EP3768977B1 - In einer drehrichtung anzutreibendes lüfterrad - Google Patents

In einer drehrichtung anzutreibendes lüfterrad Download PDF

Info

Publication number
EP3768977B1
EP3768977B1 EP19717110.1A EP19717110A EP3768977B1 EP 3768977 B1 EP3768977 B1 EP 3768977B1 EP 19717110 A EP19717110 A EP 19717110A EP 3768977 B1 EP3768977 B1 EP 3768977B1
Authority
EP
European Patent Office
Prior art keywords
hub
drive
drive unit
fan blades
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19717110.1A
Other languages
English (en)
French (fr)
Other versions
EP3768977A1 (de
Inventor
Karl Hägele
Markus Lechler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IE Assets GmbH and Co KG
Original Assignee
IE Assets GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IE Assets GmbH and Co KG filed Critical IE Assets GmbH and Co KG
Publication of EP3768977A1 publication Critical patent/EP3768977A1/de
Application granted granted Critical
Publication of EP3768977B1 publication Critical patent/EP3768977B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • F04D29/362Blade mountings adjustable during rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/329Details of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line

Definitions

  • the invention relates to a fan wheel to be driven in one direction of rotation.
  • the hub of the fan wheel has radial fan blades projecting on the peripheral side. These engage via pinions on the foot side of their blade axes between two drive tracks which are parallel to the plane of rotation of the fan wheel and are axially spaced apart from one another and are in permanent engagement with these drive tracks in a torque-transmitting manner.
  • the drive tracks which are coupled via the pinion and are axially opposite one another, can be adjusted in rotation about the hub axis by means of an adjusting drive which is accommodated in the hub and is coaxial with the hub; this means that the blade angles of the fan blades can also be adjusted via the pinions, in each case according to the given direction of rotation of the drive to a desired flow rate.
  • the invention relates to a fan wheel which, despite its limitation to only one driving direction of rotation and the resulting restricted requirements for the associated drive unit, meets the requirements for opposite conveying directions and for variability in the conveying volume, in particular depending on an axial load on the fan wheel, but also optionally selected ones. freely adjustable axial load on the fan wheel.
  • the fan wheel with a hub which is coaxial to the drive unit, preferably accommodates and/or encloses at least part of the drive unit and is axially displaceable with limited play and driven with rotational play to the drive unit.
  • the radial fan blades are held in this hub so that they can rotate about their blade axes and are supported synchronously in a drive-connected manner against the drive unit in a fixed position and axially spaced apart from one another, corresponding to the load-dependent axial adjustment of the hub to the drive unit.
  • the rotational play of the hub to the drive unit and thus the conversion of the fan blades mounted in the hub in their alignment to the plane of rotation of the fan wheel is also dampening and/or limited to at least one switching window depending on the temperature.
  • an adjusting drive is provided within the scope of the invention, namely in the axial connection between the drive unit and the hub head, with - non-rotatably to the hub head and together with the hub head corresponding to the axial play between the hub and drive unit axially displaceable - a switching star is provided.
  • This star switch is located in the axial overlapping area of two ring disks, which are connected to the drive unit, in particular a drive part of the drive unit, in a rotationally fixed and positionally fixed manner and in relation to which the star switch is axially adjustable within the scope of the intended axial play of the hub relative to the drive part.
  • These ring disks are not only connected to one another in a fixed position, but are also provided with the same meandering structures with respect to their inner circumference, to which an opposite meandering structure is provided on the circumference on the part of the switching star.
  • the switching process in the changeover from blowing to suction, or vice versa - and thus also the change in the axial load on the fan wheel, which depends on the air throughput and the direction of flow, is proportional small angle of rotation limited.
  • This angle of rotation range is dimensioned sufficiently to enable a largely unimpeded axial transition of the switching star from a given level position of one of the annular disks to the level of the other annular disk.
  • the switching process is not dependent on and/or associated with high actuating forces, especially since the rotation of the fan blades about their axes of rotation and over their transition level associated with the switching also promotes an overshooting of the switching level due to inertia in the event of abrupt switching processes, also as a function of inertial forces.
  • the switching forces required to change the conveying direction are introduced via the air impingement on the fan wheel, and thus only indirectly as a function of the controllable drive power.
  • the hub can also be assigned a separate adjusting device.
  • This adjusting device can be designed to work magnetically in a simple manner, so that, if necessary, via the Adjusting device alone and / or in combination with the aerodynamic loading, the changeover of the fan blades can be effected on the envelope level.
  • the number of switching windows can be selected in accordance with the respective shape of the meandering contouring, which requires at least two switching windows lying opposite one another with regard to the axis of rotation with regard to a support that is symmetrical to the axis of rotation and with regard to a smooth axial displacement of the switching star against the ring disks can also have adapted leading flanks.
  • the fan wheel according to 2 this in 1 is shown in detail in a perspective exploded view, is denoted overall by 1 and, as part of a drive unit 2, comprises a drive part 4 coaxial with the axis of rotation 3.
  • a respective motor drive possibly also an electric motor drive, can be integrated into this drive part 4, forming a drive unit 2, or also be provided directly or indirectly coupled.
  • the drive part 4 is preferably provided with two coaxially opposite annular drive tracks 6 and 7 in the direction of the axis of rotation 3 of the fan wheel 1, which form the opposite side walls of an annular channel 24 open radially outwards, into which the peg-like, in the hub 5 mounted foot parts 12 of the radial fan blades 8 of the fan wheel 1 protrude with radial play.
  • the projecting into the ring channel 24 ends of the peg-like foot parts 12 are preferably formed by drive elements such as pinion 10, the at Power transmission to one of the drive tracks 6, 7 against the other drive track 7.6 each in the circumferential direction are rotatable with limited play.
  • the drive part 4 can be displaced in the direction of the axis of rotation 3 within the scope of an axial play S, which alternatively allows the pinion 10 to be supported against one of the opposite drive tracks 6, 7 in the drive.
  • the fan blades 8 can be rotated about their blade axes 9 by this engagement of their end, preferably formed by a pinion 10, of the pin-like foot part 12 between the drive tracks 6 and 7 and the respective drive support for one of these drive tracks 6, 7.
  • This ability to rotate the fan blades 8 about their blade axes 9 enables the fan wheel 1 to be switched to opposite conveying directions while the direction of rotation of the fan wheel 1 remains the same, so that it is possible, for example, to switch between a working operation with suction of an air flow through an upstream cooler 11 from a suction position 25 and into a blowing position 26. in which a blowing against the cooler 11 directed air flow is generated via the fan wheel 1 in order - to free the cooler 11 of attached impurities - when blowing against the cooler 11.
  • a reversal of the conveying direction thus results with the same drive direction of rotation when the fan blades 8 are turned over via a turning plane 14 lying transversely to the circumferential plane 13 of the fan wheel 1.
  • the envelope plane 14 lies in the transition between the suction position 25 and blowing position 26 in suction operation and blowing operation assumed blade positions and corresponds to an intermediate, direction-neutral transition position of the fan blades 8 in relation to the conveying directions in suction and blowing operation.
