EP3431209B1 - Method and installation for the production of a starting material for producing of rare earth magnet - Google Patents

Method and installation for the production of a starting material for producing of rare earth magnet Download PDF

Info

Publication number
EP3431209B1
EP3431209B1 EP18182618.1A EP18182618A EP3431209B1 EP 3431209 B1 EP3431209 B1 EP 3431209B1 EP 18182618 A EP18182618 A EP 18182618A EP 3431209 B1 EP3431209 B1 EP 3431209B1
Authority
EP
European Patent Office
Prior art keywords
classifier
starting material
intermediate product
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18182618.1A
Other languages
German (de)
French (fr)
Other versions
EP3431209A1 (en
Inventor
Frank Winter
Hermann Sickel
Dr. Wilhelm Fernengel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Trockenmahltechnik GmbH
Original Assignee
Netzsch Trockenmahltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Trockenmahltechnik GmbH filed Critical Netzsch Trockenmahltechnik GmbH
Priority to EP23190243.8A priority Critical patent/EP4268995A1/en
Priority to SI201831039T priority patent/SI3431209T1/en
Publication of EP3431209A1 publication Critical patent/EP3431209A1/en
Application granted granted Critical
Publication of EP3431209B1 publication Critical patent/EP3431209B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/003Separation of articles by differences in their geometrical form or by difference in their physical properties, e.g. elasticity, compressibility, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/025Making ferrous alloys by powder metallurgy having an intermetallic of the REM-Fe type which is not magnetic

Definitions

  • a permanent magnet (also: permanent magnet) is a piece of a magnetizable material, for example iron, cobalt or nickel, which maintains its static magnetic field without the need for an electrical current flow (unlike electromagnets).
  • a permanent magnet can be created by applying a magnetic field to a ferromagnetic material.
  • rare earth magnets refers to a group of permanent magnets that essentially consist of ferrous metals (iron, cobalt, more rarely nickel) and rare earth metals (especially neodymium, samarium, praseodymium, dysprosium, terbium, gadolinium). They are characterized by the fact that they simultaneously have a high magnetic remanent flux density and a high magnetic coercive field strength and thus a high magnetic energy density.
  • NiFeB neodymium, iron and boron
  • Permanent magnets are made from crystalline powder.
  • the magnetic powder is pressed into a mold in the presence of a strong magnetic field.
  • the crystals align themselves with their preferred magnetization axis in the direction of the magnetic field.
  • the compacts are then sintered. During sintering, the pulverized components of the powder are bonded together or compacted by heating, but none or at least not all of the starting materials are melted.
  • the compacts are heated - often under increased pressure - in such a way that the temperatures remain below the melting temperature of the main components, so that the shape (shape) of the workpiece is retained.
  • the magnetic powder is produced in particular by grinding the corresponding alloys or components, for example in fluid bed jet mills or similar grinding systems.
  • fluid bed jet mills in particular, defined fine grinding takes place, with an exact upper grain limit, but with a not insignificant proportion of fine particles.
  • the comminution energy is provided by gas jets.
  • a method for producing a permanent magnet from an alloy is described in EP 0 414 376 A2 described, whereby the alloy is coarsely and finely pulverized. From the finely pulverized powder, the finest particles and coarse particles are sorted out using a “particle-size classifier machine”. The powder of the defined size is then pressed into a molding and sintered.
  • EP 2 273 513 A1 describes a method for producing an RTB sintered magnet.
  • a metal alloy is first provided as the starting material, which is initially coarse and then Is finely pulverized. After obtaining the desired particle size, the further process steps “compression”, “sintering” and “heat treatment”, “surface treatment” and “magnetization” etc. take place.
  • the document US 2002/0129874 describes a process for producing a rare earth magnet.
  • an alloy is first pulverized coarsely and finely, with a classifying rotor being assigned to the pulverizer in order to separate particles of a predetermined size.
  • the particles with a predetermined size are then fed to a cyclone classifier, whereby the finest particles are separated.
  • the WO published publication 2007/045320 A1 also describes a process for producing a rare earth magnet.
  • an alloy provided is first coarsely pulverized and then finely pulverized. To obtain the desired particle size, the finely pulverized powder is sieved.
  • magnets made from the magnetic powders already known from the prior art have an opposing field stability or coercive field strength that requires improvement due to a high volume percentage of coarse content.
  • the object of the invention is to further optimize the production of the starting mixture for the production of rare earth magnets in order to be able to produce improved rare earth magnets.
  • the invention relates to a method for producing a powdery starting material intended for the production of rare earth magnets.
  • a further step provides for carrying out at least one particle size-oriented classification for the powdery intermediate product, with a fraction of the powdery intermediate product formed by means of the at least one classification forming the starting material intended for the production of rare earth magnets.
  • the powdery intermediate product is initially fed to at least a first static classifier.
  • a portion separated from the powdery intermediate product by means of the at least one static classifier can be fed to the at least one dynamic classifier, which at least one dynamic classifier carries out at least one particle size-oriented classification for the portion separated from the powdery intermediate product by means of the at least one static classifier and thereby separates the fraction from the portion that forms the starting material intended for the production of rare earth magnets.
  • particles are formed in a target size range between 1 ⁇ m and 10 ⁇ m.
  • At least two temporally successive classifications are implemented via the at least one dynamic classifier.
  • coarse material is separated from the powdery intermediate product by the at least one dynamic classifier as part of a first classification based on the particle size. Furthermore, as part of a second classification based on the particle size, fine material is separated from the powdery intermediate product by the at least one dynamic classifier. A portion of the powdery intermediate product separated from the fine and coarse material is then provided as a fraction, which forms the starting material intended for the production of rare earth magnets.
  • a starting material is produced in which a proportion of particles > 8 ⁇ m is ⁇ 2 percent by volume and in which a proportion of particles ⁇ 2 ⁇ m is ⁇ 2 percent by volume.
  • a proportion of particles >8 ⁇ m is in a range between 0.1 percent by volume and a proportion of particles ⁇ 2 ⁇ m is in a range between 0.05 percent by volume and 2 percent by volume.
  • the dynamic classifier comprises a classifying rotor and the static classifier is designed by a cyclone classifier.
  • the at least one dynamic classifier sifts the powdery intermediate product and also disperses it, from which the fraction is separated from the powdery intermediate product, which forms the starting material intended for the production of rare earth magnets.
  • Embodiments have proven useful in which the first classification based on particle size and/or density and the second classification based on particle size and/or density are carried out via exactly one dynamic classifier.
  • the alloy comprising at least one rare earth metal can preferably be comminuted mechanically in two separate steps, with the powdery intermediate product being formed from the comminutements in separate steps.
  • the at least one dynamic classifier implements the at least one classification based on particle size and/or density for the powdery intermediate product under a protective gas atmosphere.
  • a proportion of particles > 8 ⁇ m is ⁇ 2 percent by volume, in particular in a range between 0.1 percent by volume and 1 percent by volume and / or a proportion of particles ⁇ 2 ⁇ m is ⁇ 2 percent by volume and in particular in a range between 0. 05 percent by volume and 2 percent by volume.
  • the invention also relates to a system for producing a powdery starting material intended for the production of rare earth magnets.
  • a system for producing a powdery starting material intended for the production of rare earth magnets can also be provided in the system described below and are therefore not mentioned redundantly.
  • Features described below, which relate to various embodiments of the system according to the invention, can also be provided in the methods already described above.
  • the system for producing a powdery starting material intended for the production of rare earth magnets comprises at least one comminution device, which is aimed at producing a powdery intermediate product by comminuting an alloy comprising at least one rare earth metal.
  • the system further comprises at least one separating device, which can separate a fraction from the powdery intermediate product via at least one particle size-oriented classification or sifting, which forms the starting material intended for the production of rare earth magnets.
  • the at least one separating device comprises at least one static classifier in the form of a cyclone classifier, to which the powdery intermediate product can be fed.
  • the system includes at least one dynamic classifier with a classifying rotor, which can separate the fraction from the powdery intermediate product, which forms the starting material intended for the production of rare earth magnets, via a classification based on particle size.
  • the at least one static classifier and the at least one dynamic classifier are connected to one another in such a way that a portion separated from the supplied intermediate product by means of the at least one static classifier can be fed to the at least one dynamic classifier.
  • the at least one dynamic safe can then, if necessary, separate the fraction from the supplied portion that forms the starting material intended for the production of rare earth magnets.
  • the system produces a starting material in which a proportion of particles > 8 ⁇ m is ⁇ 2 percent by volume and in which a starting material ⁇ 2 ⁇ m is ⁇ 2 percent by volume.
  • a proportion of particles >8 ⁇ m is in a range between 0.1 percent by volume and 1 percent by volume and a proportion of particles ⁇ 2 ⁇ m is in a range between 0.05 percent by volume and 2 percent by volume.
  • the dynamic classifier is connected to a control and/or regulating unit, in which control and/or regulating unit an algorithm is stored, via which the control and/or regulating unit sets a speed of the as part of the classifying rotor, which is designed at least one dynamic classifier, independently regulates or controls.
  • the at least one dynamic classifier is designed to classify and disperse the supplied powdery intermediate product.
  • the at least one comminution device comprises two successive comminution machines, each of which is designed for preferably mechanical comminution of the alloy comprising at least one rare earth metal and interacts with one another to produce the powdery intermediate product from the alloy comprising at least one rare earth metal.
  • Embodiments in which the at least one dynamic filter can implement the classification based on particle size and/or density under a protective gas atmosphere have also proven successful.
  • the starting material which can be produced within the framework of the previously described methods or by means of the previously described system, can essentially comprise particles of a target size range and hardly have any contamination with particles that are smaller than particles of a target size range. These are also referred to below as fine particles. Furthermore, the starting material produced within the framework of the previously described methods or by means of the previously described system can essentially hardly contain any contamination with particles that are larger than the particles of the target size range. These are also referred to below as coarse particles.
  • a starting material which essentially only comprises particles with a size within the target size range in a substantially homogeneous mixture.
  • the starting material which can be produced with the previously described methods or by means of the previously described system, embodiments have proven successful in which the starting material has particles in the target size range between 1 ⁇ m and 10 ⁇ m, in particular in a target size range between 2 ⁇ m and 8 ⁇ m.
  • the starting material has particles in the target size range between 1 ⁇ m and 10 ⁇ m, in particular in a target size range between 2 ⁇ m and 8 ⁇ m.
  • a starting material produced in the context of the preceding processes or by means of the system described above contains ⁇ 2 percent by volume of fine particles, in particular ⁇ 1 percent by volume. Furthermore, it is envisaged that within the framework of the previous procedures or Starting material produced using the system described above comprises ⁇ 2 percent by volume of coarse particles, in particular ⁇ 1 percent by volume.
  • the starting material produced within the framework of the previously described processes or by means of the previously described system essentially or predominantly contains particles in the target size range between 2 ⁇ m and 8 ⁇ m, with a proportion of particles whose size is above 8 ⁇ m being ⁇ 2 percent by volume, in particular in a range between 0.1 percent by volume and 1 percent by volume and where a proportion of particles whose size is below 2 ⁇ m is ⁇ 2 percent by volume, in particular in a range between 0.05 percent by volume and 2 percent by volume.
  • At least one static classifier which is provided in various embodiments of a method according to the invention or a system according to the invention, is formed by at least one cyclone classifier.
  • the at least one cyclone classifier can possibly achieve a reduction in the proportion of fine particles.
  • a powdery mixture separated via the at least one static classifier or the at least one cyclone classifier, which is also referred to below as a powdery intermediate product generally still contains up to 10 percent by volume of fine particles and/or up to 10 even after the fine particles have been separated Volume percent of coarse particles.
  • the fine particles which are necessarily always present in such a powdery intermediate product, have a detrimental effect on the properties of the rare earth magnets made from them in several respects.
  • the ground powder intermediate product which has possibly already been partially freed of fine particles via the at least one static classifier, is subjected to at least one further classifier process, implemented by at least one dynamic classifier.
  • at least one further classifier process implemented by at least one dynamic classifier.
  • the powdery intermediate product is first dispersed and then a classification according to particle size is carried out for the dispersed powdery intermediate product.
  • This dispersion and classification according to particle size can be carried out in exactly one dynamic classifier. Fine particles and coarse particles can then be separated from the powdery intermediate product using the at least one dynamic classifier or exactly one dynamic classifier.
  • the dispersion of the intermediate product and the renewed separation of fine particles and coarse particles are carried out within a single device, in particular within a single dynamic classifier. Due to the high chemical reactivity of fine particles that may be present in high concentrations in the powdery intermediate product, the only dynamic classifier can implement dispersion and/or classifying, if necessary under a protective gas atmosphere. Helium, argon, nitrogen, etc. are used as protective gases.
  • the at least one rare earth metal formed as a component of the alloy can be formed, for example, by iron and/or boron.
  • the alloy comprising at least one rare earth metal can be an NdFeB alloy.
  • a starting material can be produced from this alloy comprising at least one rare earth metal, which essentially only comprises particles in the target size range between 2 ⁇ m to 8 ⁇ m.
  • the starting mixture preferably comprises ⁇ 95 percent by volume, in particular ⁇ 98 percent by volume, of particles in the target size range, which target size range is set from 2 ⁇ m to 8 ⁇ m.
  • the system already described includes a device for the coarse comminution of an alloy comprising at least one rare earth metal.
  • the coarse powder fraction formed from the alloy comprising at least one rare earth metal is in a fine comminution device designed as part of the system is ground into a fine powder fraction, the fine powder fraction forming the powdery intermediate product.
  • the device for fine comminution can be designed as a fluid bed jet mill.
  • Figure 1 shows schematically process steps for producing a starting material AM for the production of rare earth magnets.
  • R rare earth metal
  • Fe iron
  • B boron in the desired proportions.
  • an NdFeB alloy is used to produce a so-called neodymium magnet.
  • an alloy must first be produced from the elements in the desired proportions.
  • this alloy is subjected to coarse grinding. For example, in a mechanical grinding system or through embrittlement with hydrogen. In particular, particles with a size of up to a few mm are generated.
  • the coarse particles gP are chemically stable and can also be easily oriented in magnetic fields, but they have negative effects on the opposing field stability of the magnet because these coarse particles gP remagnetize even in small magnetic opposing fields and thus worsen the opposing field stability (or the coercive field strength) of the entire magnet. For this reason it is advantageous to reduce the proportion of coarse particles To further reduce gP in the starting mixture for the production of sintered permanent magnets.
  • the particles fP of the fine fraction are chemically very reactive due to their fineness and react with the oxygen or even with the nitrogen from the environment even at the lowest oxygen concentrations. These fine particles fP can cause spontaneous powder fires during further processing of the powder.
  • Another disadvantage of the finest particles fP is that these fine powder particles are very difficult to orient in the magnetic fields and pressing devices that are usually available (of the order of magnitude of approximately 10 - 20 kOe) and therefore worsen the remanence of the magnets made from them. For this reason, in a fourth or additional process step, fine particles, in particular particles with a diameter of ⁇ 1-2 ⁇ m, are removed from the fine powder fraction fPF.
  • the mixture is passed through a cyclone that carries the fines through a suitable gas stream and thereby separates it from the mixture.
  • This forms the intermediate product ZP.
  • this still contains a not insignificant proportion of up to 10% of fine particles smaller than approx. 1 ⁇ m to 2 ⁇ m.
  • the intermediate product ZP is subjected to at least one further sifting process in order to remove unwanted fine particles fP and coarse particles gP and thus ensure the homogeneity of the To further improve particles in the target size ZG, in particular in order to obtain a powder mixture as the starting material AM, which essentially only comprises particles with particle sizes in a target range between approximately 2 ⁇ m to 8 ⁇ m, since these particles represent the best powder fraction in magnetic terms. All further steps, which in terms of time follow the step according to number 4, are carried out with the help of a dynamic classifier 10 (cf. Figures 2 and 3 ) or a high-performance classifier.
  • the particles with the target size ZG between 2 ⁇ m to 8 ⁇ m are chemically sufficiently stable so that they do not cause any additional oxidation in the normal manufacturing process. They also work well with the usual magnetic fields orientate. They therefore contribute significantly to achieving a high remanence of the magnets produced and are therefore desirable, necessary and useful.
  • the powdery intermediate product ZP is dispersed in order to produce the most homogeneous distribution of the different particles of the intermediate product ZP.
  • molecular and magnetic attractive forces between the particles are overcome and subsequent sifting and separation of fine particles and/or coarse particles following dispersion is possible.
  • a dynamic classifier 10 is also used for this process step (cf. Figures 2 and 3 ) or high-performance classifiers are used.
  • the dispersed powdery intermediate product ZP is sifted again and particles of the fine fraction and/or particles of the coarse fraction are removed. This creates an optimized separation of the finest and coarse particles to achieve the desired target particle size ZG.
  • the fine proportion of particles whose size is less than 1 ⁇ m is reduced to a proportion of less than 1%.
  • the coarse proportion of particles whose size is over 10 ⁇ m can also be reduced to a proportion of less than 1%.
  • This at least one additional classifying process is preferably carried out under a protective gas atmosphere, for example helium, argon, or nitrogen, although this is not intended to represent an exhaustive list of possibilities.
  • a protective gas atmosphere for example helium, argon, or nitrogen, although this is not intended to represent an exhaustive list of possibilities.
  • the protective gas atmosphere particularly prevents spontaneous powder fires due to the fine particles fP.
  • the fifth and sixth process step or the last two process steps ie the dispersion and the separation of fine particles fP and/or the separation of coarse particles gP, can be carried out in a dynamic classifier 10 according to Figures 2 and 3 done together.
  • the powdery intermediate product is added via product addition 1 ZP is fed to the classifier device or the dynamic classifier 10 from above.
  • the necessary process air VL is supplied through the classifier air inlet 2, which takes the powdery intermediate product ZP supplied via the product addition 1 and leads it through a large number of adjustable guide vane gaps of the static guide vane basket 3, whereby the intermediate product ZP is dispersed.
  • a protective gas is used as the process air VL.
  • the intermediate product ZP dispersed in this way is passed through a classifier wheel 4 whose speed can be continuously adjusted, with the particle sizes being separated either into target and coarse material or into target and fine material.
  • the optimized classifier wheel design ensures that very high fineness levels can be achieved with just one classifier wheel 4, even at high throughputs.
  • the finest particles fP leave the classifier device 10 via the classifier wheel 4, which is installed with a horizontal shaft 8, in the center of the classifier device or the dynamic classifier 10.
  • the coarse particles gP are rejected by the classifier wheel 4 and through the helically designed machine housing 9, which is provided with a partition 5, at the back discharged via the coarse material outlet 6 on the underside of the machine housing 9.
  • the position of the coarse material flap 7 can be used to regulate the discharge of the coarse particles gP in difficult separation tasks, and thus the cleanliness of the coarse particles gP can be influenced.
  • the particles of the target size ZP leave the dynamic classifier 10 together with the coarse material via the coarse material outlet 6.
  • the fine particles fP were separated from the particles of the target size ZP and therefore do not form part of the fraction that leaves the dynamic classifier 10 via the coarse material outlet 6.
  • the desired target particle size ZG is regulated in particular by regulating the gas flow of the process air VL and/or the speed of the classifier wheel 4. A higher gas flow and/or a lower speed lead to a coarser product, while a lower gas flow and/or a higher one speed lead to a finer product.
  • Figure 4 shows the particle size distribution in the intermediate product ZP and in the starting material AM.
  • the diagram plots the particle size in ⁇ m against the proportion of the volume density of the respective mixture in %. It is clearly visible here that through the additional process step of dispersing the intermediate product ZP and sifting with subsequent separation of the finest particles fP ⁇ 1 ⁇ m and/or coarse particles gP ⁇ 10 via a dynamic sifter 10, a more homogeneous particle mixture in the starting material AM can be achieved, in which the proportion of fine particles fP is ⁇ 1% of the volume density and in which the proportion of coarse particles gP is also ⁇ 1% of the volume density. In particular, the hatched portions of fine particles fP and coarse particles gP are removed from the powdery intermediate product ZP.
  • the starting material AM produced in this way is particularly suitable for the production of sintered rare earth magnets due to the particle size between 1 ⁇ m and 10 ⁇ m, in particular between 2 ⁇ m and 8 ⁇ m, since particularly good magnets can be achieved with these particle sizes of the starting material AM.
  • this starting material AM for the production of permanent magnets high (improved) remanence values BR and good (improved) opposing field stability HcJ as well as a significant improvement in the squareness of the demagnetization curve are achieved.
  • Figure 5 shows a scanning electron microscope image of the powdery intermediate product ZP and Figure 6 shows a scanning electron micrograph of the starting material AM, as it is produced in various embodiments of the method according to the invention and can be used for the production of rare earth magnets.
  • the intermediate product ZP represents a highly inhomogeneous mixture of different particle sizes and in particular also contains a high proportion of fine particles fP Figure 6
  • the double-screened starting material AM mainly only contains particles of a target size ZG between 1 ⁇ m and 10 ⁇ m, in particular between 2 ⁇ m and 8 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

