed by means of a ball mill, their shape approaches a spherical shape and/or a cube shape. The aspect ratios of the sintered particles are preferably at least partially reduced as a result of the processing. The ball mill comprises a rotating drum in which balls, for example metal balls, are located. The sintered particles are fed to the ball mill as ground material and processed by the balls in the drum in the manner described.

Ein Verfahren nach Anspruch 6 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Dadurch, dass die gesinterten Partikel anhand der Partikelform und/oder der Partikelgröße separiert werden, können die für die mindestens eine Mischung verwendeten gesinterten Partikel in gewünschter Weise ausgewählt werden. Das Separieren bzw. Auswählen anhand der Partikelform erfolgt beispielsweise derart, dass gesinterte Partikel mit einem Aspektverhältnis A von mindestens 0,5, insbesondere mindestens 0,6, insbesondere mindestens 0,7, insbesondere mindestens 0,8, und insbesondere mindestens 0,9 separiert und für das Erzeugen der mindestens einen Mischung verwendet werden. Weiterhin werden die gesinterten Partikel anhand der Partikelgröße beispielsweise derart separat, dass eine erste grobe Fraktion und eine zweite feine Fraktion von gesinterten Partikeln erzeugt werden. Weiterhin werden die gesinterten Partikel anhand der Partikelgröße beispielsweise derart separiert, dass die Partikelgröße in einem gewünschten Bereich liegt. Durch die Auswahl der gesinterten Partikel nach ihrer Partikelform und/oder Partikelgröße können die elektromagnetischen Eigenschaften des mindestens einen Kerns gezielt beeinflusst werden.A method according to claim 6 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Because the sintered particles are separated on the basis of particle shape and/or particle size, the sintered particles used for the at least one mixture can be selected in a desired manner. The separation or selection based on the particle shape takes place, for example, such that sintered particles with an aspect ratio A of at least 0.5, in particular at least 0.6, in particular at least 0.7, in particular at least 0.8, and in particular at least 0.9 are separated and used for creating the at least one mixture. Furthermore, the sintered particles are separated based on the particle size, for example, in such a way that a first coarse fraction and a second fine fraction of sintered particles are produced. Furthermore, the sintered particles are separated based on the particle size, for example, in such a way that the particle size is in a desired range. By selecting the sintered particles according to their particle shape and/or particle size, the electromagnetic properties of the at least one core can be specifically influenced.

Ein Verfahren nach Anspruch 7 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Vorzugsweise haben mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der zum Erzeugen der mindestens einen Mischung verwendeten gesinterten Partikel das jeweilige Aspektverhältnis A. Das Aspektverhältnis A gewährleistet, dass die gesinterten Partikel in ihrer Form einer Kugelform bzw. Würfelform möglichst nahekommen. Das Aspektverhältnis A charakterisiert das Verhältnis einer minimalen Abmessung Amin zu einer maximalen Abmessung Amax des jeweiligen gesinterten Partikels. Für das Aspektverhältnis A gilt: A = Amin/Amax. Vorzugsweise gilt für das Aspektverhältnis A: 0,5 ≤ A ≤ 1, insbesondere 0,6 ≤ A ≤ 0,9, und insbesondere 0,7 ≤ A ≤ 0,8. Das Aspektverhältnis A kann in Abhängigkeit der gewünschten Verteilung des magnetischen Flusses gewählt werden. Vorteilhafte Eigenschaften ergeben sich bei einem Aspektverhältnis A ≈ 0,75.A method according to claim 7 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Preferably at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used to produce the at least one mixture have the respective aspect ratio A. Aspect ratio A ensures that the sintered particles come as close as possible in shape to a spherical or cube shape. The aspect ratio A characterizes the ratio of a minimum dimension A min to a maximum dimension A max of the respective sintered particle. The following applies to the aspect ratio A: A=A min /A max . The aspect ratio A is preferably: 0.5≦A≦1, in particular 0.6≦A≦0.9, and in particular 0.7≦A≦0.8. The aspect ratio A can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A≈0.75.

Ein Verfahren nach Anspruch 8 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Vorzugsweise haben mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der verwendeten gesinterten Partikel die jeweilige minimale Abmessung Amin. Vorzugsweise werden die verwendeten gesinterten Partikel nach ihrer Partikelgröße in eine erste Fraktion mit ersten gesinterten Partikeln und in eine zweite Fraktion mit zweiten gesinterten Partikeln separiert. Für eine minimale Abmessung A1min der ersten gesinterten Partikel gilt vorzugsweise: 500 µm ≤ A1min ≤ 1000 µm, insbesondere 600 µm ≤ A1min ≤ 900 µm, und insbesondere 700 µm ≤ A1min ≤ 800 µm. Für eine minimale Abmessung A2min der zweiten gesinterten Partikel gilt vorzugsweise: 10 µm ≤ A2min ≤ 500 µm, insbesondere 100 µm ≤ A1min ≤ 400 µm, und insbesondere 200 µm ≤ A1min ≤ 300 µm. Vorzugsweise haben mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der verwendeten gesinterten Partikel die minimale Abmessung A1min bzw. A2min.A method according to claim 8 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. Preferably at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the respective minimum dimension A min . The sintered particles used are preferably separated according to their particle size into a first fraction containing first sintered particles and a second fraction containing second sintered particles. For a minimum dimension A 1min of the first sintered particles, the following preferably applies: 500 μm≦A 1min ≦1000 μm, in particular 600 μm≦A 1min ≦900 μm, and in particular 700 μm≦A 1min ≦800 μm. For a minimum dimension A 2min of the second sintered particles, the following preferably applies: 10 μm≦A 2min ≦500 μm, in particular 100 μm≦A 1min ≦400 μm, and in particular 200 μm≦A 1min ≦300 μm. Preferably at least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the minimum dimension A 1min or A 2min .

Ein Verfahren nach Anspruch 9 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Vorzugsweise unterscheiden sich die ersten gesinterten Partikel und die zweiten gesinterten Partikel in ihrer Partikelform und/oder in ihrer Partikelgröße. Vorzugsweise werden die gesinterten Partikel nach ihrem Aspektverhältnis und/oder ihrer Partikelgröße, insbesondere ihrer minimalen Abmessung und/oder ihrer maximalen Abmessung separiert. Durch die gezielte Auswahl der verwendeten gesinterten Partikel können die elektromagnetischen Eigenschaften des induktiven Bauteils in gewünschter Weise beeinflusst werden.A method according to claim 9 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. The first sintered particles and the second sintered particles preferably differ in their particle shape and/or in their particle size. The sintered particles are preferably separated according to their aspect ratio and/or their particle size, in particular their minimum dimension and/or their maximum dimension. The electromagnetic properties of the inductive component can be influenced in the desired manner through the targeted selection of the sintered particles used.