  • the changeover via the envelope plane 14 is not associated with a change in the air impingement of the fan blades between their blade surfaces 33 and 34, which are opposite to the blade blade plane, as in the embodiment according to Figures 7 and 8 .
  • the same conveying conditions are thus given in both conveying directions.
  • the exemplary embodiment provides for the changeover of the fan blades 8 in their conveying direction under the influence of aerodynamic and/or inertia-related actuating forces, such as initiated by a brief interruption, e.g. B. Switching off the drive.
  • corresponding actuating pulses can be applied to the hub 5, for example by means of mechanical or electrical actuating devices, with which a desired, ie arbitrarily initiated changeover as well as a rotational fixation of the fan wheel can be achieved.
  • a relevant adjusting device 35 can, for example, be used in addition to or independently of the aerodynamic loading, for example for Specification of speed-dependent and/or temperature-dependent switchover points.
  • the actuator 35 is in 1 illustrated axially following the drive part 4 as an electrically controllable magnetic actuator, which is supported axially in a fixed position.
  • the drive tracks 6, 7 are formed by ring gears which are opposite one another with their ring gears 29 and between which the pinions 10 protrude.
  • the pinion 10 has enough play in relation to the ring gears 29 that, depending on the size of the backlash between the toothing of the ring gears 29 and the pinion 10, there is no drive loading between the respective pairs of teeth when the hub 5 is subjected to an axial load, but there is play in the pinion 10 to the ring gears 29 are still fixed synchronously in terms of rotation, so that all fan blades 8 have mutually corresponding adjustment positions.
  • This conversion takes place in the exemplary embodiment via a concentric to the drive part 4 and the hub 5, from the Hub 5 enclosed actuator 15, as for example in 1 is illustrated.
  • This adjusting drive 15 comprises two annular disks 16, 17 which are concentric to the axis of rotation 3 of the fan wheel 1 and are therefore also coaxial to the hub axis and which are each provided with at least essentially congruent, approximately meandering inner contours 18 on their inner ring circumference, which delimits their central recess.
  • the annular disks 16, 17 are offset from one another in the circumferential direction and connected to one another in an axially fixed position.
  • Matched to the inner contour 18 of the ring disks 16, 17 is a switching star 19 with a circumferential, complementary meandering outer contour 32.
  • the respective meandering contouring 18 or 32 results from the fact that the ring disks 16, 17 have recesses 20 open to the respective inner ring circumference, which are delimited from one another by arms 21 projecting radially between the recesses 20.
  • the complementary outer contouring 32 of the switching star 19 provides arms 22 that protrude against its outer circumference, i.e. radially outwards, to form recesses 23 in between in the circumferential direction, with the distance measured in the circumferential direction between the respective radially protruding adjacent arms 21 of the ring disks 16, 17, and thus the width of the recesses 20 of the annular discs 16, 17, measured in the circumferential direction, is greater than the width of the arms 22 of the switching star 19.
  • the switching star 19 has a respective arm 22 with respect to a respective receiving recess 20 of one of the ring disks 16, 17 in the circumferential direction, so that a switching window 30 is formed.
  • the snag-free gliding of the arms 22 of the switching star 19 in corresponding recesses 20 can be facilitated by rounded edges and / or bevels.
  • the switching star 19 is supported in a fixed position relative to the coaxial hub 5 in an axial overlapping position with respect to the annular discs 16, 17 and, corresponding to the axial loading of the hub 5 by the opposing axial loading forces in "suction operation" 25 or "blowing operation” 26, lies in relation to one of the annular disks 16 , 17 in the same plane, the annular discs 16, 17 mutually support each other due to their combination to form a "package" and, despite their small thickness, can also transmit large torques to the switching star 19 while maintaining their flat design.
  • the thickness of which is matched to the thickness of the ring disks 16, 17 at least in the area of its outer contour, there is the possibility of reinforcing this in the area of its central area by thickening or the like and/or bulging like a bowl. In particular, this also comes into question with regard to the rigid connection of the star wheel 19 to the hub head 27 .
  • the axial loading of the fan wheel 1 associated with the blowing state decreases as the alignment of the fan blades 8 approaches their envelope plane 14, leads in a border area around the Turnover level for reversing the axial loading of the fan wheel and turning over the blades 8 and for changing the contact of the pinion 10 between the drive tracks 6 and 7. This takes place in the area of the switching window 30 provided.
  • At least one switching window 30 is provided over the respective circumference, but preferably at least two or more diametrically opposite switching windows 30 are also provided with regard to supporting forces that are symmetrical to the axis of rotation 3.
  • the invention makes it possible, regardless of the Extension of the functions a very compact structure.
  • the rotational play between the selector star 19 and the respective ring disk 16, 17 located in the axial overlapping position has a low-impact transition when changing the selector star 19 between the ring disks 16, 17 due to the corresponding rotational speeds and the result of the drive connection that is interrupted in each case with limited play.
  • the separation according to the invention of the axial and radial engagement path in the drive connection between the drive part 4 and the hub 5 acted upon by the aerodynamic force has an advantageous effect on the structural design options, in particular with regard to the design of the actuating drive 15 from elements which are easy to produce and interact with one another in a space-saving manner. which, with mutual support between these elements, also enables a very light and compact design.
  • the actuator 15 according to the invention has the result that the fan blades 8 are stationarily “engaged” via the pinions 10 assigned to them with one of the drive tracks 6, 7 and the fan wheel 1 is thus supported in a rotationally fixed manner via drive tracks parallel to the drive part 4. This is due to the engagement of the pinion 10 in one of the drive tracks 6, 7 and the mounting of the fan blades 8 in the hub 5, which is non-rotatable in relation to the drive part 4, which leads to mutual relief.
  • a design is provided in which the fan blades 8 are positioned at the foot side between two to the drive unit 2 in a fixed position and engage in the direction of the axis of rotation 3 of the fan wheel 1 coaxially opposite drive tracks 6.7 and in their wing angle by driving one of the drive tracks 6.7 around their wing axes 8 via an envelope plane 14 in opposite conveying directions are convertible, wherein the envelope plane 14 is transverse to the circulation plane 13 or, according to Figures 7 and 8 , the envelope plane 14 coincides with the circulation plane 13.
  • the direction of rotation of the driven fan wheel 1 is illustrated by the arrow 31 .
  • the fan blades 8 are set at an angle to the direction of rotation 31, and thus also to the plane of rotation 13 of the fan wheel, depending on the desired direction of conveyance, based on 7 in the sense of a blowing operation in a blowing position 26 accordingly figure 5 and in 8 in the sense of a suction operation in a suction position 25 analogous to 3 .
  • the changeover between suction and blowing operation takes place via a turnover plane 36, which is neutral with respect to the conveying direction and coincides with the circulation plane 13, as the turnover position.
  • the reversal position of the fan blades 8, which is neutral with respect to the conveying direction, can also be used according to the invention as a held intermediate layer in order to interrupt and temporarily switch off the air conveyance despite the possibly continuous drive of the fan impeller 1.
  • the intermediate layer to be held can be adjusted and held via the adjusting device 35, in particular also in the configuration as a magnetic adjuster, also independently of other adjusting forces acting on the fan impeller 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Description