Ausgangsmaterials für die Herstellung von Seltenerd- Magneten und eine Anlage zur Herstellung eines Ausgangsmaterials für die Herstellung von Seltenerd- Magneten.Starting material for the production of rare earth magnets and a system for producing a starting material for the production of rare earth magnets.

Stand der TechnikState of the art

Ein Dauermagnet (auch: Permanentmagnet) ist ein Stück eines magnetisierbaren Materials, zum Beispiel Eisen, Kobalt oder Nickel, welches sein statisches Magnetfeld behält, ohne dass man (im Gegensatz zu Elektromagneten) einen elektrischen Stromfluss benötigt. Ein Dauermagnet kann durch die Einwirkung eines Magnetfeldes auf ein ferromagnetisches Material erzeugt werden.A permanent magnet (also: permanent magnet) is a piece of a magnetizable material, for example iron, cobalt or nickel, which maintains its static magnetic field without the need for an electrical current flow (unlike electromagnets). A permanent magnet can be created by applying a magnetic field to a ferromagnetic material.

Unter dem Namen Seltenerd- Magnete fasst man eine Gruppe von Permanentmagneten zusammen, die im Wesentlichen aus Eisenmetallen (Eisen, Cobalt, seltener Nickel) und Seltenerdmetallen (insbesondere Neodym, Samarium, Praseodym, Dysprosium, Terbium, Gadolinium) bestehen. Sie zeichnen sich dadurch aus, dass sie gleichzeitig eine hohe magnetische Remanenzflussdichteund eine hohe magnetische Koerzitivfeldstärke und damit eine hohe magnetische Energiedichte aufweisen.The name rare earth magnets refers to a group of permanent magnets that essentially consist of ferrous metals (iron, cobalt, more rarely nickel) and rare earth metals (especially neodymium, samarium, praseodymium, dysprosium, terbium, gadolinium). They are characterized by the fact that they simultaneously have a high magnetic remanent flux density and a high magnetic coercive field strength and thus a high magnetic energy density.

Eine Legierung aus Neodym, Eisen und Bor (NdFeB) ermöglicht beispielsweise die Herstellung von sehr starken Magneten zu verhältnismäßig günstigen Kosten. Die Herstellung erfolgt über pulvermetallurgische Verfahren, heute aber teilweise auch als kunststoffgebundene Magnete. Lange Zeit waren die Einsatztemperaturen auf 60-120 °C begrenzt. Bei einigen neueren Entwicklungen mit weiteren Zusätzen anderer Seltenerdelemente, insbesondere Dysprosium oder Terbium, kann die Temperaturstabilität auf über 200°C angehoben werden. Zur Erhöhung der Korrosionsstabilität werden oft andere Legierungsbestandteile wie Kobalt hinzulegiert.An alloy of neodymium, iron and boron (NdFeB), for example, enables the production of very strong magnets at a relatively low cost. They are manufactured using powder metallurgy processes, but today they are also sometimes produced using plastic-bonded magnets. For a long time, operating temperatures were limited to 60-120 °C. In some newer developments with additional additions of other rare earth elements, in particular dysprosium or terbium, the temperature stability can be increased to over 200°C. To To increase corrosion stability, other alloy components such as cobalt are often added.

Permanentmagnete werden aus kristallinem Pulver hergestellt. Das Magnetpulver wird in Gegenwart eines starken Magnetfelds in eine Form gepresst. Dabei richten sich die Kristalle mit ihrer bevorzugten Magnetisierungsachse in Richtung des Magnetfelds aus. Die Presslinge werden anschließend gesintert. Beim Sintern werden die pulverisierten Bestandteile des Pulvers durch Erwärmung miteinander verbunden oder verdichtet, wobei jedoch keine oder zumindest nicht alle Ausgangsstoffe aufgeschmolzen werden. Dabei werden die Presslinge - oft unter erhöhtem Druck - derart erhitzt, dass die Temperaturen unterhalb der Schmelztemperatur der Hauptkomponenten bleiben, so dass die Gestalt (Form) des Werkstückes erhalten bleibt.Permanent magnets are made from crystalline powder. The magnetic powder is pressed into a mold in the presence of a strong magnetic field. The crystals align themselves with their preferred magnetization axis in the direction of the magnetic field. The compacts are then sintered. During sintering, the pulverized components of the powder are bonded together or compacted by heating, but none or at least not all of the starting materials are melted. The compacts are heated - often under increased pressure - in such a way that the temperatures remain below the melting temperature of the main components, so that the shape (shape) of the workpiece is retained.

