EP3740967A1 - Verfahren zum kontaktieren und paketieren eines halbleiterchips - Google Patents

Verfahren zum kontaktieren und paketieren eines halbleiterchips

Info

Publication number
EP3740967A1
EP3740967A1 EP19712123.9A EP19712123A EP3740967A1 EP 3740967 A1 EP3740967 A1 EP 3740967A1 EP 19712123 A EP19712123 A EP 19712123A EP 3740967 A1 EP3740967 A1 EP 3740967A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor chip
contacting surface
contacting
insulating layer
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19712123.9A
Other languages
English (en)
French (fr)
Inventor
Johannes Rudolph
Fabian LORENZ
Ralf Werner
Peter Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Chemnitz
Original Assignee
Technische Universitaet Chemnitz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Chemnitz filed Critical Technische Universitaet Chemnitz
Publication of EP3740967A1 publication Critical patent/EP3740967A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/25Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
    • H01L2224/251Disposition
    • H01L2224/2518Disposition being disposed on at least two different sides of the body, e.g. dual array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • H01L2224/82104Forming a build-up interconnect by additive methods, e.g. direct writing using screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/828Bonding techniques
    • H01L2224/8284Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the invention relates to a method for contacting and packaging a
  • Semiconductor chips and is used in particular for the contacting and packaging of semiconductors using the 3D multi-material printing.
  • the upper side is contacted by means of bonding wires.
  • the electrical and thermal connection is less pronounced compared to the bottom, resulting in quality losses.
  • the document WO 2009/034557 A2 discloses a method for the production of structures with integrated electrical elements such as semiconductor chips.
  • the method relates to the implementation of arbitrary structures for providing electrical connection and mechanical attachment for integrated circuits.
  • According to the document structures are using three-dimensional
  • the structure is produced in a single process step, wherein the mechanical, electrical and thermal properties in the
  • the structure may include dielectric and metallic materials.
  • the structures may be made directly in connection with the integrated circuits or separately for subsequent mounting to the integrated circuits.
  • a method for producing a functional unit and a functional unit is known.
  • the method provides that a functional unit is produced by layer-wise orders of a first and second material.
  • the first material and the second material have different properties, wherein an encapsulation of the first material and a conductor track structure of the second material are generated.
  • one or more functional units are incorporated into the
  • a laminate package consisting of a chip and a carrier in a cavity is disclosed in the publication DE 10 2016 107 031 A1.
  • a laminate package having a chip carrier of a first material and a body of a second material, wherein the first material is different from the second material.
  • the first and second materials are arranged on the chip carrier such that they form a cavity.
  • At least a part of the semiconductor chip is arranged in the cavity.
  • the laminate encapsulates at least part of the
  • Chip carrier at least part of the body and at least part of the
  • the cavity can be manufactured by means of additive processes to reduce costs.
  • the object of the invention is to develop a method for contacting and packaging a semiconductor chip, which ensures a simple structural design and a good quality of the electrical and thermal connection of the semiconductor chip.
  • the invention relates to a method for contacting a semiconductor chip of a power electronic component, wherein the power electronic component has a first lower contacting surface and a semiconductor chip positioned thereon on the lower contacting surface a ceramic insulating layer surrounding the semiconductor chip along its circumference is printed.
  • Insulating layer is formed so as to extend over the surface of the first lower contacting surface not covered by the semiconductor chip.
  • a second upper contacting surface is printed on the ceramic insulating layer and the semiconductor chip, which covers the semiconductor chip and in their
  • External dimensions corresponds to the dimensions of the first contacting surface and the insulating layer.
  • the method according to the invention comprises to achieve the best possible
  • Results preferably five process steps.
  • a first process step the production of a first, lower
  • the semiconductor chip is aligned and positioned on the first lower contacting surface by means of a "pick and place” method.