  • Die Erfindung bezieht sich auf ein in einer Drehrichtung anzutreibendes Lüfterrad.
  • Aus der US 3,054,458 A ist ein Lüfterrad bekannt, das als Einheit drehbar angetrieben ist und hierzu seitens seiner Nabe zum Antrieb für das Lüfterrad abgestützt sowie mit diesem antriebsverbunden ist.
  • Die Nabe des Lüfterrades weist umfangsseitig auskragend radiale Lüfterflügel auf. Diese greifen über zu ihren Flügelachsen fußseitige Ritzel zwischen zwei zur Umlaufebene des Lüfterrades parallele, axial beabstandet zueinander liegende Antriebsbahnen ein und stehen zu diesen Antriebsbahnen drehmomentübertragend in permanentem Eingriff.
  • Die über die Ritzel verkuppelten und axial einander gegenüberliegenden Antriebsbahnen sind über einen in der Nabe aufgenommenen und zur Nabe koaxialen Stelltrieb rotatorisch um die Nabenachse verstellbar; damit sind auch die Lüfterflügel über die Ritzel in ihrem Flügelwinkel einstellbar, jeweils entsprechend der gegebenen Drehrichtung des Antriebs auf eine gewünschte Fördermenge.
  • Die Erfindung betrifft ein Lüfterrad, das ungeachtet seiner Beschränkung auf nur eine Antriebsdrehrichtung und der dadurch eingeschränkten Anforderungen an die zugehörige Antriebseinheit den Anforderungen nach entgegengesetzten Förderrichtungen und nach Variabilität im Fördervolumen, insbesondere in Abhängigkeit von einer axialen Belastung des Lüfterrades, gegebenenfalls aber auch jeweils gewählten, frei einstellbaren axialen Belastung des Lüfterrades, gerecht wird.
  • Erreicht wird dies durch eine konstruktive Ausgestaltung des Lüfterrades mit einer koaxial zur Antriebseinheit liegenden, bevorzugt zumindest einen Teil der Antriebseinheit aufnehmenden und/oder umschließenden sowie spielbegrenzt axial verschiebbaren und mit Drehspiel zur Antriebseinheit angetriebenen Nabe. In dieser Nabe sind die radialen Lüfterflügel um ihre Flügelachsen drehbar gehalten und gegen zur Antriebseinheit lagefeste und axial zueinander beabstandete Antriebsbahnen, entsprechend der lastabhängig axialen Verstellung der Nabe zur Antriebseinheit, synchron antriebsverbunden abgestützt. Das Drehspiel der Nabe zur Antriebseinheit und damit die Umstellung der in der Nabe gelagerten Lüfterflügel in ihrer Ausrichtung zur Umlaufebene des Lüfterrades ist dabei gegebenenfalls auch dämpfend und/oder
    temperaturabhängig auf zumindest ein Schaltfenster beschränkt. Dies derart, dass bezogen auf eine die Drehachsen der Lüfterflügel enthaltende Umschlagebene die Lüfterflügel um ihre jeweilige Drehachse drehbar zwischen entgegengesetzten Förderrichtungen, nämlich Saug- oder Blasrichtung umgestellt werden.
  • Zu der im Drehspiel begrenzten Antriebsverbindung der Nabe zur Antriebseinheit ist im Rahmen der Erfindung ein Stelltrieb vorgesehen, und zwar in der axialen Verbindung zwischen der Antriebseinheit und dem Nabenkopf liegend, wobei - zum Nabenkopf drehfest und zusammen mit dem Nabenkopf entsprechend dem Axialspiel zwischen Nabe und Antriebseinheit axial verschieblich - ein Schaltstern vorgesehen ist.
  • Dieser Schaltstern liegt im axialen Überdeckungsbereich zu zwei Ringscheiben, die mit der Antriebseinheit, insbesondere einem Antriebsteil der Antriebseinheit, dreh- und lagefest verbunden sind und gegenüber denen der Schaltstern im Rahmen des vorgesehenen Axialspieles der Nabe zum Antriebsteil axial verstellbar ist. Diese Ringscheiben sind miteinander nicht nur lagefest verbunden, sondern bezüglich ihres Innenumfangs jeweils auch mit gleichen mäanderförmigen Strukturen versehen, zu denen seitens des Schaltsterns eine gegenläufig mäanderförmige Struktur umfangsseitig vorgesehen ist.
  • Durch das Zusammenwirken der mäanderförmigen, deckungsgleich liegenden inneren Umfangsstrukturen der Ringscheiben und der mäanderförmigen, umfangsseitigen Struktur des Schaltsterns sind in Umfangsrichtung radiale Eingriffsbereiche gegeben, die entsprechend einem in Umfangsrichtung gegebenen Versatz zwischen den ringseitig und sternseitig gegebenen, radial überlappenden Begrenzungsflächen die Verdrehung des Schaltsterns gegen die Ringscheiben ermöglichen und begrenzen, und damit jeweils entsprechende, beim Axialversatz des Schaltsternes jeweils gleichzeitig anzufahrende Schaltfenster festlegen.
  • Entsprechend der jeweiligen Schaltfenstergröße und des durch diese Größe festgelegten Verdrehwinkels zwischen Nabe und Antriebseinheit ist der Umschaltvorgang in der Umstellung von Blasen auf Saugen, oder umgekehrt - und somit auch der Wechsel in der vom Luftdurchsatz und der Durchströmungsrichtung abhängigen axialen Belastung des Lüfterrades - auf einen verhältnismäßig kleinen Drehwinkel begrenzt. Dieser Drehwinkelbereich ist ausreichend dahingehend bemessen, einen weitgehend ungehinderten axialen Übergang des Schaltsterns aus einer zu einer der Ringscheiben gegebenen gleichen Ebenenlage auf die Ebene der anderen Ringscheibe zu ermöglichen.
  • Entsprechend ist der Umschaltvorgang also nicht von hohen Stellkräften abhängig und/oder mit solchen verbunden, zumal die mit der Umschaltung einhergehende Verdrehung der Lüfterflügel um ihre Drehachsen und über deren Umschlagebene bei schlagartigen Umschaltvorgängen auch massekraftabhängig trägheitsbedingt ein Überschwingen der Umschaltebene begünstigt.
  • Die zur Umstellung der Förderrichtung erforderlichen Umschaltkräfte werden einer bevorzugten Lösung zufolge über die Luftbeaufschlagung des Lüfterrades, und damit nur indirekt abhängig von der steuerbaren Antriebsleistung eingeleitet. Anstelle, oder gegebenenfalls auch zusätzlich zur von der aerodynamischen Beaufschlagung des Lüfterrades abhängigen axialen Beaufschlagung der Nabe, kann der Nabe auch eine separate Stellvorrichtung zugeordnet sein. Diese Stellvorrichtung kann in einfacher Weise magnetisch arbeitend ausgebildet sein, so dass gegebenenfalls über die Stellvorrichtung alleine und/oder in Kombination mit der aerodynamischen Beaufschlagung die Umstellung der Lüfterflügel über die Umschlagebene bewirkt werden kann.