Bei der oberhalb von 1000 C liegenden Sintertemperatur geht die nach außen hin wirksame Magnetisierung verloren, weil die thermische Bewegung der Atome zur weitestgehend antiparallelen Ausrichtung der Elementarmagnete in den Kristallen führt. Da die Orientierung der Körner im Sinterverbund jedoch nicht verloren geht, kann die Parallelausrichtung der Elementarströme nach dem Abkühlen der Magnete durch einen ausreichend starken Magnetisierungsimpuls wiederhergestellt werden.At sintering temperatures above 1000 C, the externally effective magnetization is lost because the thermal movement of the atoms leads to the elementary magnets in the crystals being aligned largely antiparallel. However, since the orientation of the grains in the sintered composite is not lost, the parallel alignment of the elementary currents can be restored after the magnets have cooled down by a sufficiently strong magnetization pulse.

Die Herstellung des Magnetpulvers erfolgt insbesondere durch Vermahlen der entsprechenden Legierungen bzw. Bestandteile beispielsweise in Fließbettstrahlmühlen oder ähnlichen Mahlanlagen. In Fließbettstrahlmühlen erfolgt insbesondere eine definierte Feinstvermahlung, zwar mit exakter Oberkornbegrenzung, jedoch mit nicht unerheblichem Anteil an Feinstpartikeln. Die Zerkleinerungsenergie wird hierbei durch Gasstrahlen bereitgestellt.The magnetic powder is produced in particular by grinding the corresponding alloys or components, for example in fluid bed jet mills or similar grinding systems. In fluid bed jet mills, in particular, defined fine grinding takes place, with an exact upper grain limit, but with a not insignificant proportion of fine particles. The comminution energy is provided by gas jets.

Ein Verfahren zur Herstellung eines Permanentmagneten aus einer Legierung wird in EP 0 414 376 A2 beschrieben, wobei die Legierung grob und fein pulverisiert wird. Bei dem fein pulverisierten Pulver werden Feinstpartikel und auch Grobpartikel mittels einer "particle-size classifier machine" aussortiert. Anschließend wird das Pulver mit der definierten Größe zu einem Formling gepresst und gesintert.A method for producing a permanent magnet from an alloy is described in EP 0 414 376 A2 described, whereby the alloy is coarsely and finely pulverized. From the finely pulverized powder, the finest particles and coarse particles are sorted out using a “particle-size classifier machine”. The powder of the defined size is then pressed into a molding and sintered.

Die Offenlegungsschrift EP 2 273 513 A1 beschreibt ein Verfahren zur Herstellung eines R-T-B gesinterten Magneten. Hierfür wird zunächst eine Metalllegierung als Ausgangsmaterial bereitgestellt, welches zunächst Grob- und anschließend Feinpulverisiert wird. Nach Erhalt der gewünschten Partikelgröße erfolgen die weiteren Verfahrensschritte "Verdichtung", "Sintern" und "Wärmebehandlung", "Oberflächenbehandlung" und "Magnetisierung" etc.The disclosure document EP 2 273 513 A1 describes a method for producing an RTB sintered magnet. For this purpose, a metal alloy is first provided as the starting material, which is initially coarse and then Is finely pulverized. After obtaining the desired particle size, the further process steps “compression”, “sintering” and “heat treatment”, “surface treatment” and “magnetization” etc. take place.

Das Dokument US 2002/0129874 beschreibt ein Verfahren zur Herstellung eines Seltenerd-Magneten. Hierbei wird eine Legierung zunächst grob und fein pulverisiert, wobei dem Pulverisierer zunächst ein Klassierrotor zugeordnet ist, um Partikel mit einer vorbestimmten Größe abzutrennen. Die Partikel mit einer vorbestimmten Größe werden anschließend einem Zyklonklassierer zugeführt, wodurch feinste Partikel abgetrennt werden.The document US 2002/0129874 describes a process for producing a rare earth magnet. Here, an alloy is first pulverized coarsely and finely, with a classifying rotor being assigned to the pulverizer in order to separate particles of a predetermined size. The particles with a predetermined size are then fed to a cyclone classifier, whereby the finest particles are separated.

Die WO Offenlegungsschrift 2007/045320 A1 beschreibt ebenfalls ein Verfahren zur Herstellung eines Seltenerd-Magneten. Hierbei wird eine bereitgestellte Legierung zunächst grob und anschließend fein pulverisiert. Um die gewünschte Partikelgröße zu erhalten, wird das fein pulverisierte Pulver gesiebt.The WO published publication 2007/045320 A1 also describes a process for producing a rare earth magnet. Here, an alloy provided is first coarsely pulverized and then finely pulverized. To obtain the desired particle size, the finely pulverized powder is sieved.

Die Praxis hat gezeigt, dass Magnetpulver, welche mittels der aus dem Stand der Technik bekannten Verfahren hergestellt werden können, chemisch sehr reaktiv sind und aus diesem Grunde bereits bei geringen Sauerstoffkonzentrationen mit dem Sauerstoff oder Stickstoff aus der Umgebung reagieren. Hierdurch können mit einer Weiterverarbeitung des Magnetpulvers Pulverbrände einhergehen. Auch hat die Praxis gezeigt, dass sich Magnete, die mittels aus dem Stand der Technik bekannten Magnetpulvern hergestellt werden, häufig nur sehr schlecht orientierten lassen, wodurch die Remanenz der aus den bereits bekannten Magnetpulvern hergestellten Magnete verschlechtert wird. Solche Nachteile können insbesondere mit bzw. bei einem hohen Volumenprozentsatz an Feinanteilen im Magnetpulver einhergehen.Practice has shown that magnetic powders, which can be produced using processes known from the prior art, are chemically very reactive and for this reason react with the oxygen or nitrogen from the environment even at low oxygen concentrations. As a result, further processing of the magnetic powder can result in powder fires. Practice has also shown that magnets that are manufactured using magnetic powders known from the prior art can often be oriented very poorly, which means that the remanence of the magnets manufactured from the already known magnetic powders is impaired. Such disadvantages can be associated, in particular, with or with a high volume percentage of fines in the magnetic powder.

Weiter kann es sein, dass aus den bereits aus dem Stand der Technik bekannten Magnetpulvern hergestellte Magnete aufgrund eines hohen Volumenprozentsatzes an Grobanteil eine verbesserungswürdige Gegenfeldstabilität bzw. Koerzitivfeldstärke besitzen.Furthermore, it may be that magnets made from the magnetic powders already known from the prior art have an opposing field stability or coercive field strength that requires improvement due to a high volume percentage of coarse content.

BeschreibungDescription

Die Aufgabe der Erfindung besteht darin, die Herstellung des Ausgangsgemisches zur Herstellung von Seltenerd- Magneten weiter zu optimieren, um damit verbesserte Seltenerd- Magneten herstellen zu können.The object of the invention is to further optimize the production of the starting mixture for the production of rare earth magnets in order to be able to produce improved rare earth magnets.

Die obige Aufgabe wird durch die Gegenstände mit den Merkmalen in den unabhängigen Ansprüchen gelöst. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.The above task is solved by the objects having the features in the independent claims. Further advantageous embodiments are described in the subclaims.

Die Erfindung betrifft ein Verfahren zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials.The invention relates to a method for producing a powdery starting material intended for the production of rare earth magnets.

Ein erster Schritt des Verfahrens sieht ein Zerkleinern einer mindestens ein Seltenerdmetall umfassenden Legierung vor, wobei aus der einen mindestens ein Seltenerdmetall umfassenden Legierung ein pulverförmiges Zwischenprodukt entsteht. Das Zerkleinern umfasst eine Grobvermahlung und eine Feinvermahlung. Hierbei werden insbesondere Partikel mit einer durchschnittlichen Partikelgröße zwischen d50= 2µm bis 5µm erzeugt.A first step of the method involves comminution of an alloy comprising at least one rare earth metal, with a powdery intermediate product being formed from the alloy comprising at least one rare earth metal. Grinding includes coarse grinding and fine grinding. In particular, particles with an average particle size between d50 = 2µm to 5µm are produced.

Ein weiterer Schritt sieht ein Durchführen mindestens einer auf Partikelgröße ausgerichteten Klassierung für das pulverförmige Zwischenprodukt vor, wobei eine mittels der mindestens einen Klassierung gebildete Fraktion des pulverförmigen Zwischenproduktes das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet. Das pulverförmige Zwischenprodukt wird zunächst mindestens einem ersten statischen Sichter zugeführt. Hierauf folgend kann ein mittels des mindestens einen statischen Sichters aus dem pulverförmigen Zwischenprodukt abgetrennter Anteil dem wenigstens einen dynamischen Sichter zugeführt werden, welcher wenigstens eine dynamische Sichter die wenigstens eine auf Partikelgröße ausgerichtete Klassierung für den mittels des mindestens einen statischen Sichters aus dem pulverförmigen Zwischenprodukt abgetrennten Anteil umsetzt und hierbei die Fraktion aus dem Anteil abtrennt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet. Innerhalb der das Ausgangsmaterial bildenden Fraktion sind Partikel in einem Zielgrößenbereich zwischen 1µm und 10µm ausgebildet.A further step provides for carrying out at least one particle size-oriented classification for the powdery intermediate product, with a fraction of the powdery intermediate product formed by means of the at least one classification forming the starting material intended for the production of rare earth magnets. The powdery intermediate product is initially fed to at least a first static classifier. Following this, a portion separated from the powdery intermediate product by means of the at least one static classifier can be fed to the at least one dynamic classifier, which at least one dynamic classifier carries out at least one particle size-oriented classification for the portion separated from the powdery intermediate product by means of the at least one static classifier and thereby separates the fraction from the portion that forms the starting material intended for the production of rare earth magnets. Within the fraction forming the starting material, particles are formed in a target size range between 1µm and 10µm.

Bei dem Verfahren werden über den wenigstens einen dynamischen Sichter mindestens zwei zeitlich aufeinanderfolgende und jeweils auf die Partikelgröße ausgerichtete Klassierungen umgesetzt.In the method, at least two temporally successive classifications, each based on the particle size, are implemented via the at least one dynamic classifier.

Hierbei wird durch den wenigstens einen dynamischen Sichter im Rahmen einer ersten auf die Partikelgröße ausgerichteten Klassierung Grobgut aus dem pulverförmigen Zwischenprodukt abgetrennt. Weiterhin wird im Rahmen einer zweiten auf die Partikelgröße ausgerichteten Klassierung durch den wenigstens einen dynamischen Sichter Feingut aus dem pulverförmigen Zwischenprodukt abgetrennt. Anschließend wird ein vom Feingut und Grobgut abgetrennter Anteil des pulverförmigen Zwischenproduktes als Fraktion bereitgestellt, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.Here, coarse material is separated from the powdery intermediate product by the at least one dynamic classifier as part of a first classification based on the particle size. Furthermore, as part of a second classification based on the particle size, fine material is separated from the powdery intermediate product by the at least one dynamic classifier. A portion of the powdery intermediate product separated from the fine and coarse material is then provided as a fraction, which forms the starting material intended for the production of rare earth magnets.

Mit dem genannten Verfahren wird ein Ausgangsmaterial erzeugt, bei dem ein Anteil an Partikeln > 8µm bei ≤ 2 Volumenprozent liegt und bei welchem ein Anteil an Partikeln < 2µm bei ≤ 2 Volumenprozent liegt. Bevorzugt liegt ein Anteil an Partikeln > 8µm in einem Bereich zwischen 0,1 Volumenprozent und ein Volumenprozent zudem liegt ein Anteil an Partikeln < 2µm in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.With the method mentioned, a starting material is produced in which a proportion of particles > 8µm is ≤ 2 percent by volume and in which a proportion of particles < 2 µm is ≤ 2 percent by volume. Preferably, a proportion of particles >8µm is in a range between 0.1 percent by volume and a proportion of particles <2µm is in a range between 0.05 percent by volume and 2 percent by volume.

Weiterhin ist vorgesehen, dass der dynamische Sichter einen Klassierrotor umfasst und der statische Sichter durch einen Zyklonklassierer ausgebildet ist.Furthermore, it is provided that the dynamic classifier comprises a classifying rotor and the static classifier is designed by a cyclone classifier.

Auch kann es sein, dass der wenigstens eine dynamische Sichter das pulverförmige Zwischenprodukt sichtet und zudem dispergiert, woraus resultierend die Fraktion aus dem pulverförmigen Zwischenprodukt abgetrennt wird, welche das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.It can also be that the at least one dynamic classifier sifts the powdery intermediate product and also disperses it, from which the fraction is separated from the powdery intermediate product, which forms the starting material intended for the production of rare earth magnets.