Vorzugsweise werden die gesinterten Partikel in eine erste grobe Fraktion mit ersten gesinterten Partikeln und in eine zweite feine Fraktion mit im Vergleich zu den ersten gesinterten Partikeln kleineren zweiten gesinterten Partikeln separiert. Dadurch, dass die gesinterten Partikel in eine erste grobe Fraktion und eine zweite feine Fraktion separiert werden, können eine erste Mischung zur Ausbildung eines ersten magnetischen Kerns und eine zweite Mischung zur Ausbildung eines zweiten magnetischen Kerns erzeugt werden. Zum Erzeugen der ersten Mischung werden die ersten gesinterten Partikel mit einem Bindemittel gemischt. Entsprechend werden zum Erzeugen der zweiten Mischung die zweiten gesinterten Partikel mit einem Bindemittel gemischt. Die mindestens eine Spule und die erste Mischung werden in einer Form angeordnet und anschließend das Bindemittel der ersten Mischung aktiviert, so dass die ersten gesinterten Partikel mit dem Bindemittel den ersten magnetischen Kern ausbilden. Das erhaltene Bauteil mit der mindestens einen Spule und dem ersten magnetischen Kern wird zusammen mit der zweiten Mischung in einer zweiten Form angeordnet. Anschließend wird das Bindemittel in der zweiten Mischung aktiviert, so dass die zweiten gesinterten Partikel mit dem Bindemittel einen zweiten magnetischen Kern ausbilden. Der zweite magnetische Kern umgibt den ersten magnetischen Kern und die mindestens eine Spule zumindest teilweise.Preferably, the sintered particles are separated into a first coarse fraction containing first sintered particles and into a second fine fraction containing second sintered particles which are smaller than the first sintered particles. By separating the sintered particles into a first coarse fraction and a second fine fraction, a first mixture for forming a first magnetic core and a second mixture for forming a second magnetic core can be produced. To create the first mixture, the first sintered particles are mixed with a binder. Similarly, to create the second mixture, the second sintered particles are mixed with a binder. The at least one coil and the first mixture are arranged in a mold and then the binder of the first mixture is activated so that the first sintered particles with the binder form the first magnetic core. The component obtained with the at least one coil and the first magnetic core is arranged in a second mold together with the second mixture. Then the binder is activated in the second mixture, so that the second sintered particles with the binder have a second form a magnetic core. The second magnetic core at least partially surrounds the first magnetic core and the at least one coil.

Für eine minimale Abmessung A1min der ersten gesinterten Partikel gilt vorzugsweise: 500 µm ≤ A1min ≤ 1000 µm, insbesondere 600 µm ≤ A1min ≤ 900 µm, und insbesondere 700 µm ≤ A1min ≤ 800 µm. Für eine minimale Abmessung A2min der zweiten gesinterten Partikel gilt vorzugsweise: 10 µm ≤ A1min ≤ 500 µm, insbesondere 100 µm ≤ A2min ≤ 400 µm, und insbesondere 200 µm ≤ A1min ≤ 300 µm. Vorzugsweise haben mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der verwendeten gesinterten Partikel die minimale Abmessung A1min bzw. A2min.For a minimum dimension A 1min of the first sintered particles, the following preferably applies: 500 μm≦A 1min ≦1000 μm, in particular 600 μm≦A 1min ≦900 μm, and in particular 700 μm≦A 1min ≦800 μm. For a minimum dimension A 2min of the second sintered particles, the following preferably applies: 10 μm≦A 1min ≦500 μm, in particular 100 μm≦A 2min ≦400 μm, and in particular 200 μm≦A 1min ≦300 μm. Preferably at least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the sintered particles used have the minimum dimension A 1min or A 2min .

Durch das zweistufige Herstellungsverfahren werden die elektromagnetischen und mechanischen Eigenschaften des induktiven Bauteils optimiert. Durch die Aufteilung der gesinterten Partikel in mehrere Fraktionen und die Auswahl und Aufteilung der gesinterten Partikel können die elektromagnetischen Eigenschaften in gewünschter Weise beeinflusst werden. Vorzugsweise umgibt der erste magnetische Kern die mindestens eine Spule mit Ausnahme von Anschlusskontakten vollständig. Vorzugsweise umgibt der zweite magnetische Kern mit Ausnahme von Anschlusskontakten den ersten magnetischen Kern und die mindestens eine Spule vollständig. Durch das Erzeugen mehrerer magnetischer Kerne mit sich unterscheidenden gesinterten Partikeln können die elektromagnetischen und/oder mechanischen Eigenschaften des Bauteils in gewünschter Weise beeinflusst werden. Dadurch, dass die vergleichsweise kleineren zweiten gesinterten Partikel den außenliegenden zweiten magnetischen Kern ausbilden, hat das Bauteil insbesondere eine glatte Oberfläche.The two-stage manufacturing process optimizes the electromagnetic and mechanical properties of the inductive component. By dividing the sintered particles into several fractions and by selecting and dividing the sintered particles, the electromagnetic properties can be influenced in a desired manner. The first magnetic core preferably completely surrounds the at least one coil, with the exception of connection contacts. The second magnetic core preferably completely surrounds the first magnetic core and the at least one coil, with the exception of connection contacts. The electromagnetic and/or mechanical properties of the component can be influenced in a desired manner by producing a plurality of magnetic cores with different sintered particles. Due to the fact that the comparatively smaller second sintered particles form the second magnetic core lying on the outside, the component has in particular a smooth surface.

Ein Verfahren nach Anspruch 10 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Das Bindemittel wird in einfacher Weise durch Erhöhen der Temperatur der mindestens einen Mischung und/oder durch Erhöhen des Drucks auf die mindestens eine Mischung aktiviert. Durch das Aktivieren des Bindemittels werden die gesinterten Partikel miteinander zu dem mindestens einen Kern verbunden. Als Binder wird beispielsweise ein Polymermaterial und/oder ein Harz verwendet.A method according to claim 10 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. The binder is activated in a simple manner by increasing the temperature of the at least one mixture and/or by increasing the pressure on the at least one mixture. By activating the binder, the sintered particles are connected to one another to form the at least one core. A polymer material and/or a resin, for example, is used as the binder.

Ein Verfahren nach Anspruch 11 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Durch das Massenverhältnis m wird die Dichte und/oder der Luftspalt des induktiven Bauteils in gewünschter Weise eingestellt. Das Massenverhältnis m beschreibt das Verhältnis der Masse mP der gesinterten Partikel zu der Masse mB des Bindemittels. Für das Massenverhältnis m gilt: m = mP/mB. Mit einem höheren Massenanteil der gesinterten Partikel zu dem Bindemittel steigt die Dichte und/oder verringert sich der Luftspalt des induktiven Bauteils und umgekehrt. Die Dichte und/oder der Luftspalt beeinflussen das Sättigungsverhalten des induktiven Bauteils.A method according to claim 11 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. The mass ratio m adjusts the density and/or the air gap of the inductive component in the desired manner. The mass ratio m describes the ratio of the mass m P of the sintered particles to the mass m B of the binder. The following applies to the mass ratio m: m = m P /m B . With a higher mass fraction of the sintered particles to the binder, the density increases and/or the air gap of the inductive component decreases and vice versa. The density and/or the air gap influence the saturation behavior of the inductive component.

Ein Verfahren nach Anspruch 12 gewährleistet eine einfache und kostengünstige Herstellung des induktiven Bauteils mit verbesserten elektromagnetischen Eigenschaften. Der Grundkörper wird in einfacher Weise durch Pressen des magnetischen Materials erzeugt. Das magnetische Material liegt vorzugsweise als Granulat und/oder Pulver vor. Das magnetische Material umfasst mindestens ein Ferritmaterial. Vorzugsweise wird das magnetische Material derart bereitgestellt, dass mindestens ein Rohmaterial und/oder mindestens ein Abfallmaterial aufbereitet und/oder aktiviert wird. Vorzugsweise werden mehrere Rohmaterialen und/oder mehrere Abfallmaterialien gemischt und/oder aufbereitet. Vorzugsweise werden magnetische Abfallmaterialien wiederaufbereitet.A method according to claim 12 ensures simple and inexpensive production of the inductive component with improved electromagnetic properties. The base body is easily produced by pressing the magnetic material. The magnetic material is preferably in the form of granules and/or powder. The magnetic material includes at least one ferrite material. Preferably, the magnetic material is provided such that at least one raw material and/or at least one waste material is processed and/or activated. Preferably, multiple raw materials and/or multiple waste materials are mixed and/or processed. Preferably, waste magnetic materials are recycled.