  • Ferner kann die Anzahl der Schaltfenster abgestimmt auf die jeweilige Form der mäanderförmigen Konturierung gewählt werden, die im Hinblick auf eine zur Drehachse symmetrische Abstützung zumindest zwei in Bezug auf die Drehachse einander gegenüberliegende Schaltfenster bedingt und im Hinblick auf eine leichtgängige axiale Verschiebung des Schaltsternes gegen die Ringscheiben auch angepasste Führungsflanken aufweisen kann.
  • Weitere Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Zeichnungsbeschreibung und den Zeichnungen. Es zeigen:
  • Fig. 1
    eine Explosionsdarstellung des Nabenbereiches des Lüfterrades mit angedeuteter Lage für einen der zur Nabe radialen Flügel des Lüfterrades und mit vom Drehantrieb für das Lüfterrad abgezweigtem Stelltrieb zur Verdrehung der Lüfterflügel um ihre Flügelachsen,
    Fig. 2
    eine schematisierte Querschnittsdarstellung des in Fig. 1 als Explosionszeichnung veranschaulichten Lüfterrades, radial längs der Achse eines Flügels gesehen,
    Fig. 3
    und Fig. 5 Schemaansichten eines bei gleicher Drehrichtung auf entgegengesetzte Richtungen fördernden Lüfterrades, bei dem die Lüfterflügel um ihre Flügelachsen zur Umkehr der Förderrichtung über eine zur Umlaufebene des Lüfterrades querliegende Umschlagebene verstellt werden,
    Fig. 4 und 6
    korrespondierend zu den Flügelstellungen gemäß Fig. 3 und 5 die Funktion des absätzig arbeitenden Stelltriebes zur Verdrehung der Lüfterflügel um ihre Flügelachsen und dessen absätzig aufeinanderfolgende Arbeitsschritte in Abwicklungen, sowie
    Fig. 7 und 8
    den Fig. 3 und 5 im Grundaufbau entsprechende Darstellungen, bei denen, abweichend von Fig. 3 und 5, zur Umkehr der Förderrichtung die Lüfterflügel um ihre zur Nabe drehbar geführten Flügelachsen über die Umlaufebene des Lüfterrades als Umschlagebene verschwenkt werden.
  • Das Lüfterrad gemäß Fig. 2, das in Fig. 1 in einer perspektivischen Explosionsdarstellung detailliert gezeigt ist, ist insgesamt mit 1 bezeichnet und umfasst als Teil einer Antriebseinheit 2 einen zur Drehachse 3 koaxialen Antriebsteil 4. Zu diesem Antriebsteil 4 kann, eine Antriebseinheit 2 bildend, ein jeweiliger motorischer, gegebenenfalls auch elektromotorischer Antrieb integriert, oder auch direkt oder indirekt verkuppelt vorgesehen sein.
  • In beiden Ausgestaltungsformen ist der Antriebsteil 4 bevorzugt mit zwei in Richtung der Drehachse 3 des Lüfterrades 1 koaxial einander gegenüberliegenden ringförmigen Antriebsbahnen 6 und 7 versehen, die die einander gegenüberliegenden Seitenwände eines radial nach außen offenen Ringkanales 24 bilden, in den die zapfenartigen, in der Nabe 5 gelagerten Fußteile 12 der radialen Lüfterflügel 8 des Lüfterrades 1 mit radialem Spiel hineinragen. Bevorzugt sind die in den Ringkanal 24 hineinragenden Enden der zapfenartigen Fußteile 12 durch Antriebselemente, wie Ritzel 10 gebildet, die bei Kraftübertragung zu einer der Antriebsbahnen 6, 7 gegen die andere Antriebsbahn 7,6 jeweils in Umfangsrichtung spielbegrenzt verdrehbar sind.
  • Entsprechend dieser Auslegung ist der Antriebsteil 4 in Richtung der Drehachse 3 im Rahmen eines axialen Spieles S verschieblich, das alternativ eine Antriebsabstützung des Ritzels 10 gegen eine der einander gegenüberliegenden Antriebsbahnen 6, 7 ermöglicht.
  • Durch diesen Eingriff ihres bevorzugt jeweils durch ein Ritzel 10 gebildeten Endes des zapfenartigen Fußteiles 12 zwischen die Antriebsbahnen 6 und 7 und die jeweilige Antriebsabstützung zu einer dieser Antriebsbahnen 6, 7 sind die Lüfterflügel 8 um ihre Flügelachsen 9 drehbar. Diese Drehbarkeit der Lüfterflügel 8 um ihre Flügelachsen 9 ermöglicht bei gleichbleibender Drehrichtung des Lüfterrades 1 die Umstellung auf entgegengesetzte Förderrichtungen, so dass beispielsweise zwischen einem Arbeitsbetrieb mit Ansaugung eines Luftstromes durch einen vorgelagerten Kühler 11 von einer Saugstellung 25 und in eine Blasstellung 26 umgeschaltet werden kann, bei der über das Lüfterrad 1 ein blasend gegen den Kühler 11 gerichteter Luftstrom erzeugt wird, um - beim Blasen gegen den Kühler 11 - den Kühler 11 von angesetzten Verunreinigungen zu befreien.
  • Für ein Lüfterrad 1 entsprechend Fig. 3 und 5 mit zu seiner Nabe 5 radial auskragenden, um ihre Flügelachsen 9 drehbaren Lüfterflügeln 8 ergibt sich somit bei gleicher Antriebsdrehrichtung beim Umschlagen der Lüfterflügel 8 über eine zur Umlaufebene 13 des Lüfterrades 1 quer liegende Umschlagebene 14 eine Umkehr der Förderrichtung. Die Umschlagebene 14 liegt im Übergang zwischen den im Saugbetrieb und im Blasbetrieb als Saugstellung 25 und Blasstellung 26 eingenommenen Flügelstellungen und korrespondiert zu einer bezogen auf die Förderrichtungen im Saug- und Blasbetrieb dazwischenliegenden, richtungsneutralen Übergangslage der Lüfterflügel 8. Die Umstellung über die Umschlagebene 14 ist nicht verbunden mit einem Wechsel der Luftbeaufschlagung der Lüfterflügel zwischen deren zur Flügelblattebene einander gegenüberliegenden Flügelflächen 33 und 34 wie beim Ausführungsbeispiel gemäß Fig. 7 und 8. In beiden Förderrichtungen sind somit gleiche Förderbedingungen gegeben.
  • Entsprechend den - je nach Arbeitsbetrieb - bezogen auf den Saugbetrieb und den Blasbetrieb entgegengesetzten Förderrichtungen und der damit auch über die Lüfterflügel 8 - und deren Lagerung in der Nabe 5 - auf die Nabe 5 wirkenden, in Richtung der Drehachse 3 einander entgegengerichteten aerodynamischen Axialkräfte ergibt sich im Spielbereich S eine axiale Verlagerung der Nabe 5 zum Antriebsteil 4. Diese Verlagerung führt dazu, dass die Abstützlage des Ritzels 10 zu den Antriebsbahnen 6, 7 wechselt, verbunden mit einem Wechsel in der Antriebsdrehrichtung des Ritzels 10, und damit auch für den jeweiligen Lüfterflügel 8.