Es haben sich Ausführungsformen bewährt, bei welchen die erste auf Partikelgröße und/oder Dichte ausgerichtete Klassierung und die zweite auf Partikelgröße und/oder Dichte ausgerichtete Klassierung über genau einen dynamischen Sichter durchgeführt werden. Weiter kann die mindestens ein Seltenerdmetall umfassende Legierung in zwei voneinander getrennten Schritten jeweils vorzugsweise mechanisch zerkleinert werden, wobei aus den Zerkleinerungen in getrennten Schritten das pulverförmige Zwischenprodukt entsteht.Embodiments have proven useful in which the first classification based on particle size and/or density and the second classification based on particle size and/or density are carried out via exactly one dynamic classifier. Furthermore, the alloy comprising at least one rare earth metal can preferably be comminuted mechanically in two separate steps, with the powdery intermediate product being formed from the comminutements in separate steps.

Es kann sein, dass der wenigstens eine dynamische Sichter die wenigstens eine auf Partikelgröße und/oder Dichte ausgerichtete Klassierung für das pulverförmige Zwischenprodukt unter Schutzgasatmosphäre umsetzt.It may be that the at least one dynamic classifier implements the at least one classification based on particle size and/or density for the powdery intermediate product under a protective gas atmosphere.

Nicht Teil der vorliegenden Erfindung ist ein zur Fertigung von Seltenerd-Magneten vorgesehenes Ausgangsmaterial, welches durch ein Verfahren gemäß einer der vorhergehend beschriebenen Ausführungsformen hergestellt wurde. Bei dem erfindungsgemäßen Ausgangsmaterial liegt ein Anteil an Partikeln > 8µm bei ≤ 2 Volumenprozent, insbesondere in einem Bereich zwischen 0,1 Volumenprozent und 1 Volumenprozent und/oder ein Anteil an Partikeln < 2 µm bei ≤ 2 Volumenprozent und insbesondere in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.Not part of the present invention is a starting material intended for the production of rare earth magnets, which was produced by a method according to one of the previously described embodiments. In the starting material according to the invention, a proportion of particles > 8 μm is ≤ 2 percent by volume, in particular in a range between 0.1 percent by volume and 1 percent by volume and / or a proportion of particles < 2 μm is ≤ 2 percent by volume and in particular in a range between 0. 05 percent by volume and 2 percent by volume.

Die Erfindung betrifft darüber hinaus ein Verfahren zur Fertigung von Seltenerd-Magneten. Das Verfahren umfasst folgende Schritte:

  • Herstellen eines Ausgangsmaterials mittels eines Verfahrens gemäß einem Ausführungsbeispiel der vorhergehenden Beschreibung,
  • Einbringen des Ausgangsmaterials in Formen und Verpressen des Ausgangsmaterials in den Formen, wobei Rohlinge aus dem Ausgangsmaterial entstehen,
  • Sintern der Rohlinge und Beaufschlagen gesinterten Rohlinge mit einem Magnetisierungsimpuls, so dass hieraus resultierend die gesinterten und mit einem Magnetisierungsimpuls beaufschlagten Rohlinge als Seltenerd-Magnete ausgebildet sind, optional können die Rohlinge einer mechanischen Bearbeitung unterzogen werden.
The invention also relates to a method for producing rare earth magnets. The procedure includes the following steps:
  • Producing a starting material by means of a method according to an exemplary embodiment of the preceding description,
  • Introducing the starting material into molds and pressing the starting material into the molds, creating blanks from the starting material,
  • Sintering the blanks and applying a magnetization pulse to the sintered blanks, so that as a result the sintered blanks subjected to a magnetization pulse are designed as rare earth magnets; optionally, the blanks can be subjected to mechanical processing.

Es kann zudem sein, dass mittels des beschriebenen Verfahrens zur Fertigung von Seltenerd-Magneten ein Ausgangsmaterial gemäß vorheriger Beschreibung hergestellt wird und dass dieses Ausgangsmaterial in die Formen eingebracht und verpresst wird.It may also be the case that a starting material is produced according to the previous description using the described method for producing rare earth magnets and that this starting material is introduced into the molds and pressed.

Die Erfindung betrifft darüber hinaus eine Anlage zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials. Merkmale, welche vorhergehend bereits zu diversen Ausführungsformen der Verfahren beschrieben wurden, können ebenso bei nachfolgend beschriebener Anlage vorgesehen sein und werden daher nicht redundant erwähnt. Auch können nachfolgend beschriebene Merkmale, welche diverse Ausführungsformen der erfindungsgemäßen Anlage betreffen, ggf. in den vorherig bereits beschriebenen Verfahren vorgesehen sein.The invention also relates to a system for producing a powdery starting material intended for the production of rare earth magnets. Features that have already been described previously for various embodiments of the method can also be provided in the system described below and are therefore not mentioned redundantly. Features described below, which relate to various embodiments of the system according to the invention, can also be provided in the methods already described above.

Die Anlage zur Herstellung eines pulverförmigen und zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials umfasst mindestens eine Zerkleinerungseinrichtung, welche auf eine Erzeugung eines pulverförmigen Zwischenproduktes durch Zerkleinerung einer mindestens ein Seltenerdmetall umfassenden Legierung ausgerichtet ist. Die Zerkleinerung umfasst eine Grobvermahlung und eine Feinvermahlung. Hierbei können insbesondere Partikel mit einer durchschnittlichen Partikelgröße zwischen d50= 2µm bis 5µm erzeugt werden.The system for producing a powdery starting material intended for the production of rare earth magnets comprises at least one comminution device, which is aimed at producing a powdery intermediate product by comminuting an alloy comprising at least one rare earth metal. The size reduction includes coarse grinding and fine grinding. In particular, particles with an average particle size between d50 = 2µm to 5µm can be produced.

Weiter umfasst die Anlage wenigstens eine Trenneinrichtung, welche über wenigstens eine auf Partikelgröße ausgerichtete Klassierung bzw Sichtung eine Fraktion aus dem pulverförmigen Zwischenprodukt abtrennen kann, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.The system further comprises at least one separating device, which can separate a fraction from the powdery intermediate product via at least one particle size-oriented classification or sifting, which forms the starting material intended for the production of rare earth magnets.

Es ist vorgesehen, dass die wenigstens eine Trenneinrichtung wenigstens einen statischen Sichter in Form eines Zyklonklassierer umfasst, welchem das pulverförmige Zwischenprodukt zuführbar ist. Weiterhin umfasst die Anlage wenigstens einen dynamischen Sichter mit einem Klassierrotor, der über eine auf Partikelgröße ausgerichtete Klassierung die Fraktion aus dem pulverförmigen Zwischenprodukt abtrennen kann, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.It is envisaged that the at least one separating device comprises at least one static classifier in the form of a cyclone classifier, to which the powdery intermediate product can be fed. Furthermore, the system includes at least one dynamic classifier with a classifying rotor, which can separate the fraction from the powdery intermediate product, which forms the starting material intended for the production of rare earth magnets, via a classification based on particle size.

Hierbei stehen der mindestens eine statische Sichter und der wenigstens eine dynamische Sichter derart miteinander in Verbindung, dass ein mittels des mindestens einen statischen Sichters aus dem zugeführten Zwischenprodukt abgetrennter Anteil dem wenigstens einen dynamischen Sichter zuführbar ist. Der wenigstens eine dynamische Sicher kann sodann ggf. aus dem zugeführten Anteil die Fraktion abtrennen, die das zur Fertigung von Seltenerd-Magneten vorgesehene Ausgangsmaterial ausbildet.Here, the at least one static classifier and the at least one dynamic classifier are connected to one another in such a way that a portion separated from the supplied intermediate product by means of the at least one static classifier can be fed to the at least one dynamic classifier. The at least one dynamic safe can then, if necessary, separate the fraction from the supplied portion that forms the starting material intended for the production of rare earth magnets.

Vermittels der Anlage wird ein Ausgangsmaterial erzeugt, bei welchem ein Anteil an Partikeln ein Anteil an Partikeln > 8µm bei ≤ 2 Volumenprozent liegt und bei welchem Ausgangsmaterial < 2µm bei ≤ 2 Volumenprozent liegt. Insbesondere liegt ein Anteil an Partikeln > 8µm in einem Bereich zwischen 0,1 Volumenprozent und 1 Volumenprozent und ein Anteil an Partikeln < 2µm in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.The system produces a starting material in which a proportion of particles > 8µm is ≤ 2 percent by volume and in which a starting material < 2µm is ≤ 2 percent by volume. In particular, a proportion of particles >8µm is in a range between 0.1 percent by volume and 1 percent by volume and a proportion of particles <2µm is in a range between 0.05 percent by volume and 2 percent by volume.

Der dynamischen Sichter steht mit einer Steuer- und /oder Regeleinheit in Verbindung, in welcher Steuer- und/oder Regeleinheit ein Algorithmus abgelegt ist, über welchen die Steuer- und/oder Regeleinheit unter Berücksichtigung der jeweiligen für das herzustellende Ausgangsmaterial gewünschten Partikelgrößenverteilung eine Drehzahl des als Bestandteils des wenigstens einen dynamischen Sichters ausgebildeten Klassierrotors selbständig regelt bzw. steuert.The dynamic classifier is connected to a control and/or regulating unit, in which control and/or regulating unit an algorithm is stored, via which the control and/or regulating unit sets a speed of the as part of the classifying rotor, which is designed at least one dynamic classifier, independently regulates or controls.

Es kann sein, dass der wenigstens eine dynamische Sichter zum Sichten und Dispergieren des zugeführten pulverförmigen Zwischenproduktes ausgebildet ist.It may be that the at least one dynamic classifier is designed to classify and disperse the supplied powdery intermediate product.

Auch kann es sein, dass die mindestens eine Zerkleinerungseinrichtung zwei aufeinanderfolgende Zerkleinerungsmaschinen umfasst, die jeweils zur vorzugsweise mechanischen Zerkleinerung der mindestens ein Seltenerdmetall umfassenden Legierung ausgebildet sind und zur Erzeugung des pulverförmigen Zwischenproduktes aus der mindestens ein Seltenerdmetall umfassenden Legierung miteinander zusammenwirken.It can also be that the at least one comminution device comprises two successive comminution machines, each of which is designed for preferably mechanical comminution of the alloy comprising at least one rare earth metal and interacts with one another to produce the powdery intermediate product from the alloy comprising at least one rare earth metal.

Bewährt haben sich zudem Ausführungsformen, bei welchen der wenigstens eine dynamische Sicher die auf Partikelgröße und/oder Dichte ausgerichtete Klassierung unter Schutzgasatmosphäre umsetzen kann.Embodiments in which the at least one dynamic filter can implement the classification based on particle size and/or density under a protective gas atmosphere have also proven successful.

Das Ausgangsmaterial, welche im Rahmen der vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage herstellbar ist, kann im Wesentlichen Partikel eines Zielgrößenbereichs umfassen und kaum Verschmutzungen mit Partikeln aufweisen, die kleiner sind als Partikel eines Zielgrößenbereichs. Diese werden nachfolgend auch als Feinstpartikel bezeichnet. Weiterhin kann das im Rahmen der vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestellte Ausgangsmaterial im Wesentlichen kaum Verschmutzungen mit Partikeln, die größer als die Partikel des Zielgrößenbereichs sind, aufweisen. Diese werden nachfolgend auch als Grobpartikel bezeichnet.The starting material, which can be produced within the framework of the previously described methods or by means of the previously described system, can essentially comprise particles of a target size range and hardly have any contamination with particles that are smaller than particles of a target size range. These are also referred to below as fine particles. Furthermore, the starting material produced within the framework of the previously described methods or by means of the previously described system can essentially hardly contain any contamination with particles that are larger than the particles of the target size range. These are also referred to below as coarse particles.