Der Erfindung liegt ferner die Aufgabe zugrunde, ein induktives Bauteil zu schaffen, das einfach, kostengünstig und mit verbesserten elektromagnetischen Eigenschaften herstellbar ist.The invention is also based on the object of creating an inductive component that can be produced simply, inexpensively and with improved electromagnetic properties.

Diese Aufgabe wird durch ein induktives Bauteil mit den Merkmalen des Anspruchs 13 gelöst. Die Vorteile des induktiven Bauteils entsprechen den bereits beschriebenen Vorteilen des Verfahrens. Das induktive Bauteil kann insbesondere auch mit den Merkmalen mindestens eines der Ansprüche 1 bis 12 weitergebildet werden. Die gesinterten Partikel sind mit dem aktivierten Bindemittel zu dem mindestens einen Kern verbunden. Die gesinterten Partikel umfassen ein magnetisches Material, insbesondere mindestens ein Ferritmaterial. Die gesinterten Partikel haben eine jeweilige Partikelform, insbesondere ein jeweiliges Aspektverhältnis, und/oder eine jeweilige Partikelgröße, wie dies zu den Ansprüchen 1 bis 12 bereits beschrieben wurde. Auf die entsprechenden Merkmale wird Bezug genommen.This object is achieved by an inductive component having the features of claim 13. The advantages of the inductive component correspond to the advantages of the method already described. The inductive component can in particular also be developed with the features of at least one of claims 1 to 12. The sintered particles are connected to the activated binder to form the at least one core. The sintered particles comprise a magnetic material, in particular at least one ferrite material. The sintered particles have a particular particle shape, in particular a particular aspect ratio, and/or a particular particle size, as has already been described in relation to claims 1 to 12 . Reference is made to the relevant features.

Durch die Ausbildung mehrerer magnetischer Kerne und die Auswahl der hierfür verwendeten gesinterten Partikel können die elektromagnetischen Eigenschaften in gewünschter Weise beeinflusst werden.The electromagnetic properties can be influenced in a desired manner by the formation of a plurality of magnetic cores and the selection of the sintered particles used for this purpose.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels. Es zeigen:

Fig. 1
eine Schnittdarstellung eines induktiven Bauteils,
Fig. 2A und 2B
ein Ablaufdiagramm mit den Schritten zur Herstellung des induktiven Bauteils gemäß Fig. 1,
Fig. 3
Diagramme des Gütefaktors Q in Abhängigkeit der Zeit t und der Frequenz f, wobei das obere Diagramm ein induktives Bauteil umfassend eine Eisenlegierung nach dem Stand der Technik, das mittlere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Mangan und Zink und das untere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Nickel und Zink veranschaulicht,
Fig. 4
Diagramme der Wechselspannungsverlustleistung PAC in Abhängigkeit der Zeit t und der Frequenz f, wobei das obere Diagramm ein induktives Bauteil umfassend eine Eisenlegierung nach dem Stand der Technik, das mittlere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Mangan und Zink und das untere Diagramm ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Nickel und Zink veranschaulicht,
Fig. 5
ein Diagramm des Gütefaktors Q in Abhängigkeit der Frequenz f und der Zeit t für ein induktives Bauteil umfassend eine Eisenlegierung nach dem Stand der Technik, und
Fig. 6
ein Diagramm des Gütefaktors Q in Abhängigkeit der Frequenz f und der Zeit t für ein erfindungsgemäßes induktives Bauteil mit Ferritmaterial umfassend Mangan und Zink.
Further features, advantages and details of the invention result from the following description of an exemplary embodiment. Show it:
1
a sectional view of an inductive component,
Figures 2A and 2B
a flow chart with the steps for manufacturing the inductive component according to FIG 1 ,
3
Diagrams of quality factor Q as a function of time t and frequency f, the upper diagram an inductive component comprising an iron alloy according to the prior art, the middle diagram an inductive component according to the invention with ferrite material comprising manganese and zinc and the lower diagram illustrates an inductive component according to the invention with ferrite material comprising nickel and zinc,
4
Diagrams of AC power loss P AC as a function of time t and frequency f, the upper diagram showing an inductive component comprising an iron alloy according to the prior art, the middle diagram an inductive component according to the invention with ferrite material comprising manganese and zinc and the lower diagram an inventive inductive component illustrated with ferrite material comprising nickel and zinc,
figure 5
a diagram of the quality factor Q as a function of the frequency f and the time t for an inductive component comprising an iron alloy according to the prior art, and
6
a diagram of the quality factor Q as a function of the frequency f and the time t for an inductive component according to the invention with ferrite material comprising manganese and zinc.

Ein induktives Bauteil 1 umfasst eine Spule 2, einen ersten magnetischen Kern 3 und einen zweiten magnetischen Kern 4. Die Spule 2 ist beispielsweise als Zylinderspule ausgebildet. Die Spule 2 besteht aus einem elektrisch leitfähigen Material. Die Spule 2 weist Anschlusskontakte 5, 6 auf.An inductive component 1 comprises a coil 2, a first magnetic core 3 and a second magnetic core 4. The coil 2 is designed as a cylindrical coil, for example. The coil 2 consists of an electrically conductive material. The coil 2 has connection contacts 5, 6.

Der erste magnetische Kern 3 umgibt die Spule 2. Der erste magnetische Kern 3 umfasst erste gesinterte Partikel P1, die mittels eines ersten Bindemittels B1 miteinander verbunden sind. Der zweite magnetische Kern 4 umgibt den ersten magnetischen Kern 3 und die Spule 2. Der zweite magnetische Kern 4 umfasst zweite gesinterte Partikel P2, die mittels eines zweiten Bindemittels B2 miteinander verbunden sind. Die Anschlusskontakte 5, 6 sind durch den ersten magnetischen Kern 3 und den zweiten magnetischen Kern 4 nach außen geführt.The first magnetic core 3 surrounds the coil 2. The first magnetic core 3 comprises first sintered particles P 1 which are bonded to one another by means of a first binder B 1 . The second magnetic core 4 surrounds the first magnetic core 3 and the coil 2. The second magnetic core 4 comprises second sintered particles P 2 bonded together by a second binder B 2 . The connection contacts 5, 6 are led through the first magnetic core 3 and the second magnetic core 4 to the outside.