  • the third process step comprises the application of a ceramic insulation layer by means of the 3D multi-material printing process.
  • the ceramic insulation layer is applied or printed in a plane surrounding the semiconductor chip on its circumference on the first lower contacting surface.
  • the second contacting surface is printed in a fourth method step.
  • the packaging thus produced which as described above contains the semiconductor chip, is sintered in a fifth method step by means of heat treatment.
  • the first and the second contacting surface and the ceramic insulating layer are produced in a printing process by means of a 3D multi-material printer.
  • the height of the ceramic insulating layer substantially corresponds to the height of the semiconductor chip, whereby a flat surface of the
  • Top of the semiconductor chip and the ceramic insulation layer is formed as a support for the second upper contact pad
  • terminals may be generated in the form of gate contacts in the manufacture of a field effect transistor.
  • MOSFET metal oxide semiconductor field effect transistor
  • a terminal as an additional contact is isolated from the second contacting area in such a way that the terminal is surrounded on the circumference by the ceramic insulating layer such that the ceramic insulating layer is in the area of the
  • Peripheral insulation of the terminal and the additional connection can be generated in the same process step with the printing of the upper second contacting surface by means of the multi-material pressure.
  • the recess in the form of recess contains electrically conductive printed structures formed by suitable ceramic structures electrically insulated against the surrounding second contacting surface by means of the ceramic.
  • the first contacting surface and the second contacting surface are made of a conductive material, wherein the first contacting surface is made of copper in particular.
  • a housing for the semiconductor chip is produced by means of the printing process in a further method step.
  • the housing may be designed such that it has cooling functionalities that are introduced when the housing is produced.
  • a power electronic component produced by the method according to the invention has a semiconductor chip, wherein the semiconductor chip is positioned on a first lower contacting surface.
  • a ceramic insulating layer enclosing the semiconductor chip, which substantially corresponds to the height of the semiconductor chip and has a second contacting area arranged on the semiconductor chip and the ceramic insulating layer, wherein the layers can be produced within a printing process.
  • the power electronic component preferably has at least one
  • the terminal in the upper contacting surface, the terminal being insulated from the second upper contacting surface by means of a ceramic insulating layer surrounding the terminal at its periphery.
  • Insulation layer is formed in one piece.
  • Figure 1 is a schematic representation of the layered structure of the power electronic component.
  • the power electronic component H according to the method of the invention is shown in FIG.
  • the power electronic component has a first lower contacting surface 1 and a semiconductor chip 2 arranged thereon, preferably by means of a "pick and place” method.
  • the lower contacting surface 1 is made of copper in particular by means of a 3D multi-material pressure.
  • Printing method applied ceramic insulation layer 3, which surrounds the semiconductor chip 2 along its circumference and embeds in the insulating layer 3.
  • Insulation layer 3 extends on the surface of the contacting surface 1 not covered by the semiconductor chip 2.
  • the ceramic insulation layer 3 has substantially a height corresponding to the height of the semiconductor chip 2, whereby a flat surface is formed.
  • a second upper contacting surface 4 is arranged by means of the 3D multi-material printing process.
  • the second contacting surface 4 has a recess 5, which is designed in the form of an additional connection 6 or contact.
  • the recess 5 is insulated from the upper second contacting surface 4 by means of the circumferentially enclosing ceramic insulation layer 3.
  • the ceramic insulation layer 3 extends around the connection 5 in a covering manner up to the level of the upper side of the upper contacting surface 4. It is possible to provide both one and a plurality of recesses 5 in the upper contacting surface 4.
  • the recess 5 and the ceramic insulation layer 3 can in one
  • Process step with the second contact surface 4 are applied together.
  • An additional connection 6 produced in this way is important for power electronic components.
  • one or more terminals 6 can be generated in the form of gate contacts when producing a field effect transistor. LIST OF REFERENCES