Mit einem Verfahren bzw. einer Anlage gemäß vorhergehender Beschreibung kann insbesondere ein Ausgangsmaterial herstellbar sein, das im Wesentlichen nur Partikel mit einer Größe innerhalb des Zielgrößenbereichs in einer im Wesentlichen homogenen Mischung umfasst. Im Hinblick auf das Ausgangsmaterial, welches mit den vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage herstellbar ist, haben sich Ausführungsformen bewährt, bei welchen das Ausgangsmaterial Partikel im Zielgrößenbereich zwischen 1µm und 10µm, insbesondere in einem Zielgrößenbereich zwischen 2µm und 8µm, aufweist. Bei einer Zerkleinerung einer mindestens ein Seltenerd-Metall umfassenden Legierung, lässt sich in der Praxis nicht vermeiden, dass ein Anteil an Feinstpartikeln entsteht, die kleiner sind als der Zielgrößenbereich. Zudem liegt meist ein Anteil an Grobpartikeln vor, die nicht ausreichend zerkleinert worden sind. Hier muss immer ein guter Kompromiss gefunden werden. Eine weitere Vermahlung des Ausgangsmaterials würde zwar zu einer Reduzierung des Anteils an Grobpartikeln führen, gleichzeitig würde sich aber der Anteil an ebenfalls unerwünschten Feinstpartikeln erhöhen. Ein hoher volumenprozentmäßiger Anteil an Feinstpartikeln und/oder Grobpartikeln im Ausgangsmaterial geht mit unerwünschten Eigenschaften der jeweiligen aus dem Ausgangsmaterial hergestellten bzw. gefertigen Seltenerd-Magneten einher.With a method or a system according to the previous description, it can in particular be possible to produce a starting material which essentially only comprises particles with a size within the target size range in a substantially homogeneous mixture. With regard to the starting material, which can be produced with the previously described methods or by means of the previously described system, embodiments have proven successful in which the starting material has particles in the target size range between 1µm and 10µm, in particular in a target size range between 2µm and 8µm. When comminuting an alloy containing at least one rare earth metal, in practice it cannot be avoided that a proportion of fine particles are created that are smaller than the target size range. In addition, there is usually a proportion of coarse particles that have not been sufficiently comminuted. A good compromise always has to be found here. Further grinding of the starting material would lead to a reduction in the proportion of coarse particles, but at the same time the proportion of fine particles, which are also undesirable, would increase. A high volume percentage of fine particles and/or coarse particles in the starting material is associated with undesirable properties of the respective rare earth magnets produced or manufactured from the starting material.

Ein im Rahmen der vorhergehenden Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestelltes Ausgangsmaterial enthält ≤ 2 Volumenprozent an Feinstpartikeln, insbesondere ≤ 1 Volumenprozent. Weiterhin ist vorgesehen, dass das im Rahmen der vorhergehenden Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestellte Ausgangsmaterial ≤ 2 Volumenprozent an Grobpartikeln umfasst, insbesondere ≤ 1 Volumenprozent.A starting material produced in the context of the preceding processes or by means of the system described above contains ≤ 2 percent by volume of fine particles, in particular ≤ 1 percent by volume. Furthermore, it is envisaged that within the framework of the previous procedures or Starting material produced using the system described above comprises ≤ 2 percent by volume of coarse particles, in particular ≤ 1 percent by volume.

Insbesondere enthält das im Rahmen der vorhergehend beschriebenen Verfahren bzw. mittels der vorhergehend beschriebenen Anlage hergestellte Ausgangsmaterial im Wesentlichen bzw. überwiegend Partikel im Zielgrößenbereich zwischen 2µm und 8µm, wobei ein Anteil an Partikeln, deren Größe oberhalb von 8µm liegt, bei ≤ 2 Volumenprozent liegt, insbesondere in einem Bereich zwischen 0,1 Volumenprozent und 1 Volumenprozent und wobei ein Anteil an Partikeln, deren Größe unterhalb von 2µm liegt bei ≤ 2 Volumenprozent liegt, insbesondere in einem Bereich zwischen 0,05 Volumenprozent und 2 Volumenprozent.In particular, the starting material produced within the framework of the previously described processes or by means of the previously described system essentially or predominantly contains particles in the target size range between 2µm and 8µm, with a proportion of particles whose size is above 8µm being ≤ 2 percent by volume, in particular in a range between 0.1 percent by volume and 1 percent by volume and where a proportion of particles whose size is below 2 μm is ≤ 2 percent by volume, in particular in a range between 0.05 percent by volume and 2 percent by volume.

Der vorherig bereits erwähnte und in diversen Ausführungsformen eines erfindungsgemäßen Verfahrens bzw. einer erfindungsgemäßen Anlage vorgesehene mindestens eine statische Sichter ist durch mindestens einen Zyklonklassierer ausgebildet.The previously mentioned at least one static classifier, which is provided in various embodiments of a method according to the invention or a system according to the invention, is formed by at least one cyclone classifier.

Durch den mindestens einen Zyklonklassierer kann ggf. bereits eine Reduzierung des Anteils an Feinstpartikeln erzielt werden. Ein via den mindestens einen statischen Sichter bzw. den mindestens einen Zyklonklassierer abgetrenntes pulveriges Gemisch, welches nachfolgend auch als pulverförmiges Zwischenprodukt bezeichnet wird, enthält auch nach der Abtrennung von Feinstpartikeln in der Regel immer noch bis zu 10 Volumenprozent an Feinstpartikeln und/oder bis zu 10 Volumenprozent an Grobpartikeln. Die Feinstanteile, die in einem solchen pulverförmigen Zwischenprodukt notgedrungen immer vorhanden sind, wirken sich somit in mehrfacher Hinsicht nachteilig auf die Eigenschaften der daraus hergestellten Seltenerd-Magnete aus.The at least one cyclone classifier can possibly achieve a reduction in the proportion of fine particles. A powdery mixture separated via the at least one static classifier or the at least one cyclone classifier, which is also referred to below as a powdery intermediate product, generally still contains up to 10 percent by volume of fine particles and/or up to 10 even after the fine particles have been separated Volume percent of coarse particles. The fine particles, which are necessarily always present in such a powdery intermediate product, have a detrimental effect on the properties of the rare earth magnets made from them in several respects.

Um die Partikelzusammensetzung noch weiter zu verbessern, wird das gemahlene und ggf. teilweise bereits über den mindestens einen statischen Sichter von Feinstpartikeln anteilig befreite pulverförmige Zwischenprodukt noch mindestens einem weiteren Sichterprozess, umgesetzt durch wenigstens einen dynamischen Sichter, unterworfen. Um diesen Sichterprozess effizient durchzuführen zu können, haben sich Ausführungsformen bewährt, bei welchen das pulverförmige Zwischenprodukt zunächst dispergiert wird und anschließend eine Klassierung nach Partikelgröße für das dispergierte pulverförmige Zwischenprodukt durchgeführt wird. Diese Dispergierung und Klassierung nach Partikelgröße können in genau einem dynamischen Sichter durchgeführt wird. Über der wenigstens einen dynamischen Sichter bzw. über den genau einen dynamischen Sichter können sodann Feinstpartikel und Grobpartikel aus dem pulverförmigen Zwischenprodukt abgetrennt werden.In order to improve the particle composition even further, the ground powder intermediate product, which has possibly already been partially freed of fine particles via the at least one static classifier, is subjected to at least one further classifier process, implemented by at least one dynamic classifier. In order to be able to carry out this classifying process efficiently, embodiments have proven useful in which the powdery intermediate product is first dispersed and then a classification according to particle size is carried out for the dispersed powdery intermediate product. This dispersion and classification according to particle size can be carried out in exactly one dynamic classifier. Fine particles and coarse particles can then be separated from the powdery intermediate product using the at least one dynamic classifier or exactly one dynamic classifier.

D.h. das Verfahren kann folgende Schritte einzeln oder in Kombination umfassen:

  • Dispersion des Zwischenproduktes UND/ODER
  • erneute Abtrennung von Feinstpartikeln und Grobpartikeln.
This means that the process can include the following steps individually or in combination:
  • Dispersion of the intermediate AND/OR
  • renewed separation of fine particles and coarse particles.

Vorzugsweise kann somit vorgesehen sein, dass die Dispersion des Zwischenproduktes und das erneute Abtrennen von Feinstpartikeln und Grobpartikeln innerhalb einer einzigen Vorrichtung, insbesondere innerhalb eines einzigen dynamischen Sichters, durchgeführt werden. Aufgrund der hohen chemischen Reaktivität von ggf. in hoher Konzentration im pulverförmigen Zwischenprodukt vorhandenen Feinstpartikeln, kann der einzige dynamische Sichter eine Dispergierung und/oder Sichtung ggf. unter Schutzgasatmosphäre umsetzen. Als Schutzgas findet beispielsweise Helium, Argon, Stickstoff o.ä. Verwendung.It can therefore preferably be provided that the dispersion of the intermediate product and the renewed separation of fine particles and coarse particles are carried out within a single device, in particular within a single dynamic classifier. Due to the high chemical reactivity of fine particles that may be present in high concentrations in the powdery intermediate product, the only dynamic classifier can implement dispersion and/or classifying, if necessary under a protective gas atmosphere. Helium, argon, nitrogen, etc. are used as protective gases.

Das mindestens eine als Bestandteil der Legierung ausgebildete Seltenerdmetall kann beispielsweise durch Eisen und/oder Bor ausgebildet sein. Beispielsweise kann es sich bei der mindestens ein Seltenerdmetall umfassenden Legierung um eine NdFeB- Legierung handeln. Über die oben beschriebenen Verfahrensschritte bzw. mittels der bereits beschriebenen Anlage kann aus dieser mindestens ein Seltenerd-Metall umfassenden Legierung ein Ausgangsmaterial hergestellt werden, das im Wesentlichen nur Partikel im Zielgrößenbereich zwischen 2µm bis 8µm umfasst. Vorzugsweise umfasst das Ausgangsgemisch ≥ 95 Volumenprozent, insbesondere ≥ 98 Volumenprozent an Partikeln im Zielgrößenbereich, welcher Zielgrößenbereich von 2µm bis 8µm festgesetzt ist.The at least one rare earth metal formed as a component of the alloy can be formed, for example, by iron and/or boron. For example, the alloy comprising at least one rare earth metal can be an NdFeB alloy. Using the process steps described above or by means of the system already described, a starting material can be produced from this alloy comprising at least one rare earth metal, which essentially only comprises particles in the target size range between 2µm to 8µm. The starting mixture preferably comprises ≥ 95 percent by volume, in particular ≥ 98 percent by volume, of particles in the target size range, which target size range is set from 2 μm to 8 μm.

Die bereits beschriebene Anlage umfasst eine Vorrichtung zur Grobzerkleinerung einer mindestens ein Seltenerdmetall umfassenden Legierung.The system already described includes a device for the coarse comminution of an alloy comprising at least one rare earth metal.

Eine unter Zuhilfenahme der Vorrichtung zur Grobzerkleinerung aus der mindestens ein Seltenerdmetall umfassenden Legierung gebildete grobe Pulverfraktion wird in einer als Bestandteil der Anlage ausgebildeten Vorrichtung zur Feinzerkleinerung zu einer feinen Pulverfraktion vermahlen, wobei die feine Pulverfraktion das pulverförmige Zwischenprodukt ausgebildet. Beispielsweise kann die Vorrichtung zur Feinzerkleinerung als Fließbettstrahlmühle ausgebildet sein.One under With the aid of the device for coarse comminution, the coarse powder fraction formed from the alloy comprising at least one rare earth metal is in a fine comminution device designed as part of the system is ground into a fine powder fraction, the fine powder fraction forming the powdery intermediate product. For example, the device for fine comminution can be designed as a fluid bed jet mill.

FigurenbeschreibungCharacter description

Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind. Nachfolgend beschriebene Merkmale sind nicht eng mit dem jeweiligen Ausführungsbeispiel verknüpft sondern können im allgemeinen Zusammenhang Verwendung finden.

  • Figur 1 zeigt schematisch Verfahrensschritte zur Herstellung eines Ausgangsmaterials zur Fertigung von Seltenerd- Magneten, wie sie in diversen Ausführungsformen jeweils einzeln oder in der gezeigten Kombination vorgesehen sein können;
  • Figur 2 zeigt einen Querschnitt durch einen dynamischen Sichter, wie er in diversen Ausführungsformen des erfindungsgemäßen Verfahrens sowie in diversen Ausführungsformen der erfindungsgemäßen Anlage vorgesehen sein kann.
  • Figur 3 zeigt einen seitlichen Querschnitt durch den dynamischen Sichter nach Figur 2.
  • Figur 4 stellt eine für diverse Ausführungsformen des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Anlage denkbare Partikelgrößenverteilung eines pulverförmigen Zwischenproduktes einer denkbaren Partikelgrößenverteilung eines zur Fertigung von Seltenerd-Magneten vorgesehenen Ausgangsmaterials gegenüber;
  • Figur 5 zeigt eine rasterelektronenmikroskopische Aufnahme, wie sie für das pulverförmige Zwischenprodukt ausgebildet sein kann;
  • Figur 6 zeigt eine rasterelektronenmikroskopische Aufnahme, eines Ausgangsmaterials, wie es mittels des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Anlage in diversen Ausführungsformen hergestellt werden kann.
In the following, exemplary embodiments will explain the invention and its advantages in more detail using the attached figures. The proportions of the individual elements in the figures do not always correspond to the real proportions, as some shapes are simplified and other shapes are shown enlarged in relation to other elements for better illustration. Features described below are not closely linked to the respective exemplary embodiment but can be used in a general context.
  • Figure 1 shows schematically process steps for producing a starting material for producing rare earth magnets, as they can be provided individually or in the combination shown in various embodiments;
  • Figure 2 shows a cross section through a dynamic classifier, as can be provided in various embodiments of the method according to the invention and in various embodiments of the system according to the invention.
  • Figure 3 shows a side cross section through the dynamic classifier Figure 2 .
  • Figure 4 compares a conceivable particle size distribution of a powdery intermediate product for various embodiments of the method according to the invention or the system according to the invention with a conceivable particle size distribution of a starting material intended for the production of rare earth magnets;
  • Figure 5 shows a scanning electron micrograph as it can be designed for the powdery intermediate product;
  • Figure 6 shows a scanning electron micrograph of a starting material, as can be produced in various embodiments using the method according to the invention or the system according to the invention.

Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die Erfindung ausgestaltet sein kann und stellen keine abschließende Begrenzung dar.Identical reference numbers are used for elements of the invention that are the same or have the same effect. Furthermore, for the sake of clarity, only reference numbers that are necessary for the description of the respective figure are shown in the individual figures. The illustrated embodiments merely represent examples of how the invention can be designed and do not represent a final limitation.

Figur 1 zeigt schematisch Verfahrensschritte zur Herstellung eines Ausgangsmaterials AM zur Fertigung von Seltenerd- Magneten. Als Basis hierzu dient eine geeignete RFeB- Legierung, die die Bestandteile R = Seltenerdmetall, Fe = Eisen und B = Bor in den gewünschten Mengenverhältnissen enthält. Beispielsweise wird eine NdFeB- Legierung zur Herstellung eines sogenannten Neodym- Magneten verwendet. Unter Umständen muss zuerst eine Legierung aus den Elementen in den gewünschten Mengenverhältnissen hergestellt werden. Diese Legierung wird in einem ersten Arbeitsschritt einer Grobvermahlung unterworfen. Beispielsweise in einer mechanischen Mahlanalage oder durch Versprödung mit Wasserstoff. Dabei werden insbesondere Partikel mit einer Größe von bis zu einigen mm erzeugt. Anschließend wird die im Rahmen der Grobvermahlung gewonnene grobe Pulverfraktion gPF einer Feinvermahlung unterzogen, wobei Partikel mit einer durchschnittlichen Partikelgröße zwischen d50= 2 µm bis 5 µm erzeugt werden bzw. erzeugt werden sollen. Das heißt der d50 Wert der feinen Pulverfraktion fPF liegt zwischen 2µm bis 5µm mit einer entsprechend breiten Partikelverteilung hin zu feineren und auch zu gröberen Partikeln, mit den entsprechenden Mengen von Feinstanteilen (d10 = ca. 1 - 2µm) bzw. von Grobanteilen (d90 = ca. 8- 15µm). Die groben Partikel gP sind im Gegensatz zu den nachfolgend beschriebenen Partikeln fP des Feinstanteils zwar chemisch stabil und lassen sich in Magnetfeldern auch gut orientieren, sie haben jedoch negative Auswirkungen auf die Gegenfeldstabilität des Magneten, weil diese groben Partikel gP sich bereits bei kleinen magnetischen Gegenfeldern ummagnetisieren und somit die Gegenfeldstabilität (bzw. die Koerzitivfeldstärke) des gesamten Magneten verschlechtern. Aus diesem Grund ist es vorteilhaft, den Anteil von groben Partikeln gP im Ausgangsgemisch für die Herstellung von gesinterten Permanentmagneten weiter zu reduzieren. Figure 1 shows schematically process steps for producing a starting material AM for the production of rare earth magnets. The basis for this is a suitable RFeB alloy, which contains the components R = rare earth metal, Fe = iron and B = boron in the desired proportions. For example, an NdFeB alloy is used to produce a so-called neodymium magnet. Under certain circumstances, an alloy must first be produced from the elements in the desired proportions. In a first step, this alloy is subjected to coarse grinding. For example, in a mechanical grinding system or through embrittlement with hydrogen. In particular, particles with a size of up to a few mm are generated. The coarse powder fraction gPF obtained during coarse grinding is then subjected to fine grinding, with particles with an average particle size between d50 = 2 µm to 5 µm being or should be produced. This means that the d50 value of the fine powder fraction fPF is between 2µm and 5µm with a correspondingly broad particle distribution towards finer and also coarser particles, with the corresponding amounts of fine particles (d10 = approx. 1 - 2µm) or coarse particles (d90 = approx. 8-15µm). In contrast to the fine particles fP described below, the coarse particles gP are chemically stable and can also be easily oriented in magnetic fields, but they have negative effects on the opposing field stability of the magnet because these coarse particles gP remagnetize even in small magnetic opposing fields and thus worsen the opposing field stability (or the coercive field strength) of the entire magnet. For this reason it is advantageous to reduce the proportion of coarse particles To further reduce gP in the starting mixture for the production of sintered permanent magnets.

Die Partikel fP des Feinstanteils sind auf Grund ihrer Feinheit chemisch sehr reaktiv und reagieren bereits bei geringsten Sauerstoffkonzentrationen mit dem Sauerstoff oder auch mit dem Stickstoff aus der Umgebung. Diese Feinstpartikel fP können bei der weiteren Verarbeitung der Pulver spontane Pulverbrände hervorrufen. Ein weiterer Nachteil der Feinstpartikel fP besteht darin, dass diese feinen Pulverteilchen sich in den üblicherweise zur Verfügung stehenden Magnetfeldern und Pressvorrichtungen (Größenordnung etwa 10 - 20 kOe) nur sehr schlecht orientieren lassen und deshalb die Remanenz der daraus hergestellten Magnete verschlechtern. Aus diesem Grund werden in einem vierten bzw. zusätzlichen Verfahrensschritt Feinstanteile, insbesondere Partikel mit einem Durchmesser von ≤ 1-2µm, aus der feinen Pulverfraktion fPF entfernt. Hierzu wird das Gemisch im Anschluss an die Grobvermahlung und Feinvermahlung nach Ziffern 1. und 2. durch einen Zyklon geführt, dass den Feinstanteil über einen geeigneten Gasstrom mitführt und dabei von dem Gemisch abtrennt. Dadurch wird das Zwischenprodukt ZP gebildet. Dieses enthält aber immer noch einen nicht unerheblichen Anteil von bis zu 10% an Feinstpartikeln kleiner ca. 1 µm bis 2µm.The particles fP of the fine fraction are chemically very reactive due to their fineness and react with the oxygen or even with the nitrogen from the environment even at the lowest oxygen concentrations. These fine particles fP can cause spontaneous powder fires during further processing of the powder. Another disadvantage of the finest particles fP is that these fine powder particles are very difficult to orient in the magnetic fields and pressing devices that are usually available (of the order of magnitude of approximately 10 - 20 kOe) and therefore worsen the remanence of the magnets made from them. For this reason, in a fourth or additional process step, fine particles, in particular particles with a diameter of ≤ 1-2 μm, are removed from the fine powder fraction fPF. For this purpose, following the coarse grinding and fine grinding according to numbers 1 and 2, the mixture is passed through a cyclone that carries the fines through a suitable gas stream and thereby separates it from the mixture. This forms the intermediate product ZP. However, this still contains a not insignificant proportion of up to 10% of fine particles smaller than approx. 1 µm to 2 µm.

Um diese verbleibenden Anteile an Feinstpartikeln fP ≤ 1 µm bis 2µm und/oder Grobpartikeln gP zwischen 10µm und 15µm möglichst vollständig zu entfernen, wird das Zwischenprodukt ZP mindestens einem weiteren Sichterprozess unterzogen, um ungewünschte Feinstpartikel fP und Grobpartikel gP zu entfernen und somit die Homogenität der Partikel in der Zielgröße ZG weiter zu verbessern, insbesondere um als Ausgangsmaterial AM ein Pulvergemisch zu erhalten, das im Wesentlichen nur noch Partikel mit Partikelgrößen in einem Zielbereich zwischen etwa 2µm bis 8µm umfasst, da diese Partikel in magnetischer Hinsicht die beste Pulverfraktion darstellen. Sämtlich weiteren Schritte, welche in zeitlicher Hinsicht an den Schritt nach Ziffer 4. anschließen, werden unter Zuhilfenahme eines dynamischen Sichters 10 (vgl. Figuren 2 und 3) bzw. eines Hochleistungssichters umgesetzt.In order to remove these remaining portions of fine particles fP ≤ 1 µm to 2 µm and/or coarse particles gP between 10 µm and 15 µm as completely as possible, the intermediate product ZP is subjected to at least one further sifting process in order to remove unwanted fine particles fP and coarse particles gP and thus ensure the homogeneity of the To further improve particles in the target size ZG, in particular in order to obtain a powder mixture as the starting material AM, which essentially only comprises particles with particle sizes in a target range between approximately 2µm to 8µm, since these particles represent the best powder fraction in magnetic terms. All further steps, which in terms of time follow the step according to number 4, are carried out with the help of a dynamic classifier 10 (cf. Figures 2 and 3 ) or a high-performance classifier.

Die Partikel mit der Zielgröße ZG zwischen 2µm bis 8µm sind chemisch hinreichend stabil, so dass sie im normalen Herstellungsprozess keinerlei zusätzliche Oxidation bewirken. Zudem lassen sie sich mit den üblichen Magnetfeldern gut orientieren. Sie tragen somit wesentlich zum Erreichen einer hohen Remanenz der hergestellten Magnete bei und sind deshalb erwünscht, notwendig und nützlich. Je mehr Pulverteilchen von dieser Zielgröße ZG vorhanden sind, umso besser sind die Magnetwerte (Remanenz Br und Gegenfeldstabilität HcJ) der daraus hergestellten Magnete.The particles with the target size ZG between 2µm to 8µm are chemically sufficiently stable so that they do not cause any additional oxidation in the normal manufacturing process. They also work well with the usual magnetic fields orientate. They therefore contribute significantly to achieving a high remanence of the magnets produced and are therefore desirable, necessary and useful. The more powder particles of this target size ZG are present, the better the magnetic values (remanence Br and opposing field stability HcJ) of the magnets made from them.

In einem weiteren bzw. vorliegend 5. Verfahrensschritt wird das pulverförmige Zwischenprodukt ZP dispergiert, um eine möglichst homogene Verteilung der unterschiedlichen Partikel des Zwischenproduktes ZP herzustellen. Dabei werden insbesondere molekulare und magnetische Anziehungskräfte zwischen den Partikeln überwunden und eine der Dispergierung folgende erneute Sichtung und Abtrennung von Partikel des Feinstanteils und/oder Partikel des Grobanteils möglich. Auch für diesen Verfahrensschritt wird ein dynamischer Sichter 10 (vgl. Figuren 2 und 3) bzw. Hochleistungssichter eingesetzt.In a further, or in this case 5th, process step, the powdery intermediate product ZP is dispersed in order to produce the most homogeneous distribution of the different particles of the intermediate product ZP. In particular, molecular and magnetic attractive forces between the particles are overcome and subsequent sifting and separation of fine particles and/or coarse particles following dispersion is possible. A dynamic classifier 10 is also used for this process step (cf. Figures 2 and 3 ) or high-performance classifiers are used.

Das dispergierte pulverförmige Zwischenprodukt ZP wird erneut gesichtet und Partikel des Feinstanteils und/oder Partikel des Grobanteils werden dabei entfernt. Dadurch wird eine optimierte Trennung von Feinst- und Grobanteil zur gewünschten Partikel- Zielgröße ZG hergestellt. Der Feinstanteil von Partikeln, deren Größe kleiner 1µm beträgt, wird dabei auf einen Anteil von weniger als 1 % reduziert. Zusätzlich kann der Grobanteil von Partikeln, deren Größe über 10µm liegt, ebenfalls auf einen Anteil von weniger als 1 % reduziert werden.The dispersed powdery intermediate product ZP is sifted again and particles of the fine fraction and/or particles of the coarse fraction are removed. This creates an optimized separation of the finest and coarse particles to achieve the desired target particle size ZG. The fine proportion of particles whose size is less than 1µm is reduced to a proportion of less than 1%. In addition, the coarse proportion of particles whose size is over 10µm can also be reduced to a proportion of less than 1%.