  • Das Ausführungsbeispiel sieht die Umstellung der Lüfterflügel 8 in ihrer Förderrichtung unter dem Einfluss aerodynamischer und/oder trägheitsbedingter Stellkräfte vor, etwa eingeleitet durch kurzzeitige Unterbrechung z. B. Abschalten des Antriebes. Erfindungsgemäß können entsprechende Stellimpulse zum Beispiel mittels mechanischer oder elektrischer Stellvorrichtungen auf die Nabe 5 aufgebracht werden, womit eine jeweils gewollte, also willkürlich eingeleitete Umstellung als auch eine Drehfixierung des Lüfterrades erreicht werden kann. Eine diesbezügliche Stellvorrichtung 35 kann beispielsweise ergänzend, oder auch unabhängig von der aerodynamischen Beaufschlagung zum Einsatz gebracht werden, zum Beispiel zur Festlegung drehzahlabhängiger und/oder temperaturabhängiger Umschaltpunkte. Die Stellvorrichtung 35 ist in Fig. 1 axial folgend auf den Antriebsteil 4 als elektrisch ansteuerbarer Magnetsteller veranschaulicht, der axial lagefest abgestützt ist.
  • Bezogen auf die erfindungsgemäße Gestaltung sind die Antriebsbahnen 6, 7 durch mit ihren Zahnkränzen 29 einander gegenüberliegende Tellerräder gebildet, zwischen die die Ritzel 10 hineinragen. Die Ritzel 10 weisen zu den Zahnkränzen 29 soweit Spiel auf, dass entsprechend der Größe des Zahnspieles zwischen den Verzahnungen der Zahnkränze 29 und der Ritzel 10 bei axiallastabhängiger Beaufschlagung der Nabe 5 keine Antriebsbeaufschlagung zwischen den jeweiligen Zahnpaaren besteht, die Ritzel 10 zu den Zahnkränzen 29 aber nach wie vor drehlagensynchron festgelegt sind, somit alle Lüfterflügel 8 einander entsprechende Einstelllagen aufweisen.
  • Die Umstellung der in der Nabe 5 in der Trennebene zwischen antriebsseitigem Nabenteil 28 und gegenüberliegendem, Nebenkopf 27 gelagerten Lüfterflügel 8 in ihrer Ausrichtung auf die bei "Saugen" und "Blasen" entgegengesetzten Förderrichtungen ist in den Fig. 3 und 5 veranschaulicht, und zwar durch eine Drehung der Lüfterflügel 8 um ihre Flügelachsen 9, wobei die Umstellung auf entgegengesetzte Förderrichtungen mit einer Drehung der Lüfterflügel 8 um ihre Flügelachsen 9 über einen Drehwinkel in der Größenordnung von etwa 120 bis 150° verbunden sein kann, und wobei die Lüfterflügel 8 bei dieser Drehung jeweils über eine zur Umlaufebene 13 des Lüfterrades 1 senkrechte Querebene, die Umschlagebene 14, schwenken, wie in den Darstellungen gemäß Fig. 3 und 5 veranschaulicht.
  • Diese Umstellung erfolgt im Ausführungsbeispiel jeweils über einen zum Antriebsteil 4 und zur Nabe 5 konzentrischen, von der Nabe 5 umschlossenen Stelltrieb 15, wie er beispielsweise in Fig. 1 veranschaulicht ist.
  • Dieser Stelltrieb 15 umfasst zwei zur Drehachse 3 des Lüfterrades 1 konzentrische und damit auch zur Nabenachse koaxiale Ringscheiben 16, 17, die an ihrem inneren, zu ihrer zentralen Ausnehmung abgrenzenden Ringumfang mit jeweils zumindest im Wesentlichen deckungsgleichen, etwa mäanderförmigen Innenkonturierungen 18 versehen sind. Bezüglich ihrer mäanderförmigen Innenkonturierungen 18 sind die Ringscheiben 16, 17 in Umfangsrichtung gegeneinander versetzt axial lagefest miteinander verbunden. Auf die Innenkonturierung 18 der Ringscheiben 16, 17 abgestimmt ist ein Schaltstern 19 mit einer umfangsseitigen, komplementär mäanderförmigen Außenkonturierung 32.
  • Die jeweilige mäanderförmige Konturierung 18 bzw. 32 ergibt sich dadurch, dass die Ringscheiben 16, 17 zum jeweiligen inneren Ringumfang offene Aussparungen 20 aufweisen, die durch radial zwischen die Aussparungen 20 einspringende Arme 21 gegeneinander abgegrenzt sind. Die komplementäre Außenkonturierung 32 des Schaltsternes 19 sieht gegen dessen Außenumfang auskragende, also radial nach außen vorspringende Arme 22 zu in Umfangsrichtung dazwischenliegenden Aussparungen 23 vor, wobei der in Umfangsrichtung gemessene Abstand zwischen jeweils radial auskragenden benachbarten Armen 21 der Ringscheiben 16, 17, und damit die in Umfangsrichtung gemessene Breite der Aussparungen 20 der Ringscheiben 16, 17 größer ist als die Breite der Arme 22 des Schaltsternes 19.
  • Dem entsprechend weist der Schaltstern 19 mit einem jeweiligen Arm 22 zu einer jeweiligen aufnehmenden Aussparung 20 einer der Ringscheiben 16, 17 in Umfangsrichtung Spiel auf, so dass ein Schaltfenster 30 gebildet wird. Das verhakungsfreie Eingleiten der Arme 22 des Schaltsternes 19 in korrespondierende Aussparungen 20 kann durch Kantenverrundungen und/oder Anschrägungen erleichtert werden.
  • Der Schaltstern 19 ist zur koaxialen Nabe 5 lagefest auf eine axiale Überschneidungslage zu den Ringscheiben 16, 17 abgestützt und liegt entsprechend der axialen Beaufschlagung der Nabe 5 durch die im "Saugbetrieb" 25 oder "Blasbetrieb" 26 entgegengesetzten axialen Beaufschlagungskräfte jeweils zu einer der Ringscheiben 16, 17 in gleicher Ebene, wobei die Ringscheiben 16, 17 aufgrund ihrer Zusammenfassung zu einem "Paket" sich wechselseitig abstützen und trotz geringer Dicke unter Beibehalt ihrer planen Ausbildung auch große Drehmomente auf den Schaltstern 19 übertragen können.
  • Für den Schaltstern 19, der in seiner Dicke zumindest im Bereich seiner Außenkontur auf die Dicke der Ringscheiben 16, 17 abgestimmt ist, besteht die Möglichkeit, diesen im Bereich seines zentralen Bereichs durch Verdickung oder dergleichen zu verstärken und/oder schüsselartig auszuwölben. Insbesondere kommt dies auch im Hinblick auf die starre Anbindung des Schaltsternes 19 zum Nabenkopf 27 in Frage.
