EP3679236A1 - Procede de protection d'un filtre a particules dans une ligne d'echappement pendant une regeneration - Google Patents

Procede de protection d'un filtre a particules dans une ligne d'echappement pendant une regeneration

Info

Publication number
EP3679236A1
EP3679236A1 EP18773531.1A EP18773531A EP3679236A1 EP 3679236 A1 EP3679236 A1 EP 3679236A1 EP 18773531 A EP18773531 A EP 18773531A EP 3679236 A1 EP3679236 A1 EP 3679236A1
Authority
EP
European Patent Office
Prior art keywords
filter
temperature
estimated
particulate filter
soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18773531.1A
Other languages
German (de)
English (en)
Inventor
Dimitrios Karageorgiou
Vincent Souchon
Pascal Folliot
Matthieu GOGO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Auto SAS
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3679236A1 publication Critical patent/EP3679236A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1821Injector parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method of protecting a particulate filter in a heat engine exhaust line against deterioration due to too high a temperature during a regeneration of the particulate filter involving a risk of at least partial melting filter, the filter being too charged in soot mass.
  • the present invention is equally applicable to a compression ignition engine, in particular a diesel engine or diesel engine that a spark ignition engine, including gasoline engine, gasoline-containing mixture or any fuel emitting soot particles during its combustion in the engine.
  • Such a particulate filter for gasoline engines also commonly known as GPF for the English name of "Gasoline Particle Filter”, that is to say particle filter for petrol fuel, hereinafter referred to as petrol particle filter, is relatively similar to those used for diesel engines, but its characteristics are adapted so as not to penalize the performance or consumption for a petrol engine.
  • the exhaust line of a petrol engine also includes a three-way catalyst.
  • a three-way catalyst is intended to treat emissions of carbon monoxide or CO, hydrocarbons or HC and nitrogen oxides or NOx. It is usually placed near an exhaust manifold gasoline engine or downstream of a turbine for a turbocharged engine.
  • the particulate filter of an exhaust line is used for the retention of soot in its interior.
  • a reduction system can be integrated in a particulate filter, this in alternative to an independent reduction system or in addition to such a system.
  • the particulate filter is then impregnated with a SCR catalyst to effect a selective catalytic reduction of NOx. This is not limiting and a particulate filter may be unpregnated. This is a common case for petrol particulate filters as the exhaust line of a gasoline engine is not equipped with a selective catalytic reduction system.
  • An exhaust line comprises an exhaust gas flow path equipped with chemical treatment members and / or physical exhaust gas, for example at the output of a gasoline engine.
  • the three-way catalyst and the particulate filter may be housed within a metal casing, also known as "canning" or having two separate metal shells.
  • a particulate filter is found charged particles, including soot. It must then be cleaned or regenerated. This regeneration passes by the combustion of these soot.
  • the engine can go into a specific combustion mode to increase the temperature of the exhaust gas to about 650 ° C to burn the soot, with or without an additive to help the combustion of soot, in the particle filter. Regeneration therefore occurs under high temperature in the presence of an oxygen supply.
  • spark ignition engines including petrol fuel these conditions may be naturally present for a passive regeneration which is in fact almost continuous. So there is no regeneration trigger in nominal mode.
  • the petrol particle filter is positioned as close as possible to the engine to have a high temperature to be more than 600 ° C during a regeneration.
  • the three-way catalyst also requires the same positioning and has priority over the particulate filter, which is not unfavorable to the petrol particle filter since the three-way catalyst creates an exotherm downstream in the line and therefore helps to raise the temperature in the exhaust line at its exit.
  • the mass of soot contained in the particulate filter is to be monitored. This can be done by controlling the pressure difference across the particle filter, preferably with an estimate of the exhaust gas flow rate in the particulate filter.
  • this measurement is important that this measurement be done at the particle filter terminals and not somewhere upstream of the particulate filter and somewhere downstream of the particulate filter. In addition or in addition, this can also be done by modeling the gas emissions in the exhaust line used to estimate soot particles released into the exhaust line and stored in the particulate filter.
  • the temperature of the particulate filter may rise to a temperature limit of fusion. This risk is mainly present during an injection cutoff by burning the soot accumulated in the particulate filter.
  • the document FR-A-2 949 815 describes a method for saving a particle filter fitted to an exhaust line of a heat engine, in which the intensity of the combustions occurring in the filter by the determination of a parameter representative of the intensity.