Dieser mindestens eine zusätzliche Sichtersprozess wird vorzugsweise unter Schutzgasatmosphäre durchgeführt, beispielsweise unter Helium, Argon, oder Stickstoff, wobei dies keine abschließende Aufzählung der Möglichkeiten darstellen soll. Die Schutzgasatmosphäre verhindert insbesondere spontane Pulverbrände aufgrund der Feinstpartikel fP.This at least one additional classifying process is preferably carried out under a protective gas atmosphere, for example helium, argon, or nitrogen, although this is not intended to represent an exhaustive list of possibilities. The protective gas atmosphere particularly prevents spontaneous powder fires due to the fine particles fP.

Besonders bevorzugt können der fünfte und sechste Verfahrensschritt bzw. die beiden letzten Verfahrensschritte, d.h. die Dispersion und die Abtrennung von Feinstpartikeln fP und/oder die Abtrennung von Grobpartikeln gP in einem dynamischen Sichter 10 gemäß Figuren 2 und 3 gemeinsam erfolgen.Particularly preferably, the fifth and sixth process step or the last two process steps, ie the dispersion and the separation of fine particles fP and/or the separation of coarse particles gP, can be carried out in a dynamic classifier 10 according to Figures 2 and 3 done together.

Im Hinblick auf die Ausführungsform eines dynamischen Sichters 1 nach Figuren 2 und 3 wird über die Produktzugabe 1 das pulverförmige Zwischenprodukt ZP der Sichtervorrichtung bzw. dem dynamischen Sichter 10 von oben zugeführt. Durch den Sichterlufteintritt 2 erfolgt die Zuführung der notwendigen Verfahrensluft VL, die das über die Produktzugabe 1 zugeführte pulverförmige Zwischenprodukt ZP mitnimmt und durch eine Vielzahl einstellbarer Leitschaufel-Spalte des statischen Leitschaufelkorbes 3 führt, wodurch das Zwischenprodukt ZP aufdispergiert wird. Als Verfahrensluft VL wird vorliegend ein Schutzgas verwendet.With regard to the embodiment of a dynamic classifier 1 according to Figures 2 and 3 The powdery intermediate product is added via product addition 1 ZP is fed to the classifier device or the dynamic classifier 10 from above. The necessary process air VL is supplied through the classifier air inlet 2, which takes the powdery intermediate product ZP supplied via the product addition 1 and leads it through a large number of adjustable guide vane gaps of the static guide vane basket 3, whereby the intermediate product ZP is dispersed. In the present case, a protective gas is used as the process air VL.

Das derart aufdispergierte Zwischenprodukt ZP wird über ein in der Drehzahl stufenlos einstellbares Sichterrad 4 geleitet, wobei die Trennung der Partikelgrößen entweder in Ziel- und Grobgut oder aber in Ziel- und Feinstgut erfolgt.The intermediate product ZP dispersed in this way is passed through a classifier wheel 4 whose speed can be continuously adjusted, with the particle sizes being separated either into target and coarse material or into target and fine material.

Durch das optimierte Sichterraddesign ist gewährleistet, dass mit nur einem Sichterrad 4 sehr hohe Feinheiten auch bei hohen Durchsätzen erreicht werden können. Die Feinstpartikel fP verlassen die Sichtervorrichtung 10 über das mit horizontaler Welle 8 eingebaute Sichterrad 4 im Zentrum der Sichtervorrichtung bzw. des dynamischen Sichters 10. Die groben Partikel gP werden vom Sichterrad 4 abgewiesen und durch das schraubenförmig ausgebildete und mit einer Trennwand 5 versehene Maschinengehäuse 9 rückseitig über den Grobgutaustritt 6 an der Unterseite des Maschinengehäuses 9 ausgetragen. Über die Stellung der Grobgutklappe 7 kann der Austrag der Grobpartikel gP bei schwierigen Trennaufgaben geregelt, und so die Sauberkeit der Grobpartikel gP beeinflusst werden. Die Partikel der Zielgröße ZP verlassen zusammen mit dem Grobgut den dynamischen Sichter 10 über den Grobgutaustritt 6. Der Feinstpartikel fP wurden von den Partikeln der Zielgröße ZP abgetrennt und bilden somit keinen Bestandteil der Fraktion, welche den dynamischen Sichter 10 über den Grobgutaustritt 6 verlässt.The optimized classifier wheel design ensures that very high fineness levels can be achieved with just one classifier wheel 4, even at high throughputs. The finest particles fP leave the classifier device 10 via the classifier wheel 4, which is installed with a horizontal shaft 8, in the center of the classifier device or the dynamic classifier 10. The coarse particles gP are rejected by the classifier wheel 4 and through the helically designed machine housing 9, which is provided with a partition 5, at the back discharged via the coarse material outlet 6 on the underside of the machine housing 9. The position of the coarse material flap 7 can be used to regulate the discharge of the coarse particles gP in difficult separation tasks, and thus the cleanliness of the coarse particles gP can be influenced. The particles of the target size ZP leave the dynamic classifier 10 together with the coarse material via the coarse material outlet 6. The fine particles fP were separated from the particles of the target size ZP and therefore do not form part of the fraction that leaves the dynamic classifier 10 via the coarse material outlet 6.

Die Regulierung der gewünschten Zielpartikelgröße ZG erfolgt hierbei insbesondere über eine Regulierung des Gasstroms der Verfahrensluft VL und/oder der Drehzahl des Sichterrads 4. Ein höherer Gasstrom und/oder eine niedrigere Drehzahl führen zu einem gröberen Produkt, während ein niedrigerer Gasstrom und/oder eine höhere Drehzahl zu einem feineren Produkt führen.The desired target particle size ZG is regulated in particular by regulating the gas flow of the process air VL and/or the speed of the classifier wheel 4. A higher gas flow and/or a lower speed lead to a coarser product, while a lower gas flow and/or a higher one speed lead to a finer product.

Zusätzlich zeigt die Figur 3 die mindestens zwei Spaltgaszuführungen (11), diese sind Notwendig um den Spalt zwischen Feingutastritt und dem Sichterrad (4) mit sogenannten Spaltgas zu spülen. Es sind aber auch Ausführungen mit nur einer Spaltgaszufühung (11) möglich. Durch diese Spülung wird vermieden, dass sich Partikel im Sichterrad (4) und/oder dem Spalt zwischen Feingutausstritt und dem Sichterrad (4) festsetzten und dieses verstopfen. Die Spülung erfolgt mittels eines dafür geeigneten Fluides, in einer bevorzugten Ausführungsform mittels Schutzgas.Additionally shows the Figure 3 the at least two cracked gas feeds (11), these are necessary to flush the gap between the fine material outlet and the classifier wheel (4) with so-called cracked gas. However, designs with only one cracked gas supply (11) are also possible. This flushing prevents... Particles settle in the classifier wheel (4) and/or the gap between the fine material outlet and the classifier wheel (4) and clog it. The flushing is carried out using a suitable fluid, in a preferred embodiment using protective gas.

Figur 4 zeigt die Partikelgrößenverteilung im Zwischenprodukt ZP und im Ausgangsmaterial AM. Im Diagramm ist insbesondere die Partikelgröße in µm gegen den Anteil an der Volumendichte der jeweiligen Mischung in % aufgetragen. Hierbei wird deutlich sichtbar, dass durch die zusätzlichen Verfahrensschritt des Dispergierens des Zwischenproduktes ZP und des Sichtens mit anschließendem Abtrennen von feinsten Partikeln fP ≤ 1µm und/oder groben Partikeln gP ≥ 10 über einen dynamischen Sichter 10 eine homogenere Partikelmischung im Ausgangsmaterial AM erzielt werden kann, bei der der Anteil an Feinstpartikeln fP ≤1 % der Volumendichte ausmacht und bei der der Anteil an Grobpartikeln gP ebenfalls ≤1% der Volumendichte ausmacht. Insbesondere werden die schraffiert dargestellten Anteile von Feinstpartikeln fP und Grobpartikeln gP aus dem pulverförmigen Zwischenprodukt ZP entfernt. Figure 4 shows the particle size distribution in the intermediate product ZP and in the starting material AM. In particular, the diagram plots the particle size in µm against the proportion of the volume density of the respective mixture in %. It is clearly visible here that through the additional process step of dispersing the intermediate product ZP and sifting with subsequent separation of the finest particles fP ≤ 1µm and/or coarse particles gP ≥ 10 via a dynamic sifter 10, a more homogeneous particle mixture in the starting material AM can be achieved, in which the proportion of fine particles fP is ≤1% of the volume density and in which the proportion of coarse particles gP is also ≤1% of the volume density. In particular, the hatched portions of fine particles fP and coarse particles gP are removed from the powdery intermediate product ZP.

Das derart hergestellte Ausgangsmaterial AM eignet sich aufgrund der zwischen 1µm und 10µm, insbesondere zwischen 2µm und 8µm, liegenden Partikelgröße besonders für die Herstellung von gesinterten Seltenerd- Magneten, da bei diesen Partikelgrößen des Ausgangsmaterials AM besonders gute Magnetwerde erzielt werden können. Insbesondere werden mit diesem Ausgangsmaterial AM für die Herstellung von Permanentmagneten hohe (verbesserte) Remanenzwerte BR und eine gute (verbesserte) Gegenfeldstabilität HcJ sowie eine deutliche Verbesserung der Rechteckigkeit der Entmagnetisierungskurve erzielt.The starting material AM produced in this way is particularly suitable for the production of sintered rare earth magnets due to the particle size between 1µm and 10µm, in particular between 2µm and 8µm, since particularly good magnets can be achieved with these particle sizes of the starting material AM. In particular, with this starting material AM for the production of permanent magnets, high (improved) remanence values BR and good (improved) opposing field stability HcJ as well as a significant improvement in the squareness of the demagnetization curve are achieved.

Figur 5 zeigt eine rasterelektronenmikroskopische Aufnahme des pulverförmigen Zwischenproduktes ZP und Figur 6 zeigt eine rasterelektronenmikroskopische Aufnahme des Ausgangsmaterials AM, wie es in diversen Ausführungsformen des erfindungsgemäßen Verfahrens hergestellt und zur Fertigung von Seltenerd-Magneten Verwendung finden kann. Während das Zwischenprodukt ZP eine stark inhomogene Mischung verschiedener Partikelgrößen darstellt und insbesondere auch einen hohen Anteil an Feinstpartikeln fP enthält, zeigt Figur 6 deutlich, dass das doppelt gesichtete Ausgangsmaterial AM hauptsächlich nur noch Partikel einer Zielgröße ZG zwischen 1µm und 10µm, insbesondere zwischen 2µm und 8µm enthält. Figure 5 shows a scanning electron microscope image of the powdery intermediate product ZP and Figure 6 shows a scanning electron micrograph of the starting material AM, as it is produced in various embodiments of the method according to the invention and can be used for the production of rare earth magnets. While the intermediate product ZP represents a highly inhomogeneous mixture of different particle sizes and in particular also contains a high proportion of fine particles fP Figure 6 It is clear that the double-screened starting material AM mainly only contains particles of a target size ZG between 1µm and 10µm, in particular between 2µm and 8µm.

Die Erfindung wurde unter Bezugnahme auf bevorzugte Ausführungsformen beschrieben. Es ist für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.The invention has been described with reference to preferred embodiments. It will be conceivable to a person skilled in the art that modifications or changes may be made to the invention without departing from the scope of the following claims.