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Kontaktieren eines Halbleiterchips eines leistungselektronischen Bauelements, wobei das leistungselektronische Bauelement eine erste untere Kontaktierungsfläche (1) und einen darauf positionierten Halbleiterchip (2) aufweist, wobei auf die untere Kontaktierungsfläche eine, den Halbleiterchip entlang seines Umfangs umschließende und sich auf der nicht von dem Halbleiterchip bedeckten ersten Kontaktierungsfläche erstreckende, keramische Isolationsschicht (3) und den Halbleiterchip eine zweite obere Kontaktierungsfläche (4) aufgedruckt wird.

Description

Verfahren zum Kontaktieren und Paketieren eines Halbleiterchips
Die Erfindung betrifft ein Verfahren zum Kontaktieren und Paketieren eines
Halbleiterchips und findet insbesondere für die Kontaktierung und Paketierung von Halbleitern mit Hilfe des 3D Multimaterialdrucks Anwendung.
Gemäß dem Stand der Technik sind Verfahren zum Kontaktieren von Halbleitern bekannt, wobei die Unterseite des Halbleiters durch Auflegen eines Chips auf eine metallische Fläche und anschließendes Versintern unter zusätzlichem mechanischem Druck kontaktiert wird. Die derart geschaffene Kontaktierung bietet eine gute Qualität der thermischen und elektrischen Verbindung.
Die Oberseite wird hingegen mittels Bonddrähten kontaktiert. Die elektrische und thermische Verbindung ist jedoch im Vergleich zu der Unterseite schlechter ausgeprägt, wodurch qualitative Einbußen vorliegen.
In der Druckschrift WO 2009/034557 A2 wird ein Verfahren zur Herstellung von Strukturen mit integrierten elektrischen Elementen wie Halbleiterchips offenbart. Das Verfahren betrifft die Implementierung beliebiger Strukturen zum Bereitstellen einer elektrischen Verbindung und einer mechanischen Befestigung für integrierte Schaltungen. Gemäß der Druckschrift werden Strukturen unter Verwendung von dreidimensionalen
Herstellungsprozessen hergestellt, die nur additive Schritte für alle Materialien innerhalb der Struktur verwenden. Die Struktur wird in einem einzigen Verfahrensschritt erzeugt, wobei die mechanischen, elektrischen und thermischen Eigenschaften in dem
Verfahrensschritt eingebracht werden, wie sie für das Design erforderlich sind. Die Struktur kann dielektrische und metallische Materialien aufweisen. Die Strukturen können direkt in Verbindung mit den integrierten Schaltungen oder getrennt für die nachfolgende Montage an die integrierten Schaltungen hergestellt werden.
Aus der Druckschrift DE 10 2006 008 332 A1 ist ein Verfahren zur Herstellung einer funktionellen Baueinheit sowie eine funktionelle Baueinheit bekannt. Das Verfahren sieht vor, dass durch schichtweises Aufträgen von einem ersten und zweiten Material eine funktionelle Baueinheit hergestellt wird. Das erste Material und das zweite Material weisen unterschiedliche Eigenschaften auf, wobei aus dem ersten Material eine Verkapselung und aus dem zweiten Material eine Leiterbahnstruktur erzeugt werden. Während des Auftragens der Materialien werden eine oder mehrere funktionelle Einheiten in die
Schichtstruktur eingebettet und mit der Leiterbahnstruktur kontaktiert. Eine Laminatpackung bestehend aus einem Chip und einem Träger in einer Kavität wird in der Druckschrift DE 10 2016 107 031 A1 offenbart. Gemäß dem Ausführungsbeispiel wird eine Laminatpackung bereitgestellt, die einen Chipträger aus einem ersten Material und einen Körper aus einem zweiten Material aufweist, wobei sich das erste Material von dem zweiten Material unterscheidet. Das erste und zweite Material sind derart auf dem Chipträger angeordnet, dass sie eine Kavität bilden. In der Kavität ist zumindest ein Teil des Halbleiterchips angeordnet. Das Laminat kapselt mindestens einen Teil des
Chipträgers, mindestens einem Teil des Körpers und mindestens einen Teil des
Halbleiterchips ein. Die Kavität kann zur Kostenreduzierung mittels additiver Verfahren hergestellt werden.
Aufgabe der Erfindung ist es, ein Verfahren zum Kontaktieren und Paketieren eines Halbleiterchips zu entwickeln, welches einen einfachen konstruktiven Aufbau und eine gute Qualität der elektrischen und thermischen Verbindung des Halbleiterchips gewährleistet.