  • Bei vom Betriebszustand abhängigen Veränderungen der Stelllage des Schaltsterns 19 wird dieser entsprechend dem axialen Spiel S zwischen der Nabe 5 und Antriebsteil 4 axial verlagert und es wechselt der Schaltstern 19 im Bereich der Schaltfenster 30 (siehe Fig. 4 und 6) auf die jeweils andere der aneinander angrenzenden und miteinander verbundenen Ringscheiben 16, 17. Dies mit der Folge, dass entsprechend der höhenversetzten Lage des Schaltsternes 19 das zwischen die Antriebsbahnen 6 und 7 eingreifende Ritzel 10 in seiner Eingriffslage zu den Antriebsbahnen 6, 7 wechselt. Dies ist wiederum bei gleichbleibender antriebsseitiger Drehrichtung mit einem Wechsel der Drehrichtung und der Drehlage der Lüfterflügel 8 um ihre jeweilige Flügelachsen 9 und einer Umkehrung der Förderrichtung verbunden.
  • Erfolgt beispielsweise ausgehend von einem Arbeitszustand "Blasen" eine Umstellung auf den Arbeitszustand "Saugen", so verringert sich die mit dem Blaszustand verbundene axiale Beaufschlagung des Lüfterrades 1 mit der Annäherung der Ausrichtung der Lüfterflügel 8 an ihre Umschlagebene 14, führt in einem Grenzbereich um die Umschlagebene zur Umkehr der axialen Beaufschlagung des Lüfterrades und dem Umschlagen der Flügel 8 sowie zum Wechsel der Anlage des Ritzels 10 zwischen den Antriebsbahnen 6 und 7. Dies erfolgt im Bereich der vorgesehenen Schaltfenster 30.
  • Entsprechend der Konturierung der Ringscheiben 16, 17 und des Schaltsternes 19 ist über dem jeweiligen Umfang zumindest jeweils ein Schaltfenster 30 vorgesehen, bevorzugt aber sind auch im Hinblick auf zur Drehachse 3 symmetrische Stützkräfte zumindest zwei oder mehr einander diametral gegenüberliegende Schaltfenster 30 vorgesehen.
  • Abgesehen von der durch das Spiel S begrenzten Sicherung der Axiallage des zur Nabe 5 drehfesten Schaltsternes 19 zur jeweils entsprechend der Betriebsphase "Blasen" oder "Saugen" axial in Überdeckung liegenden Ringscheibe 16, 17 außerhalb des durch das Schaltfenster begrenzten Umschlagbereiches ermöglicht die Erfindung ungeachtet der Erweiterung der Funktionen einen sehr kompakten Aufbau. Zudem hat das Drehspiel zwischen Schaltstern 19 und jeweiliger, in axialer Überdeckungslage befindlicher Ringscheibe 16, 17 einen stoßarmen Übergang beim Wechsel des Schaltsternes 19 zwischen den Ringscheiben 16, 17 aufgrund der einander entsprechenden Drehgeschwindigkeiten und der jeweils spielbegrenzt absätzig unterbrochenen Antriebsverbindung zur Folge.
  • Die erfindungsgemäße Trennung von axialem und radialem Eingriffsweg in der Antriebsverbindung zwischen dem Antriebsteil 4 und der durch die aerodynamische Kraft beaufschlagten Nabe 5 wirkt sich auf die konstruktiven Gestaltungsmöglichkeiten vorteilhaft aus, so insbesondere hinsichtlich der Gestaltung des Stelltriebes 15 aus einfach herzustellenden und raumsparend miteinander zusammenwirkenden Elementen, die bei wechselseitiger Abstützung zwischen diesen Elementen auch eine sehr leichte und kompakte Bauweise ermöglicht.
  • Der erfindungsgemäße Stelltrieb 15 hat außerhalb der Umschaltphase zur Folge, dass die Lüfterflügel 8 über die ihnen zugeordneten Ritzel 10 zu einer der Antriebsbahnen 6, 7 stationär "in Eingriff" stehen und das Lüfterrad 1 somit über zum Antriebsteil 4 parallele Antriebswege drehfest abgestützt ist. Dies durch Eingriff des Ritzels 10 in eine der Antriebsbahnen 6, 7 und durch über die Lagerung der Lüfterflügel 8 in der zum Antriebsteil 4 drehfesten Nabe 5, was zu wechselseitiger Entlastung führt.
  • Für ein in nur einer Drehrichtung anzutreibendes Lüfterrad 1 mit einer zentralen Antriebseinheit 2, mit zur Antriebseinheit 2 koaxialer Nabe 5 und mit radialen, in der Nabe 5 gelagerten Lüfterflügeln 8 ist eine Ausbildung vorgesehen, bei der die Lüfterflügel 8 fußseitig zwischen zwei zur Antriebseinheit 2 lagefeste und in Richtung der Drehachse 3 des Lüfterrades 1 koaxial einander gegenüberliegende Antriebsbahnen 6,7 eingreifen und in ihrem Flügelwinkel durch Antrieb über jeweils eine der Antriebsbahnen 6,7 um ihre Flügelachsen 8 über eine Umschlagebene 14 auf entgegengesetzte Förderrichtungen umstellbar sind, wobei die Umschlagebene 14 quer zur Umlaufebene 13 verläuft oder, gemäß Fig. 7 und 8, die Umschlagebene 14 sich mit der Umlaufebene 13 deckt.
  • Auch bezogen auf das Beispiel gemäß Fig. 7 und 8 ist die Umlaufrichtung des angetriebenen Lüfterrades 1 durch den Pfeil 31 veranschaulicht. Zur Umlaufrichtung 31, und damit auch zur Umlaufebene 13 des Lüfterrades sind die Lüfterflügel 8 je nach gewünschter Förderrichtung winklig angestellt, bezogen auf Fig. 7 im Sinne eines Blasbetriebes in einer Blasstellung 26 entsprechend Fig. 5 und in Fig. 8 im Sinne eines Saugbetriebes in einer Saugstellung 25 analog zu Fig. 3. Die Umstellung zwischen Saug- und Blasbetrieb erfolgt über eine bezüglich der Förderrichtung neutrale, mit der Umlaufebene 13 zusammenfallende Umschlagebene 36 als Umschlagstellung. Ansonsten sind zu den Figuren 3 und 5 vergleichbare Arbeitsverhältnisse gegeben, entsprechend auch gemäß Fig. 4 und 6, so dass bei prinzipiell gleicher konstruktiver Gestaltung eine Anpassung an jeweilige Bedürfnisse möglich ist. Dies insbesondere aufgrund der bei den Lösungen gemäß Fig. 7 und 8 für den Saug- und den Blasbetrieb unterschiedlich geformten sowie gegensinnig ausgewölbten Flügelflächen 33, 34 und den dadurch erreichbaren Unterschieden bezüglich der Förderung im Saug- und Blasbetrieb.
  • Die bezüglich der Förderrichtung neutrale Umschlagstellung der Lüfterflügel 8 kann erfindungsgemäß als gehaltene Zwischenlage auch genutzt werden, um trotz gegebenenfalls fortlaufendem Antrieb des Lüfterrades 1 die Luftförderung zu unterbrechen und zeitweise abzuschalten. Hierzu kann die zu haltende Zwischenlage über die Stellvorrichtung 35, insbesondere auch in der Ausgestaltung als Magnetsteller, auch unabhängig von sonstigen das Lüfterrad 1 beaufschlagenden Stellkräften eingestellt und gehalten werden.