Die ersten gesinterten Partikel P1 weisen jeweils eine minimale Abmessung A1min und eine maximale Abmessung A1max auf. Die ersten gesinterten Partikel P1 haben ein jeweiliges erstes Aspektverhältnis A1, wobei gilt:
A1 = A1min/A1max. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der ersten gesinterten Partikel P1 haben eine jeweilige minimale Abmessung A1min. wobei gilt: 500 µm ≤ A1min ≤ 1000 µm, insbesondere 600 µm ≤ A1min ≤ 900 µm, und insbesondere 700 µm ≤ A1min ≤ 800 µm. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der ersten gesinterten Partikel P1 haben ein jeweiliges Aspektverhältnis A1, wobei gilt: 0,5 ≤ A1 ≤ 1, insbesondere 0,6 ≤ A1 ≤ 1, insbesondere 0,7 ≤ A1 ≤ 1, insbesondere 0,8 ≤ A1 ≤ 1, und insbesondere 0,9 ≤ A1 ≤ 1. Vorzugsweise gilt für das Aspektverhältnis A1: 0,5 ≤ A1 ≤ 1, insbesondere 0,6 ≤ A1 ≤ 0,9, und insbesondere 0,7 ≤ A1 ≤ 0,8. Das Aspektverhältnis A1 kann in Abhängigkeit der gewünschten Verteilung des magnetischen Flusses gewählt werden. Vorteilhafte Eigenschaften ergeben sich bei einem Aspektverhältnis A1 ≈ 0,75.
The first sintered particles P 1 each have a minimum dimension A 1min and a maximum dimension A 1max . The first sintered particles P 1 each have a first aspect ratio A 1 , where:
A 1 = A 1min /A 1max . At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the first sintered particles P 1 each have a minimum dimension A 1min . where: 500 μm≦A 1min ≦1000 μm, in particular 600 μm≦A 1min ≦900 μm, and in particular 700 μm≦A 1min ≦800 μm. At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the first sintered particles P 1 have a respective aspect ratio A 1 , where the following applies: 0.5≦A 1 ≦1, in particular 0.6≦A 1 ≦1, in particular 0.7≦A 1 ≦1, in particular 0.8≦A 1 ≦1, and in particular 0.9≦A 1 ≦1. The aspect ratio A 1 is preferably 0.5≦A 1 ≦ 1, in particular 0.6≦A 1 ≦0.9, and in particular 0.7≦A 1 ≦0.8. The aspect ratio A 1 can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A 1 ≈0.75.

Die zweiten gesinterten Partikel P2 weisen jeweils eine minimale Abmessung A2min und eine maximale Abmessung A2max auf. Die zweiten gesinterten Partikel P2 haben ein jeweiliges zweites Aspektverhältnis A2, wobei gilt: A2 = A2min/A2max. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der zweiten gesinterten Partikel P2 haben eine jeweilige minimale Abmessung A2min, wobei gilt: 10 µm ≤ A2min ≤ 500 µm, insbesondere 100 µm ≤ A2min ≤ 400 µm, und insbesondere 200 µm ≤ A2min ≤ 300 µm. Mindestens 70 %, insbesondere mindestens 80 %, insbesondere mindestens 90 %, und insbesondere mindestens 95 % der zweiten gesinterten Partikel P2 haben ein jeweiliges Aspektverhältnis A2, wobei gilt: 0,5 ≤ A2 ≤ 1, insbesondere 0,6 ≤ A2 ≤ 1, insbesondere 0,7 ≤ A2 ≤ 1, insbesondere 0,8 ≤ A2 ≤ 1, und insbesondere 0,9 ≤ A2 ≤ 1. Vorzugsweise gilt für das Aspektverhältnis A2: 0,5 ≤ A2 ≤ 1, insbesondere 0,6 ≤ A2 ≤ 0,9, und insbesondere 0,7 ≤ A2 ≤ 0,8. Das Aspektverhältnis A2 kann in Abhängigkeit der gewünschten Verteilung des magnetischen Flusses gewählt werden. Vorteilhafte Eigenschaften ergeben sich bei einem Aspektverhältnis A2 ~ 0,75.The second sintered particles P 2 each have a minimum dimension A 2min and a maximum dimension A 2max . The second sintered Particles P 2 each have a second aspect ratio A 2 , where A 2 =A 2min /A 2max . At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the second sintered particles P 2 have a respective minimum dimension A 2min , where the following applies: 10 μm ≤ A 2min ≤ 500 μm, in particular 100 μm ≤ A 2min ≤ 400 µm, and in particular 200 µm ≤ A 2min ≤ 300 µm. At least 70%, in particular at least 80%, in particular at least 90%, and in particular at least 95% of the second sintered particles P 2 have a respective aspect ratio A 2 , where: 0.5 ≤ A 2 ≤ 1, in particular 0.6 ≤ A 2 ≦1, in particular 0.7≦A 2 ≦1, in particular 0.8≦A 2 ≦1, and in particular 0.9≦A 2 ≦1. The aspect ratio A 2 is preferably 0.5≦A 2 ≦ 1, in particular 0.6≦A 2 ≦0.9, and in particular 0.7≦A 2 ≦0.8. The aspect ratio A 2 can be chosen depending on the desired distribution of the magnetic flux. Advantageous properties result from an aspect ratio A 2 ~0.75.

Die ersten gesinterten Partikel P1 und die zweiten gesinterten Partikel P2 unterscheiden sich in ihrer Partikelform bzw. in ihrem Aspektverhältnis A1 bzw. A2 und/oder in ihrer Partikelgröße bzw. in ihrer minimalen Abmessung A1min bzw. A2min.The first sintered particles P 1 and the second sintered particles P 2 differ in their particle shape or in their aspect ratio A 1 or A 2 and/or in their particle size or in their minimum dimension A 1min or A 2min .

Nachfolgend ist das Verfahren zur Herstellung des induktiven Bauteils 1 anhand von Fig. 2 beschrieben:
In einem Schritt S1 werden zunächst Ausgangsmaterialien R1 bis Rn zu einer Ausgangsmaterial-Mischung RM miteinander vermischt. Die Ausgangsmaterialien R1 bis Rn sind beispielsweise Rohmaterialien und/oder Abfallmaterialien, die recycelt bzw. wiederaufbereitet werden sollen. Die Ausgangsmaterialien R1 bis Rn umfassen beispielsweise Zinkoxid (ZnO), Manganoxid (MnO) und/oder Eisenoxid.
The method for manufacturing the inductive component 1 is shown below with reference to FIG 2 described:
In a step S 1 , starting materials R 1 to R n are first mixed together to form a starting material mixture R M . The starting materials R 1 to R n are, for example, raw materials and/or waste materials that are to be recycled or reprocessed. The Starting materials R 1 to R n include, for example, zinc oxide (ZnO), manganese oxide (MnO) and/or iron oxide.

Die Ausgangsmaterial-Mischung RM wird in einem Schritt S2 aktiviert und/oder kalziniert. Beim Kalzinieren wird eine calcium- und magnesiumcarbonathaltige Ausgangsmaterial-Mischung RM zur Entwässerung und/oder zur Zersetzung erhitzt.The starting material mixture R M is activated and/or calcined in a step S 2 . During calcination, a starting material mixture R M containing calcium and magnesium carbonate is heated for dewatering and/or for decomposition.

Die aktivierte Rohmaterial-Mischung RM bildet ein magnetisches Material M aus. Das magnetische Material M ist beispielsweise pulverförmig und/oder granulatförmig. Das magnetische Material M umfasst mindestens ein Ferritmaterial, beispielsweise MnZn-Ferritmaterial und/oder NiZn-Ferritmaterial.The activated raw material mixture R M forms a magnetic material M from. The magnetic material M is, for example, in the form of a powder and/or granules. The magnetic material M comprises at least one ferrite material, for example MnZn ferrite material and/or NiZn ferrite material.

Das magnetische Material M wird in einem Schritt S3 zu einem Grundkörper G gepresst. Der Grundkörper G wird auch als Grünkörper bezeichnet.The magnetic material M is pressed into a base body G in a step S 3 . The base body G is also referred to as a green body.