  • the intensity of a combustion is greater than or equal to a predetermined threshold, it is sprayed in the exhaust line, upstream of the inlet face of the filter, an agent capable of stopping at least part of the combustion in the combustion chamber. filtered.
  • the agent may be water or carbon dioxide or a solution of urea.
  • the parameter used to determine the intensity of the combustion may be the temperature in the filter, the temperature gradient in the filter or the change in oxygen level between the upstream and downstream of the filter.
  • the prevention against melting cracking of the particulate filter is performed by spraying an agent in the exhaust line.
  • the parameters considered it is not taken into account the loading of the particulate filter.
  • the regeneration can begin at a temperature that is not dangerous for the filter, for example a temperature sufficient to initiate a regeneration but this temperature can dangerously rise due to the combustion of a load high soot in the filter, which can lead to cracking.
  • the problem underlying the invention is, for a power train comprising a heat engine and an exhaust line housing a particle filter, monitor a regeneration in progress of the particulate filter so that a risk of melting the particulate filter is not present.
  • a method of protecting a particulate filter in a heat engine exhaust line against deterioration due to a maximum temperature reached during a regeneration of the filter involving a risk of at least partial melting of the filter an initial increase in the temperature in the filter necessary for a start of the regeneration being obtained by a fuel injection cut in the engine, characterized in that it is carried out a count of time of the injection cutoff and it is estimated, on the one hand, a maximum permissible cut-off time and, on the other hand, a presence of a risk of melting of the particulate filter estimated according to a temperature upstream of the filter particulate filter and an estimated soot loading of the particulate filter, and when the maximum cutoff time is exceeded by a counted duration of the injection cutoff and a risk of If the particle filter is present, the injection cutoff is inhibited.
  • a so-called passive regeneration can be performed as soon as a regeneration start temperature is reached.
  • the particulate filter is moderately loaded below its maximum loading and there is an increase in the filter temperature during regeneration which is limited and does not reach a risky temperature to damage the particle filter and in particular to crack or even to bring it to fusion.
  • some rolling for example relatively short urban driving and driving involving no or few injection cuts, are very unfavorable to the maintenance of regenerations.
  • the particulate filter may be more filled than for certain other types of rolling, for example without this being limiting with more than 10 grams of soot instead of about 5 grams for a moderately filled filter.
  • the maximum allowable cut-off time is estimated according to a temperature upstream of the particulate filter and an estimated soot loading of the particulate filter. It is this predetermined maximum time that forms the protection of the particulate filter against the attainment of too high a temperature in the particulate filter that could damage it. This predetermined maximum time is determined by experiment being specific to the characteristics of the particulate filter, including its total load, its internal soot storage volume and its resistance to exposure to high temperatures.
  • the risk of melting and / or the maximum permissible cut-off time are estimated according to a respective map.
  • the soot loading is estimated according to a back pressure measured at the terminals of the particulate filter.
  • This is the first method of estimating the soot loading of the particulate filter.
  • This first estimation mode can be combined or associated with other modes.
  • the soot loading is estimated according to soot particle emissions from the gas emissions in the exhaust line estimated according to an emission model of the exhaust gas at the output of the engine giving the masses. of soot retained in the particulate filter.
  • the model takes into account an engine speed and a torque of the engine for successive periods. These two parameters mainly affect the emissions of gases in the exhaust line and thus the soot particles emitted.
  • a predetermined multiplicative safety factor greater than 1 is applied to the estimated soot loading. This is the third mode that overestimates the soot loading of the particulate filter to better protect the particulate filter.
  • the injection cutoff is again allowed.
  • the invention also relates to a power unit of a motor vehicle comprising a heat engine, an exhaust line provided with a particulate filter, a control unit in charge of the operation of the engine, characterized in that it comprises means for implementing such a method, the control unit comprising an injection cutoff time counter, means for estimating a maximum cut-off time estimated as a function of values given respectively by means for estimating or measuring a temperature upstream of the filter and means for estimating a soot loading in the filter, means for evaluating a risk of melting the filter, means for comparing the injection cut-off time with the maximum cut-off time and means for inhibiting the injection cut-off.
  • the exhaust line comprises a differential pressure sensor at the terminals of the particulate filter. This makes it possible to implement the first method of estimating the soot loading of the particulate filter.
  • FIG. 1 is a schematic representation of an assembly of a turbocharged heat engine and an exhaust line comprising a particulate filter, such an assembly being able to implement a method of protecting the filter according to the present invention
  • FIG. 2 is a flow chart of an embodiment of the method of protecting a particulate filter in a heat engine exhaust line against deterioration, the method being in accordance with the present invention.