BezugszeichenlisteReference symbol list

11
ProduktzugabeProduct addition
22
SichterlufteintrittClassifier air inlet
33
LeitschaufelkorbGuide vane basket
44
Sichterradsifter wheel
55
Trennwandpartition wall
66
GrobgutaustrittCoarse material exit
77
GrobgutklappeCoarse material flap
88th
WelleWave
99
MaschinengehäuseMachine housing
1010
SichtervorrichtungClassifying device
1111
SpaltgaszuführungFission gas supply
AMAT THE
AusgangsmaterialSource material
fPfP
feinste Partikel / Feinstpartikelfinest particles / finest particles
fPFfPF
feine Pulverfraktionfine powder fraction
gPGP
grobe Partikel Grobpartikelcoarse particles coarse particles
gPFgPF
grobe Pulverfraktioncoarse powder fraction
VLVL
VerfahrensluftProcess air
ZGZG
ZielgrößeTarget size
ZPZP
Zwischenproduktintermediate product
SGSG
Spaltgasfission gas

Claims (8)

  1. A method used to produce a powdered starting material (AM) intended for the manufacture of rare-earth magnets, the method comprising the following steps:
    - comminuting an alloy that comprises at least one rare-earth metal, wherein the comminuting comprises a coarse grinding and a fine grinding, wherein a powdered intermediate product (ZP) is formed from the alloy that comprises at least one rare-earth metal; and
    - carrying out at least one particle size classification for the powdery intermediate product (ZP), wherein a fraction of the powdered intermediate product (ZP) formed by means of the at least one classification constitutes the starting material (AM) intended for the manufacture of rare-earth magnets,
    the method being characterised in that
    - the powdered intermediate product (ZP) is first supplied to at least one first static classifier, and wherein subsequently hereafter a portion separated from the powdered intermediate product (ZP) by means of the at least one first static classifier is supplied to at least one dynamic classifier (10), which at least one dynamic classifier (10) carries out at least one particle size classification for the portion separated from the powdered intermediate product (ZP) by means of the at least one static classifier, and in this context separates that fraction from the portion that constitutes the starting material (AM) intended for the manufacture of rare-earth magnets and has particles in a target size range between 1µm and 10µm,
    - in which method at least two temporally successive classifications, each according to particle size, are carried out via the at least one dynamic classifier (10), wherein
    - the at least one dynamic classifier (10) separates coarse material (gP) from the powdered intermediate product (ZP) in the context of a first particle size classification, and wherein
    - the at least one dynamic classifier (10) separates fine material (fP) from the powdered intermediate product (ZP) in the context of a second particle size classification,
    - whereafter a portion of the powdered intermediate product separated from the fine material and the coarse material provides the fraction that constitutes the starting material (AM) intended for the manufacture of rare-earth magnets,
    - in which starting material (AM) a portion of particles > 8µm is at
    ≤ 2 volume percent, in particular, in a range between 0.1 volume percent and 1 volume percent,
    - and in which starting material (AM) a portion of particles < 2µm is at ≤ 2 volume percent, in particular, in a range between 0.05 volume percent and 2 volume percent;
    - wherein the at least one dynamic classifier (10) comprises a classifier rotor and the at least one static classifier is formed by a cyclone classifier.
  2. The method according to claim 1, in which the at least one dynamic classifier (10) classifies and moreover disperses the powdered intermediate product (ZP), with the result that the fraction, which constitutes the starting material (AM) intended for the manufacture of rare-earth magnets, is separated from the powdered intermediate product.
  3. The method according to claim 1 or 2, in which the first particle size classification and the second particle size classification are carried out via exactly one dynamic classifier (10).
  4. The method according to one of the claims 1 to 3, in which the at least one dynamic classifier (10) carries out the at least one particle size classification for the powdered intermediate product (ZP) under inert gas atmosphere.
  5. A method for the manufacture of rare-earth magnets, the method comprising the following steps:
    - producing a starting material (AM) by means of a method according to one of the claims 1 to 4,
    - placing the starting material (AM) into moulds and pressing the starting material (AM) in the moulds, wherein blanks are formed from the starting material (AM),
    - sintering the blanks and applying a magnetizing pulse to the sintered blanks such that the sintered blanks with the magnetizing pulse having been applied to are as a result formed to be rare-earth magnets.
  6. A facility to produce a powdered starting material (AM) intended for the manufacture of rare-earth magnets, the facility comprising
    - at least one comminution device, which is adapted to produce a powdered intermediate product (ZP) by comminution of an alloy that comprises at least one rare-earth metal, wherein the comminution comprises a coarse grinding and a fine grinding, and
    - at least one separating device, which, via at least one particle size classification, can separate a fraction from the powdered intermediate product (ZP), which fraction constitutes the starting material (AM) intended for the manufacture of rare-earth magnets,
    the facility being characterised in that
    - the at least one separating device comprises at least one static classifier in the form of a cyclone classifier to which the powdered intermediate product (ZP) is suppliable, and
    - in that the at least one separating device comprises at least one dynamic classifier (10) with a classifier rotor, which, via a particle size classification, can separate that fraction from the powdered intermediate product (ZP) that constitutes the starting material (AM) intended for the manufacture of rare-earth magnets,
    - and wherein the at least one static classifier and the at least one dynamic classifier (10) are connected to one another in such a manner that a portion separated from the supplied powdered intermediate product (ZP) by means of the at least one static classifier is suppliable to the at least one dynamic classifier (10), and
    - wherein the at least one static classifier and the at least one dynamic classifier (10) are configured to produce a starting material (AM), in which starting material (AM) a portion of particles > 8µm is at ≤ 2 volume percent, in particular, in a range between 0.1 volume percent and 1 volume percent,
    - and in which starting material (AM) a portion of particles < 2µm is at ≤ 2 volume percent, in particular, in a range between 0.05 volume percent and 2 volume percent; wherein the dynamic classifier (10) is connected to a control unit and/or regulating unit, in which an algorithm is stored via which the control unit and/or regulating unit independently and in consideration of the particular desired particle size distribution for the starting material to be produced regulates or controls a rotational speed of the classifier rotor formed as a part of the at least one dynamic classifier.
  7. The facility according to claim 6, in which the at least one dynamic classifier (10) is configured to classify and disperse the supplied powdered intermediate product (ZP).
  8. The facility according to one of the claims 6 or 7, in which the at least one dynamic classifier (10) can carry out the particle size classification under inert gas atmosphere.
EP18182618.1A 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet Active EP3431209B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23190243.8A EP4268995A1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet
SI201831039T SI3431209T1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017116272.0A DE102017116272A1 (en) 2017-07-19 2017-07-19 METHOD AND APPARATUS FOR MANUFACTURING AN INITIAL MATERIAL FOR THE PRODUCTION OF RARE-DIGITAL MAGNETS

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP23190243.8A Division EP4268995A1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet
EP23190243.8A Division-Into EP4268995A1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet

Publications (2)

Publication Number Publication Date
EP3431209A1 EP3431209A1 (en) 2019-01-23
EP3431209B1 true EP3431209B1 (en) 2023-09-20

Family

ID=62909424

Family Applications (2)

Application Number Title Priority Date Filing Date
EP23190243.8A Pending EP4268995A1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet
EP18182618.1A Active EP3431209B1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP23190243.8A Pending EP4268995A1 (en) 2017-07-19 2018-07-10 Method and installation for the production of a starting material for producing of rare earth magnet

Country Status (11)

Country Link
US (2) US11660639B2 (en)
EP (2) EP4268995A1 (en)
CN (1) CN109277577A (en)
DE (1) DE102017116272A1 (en)
DK (1) DK3431209T3 (en)
ES (1) ES2966804T3 (en)
FI (1) FI3431209T3 (en)
LT (1) LT3431209T (en)
PL (1) PL3431209T3 (en)
RU (1) RU2706258C1 (en)
SI (1) SI3431209T1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112406A1 (en) * 2018-05-24 2019-11-28 Netzsch Trockenmahltechnik Gmbh Process and plant for the production of a starting material for the production of rare earth magnets
CN109848030A (en) * 2019-01-26 2019-06-07 南通理工学院 A kind of increasing material manufacturing raw material screening device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1252042A1 (en) * 1985-02-27 1986-08-23 Предприятие П/Я В-8392 Producion line for making ferrite powder
JPH0354806A (en) * 1989-07-24 1991-03-08 Shin Etsu Chem Co Ltd Manufacture of rare-earth permanent magnet
DE4320025A1 (en) * 1993-06-17 1994-12-22 Krupp Polysius Ag Grinding plant and method for grinding and classifying brittle regrind
UA28403A (en) * 1996-12-26 2000-10-16 Олег Доміанович Нейков Method and technological line for obtaining of powders, granules and briquettes of chemically active metals and alloys
RU2111088C1 (en) * 1997-01-31 1998-05-20 Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара Method of production of quick-quenched powders of magnet alloys of neodymium-ferrum-boron system
US5976224A (en) * 1998-05-04 1999-11-02 Durant; James F. Separating carbon from ash
JP4230050B2 (en) * 1999-05-11 2009-02-25 日本ニューマチック工業株式会社 Jet crushing apparatus and jet crushing method
US6676773B2 (en) * 2000-11-08 2004-01-13 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for producing the magnet
US20070089806A1 (en) * 2005-10-21 2007-04-26 Rolf Blank Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
RU2317149C1 (en) * 2006-05-10 2008-02-20 Валентин Николаевич Аполицкий Method of wet classification of powder material
CN101981634B (en) * 2008-03-31 2013-06-12 日立金属株式会社 R-T-B-type sintered magnet and method for production thereof
DE102008038776B4 (en) * 2008-08-12 2016-07-07 Loesche Gmbh Process for the screening of a millbase fluid mixture and mill classifier
CN103025433B (en) * 2010-07-30 2014-08-06 细川密克朗集团股份有限公司 Jet mill
CN104550023A (en) * 2014-11-26 2015-04-29 宁波宏垒磁业有限公司 Jet mill sorting wheel and NdFeB magnet sintering method for preparing powder by jet mill sorting wheel

Also Published As

Publication number Publication date
LT3431209T (en) 2024-01-10
FI3431209T3 (en) 2023-12-21
CN109277577A (en) 2019-01-29
US20190027284A1 (en) 2019-01-24
EP4268995A1 (en) 2023-11-01
DE102017116272A1 (en) 2019-01-24
DK3431209T3 (en) 2024-01-02
ES2966804T3 (en) 2024-04-24
RU2706258C1 (en) 2019-11-15
PL3431209T3 (en) 2024-03-04
US11660639B2 (en) 2023-05-30
US20230271224A1 (en) 2023-08-31
EP3431209A1 (en) 2019-01-23
SI3431209T1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
DE69434323T2 (en) Preparation d&#39;un aimant permanent
DE60317767T2 (en) R-T-B rare earth permanent magnet
DE102016122327A1 (en) rare earth
DE68917213T2 (en) Sintered Nd-Fe-B magnet and its manufacturing process.
DE10291720T5 (en) Process for producing a sintered compact for a rare earth magnet
DE60319800T2 (en) RARE-TERM PERMANENT MAGNET ON R-T-B BASE AND MAGNETIC COMPOSITION
DE112016002876T5 (en) R-T-B based sintered magnet and process for its preparation
EP3055870B1 (en) Process for manufacturing a permanent magnet
DE2625214A1 (en) Process for the production of sintered molded bodies
DE112014001585T5 (en) R-T-B-based permanent magnet
DE69200698T2 (en) Method for producing an alloy powder containing dispersed hard material particles.
EP3431209B1 (en) Method and installation for the production of a starting material for producing of rare earth magnet
DE112012003478T5 (en) METHOD FOR PRODUCING MAGNETIC GREENLINGS, MAGNETIC GREENING AND SINTERED BODIES
DE102015115217A1 (en) High-temperature hybrid permanent magnet
DE112012000967T5 (en) Process for producing a rare earth magnet
EP1214720B1 (en) METHOD FOR PRODUCING PERMANENT MAGNETS ON THE BASIS OF BORON-LOW Nd-Fe-B ALLOY
DE10255604B4 (en) A method of making an anisotropic magnetic powder and a bonded anisotropic magnet therefrom
DE60317460T2 (en) RARE TERMINAL PERMANENT MAGNET ON R-T-B BASE
DE112014001584T5 (en) R-T-B-based permanent magnet
DE102014104420A1 (en) Rare earth based magnet
DE10297484B4 (en) A method and apparatus for producing a granulated rare earth metal alloy powder and a method of producing a rare earth alloy sintered body
EP3572165B1 (en) Method for the manufacture of a material for the production of rare earth magnets
DE10066419B4 (en) A method of preserving (maintaining) an alloy powder material for an R-Fe-B type sintered magnet
DE60213973T2 (en) METHOD OF MANUFACTURING A PERMANENT MAGNET AND PRESSING DEVICE
DE102019116748A1 (en) SEPARATION OF MANGANE-BISMUT POWDERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190205

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200415

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref document number: 502018013274

Country of ref document: DE

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B22F0001000000

Ipc: B02C0015000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B07B 13/04 20060101ALI20230315BHEP

Ipc: B07B 13/00 20060101ALI20230315BHEP

Ipc: H01F 1/057 20060101ALI20230315BHEP

Ipc: B22F 9/04 20060101ALI20230315BHEP

Ipc: B22F 3/24 20060101ALI20230315BHEP

Ipc: B22F 3/12 20060101ALI20230315BHEP

Ipc: B22F 1/052 20220101ALI20230315BHEP

Ipc: C22C 33/02 20060101ALI20230315BHEP

Ipc: C22C 28/00 20060101ALI20230315BHEP

Ipc: B02C 13/04 20060101ALI20230315BHEP

Ipc: B02C 13/00 20060101ALI20230315BHEP

Ipc: B02C 15/00 20060101AFI20230315BHEP

INTG Intention to grant announced

Effective date: 20230419

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230801

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018013274

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20231219

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

REG Reference to a national code

Ref country code: NO

Ref legal event code: REIN

Owner name: NETZSCH TROCKENMAHLTECHNIK GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231221

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E023893

Country of ref document: EE

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2966804

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230920