Diese Aufgabe wird mit den kennzeichnenden Merkmalen des ersten und zehnten Patentanspruchs gelöst.
Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
Die Erfindung betrifft ein Verfahren zum Kontaktieren eines Halbleiterchips eines leistungselektronischen Bauelements, wobei das leistungselektronische Bauelement eine erste untere Kontaktierungsfläche und einen darauf positionierten Halbleiterchip aufweist auf die untere Kontaktierungsfläche eine, den Halbleiterchip entlang seines Umfangs umschließende keramische Isolationsschicht gedruckt wird. Die keramische
Isolationsschicht ist derart ausgebildet, dass sie sich über die nicht von dem Halbleiterchip bedeckte Fläche der ersten unteren Kontaktierungsfläche erstreckt. In einem folgenden Schritt wird auf die keramische Isolationsschicht und den Halbleiterchip eine zweite obere Kontaktierungsfläche aufgedruckt, die den Halbleiterchip bedeckt und in ihren
Außenabmessungen den Abmessungen der ersten Kontaktierungsfläche und der Isolationsschicht entspricht. Das erfindungsgemäße Verfahren umfasst zum Erreichen eines bestmöglichen
Ergebnisses vorzugsweise fünf Verfahrensschritte. In einem ersten Verfahrensschritt erfolgt die Herstellung einer ersten, unteren
Kontaktierungsfläche mittels eines 3D-Multimaterialdruckverfahrens.
Folgend wird mittels einer„pick and place“ Methode der Halbleiterchip auf der ersten unteren Kontaktierungsfläche ausgerichtet und positioniert.
Der dritte Verfahrensschritt umfasst das Aufträgen einer keramischen Isolationsschicht mittels des 3D-Multimaterialdruckverfahrens. Die keramische Isolationsschicht wird dabei in einer Ebene den Halbleiterchip an seinem Umfang umschließend auf der ersten unteren Kontaktierungsfläche aufgetragen beziehungsweise aufgedruckt.
Auf die aus der keramischen Isolationsschicht und der Oberseite des Halbleiterchips gebildete Fläche wird in einem vierten Verfahrensschritt die zweite Kontaktierungsfläche aufgedruckt.
Abschließend wird die derart erzeugte Paketierung, die wie vorgenannt beschrieben, den Halbleiterchip enthält, in einem fünften Verfahrensschritt mittels Wärmebehandlung gesintert.
In einer vorteilhaften Ausgestaltung werden die erste und die zweite Kontaktierungsfläche sowie die keramische Isolationsschicht in einem Druckprozess mittels eines 3D- Multimaterialdruckers erzeugt. Die Höhe der keramischen Isolationsschicht entspricht im Wesentlichen der Höhe des Halbleiterchips, wodurch eine ebene Fläche aus der
Oberseite des Halbleiterchips und der keramischen Isolationsschicht als Auflage für die zweite obere Kontaktierungsfläche gebildet wird
Vorzugsweise sind in die zweite Kontaktierungsfläche ein oder mehrere Aussparungen für zusätzliche Anschlüsse eingebracht. Dies ist beispielsweise für leistungselektronische Bauelemente von Bedeutung. So können Anschlüsse in Form von Gate-Kontakten bei Herstellung eines Feldeffekttransistors erzeugt werden. Hier seien insbesondere Metall- Oxid-Halbleiter-Feldeffekttransistor (MosFet) genannt.
Ein Anschluss als zusätzliche Kontaktierung wird von der zweiten Kontaktierungsfläche derart isoliert, dass der Anschluss umfangseitig von der keramischen Isolationsschicht umschlossen wird derart, dass die keramische Isolationsschicht im Bereich des
Anschlusses bis an die Oberseite der zweiten Kontaktierungsfläche reicht. Die
umfangsseitige Isolation des Anschlusses sowie der zusätzliche Anschluss lassen sich im gleichen Verfahrensschritt mit dem Drucken der oberen zweiten Kontaktierungsfläche mittels des Multimaterialdrucks erzeugen. Der Anschluss in Form der Aussparung enthält elektrisch leitende gedruckte Strukturen die durch geeignete keramische Strukturen elektrisch gegen die sie umschließende zweite Kontaktierungsfläche mittels der Keramik isoliert sind.
Die erste Kontaktierungsfläche und die zweite Kontaktierungsfläche sind aus einem leitenden Material hergestellt, wobei die erste Kontaktierungsfläche insbesondere aus Kupfer hergestellt wird.