In einem nachfolgenden Schritt S4 wird der Grundkörper G gesintert. Das Sintern erfolgt bei einer Temperatur TS, wobei gilt: TS ≥ 1000 °C, insbesondere TS ≥ 1100 °C, insbesondere TS ≥ 1200 °C. Der gesinterte Grundkörper wird mit GS bezeichnet.In a subsequent step S 4 the base body G is sintered. The sintering takes place at a temperature T S , where: T S ≧1000° C., in particular T S ≧1100° C., in particular T S ≧1200° C. The sintered body is denoted by G S .

In einem Schritt S5 wird der gesinterte Grundkörper GS zerkleinert. Das Zerkleinern erfolgt beispielsweise mittels einer Brechmaschine bzw. Zerkleinerungsmaschine (crusher). Durch das Zerkleinern entstehen gesinterte Partikel, die allgemein mit P bezeichnet werden. Die gesinterten Partikel P weisen jeweils eine minimale Abmessung Amin und eine maximale Abmessung Amax auf, die ein jeweiliges Aspektverhältnis A definieren. Für das jeweilige Aspektverhältnis gilt: A = Amin/Amax. Nach dem Zerkleinern des gesinterten Grundkörpers GS sind die Aspektverhältnisse A der gesinterten Partikel P breit gestreut. Insbesondere entstehen beim Zerkleinern auch gesinterte Partikel P mit einer länglichen Form, die ein jeweiliges kleines Aspektverhältnis A haben. Für die weitere Verarbeitung der gesinterten Partikel P ist eine Form erwünscht, die im Wesentlichen einer Kugelform und/oder einer Würfelform entspricht.In a step S 5 the sintered base body G S is crushed. The crushing takes place, for example, by means of a crushing machine or crushing machine (crusher). The comminution produces sintered particles, which are generally denoted by P. The sintered particles P each have a minimum dimension A min and a maximum dimension A max that define a respective aspect ratio A . The following applies to the respective aspect ratio: A=A min /A max . After crushing the sintered base body G S , the aspect ratios A of the sintered particles P are widely scattered. In particular, sintered particles P with an elongated shape, which each have a small aspect ratio A, also arise during comminution. For the further processing of the sintered particles P, a shape that essentially corresponds to a spherical shape and/or a cube shape is desired.

In einem Schritt S6 werden die Aspektverhältnisse A der gesinterten Partikel P verkleinert. Das bedeutet, dass die maximale Abmessung Amax des jeweiligen gesinterten Partikels P an die minimale Abmessung Amin angeglichen wird. Hierzu werden die gesinterten Partikel P beispielsweise mittels einer Kugelmühle bearbeitet. Die Kugelmühle umfasst eine Trommel und darin angeordnete Metallkugeln. Die gesinterten Partikel P werden in die Trommel gegeben und aufgrund einer Rotation der Trommel mittels der Metallkugeln durch weitere Zerkleinerung und/oder Reibung bearbeitet, so dass sich die Aspektverhältnisse A der gesinterten Partikel P zumindest teilweise verkleinern.In a step S 6 the aspect ratios A of the sintered particles P are reduced. This means that the maximum dimension A max of each sintered particle P is adjusted to the minimum dimension A min . For this purpose, the sintered particles P are processed, for example, using a ball mill. The ball mill comprises a drum and metal balls arranged therein. The sintered particles P are placed in the drum and processed by further comminution and/or friction due to rotation of the drum by means of the metal balls, so that the aspect ratios A of the sintered particles P are at least partially reduced.

In einem Schritt S7 werden die gesinterten Partikel P anhand ihrer Partikelform und/oder anhand ihrer Partikelgröße separiert. Die gesinterten Partikel P werden in eine erste Fraktion mit ersten gesinterten Partikeln P1 und eine zweite Fraktion mit zweiten gesinterten Partikeln P2 separiert. Die ersten gesinterten Partikel P1 haben die minimale Abmessung A1min und die maximale Abmessung A1max sowie das Aspektverhältnis A1, wohingegen die zweiten gesinterten Partikel P2 die minimale Abmessung A2min, die maximale Abmessung A2max und das Aspektverhältnis A2 haben. Die erste Fraktion umfasst im Vergleich zu der zweiten Fraktion gröbere Partikel. Dementsprechend gilt für mindestens 70 % der gesinterten Partikel P1, P2: A1min > A2min und/oder A1max > A2min und/oder A1min > A2max.In a step S7 , the sintered particles P are separated based on their particle shape and/or based on their particle size. The sintered particles P are separated into a first fraction with first sintered particles P 1 and a second fraction with second sintered particles P 2 . The first sintered particles P 1 have the minimum dimension A 1min and the maximum dimension A 1max and the aspect ratio A 1 , whereas the second sintered particles P 2 have the minimum dimension A 2min , the maximum dimension A 2max and the aspect ratio A 2 . The first fraction comprises coarser particles compared to the second fraction. Accordingly, the following applies to at least 70% of the sintered particles P 1 , P 2 : A 1min >A 2min and/or A 1max >A 2min and/or A 1min >A 2max .

In Schritt S7 aussortierte gesinterte Partikel P, die weder der ersten Fraktion noch der zweiten Fraktion zugehören, können zurückgeführt werden und in Schritt S5 weiter zerkleinert und/oder in Schritt S6 weiter bearbeitet werden. Dies ist in Fig. 2 durch die gestrichelten Linien veranschaulicht.Sintered particles P sorted out in step S 7 , which belong neither to the first fraction nor to the second fraction, can be returned and further comminuted in step S 5 and/or further processed in step S 6 . this is in 2 illustrated by the dashed lines.

In einem nachfolgenden Schritt Ssi wird aus den ersten gesinterten Partikeln P1 und dem ersten Bindemittel B1 eine erste Mischung X1 erzeugt. Entsprechend wird in einem Schritt S82 aus den zweiten gesinterten Partikeln P2 und dem zweiten Bindemittel B2 eine zweite Mischung X2 erzeugt. Die Bindemittel B1 und B2 können gleich oder unterschiedlich sein. Die Bindemittel B1, B2 sind beispielsweise ein Polymerkunststoff und/oder ein Harz.In a subsequent step Ssi, a first mixture X 1 is produced from the first sintered particles P 1 and the first binder B 1 . Correspondingly, in a step S 82 , a second mixture X 2 is produced from the second sintered particles P 2 and the second binder B 2 . The binders B 1 and B 2 can be the same or different. The binders B 1 , B 2 are, for example, a polymer plastic and/or a resin.

Die erste Mischung X1 hat ein Massenverhältnis m1 der Masse mP1 der ersten gesinterten Partikel P1 zu der Masse mB1 des ersten Bindemittels B1. Für das Massenverhältnis m1 gilt somit m1 = mP1/mB1. Für das Massenverhältnis m1 gilt vorzugsweise: 75/25 ≤ m1 ≤ 99/1, insbesondere 80/20 ≤ m1 ≤ 98/2, und 85/15 ≤ m1 ≤ 95/5. Die zweite Mischung X2 hat ein Massenverhältnis m2 der Masse mP2 der zweiten gesinterten Partikel P2 zu der Masse mB2 des zweiten Bindemittels B2. Für das Massenverhältnis m2 gilt somit m2 = mP2/mB2. Für das Massenverhältnis m2 gilt vorzugsweise: 75/25 ≤ m2 ≤ 99/1, insbesondere 80/20 ≤ m2 ≤ 98/2, und 85/15 ≤ m2 ≤ 95/5. Das Massenverhältnis wird allgemein mit m bezeichnet.The first mixture X 1 has a mass ratio m 1 of the mass m P1 of the first sintered particles P 1 to the mass m B1 of the first binder B 1 . Thus, m 1 =m P1 /m B1 applies to the mass ratio m 1 . The following preferably applies to the mass ratio m 1 : 75/25≦m 1 ≦99/1, in particular 80/20≦m 1 ≦98/2, and 85/15≦m 1 ≦95/5. The second mixture X 2 has a mass ratio m 2 of the mass m P2 of the second sintered particles P 2 to the mass m B2 of the second binder B 2 . Thus, m 2 =m P2 /m B2 applies to the mass ratio m 2 . The mass ratio m 2 is preferably: 75/25≦m 2 ≦99/1, in particular 80/20≦m 2 ≦98/2, and 85/15≦m 2 ≦95/5. The mass ratio is generally denoted by m.