Claims (6)

  1. In nur einer Drehrichtung anzutreibendes Lüfterrad (1) mit einer zentralen Antriebseinheit (2), mit zur Antriebseinheit (2) koaxialer Nabe (5), mit radialen, in der Nabe (5) gelagerten Lüfterflügeln (8), die fußseitig zwischen zwei zur Antriebseinheit (2) lagefesten und in Richtung der Drehachse (3) des Lüfterrades (1) koaxial einander gegenüberliegenden Antriebsbahnen (6, 7) eingreifen und in ihrem Flügelwinkel (31) durch Antrieb über jeweils eine der Antriebsbahnen (6 bzw. 7) um ihre Flügelachsen (9) über eine zur Umlaufebene (13) senkrechte Umschlagebene (14) auf entgegengesetzte Förderrichtungen umstellbar sind, wobei die Nabe (5) durch eine jeweilige axiale Belastung zur Antriebseinheit (2) axial verlagerbar ist und korrespondierend zur axialen Verstellung der Nabe (5) die Drehstellung der Lüfterflügel (8) im Bereich eines die Umschlagebene (14) übergreifenden Schaltfensters (30) auf entgegengesetzte Förderrichtungen umstellbar ist.
  2. In nur einer Drehrichtung anzutreibendes Lüfterrad (1) mit einer zentralen Antriebseinheit (2), mit zur Antriebseinheit (2) koaxialer Nabe (5), mit radialen, in der Nabe (5) gelagerten Lüfterflügeln (8), die fußseitig zwischen zwei zur Antriebseinheit (2) lagefesten und in Richtung der Drehachse (3) des Lüfterrades (1) koaxial einander gegenüberliegenden Antriebsbahnen (6, 7) eingreifen und in ihrem Flügelwinkel (31) durch Antrieb über jeweils eine der Antriebsbahnen (6 bzw. 7) um ihre Flügelachsen (9) über eine längs der Umlaufebene (13) verlaufende Umschlagebene (36) auf entgegengesetzte Förderrichtungen umstellbar sind, wobei die Nabe (5) durch eine jeweilige axiale Belastung zur Antriebseinheit (2) axial verlagerbar ist und korrespondierend zur axialen Verstellung der Nabe (5) die Drehstellung der Lüfterflügel (8) im Bereich eines die Umschlagebene (36) übergreifenden Schaltfensters (30) auf entgegengesetzte Förderrichtungen umstellbar ist.
  3. In nur einer Drehrichtung anzutreibendes Lüfterrad nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Größe des über einen Drehsektor des Lüfterrades (1) sich erstreckenden Schaltfensters (30) über einen Stelltrieb (15) festgelegt ist, der in der Antriebsverbindung zwischen der Antriebseinheit (2) und einem zur Antriebseinheit (2) gegenüberliegenden Ende der Nabe (5) liegt.
  4. In nur einer Drehrichtung anzutreibendes Lüfterrad nach Anspruch 3, dadurch gekennzeichnet, dass der Stelltrieb (15) koaxial lagefest verbundene, konzentrische Ringscheiben (16, 17) mit gleichen, unrunden Innendurchmessern aufweist, die drehlagenversetzt sind und gegen ihre Innendurchmesser offene Aussparungen (20) zur Aufnahme radialer Arme (22) eines gleichachsig zentral aufgenommenen Schaltsternes (19) aufweisen, der in seiner Axiallage zu den Ringscheiben (16, 17) zwischen zu den Ringscheiben (16, 17) ebenengleichen Lagen umstellbar ist.
  5. In einer Drehrichtung anzutreibendes Lüfterrad nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Umstellung der Lüfterflügel (8) zwischen deren Saugstellung (25) und deren Blasstellung (26) zur axialen Verstellung des Schaltsternes (19) zwischen den Ringscheiben (16, 17) korrespondiert.
  6. In nur einer Drehrichtung anzutreibendes Lüfterrad nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Nabe (5) zur Antriebseinheit durch aerodynamische Beaufschlagung und/oder mittels einer Stellvorrichtung (35) axial verlagerbar ist.
EP19717110.1A 2018-03-20 2019-03-15 In einer drehrichtung anzutreibendes lüfterrad Active EP3768977B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018106455.1A DE102018106455B4 (de) 2018-03-20 2018-03-20 In einer Drehrichtung anzutreibendes Lüfterrad
PCT/DE2019/100234 WO2019179562A1 (de) 2018-03-20 2019-03-15 In einer drehrichtung anzutreibendes lüfterrad