In einer vorteilhaften Ausgestaltung wird in einem weiteren Verfahrensschritt ein Gehäuse für den Halbleiterchip mittels des Druckverfahrens erzeugt. Das Gehäuse kann derart ausgebildet sein, dass es Kühlfunktionalitäten aufweist, die bei Erzeugen des Gehäuses eingebracht werden.
Durch die gute thermische Anbindung des Halbleiterchips an die erste und zweite
Kontaktierungsfläche lassen sich auftretende elektrische Verlustleistungen besser nach Außen abtransportieren. Der Einsatz von keramischen Isolationsmaterialien erhöht diesen Effekt deutlich, da diese im Vergleich zu Kunststoffpaketierungen über deutlich höhere Wärmeleitfähigkeiten verfügen.
Ein nach dem erfindungsgemäßen Verfahren hergestelltes leistungselektronisches Bauelement weist einen Halbleiterchip auf, wobei der Halbleiterchip auf einer ersten unteren Kontaktierungsfläche positioniert ist. Auf der unteren Kontaktierungsfläche ist eine den Halbleiterchip umschließende keramische Isolationsschicht angeordnet, die im Wesentlichen der Höhe des Halbleiterchips entspricht und eine auf dem Halbleiterchip und der keramischen Isolationsschicht angeordnete zweite Kontaktierungsfläche aufweist, wobei die Schichten innerhalb eines Druckverfahrens herstellbar sind.
Das leistungselektronische Bauelement weist vorzugsweise wenigstens einen
zusätzlichen Anschluss in der oberen Kontaktierungsfläche auf, wobei der Anschluss von der zweiten oberen Kontaktierungsfläche mittels einer den Anschluss an seinem Umfang umschließenden keramischen Isolationsschicht isoliert ist. Die keramische
Isolationsschicht ist einteilig ausgebildet.
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel und zugehörigen
Zeichnungen näher erläutert.
Es zeigen: Figur 1 eine schematische Darstellung des schichtweisen Aufbaus des leistungselektronischen Bauelements.
Das leistungselektronische Bauelement H nach dem erfindungsgemäßen Verfahren ist in Figur 1 dargestellt. Das leistungselektronische Bauelement weist eine erste untere Kontaktierungsfläche 1 und einen darauf, vorzugsweise mittels einer„pick and place“ Methode angeordneten Halbleiterchip 2 auf. Die untere Kontaktierungsfläche 1 ist insbesondere mittels eines 3D-Multimaterialdrucks aus Kupfer hergestellt.
Auf der ersten unteren Kontaktierungsfläche 1 erstreckt sich eine mittels des
Druckverfahrens aufgebrachte keramische Isolationsschicht 3, die den Halbleiterchip 2 entlang seines Umfangs umschließt und in der Isolationsschicht 3 einbettet. Die
Isolationsschicht 3 erstreckt sich auf der Fläche der nicht von dem Halbleiterchip 2 bedeckten Kontaktierungsfläche 1.
Die keramische Isolationsschicht 3 weist im Wesentlichen eine Höhe entsprechend der Höhe des Halbleiterchips 2 auf, wodurch eine plane Fläche entsteht. Auf die keramische Isolationsschicht 3 ist mittels des 3D-Multimaterialdruckverfahrens eine zweite obere Kontaktierungsfläche 4 angeordnet.
Gemäß der Figur 1 weist die zweite Kontaktierungsfläche 4 eine Aussparung 5 auf, die in Form eines zusätzlichen Anschlusses 6 oder Kontaktes ausgebildet ist. Die Aussparung 5 wird mittels der umfangsseitig umschließenden keramischen Isolationsschicht 3 von der oberen zweiten Kontaktierungsfläche 4 isoliert. Die keramische Isolationsschicht 3 erstreckt sich um den Anschluss 5 bereichsweise diesen ummantelnd bis auf die Höhe der Oberseite der oberen Kontaktierungsfläche 4. Es kann sowohl ein, als auch mehrere Aussparungen 5 in der oberen Kontaktierungsfläche 4 vorgesehen sein.
Die Aussparung 5 sowie die keramische Isolationsschicht 3 können in einem
Verfahrensschritt mit der zweiten Kontaktierungsfläche 4 gemeinsam aufgebracht werden. Ein derart erzeugter zusätzlicher Anschluss 6 ist für leistungselektronische Bauelemente von Bedeutung. So können ein oder mehrere Anschlüsse 6 in Form von Gate- Kontakten bei Herstellung eines Feldeffekttransistors erzeugt werden. Bezuqszeichenliste
1 Erste untere Kontaktierungsfläche
2 Halbleiterchip
3 Keramische Isolationsschicht
4 Zweite obere Kontaktierungsfläche
5 Aussparung
6 zusätzlicher Anschluss
H Leistungselektronische Bauelement