In einem Schritt S9 werden die erste Mischung X1 und die Spule 2 in einer ersten Form Fi angeordnet. Anschließend wird das erste Bindemittel B1 aktiviert, so dass das erste Bindemittel B1 die ersten gesinterten Partikel P1 zu dem ersten magnetischen Kern 3 verbindet. Zum Aktivieren des ersten Bindemittels B1 wird ein Druck p1 auf die erste Mischung X1 und/oder eine Temperatur T1 der ersten Mischung X1 erhöht. Nach dem Aushärten des ersten Bindemittels B1 wird der erste magnetische Kern 3 mit der Spule 2 entformt.In a step S 9 the first mixture X 1 and the coil 2 are arranged in a first mold Fi. Subsequently, the first binder B 1 is activated so that the first binder B 1 binds the first sintered particles P 1 to form the first magnetic core 3 . To activate the first Binder B 1, a pressure p 1 on the first mixture X 1 and/or a temperature T 1 of the first mixture X 1 is increased. After the first binding agent B 1 has hardened, the first magnetic core 3 with the coil 2 is removed from the mold.

In einem nachfolgenden Schritt S10 wird der erste magnetische Kern 3 mit der Spule 2 und die zweite Mischung X2 in einer zweiten Form F2 angeordnet. Anschließend wird das zweite Bindemittel B2 aktiviert, so dass das zweite Bindemittel B2 die zweiten gesinterten Partikel P2 zu dem zweiten magnetischen Kern 4 verbindet. Das zweite Bindemittel B2 wird durch ein Erhöhen eines Drucks p2 auf die zweite Mischung X2 und/oder durch Erhöhen einer Temperatur T2 der zweiten Mischung X2 aktiviert. Nach dem Aushärten des zweiten Bindemittels B2 wird der zweite Kern 4 mit dem ersten magnetischen Kern 3 und der Spule 2 entformt.In a subsequent step S 10 the first magnetic core 3 with the coil 2 and the second mixture X 2 is arranged in a second mold F 2 . Subsequently, the second binder B 2 is activated so that the second binder B 2 binds the second sintered particles P 2 into the second magnetic core 4 . The second binder B 2 is activated by increasing a pressure p 2 on the second mixture X 2 and/or by increasing a temperature T 2 of the second mixture X 2 . After the second binder B 2 has hardened, the second core 4 is demoulded with the first magnetic core 3 and the coil 2 .

Durch das Entformen wird in einem Schritt S11 das induktive Bauteil 1 bereitgestellt.In a step S11, the inductive component 1 is provided by demoulding.

Fig. 3 veranschaulicht Messkurven für den Gütefaktor Q (Q-Value) bei Frequenzen f von 100 kHz, 500 kHz und 1 MHz über der Zeit t. Der Gütefaktor Q der erfindungsgemäßen induktiven Bauteile 1 (vgl. mittleres und unteres Diagramm) ist gegenüber dem induktiven Bauteil nach dem Stand der Technik (vgl. oberes Diagramm) über die Zeit t konstanter. Ergänzend zu den Messkurven sind in Fig. 3 geglättete Messkurven veranschaulicht, die einen einfacheren Vergleich hinsichtlich der Konstanz der Gütefaktoren Q ermöglichen sollen. 3 illustrates measurement curves for the quality factor Q (Q value) at frequencies f of 100 kHz, 500 kHz and 1 MHz over time t. The quality factor Q of the inductive components 1 according to the invention (cf. middle and lower diagram) is more constant over time t than the inductive component according to the prior art (cf. upper diagram). In addition to the measurement curves, 3 smoothed measurement curves, which should enable a simpler comparison with regard to the constancy of the quality factors Q.

In entsprechender Weise veranschaulicht Fig. 4 Messkurven für die Wechselspannungsverlustleistung PAC bei Frequenzen f von 400 kHz und 1,2 MHz über der Zeit t. Die Wechselspannungsverlustleistung PAC der erfindungsgemäßen induktiven Bauteile 1 (vgl. mittleres und unteres Diagramm) ist im Vergleich zu dem induktiven Bauteil nach dem Stand der Technik (vgl. oberes Diagramm) über der Zeit t konstanter. Ergänzend zu den Messkurven sind in Fig. 4 geglättete Messkurven veranschaulicht, die einen einfacheren Vergleich hinsichtlich der Konstanz der Wechselspannungsverlustleistung PAC ermöglichen sollen.Appropriately illustrated 4 Measurement curves for the AC power loss P AC at frequencies f of 400 kHz and 1.2 MHz over time t. The AC power loss P AC of the inductive components 1 according to the invention (cf. middle and lower diagram) is more constant over time t in comparison to the inductive component according to the prior art (cf. upper diagram). In addition to the measurement curves, 4 smoothed measurement curves, which should enable a simpler comparison with regard to the constancy of the AC power loss P AC .

Die erfindungsgemäßen Bauteile 1 altern thermisch kaum und gewährleisten somit, dass sich das Verhalten einer elektrischen Schaltung mit den erfindungsgemäßen induktiven Bauteilen 1 infolge von sich über der Zeit t ändernden Parameter, wie beispielsweise dem Gütefaktor Q oder der Wechselspannungsverlustleistung PAC nicht ändert und deren Funktion nicht beeinträchtigt ist. Ein Vergleich der Messkurven in Fig. 5 mit den Messkurven in Fig. 6 verdeutlicht, dass sich der Gütefaktor Q des erfindungsgemäßen induktiven Bauteils 1 über der Zeit t kaum ändert und die erfindungsgemäßen Bauteile 1 thermisch kaum altern.The components 1 according to the invention hardly age thermally and thus ensure that the behavior of an electrical circuit with the inductive components 1 according to the invention does not change as a result of parameters changing over time t, such as the quality factor Q or the AC power loss P AC and their function does not is impaired. A comparison of the measurement curves in figure 5 with the measurement curves in 6 makes it clear that the quality factor Q of the inductive component 1 according to the invention hardly changes over time t and the components 1 according to the invention hardly age thermally.

Allgemein gilt:
Das induktive Bauteil 1 weist mindestens eine Spule 2 auf. Vorzugsweise weist das induktive Bauteil 1 genau eine Spule oder genau zwei Spulen auf.
In general:
The inductive component 1 has at least one coil 2 . The inductive component 1 preferably has exactly one coil or exactly two coils.