Publications (2)

Publication Number Publication Date
EP3768977A1 EP3768977A1 (de) 2021-01-27
EP3768977B1 true EP3768977B1 (de) 2023-04-26

Family

ID=66102839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19717110.1A Active EP3768977B1 (de) 2018-03-20 2019-03-15 In einer drehrichtung anzutreibendes lüfterrad

Country Status (8)

Country Link
US (1) US11365749B2 (de)
EP (1) EP3768977B1 (de)
DE (1) DE102018106455B4 (de)
DK (1) DK3768977T3 (de)
ES (1) ES2951018T3 (de)
FI (1) FI3768977T3 (de)
PL (1) PL3768977T3 (de)
WO (1) WO2019179562A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019134887A1 (de) * 2019-12-18 2021-06-24 Ie Assets Gmbh & Co. Kg Lüfterrad
US11778947B2 (en) * 2021-01-13 2023-10-10 Deere & Company Automated adjustable angle of incidence fan for cleaning sugarcane
CN113082276B (zh) * 2021-04-09 2022-12-23 河北医科大学第二医院 一种预防院内感染的消毒灭菌护理装置
CN114576188B (zh) * 2022-02-23 2023-04-25 浙江尔格科技股份有限公司 换热器用可自动调节风向的风机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2563011A (en) * 1948-06-29 1951-08-07 Arthur E Dehnicke Two-part hub adjustable pitch fan
US3054458A (en) * 1959-07-11 1962-09-18 Marsico Corrado Variable pitch fan
GB1443735A (en) 1972-09-08 1976-07-21 Parsons Co Ralph M Production of substitute natural gas
JPS6027837B2 (ja) * 1981-07-31 1985-07-01 株式会社荏原製作所 軸流送風機
US4919623A (en) * 1989-02-13 1990-04-24 Amp Incorporated Burn-in socket for integrated circuit device
US6592328B1 (en) * 2001-04-17 2003-07-15 Emerson Electric Co. Method and apparatus for adjusting the pitch of a fan blade
DE102004035631B4 (de) * 2004-07-22 2006-04-13 Hägele GmbH Lüfterrad, insbesondere im Kühlsystem von Brennkraftmaschinen einsetzbares Lüfterrad
US20120240878A1 (en) * 2011-03-21 2012-09-27 Haegele Karl Internal combustion engine with fan system

Also Published As

Publication number Publication date
ES2951018T3 (es) 2023-10-17
DE102018106455A1 (de) 2019-09-26
US20210003141A1 (en) 2021-01-07
PL3768977T3 (pl) 2023-08-21
DE102018106455B4 (de) 2020-03-26
EP3768977A1 (de) 2021-01-27
WO2019179562A1 (de) 2019-09-26
DK3768977T3 (da) 2023-07-24
FI3768977T3 (fi) 2023-07-25
US11365749B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
EP3768977B1 (de) In einer drehrichtung anzutreibendes lüfterrad
DE2755557C2 (de) Rotorkopf für einen Hubschrauberrotor
DE2837304A1 (de) Vorrichtung fuer einen modellhubschrauber
DE10104591B4 (de) Motor mit Kupplung
EP0695613A1 (de) Ringtrogzwangmischer
DE1779259A1 (de) Rotor fuer eine Maschine zum Mischen von Gummi,Kunststoff od.dgl.
DE102007038945A1 (de) Rotationsvorrichtung
EP3743626B1 (de) In nur einer drehrichtung angetriebenes lüfterrad
DE3427259C2 (de) Rolltor - Antrieb
DE2420605A1 (de) Jauche - ruehrwerk
EP4055276B1 (de) Lüfterrad
DE102006002139B3 (de) Gelenkbeschlag
EP2271859B1 (de) Taumelradgetriebe mit stirnverzahnung
DE29902442U1 (de) Hilfsantriebsvorrichtung zum hilfsweisen Antreiben eines Gebäudeverschlusses
DE2035319B2 (de) Turbo-mischerrad fuer schnellaufende mischer oder emulgatoren
DE3130314A1 (de) Gelenkbeschlag fuer sitze mit verstellbarer rueckenlehne, insbesondere kraftfahrzeugsitze
DE2160129C3 (de) Wellenkupplung zur Aufnahme von Axialbewegungen zwischen den Wellenenden
EP1478589A1 (de) Falztrommeln eines falzapparates
AT510035B1 (de) Windturbine
EP3447333B1 (de) Getriebevorrichtung zur anbringung an eine antriebswelle
DE102005055238A1 (de) Überlagerungsvorrichtung für ein Lenksystem
DE1456107C (de) Drehflügel
DE10311393B4 (de) Falzzylinder mit an seiner Mantelfläche verstellbaren Elementen
DE10208017C1 (de) Falztrommel eines Falzapparates
DE1627280C (de) Antrieb einer rotierenden Schere fur laufendes Walzgut

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019007564

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1563005

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230720

Ref country code: NO

Ref legal event code: T2

Effective date: 20230426

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2951018

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230826

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019007564

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240314

Year of fee payment: 6

Ref country code: NL

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240306

Year of fee payment: 6

Ref country code: FI

Payment date: 20240326

Year of fee payment: 6

Ref country code: CZ

Payment date: 20240222

Year of fee payment: 6

Ref country code: GB

Payment date: 20240320

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426