Claims

Patentansprüche
1. Verfahren zum Kontaktieren und Paketieren eines Halbleiterchips (2) eines
leistungselektronischen Bauelements, wobei das leistungselektronische
Bauelement eine erste untere Kontaktierungsfläche (1) und einen darauf positionierten Halbleiterchip (2) aufweist, dadurch gekennzeichnet, dass auf die untere Kontaktierungsfläche (1) eine, den Halbleiterchip (2) entlang seines Umfangs umschließende und sich auf der nicht von dem Halbleiterchip (2) bedeckten ersten Kontaktierungsfläche (1) erstreckende, keramische
Isolationsschicht (3) gedruckt wird und dass auf die keramische Isolationsschicht (3) und den Halbleiterchip (2) eine zweite obere Kontaktierungsfläche (4) aufgedruckt wird, wobei die erste und zweite Kontaktierungsfläche (1 , 4) und die keramische Isolationsschicht (3) in einem Druckprozess mittels eines 3D- Multimaterialdruckers erzeugt werden derart,
dass
in einem ersten Verfahrensschritt die erste Kontaktierungsfläche (1) mittels des Multimaterialdruckverfahrens hergestellt wird,
in einem zweiten Verfahrensschritt der Halbleiterchip (2) auf der ersten unteren Kontaktierungsfläche (1) platziert wird,
in einem dritten Verfahrensschritt auf die erste Kontaktierungsfläche (1) eine den Halbleiterchip (2) an seinem Umfang umschließende keramische Isolationsschicht (3) aufgedruckt wird,
in einem vierten Verfahrensschritt die zweite Kontaktierungsfläche (4) auf die keramische Isolationsschicht (3) und den Halbleiterchip (2) aufgedruckt wird, in einem fünften Verfahrensschritt das leistungselektronische Bauelement mittels Wärmebehandlung gesintert wird.
2. Verfahren nach einem der Anspruch 1 , dadurch gekennzeichnet, dass die Höhe der keramischen Isolationsschicht (3) im Wesentlichen der Höhe des
Halbleiterchips (2) entspricht.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in die zweite Kontaktierungsfläche (4) eine Aussparung (5) für einen zusätzlichen Anschluss (6) eingebracht wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Anschluss (6) von der keramischen Isolationsschicht (3) randseitig umschlossen und von der zweiten Kontaktierungsfläche (4) isoliert ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die erste Kontaktierungsfläche (1) und oder zweite Kontaktierungsfläche (4) aus einem leitenden Material hergestellt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in einem weiteren Verfahrensschritt ein Gehäuse für den Halbleiterchip (2) mittels des Druckverfahrens erzeugt wird, wobei in das Gehäuse Kühlfunktionalitäten eingebracht werden.
EP19712123.9A 2018-02-23 2019-01-29 Verfahren zum kontaktieren und paketieren eines halbleiterchips Pending EP3740967A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018104144.6A DE102018104144B4 (de) 2018-02-23 2018-02-23 Verfahren zum Kontaktieren und Paketieren eines Halbleiterchips
PCT/DE2019/100092 WO2019161833A1 (de) 2018-02-23 2019-01-29 Verfahren zum kontaktieren und paketieren eines halbleiterchips

Publications (1)

Publication Number Publication Date
EP3740967A1 true EP3740967A1 (de) 2020-11-25

Family

ID=65818124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19712123.9A Pending EP3740967A1 (de) 2018-02-23 2019-01-29 Verfahren zum kontaktieren und paketieren eines halbleiterchips

Country Status (4)