Die durch Zerkleinern des gesinterten Grundkörpers Gs entstehenden gesinterten Partikel P können in beliebiger Weise bearbeitet, separiert und/oder ausgewählt werden. Die Reihenfolge der erwähnten Schritte ist hierbei beliebig. Zum Separieren und/oder Auswählen können bekannte Filter und/oder Siebe und/oder Separatoren verwendet werden. Durch das Bearbeiten, Separieren und/oder Auswählen der gesinterten Partikel P können die elektromagnetischen Eigenschaften des induktiven Bauteils 1 in gewünschter Weise eingestellt werden. Insbesondere können die Induktivität, das Sättigungsverhalten und/oder der Luftspalt eingestellt werden.The sintered particles P produced by crushing the sintered base body Gs can be processed, separated and/or selected in any way. The order of the steps mentioned is arbitrary. Known filters and/or sieves and/or separators can be used for separating and/or selecting. By editing, separating and / or selecting the sintered particles P can the electromagnetic properties of the inductive component 1 can be set in the desired manner. In particular, the inductance, the saturation behavior and/or the air gap can be adjusted.

Das Aktivieren des Bindemittels B kann durch Kaltpressen oder Heißpressen erfolgen.The binder B can be activated by cold pressing or hot pressing.

Das magnetische Material M und somit der mindestens eine magnetische Kern 3, 4 umfasst vorzugsweise mindestens ein Ferritmaterial. Ferritmaterial ist kostengünstig und einfach verfügbar. Durch die Verwendung von Ferritmaterial werden vergleichsweise gute elektromagnetische Eigenschaften des induktiven Bauteils 1 erzielt. Insbesondere weist das induktive Bauteil 1 eine hohe Induktivität, ein gewünschtes Sättigungsverhalten, geringe Verluste auf und/oder kann mit einer hohen Spannung betrieben werden. Derartige induktive Bauteile 1 bestehen beispielsweise einen Hochspannungstest (AC HiPot test) bei einer Spannung von 3 kVAC (3 mA, 3 sec).The magnetic material M and thus the at least one magnetic core 3, 4 preferably includes at least one ferrite material. Ferrite material is inexpensive and readily available. Comparatively good electromagnetic properties of the inductive component 1 are achieved through the use of ferrite material. In particular, the inductive component 1 has a high inductance, a desired saturation behavior, low losses and/or can be operated with a high voltage. Such inductive components 1 pass, for example, a high-voltage test (AC HiPot test) at a voltage of 3 kV AC (3 mA, 3 seconds).

Die gesinterten Partikel werden allgemein mit P bezeichnet. Das Aspektverhältnis wird allgemein mit A bezeichnet. Die minimale Abmessung wird allgemein mit Amin bezeichnet. Die maximale Abmessung wird allgemein mit Amax bezeichnet.The sintered particles are generally denoted by P. The aspect ratio is generally denoted by A. The minimum dimension is generally denoted A min . The maximum dimension is generally denoted by A max .

Claims (13)

  1. Method for producing an inductive component with the steps of:
    - providing a basic body (G) comprising a magnetic material (M),
    - sintering the basic body (G), wherein the sintering is performed at a temperature Ts, where: TS > 1000°C,
    - comminuting the sintered basic body (Gs) to form sintered particles (P, P1, P2),
    - producing a first mixture (X1) from first sintered particles (P1) and a binder (B1),
    - arranging the first mixture (X1) and at least one coil (2) in a first mould (F1),
    - activating the binder (B1) in the first mixture (X1), so that the first sintered particles (P1) form with the binder (B1) a first magnetic core (3), which at least partially surrounds the at least one coil (2),
    - producing a second mixture (X2) from second sintered particles (P2) and a binder (B2), wherein the second sintered particles (P2) are smaller than the first sintered particles (P1),
    - arranging the second mixture (X2) and the at least one coil (2) with the first magnetic core (3) in a second mould (F2), and
    - activating the binder (B2) in the second mixture (X2), so that the second sintered particles (P2) form with the binder (B2) a second magnetic core (4), which surrounds the first magnetic core (3) and the at least one coil (2) completely, apart from terminal contacts (5, 6).
  2. Method according to claim 1, characterized
    in that the magnetic material (M) comprises at least one ferrite material.
  3. Method according to claim 1 or 2, characterized
    in that the following applies for the temperature TS: TS ≥ 1100°C, in particular TS ≥ 1200°C.
  4. Method according to at least one of the preceding claims,
    characterized
    in that the sintered particles (P, P1, P2) have a respective aspect ratio (A) and, before producing the mixtures (X1, X2), the aspect ratios (A) are at least partially reduced.
  5. Method according to at least one of the preceding claims,
    characterized
    in that, before producing the mixtures (X1, X2), the sintered particles (P, P1, P2) are worked by means of a ball mill.
  6. Method according to at least one of the preceding claims,
    characterized
    in that, before producing the mixtures (X1, X2), the sintered particles (P, P1, P2) are separated on the basis of the particle form and/or the particle size.
  7. Method according to at least one of the preceding claims,
    characterized
    in that at least 70% of the sintered particles (P, P1, P2) used for producing the at mixtures (X1, X2) have a respective aspect ratio A, for which the following applies: 0.5 ≤ A ≤ 1, in particular 0.6 ≤ A ≤ 1, in particular 0.7 ≤ A ≤ 1, in particular 0.8 ≤ A ≤ 1, and in particular 0.9 ≤ A ≤ 1.
  8. Method according to at least one of the preceding claims,
    characterized
    in that at least 70% of the sintered particles (P, P1, P2) used for producing the mixtures (X1, X2) have a respective minimum dimension Amin, for which the following applies: 10 µm ≤ Amin ≤ 1000 µm.
  9. Method according to at least one of the preceding claims,
    characterized
    in that, before producing the mixtures (X1, X2), the sintered particles (P, P1, P2) are separated into a first fraction with first the sintered particles (P1) and into a second fraction with the second sintered particles (P2), which are different from the first sintered particles (P1).
  10. Method according to at least one of the preceding claims,
    characterized
    in that the binder (B1, B2) is activated by increasing a temperature (T1, T2) and/or by increasing a pressure (p1, p2).
  11. Method according to at least one of the preceding claims,
    characterized
    in that the mixtures (X1, X2) are produced in such a way that the following applies for a mass ratio m of the sintered particles (P1, P2) to the binder (B1, B2): 75/25 ≤ m ≤ 99/1, in particular 80/20 ≤ m ≤ 98/2, and in particular 85/15 ≤ m ≤ 95/5.
  12. Method according to at least one of the preceding claims,
    characterized
    in that the basic body (G) is provided by pressing the magnetic material (M).
  13. Inductive component comprising
    - at least one coil (2) comprising terminal contacts (5,6),
    - at least one magnetic core (3, 4), which at least partially surrounds the at least one coil (2),
    characterized
    in that the at least one core (3, 4) is formed by means of sintered particles (P1, P2) and a binder (B1, B2),
    wherein a first magnetic core (3) with first sintered particles (P1) and a binder (B1) at least partially surrounds the at least one coil (2), and
    wherein a second magnetic core (4) with second sintered particles (P2), which are smaller than the first sintered particles (P1), and a binder (B2) surrounds the first magnetic core (3) and the at least one coil (2) completely, apart from the terminal contacts (5, 6).
EP20184972.6A 2019-07-31 2020-07-09 Inductive component and method for manufacturing an inductive component Active EP3772070B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019211439.3A DE102019211439A1 (en) 2019-07-31 2019-07-31 Process for manufacturing an inductive component as well as an inductive component

Publications (2)

Publication Number Publication Date
EP3772070A1 EP3772070A1 (en) 2021-02-03
EP3772070B1 true EP3772070B1 (en) 2023-05-10