Country Link
US (1) US11749638B2 (de)
EP (1) EP3740967A1 (de)
DE (1) DE102018104144B4 (de)
WO (1) WO2019161833A1 (de)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006008332B4 (de) 2005-07-11 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer funktionellen Baueinheit und funktionelle Baueinheit
WO2009034557A2 (en) 2007-09-14 2009-03-19 Nxp B.V. Method and apparatus for forming arbitrary structures for integrated circuit devices
US7727813B2 (en) * 2007-11-26 2010-06-01 Infineon Technologies Ag Method for making a device including placing a semiconductor chip on a substrate
US7767495B2 (en) * 2008-08-25 2010-08-03 Infineon Technologies Ag Method for the fabrication of semiconductor devices including attaching chips to each other with a dielectric material
US8138587B2 (en) * 2008-09-30 2012-03-20 Infineon Technologies Ag Device including two mounting surfaces
US20120222736A1 (en) * 2011-03-04 2012-09-06 Applied Materials, Inc. Front contact solar cell manufacture using metal paste metallization
US9129959B2 (en) * 2012-08-21 2015-09-08 Infineon Technologies Ag Method for manufacturing an electronic module and an electronic module
US9478484B2 (en) * 2012-10-19 2016-10-25 Infineon Technologies Austria Ag Semiconductor packages and methods of formation thereof
US9156680B2 (en) * 2012-10-26 2015-10-13 Analog Devices, Inc. Packages and methods for packaging
DE102016107031B4 (de) 2016-04-15 2019-06-13 Infineon Technologies Ag Laminatpackung von Chip auf Träger und in Kavität, Anordnung diese umfassend und Verfahren zur Herstellung

Also Published As

Publication number Publication date
US20220181291A1 (en) 2022-06-09
WO2019161833A1 (de) 2019-08-29
DE102018104144A1 (de) 2019-08-29
DE102018104144B4 (de) 2022-12-15
US11749638B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
DE102009055691B4 (de) Leistungshalbleitermodul
DE102011002578B4 (de) Induktor und Herstellungsverfahren
DE102014213564B4 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
EP1772902B1 (de) Leistungshalbleitermodul mit Isolationszwischenlage und Verfahren zu seiner Herstellung
DE102011017585B4 (de) Halbleitervorrichtung und Verfahren zum Herstellen derselben
DE10045043B4 (de) Halbleiterbauteil und Verfahren zu dessen Herstellung
EP2107604B1 (de) Leistungshalbleitermodul mit hermetisch dichter Schaltungsanordnung und Herstellungsverfahren hierzu
DE112015006112B4 (de) Halbleitervorrichtung
DE112008000229T5 (de) Leistungshalbleitervorrichtung
WO2013004543A1 (de) Verfahren zum herstellen von strukturierten sinterverbindungsschichten und halbleiterbauelement mit strukturierter sinterverbindungsschicht
DE102019119371A1 (de) Bauteil und verfahren zur herstellung eines bauteils
WO2012016898A2 (de) Verfahren zur herstellung einer mehrzahl von elektronischen bauelementen mit elektromagnetischer schirmung und insbesondere mit wärmeabführung und elektronisches bauelement mit elektromagnetischer schirmung und insbesondere mit wärmeabführung
DE102021006157A1 (de) Mehrfachsubstratgehäusesysteme und verwandte verfahren
WO2016034539A1 (de) Elektrisches bauelement, bauelementanordnung und verfahren zur herstellung eines elektrischen bauelements sowie einer bauelementanordnung
DE102018104144B4 (de) Verfahren zum Kontaktieren und Paketieren eines Halbleiterchips
US20200251277A1 (en) Magnetic Device and the Method to Make the Same
DE102015112451B4 (de) Leistungshalbleitermodul
DE102019132314B4 (de) Package mit Einkapselung unter Kompressionsbelastung
DE102012222012B4 (de) Leistungshalbleitereinrichtung und ein Verfahren zur Herstellung einer Leistungshalbleitereinrichtung
EP2673802B1 (de) Vergossenes bauteil
DE102009027382A1 (de) Elektronisches Bauteil mit EMV-Schutz
DE102013015960A1 (de) Leistungsmodul sowie Verfahren zur Herstellung eines Leistungsmoduls
DE102020209752A1 (de) Elektronisches Schaltungsmodul
DE102021116053A1 (de) Elektrischer Leiter, elektronische Baugruppe mit elektrischem Leiter und Verfahren zum Herstellen einer elektronischen Baugruppe mit einem elektrischen Leiter
DE102021211523A1 (de) Elektronisches Steuermodul für ein Fahrzeug und Verfahren zur Herstellung des elektronischen Steuermoduls

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200817

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LORENZ, FABIAN

Inventor name: RUDOLPH, JOHANNES

Inventor name: WERNER, RALF

Inventor name: SEIDEL, PETER

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)