Family

ID=71579523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20184972.6A Active EP3772070B1 (en) 2019-07-31 2020-07-09 Inductive component and method for manufacturing an inductive component

Country Status (9)

Country Link
US (1) US20210035734A1 (en)
EP (1) EP3772070B1 (en)
JP (1) JP7213207B2 (en)
KR (1) KR102364724B1 (en)
CN (1) CN112309675B (en)
DE (1) DE102019211439A1 (en)
ES (1) ES2946688T3 (en)
RU (1) RU2752251C1 (en)
TW (1) TWI751616B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4369359A1 (en) * 2022-11-14 2024-05-15 Premo, SL Composite magnetic inductor element and fabrication method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215968A (en) * 1993-01-21 1994-08-05 Tokin Corp Manufacture of magnetic element for high frequency
JP3542319B2 (en) * 2000-07-07 2004-07-14 昭栄化学工業株式会社 Single crystal ferrite fine powder
JP3975051B2 (en) 2000-07-11 2007-09-12 Tdk株式会社 Method for manufacturing magnetic ferrite, method for manufacturing multilayer chip ferrite component, and method for manufacturing LC composite multilayer component
DE10155898A1 (en) * 2001-11-14 2003-05-28 Vacuumschmelze Gmbh & Co Kg Inductive component and method for its production
JP4433162B2 (en) 2004-02-05 2010-03-17 株式会社村田製作所 Ceramic slurry, method for producing ceramic slurry, and method for producing multilayer ceramic electronic component
JP2005310694A (en) 2004-04-26 2005-11-04 Murata Mfg Co Ltd Conductive paste, and manufacturing method of laminated ceramic electronic part
JP4904159B2 (en) * 2004-09-21 2012-03-28 住友電気工業株式会社 Method for producing green compact and green compact
SE533657C2 (en) * 2007-10-16 2010-11-23 Magnetic Components Sweden Ab Powder-based, soft magnetic, inductive component and method and apparatus for manufacturing thereof
JP5325799B2 (en) 2009-01-22 2013-10-23 日本碍子株式会社 Small inductor and method for manufacturing the same
JP5398676B2 (en) * 2009-09-24 2014-01-29 日本碍子株式会社 Coil buried type inductor and manufacturing method thereof
CN103597558B (en) 2011-06-15 2017-05-03 株式会社村田制作所 Multilayer coil part
JP2013123007A (en) * 2011-12-12 2013-06-20 Shindengen Electric Mfg Co Ltd Inductor, composite magnetic material, and method for manufacturing inductor
CN103304186B (en) * 2013-07-03 2014-08-13 电子科技大学 Ferrite-base composite magnetic dielectric antenna substrate material and preparation method thereof
CN104425121B (en) * 2013-08-27 2017-11-21 三积瑞科技(苏州)有限公司 Inlay the manufacture method of buried alloy inductance
CN103915236A (en) * 2014-04-01 2014-07-09 黄伟嫦 Novel inductor and manufacturing method thereof
DE102014207636A1 (en) * 2014-04-23 2015-10-29 Würth Elektronik eiSos Gmbh & Co. KG Method for producing an induction component and induction component
DE112016000536T5 (en) * 2015-01-30 2017-12-28 Rogers Corp. (eine Ges.n.den Gesetzen d. Staates Massachusetts) Mo-doped Co2Z-type ferrite composite material for use in ultra-high frequency antennas
DE102015202032A1 (en) * 2015-02-05 2016-08-11 Würth Elektronik eiSos Gmbh & Co. KG Inductor, in particular for magnetically coupled energy transmission, and method for operating such an inductor
KR101813322B1 (en) * 2015-05-29 2017-12-28 삼성전기주식회사 Coil Electronic Component
JP6740817B2 (en) * 2016-08-30 2020-08-19 Tdk株式会社 Ferrite composition, ferrite sintered body, electronic component and chip coil

Also Published As

Publication number Publication date
CN112309675B (en) 2022-09-30
CN112309675A (en) 2021-02-02
KR20210015691A (en) 2021-02-10
TW202107497A (en) 2021-02-16
EP3772070A1 (en) 2021-02-03
JP7213207B2 (en) 2023-01-26
US20210035734A1 (en) 2021-02-04
ES2946688T3 (en) 2023-07-24
JP2021027345A (en) 2021-02-22
KR102364724B1 (en) 2022-02-17
TWI751616B (en) 2022-01-01
RU2752251C1 (en) 2021-07-23
DE102019211439A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
EP2131373B1 (en) Soft magnetic material and method for producing objects from this soft magnetic material
DE112009000919T5 (en) Method for producing a magnetic composite material and magnetic composite material
WO2002101763A1 (en) Inductive component and method for producing the same
DE10207133B4 (en) Powdered magnetic core and production thereof
DE102008026887B4 (en) Soft magnetic composite material
DE19626049A1 (en) Magnetic material and bonded magnet
DE102006032517A1 (en) Manufacture of magnet core used in inductive component such as storage choke, involves pressing mixture of particles of soft magnetic alloy and binder with preset curing and decomposition temperatures, and heating obtained core
DE10291720T5 (en) Process for producing a sintered compact for a rare earth magnet
EP3772070B1 (en) Inductive component and method for manufacturing an inductive component
EP1168381A2 (en) Soft magnetic material with heterogenous structure and its production process
EP3431209B1 (en) Method and installation for the production of a starting material for producing of rare earth magnet
DE10040439B4 (en) Magnetic foil and method for its production
DE102008048839A1 (en) Soft magnetic material i.e. manganese zinc ferrite for e.g. transformer, has nano-fraction of soft magnetic material particles with particle size in range of ten to two hundred nano meter, where material is produced by spray drying
DE2823054B1 (en) Process for the production of plastic-bonded anisotropic permanent magnets
DE10042349C1 (en) Production of a ceramic body comprises forming particles of a sort A and a sort B, forming a particle mixture by mixing the different sorts of particles, producing a blank by pressing the particle mixture, and sintering
DE2526137A1 (en) Prodn. of varistor for medium and high voltage uses - from zinc oxide and dopant, by mixing uniform powder fractions, moulding and sintering
DE2811227A1 (en) Iron powder core for loudspeaker filters - prepd. by pressing powder which pref. includes lubricant and colloidal and phenolic resin binders
EP1478604A1 (en) Ceramic compounds having a high proportion of solids for producing ceramic materials and products having a low level of shrinkage
DE102008026888B4 (en) A method of making articles of a soft magnetic composite and articles made by the method
DE112022001722T5 (en) Sintered ferrite magnet and manufacturing process
DE1918909C3 (en) Process for the production of sintered ferrite molded bodies
DE102022115371A1 (en) Balls comprising a ferrite material and use of balls comprising a ferrite material
DE102022101327A1 (en) Ferrite tube core, interference suppression choke with such a ferrite tube core and method for forming a ferrite tube core
DE102021100711A1 (en) PROCESSING ANISOTROPIC PERMANENT MAGNET WITHOUT A MAGNETIC FIELD
DE102013205101A1 (en) Pressing tool for producing a magnet, in particular a permanent magnet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210728

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1567549

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003227

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2946688

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 4

Ref country code: ES

Payment date: 20230821

Year of fee payment: 4

Ref country code: CH

Payment date: 20230801

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230910

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 4

Ref country code: DE

Payment date: 20230922

Year of fee payment: 4

Ref country code: BE

Payment date: 20230719

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003227

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230709

26N No opposition filed

Effective date: 20240213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230510