  • powertrain means the engine and all its auxiliary elements as an exhaust line, a control unit in charge of the operation of the engine and the control of the pollution in the exhaust line, the powertrain may or may not include a turbocharger.
  • Figure 1 shows a motor 1 and an exhaust line 8 can implement the method according to Although the motor 1 and the line 8 are not shown with specific features of implementation of the present invention.
  • the invention relates to a method for protecting a particulate filter 5 in a thermal exhaust line 1 against a deterioration due to a maximum temperature reached during a regeneration of the filter 5 involving a risk of melting Fus. at least partial of the filter 5.
  • This temperature may depend on the material of the filter 5.
  • the ceramic is often used as a filter material 5. It can be considered that a partial melting risk may occur for a maximum temperature greater than 900 ° C.
  • a CharSu soot loading of the filter 5 is measured or estimated, at least by measuring a pressure differential across the filter 5 or by estimating the emissions in the exhaust line 8 since a last regeneration and taking into account count it where appropriate, spontaneous regeneration resulting in the combustion of soot in the filter 5.
  • Figure 1 also shows a respective metal casing 7 for a three-way catalyst 3 and the particulate filter 5 of which only is referenced 7 the casing for the three-way catalyst 3. It is shown a pressure differential sensor 6 or back pressure across the particle filter 5 and an upstream oxygen sensor 4a of the three-way catalyst 3 and a downstream oxygen sensor 4b of the particulate filter 5. All the newly mentioned elements are not essential for the implementation of the present invention apart from the back pressure sensor 6.
  • a regeneration which may be spontaneous regeneration or ordered regeneration, an initial increase in the temperature in the filter 5 is required. This initial temperature increase is obtained by a fuel injection Cl Cl in the engine 1.
  • a time count CdCoup of the injection cutoff C1 is carried out and it is estimated, on the one hand, a maximum cut-off time tmax allowed and, on the other hand, a presence of a risk of melting Fus of the particulate filter 5 estimated according to a temperature upstream T ° upstream of the particulate filter 5 and an estimated CharSu soot loading of the particulate filter 5.
  • the method according to the invention performs a CdCoup time count indicating the time spent in injection cutoff.
  • a specific time or maximum time Tmax of the injection cutoff C1 before requesting the inhibition DinCinj.
  • the maximum temperature of the reachable particle filter 5, above which a melting risk Fus of the filter 5 is present is modeled according to the CharSu loading and the upstream upstream temperature T °.
  • the maximum permissible tmax cut-off time is estimated according to a temperature upstream T ° upstream of the particulate filter 5 and an estimated CharSu soot loading of the particulate filter 5. It was indeed identified by experiments the temperatures in the filter 5 during the combustion of soot which correspond respectively to different soot loading times and injection cutoff times.
  • the risk of melting Fus and / or the maximum breaking time tmax allowed can be estimated according to a respective map.
  • soot estimation can be implemented in a preferred embodiment of the invention. At least three soot estimation methods can be implemented simultaneously or alternatively.
  • CharSu soot loading can be estimated according to a back pressure measured at the terminals of the particle filter 5, this by the sensor 6 illustrated in FIG. 1.
  • CharSu soot loading can be estimated from an estimate of engine emissions 1 since the last regeneration taking into account a natural combustion estimate soot since the last regeneration.
  • the CharSu soot loading can be estimated from an estimate of the emissions of the engine 1 taken alone to which a predetermined multiplicative safety factor of greater than 1 is applied.
  • the first estimate that is the most reliable pressure differential is indeed not always available and is then replaced by one of the other estimates.
  • false measurements can sometimes be delivered by this first estimate by too large dispersions and disturbances of measurements by elements in the vicinity of the particulate filter.
  • the model can take into account an engine speed and a torque of the engine 1 for successive periods.
  • a new regeneration takes place on the remaining unburned soot in the filter 5 during the previous regeneration.
  • a hysteresis on the temperature threshold can be implemented.
  • the invention also relates to a power unit of a motor vehicle comprising a thermal engine 1, an exhaust line 8, a control unit in charge of the operation of the engine 1 thermal comprising means for implementing a process as previously described.
  • the control control unit comprises an injection cut-off time counter C1, storage means of a maximum cut-off time tmax estimated as a function of values given respectively by means of FIG. estimation or measurement of a temperature upstream T ° upstream filter 5 and means for estimating a CharSu soot loading in the filter 5.
  • the command control unit comprises evaluation means of a melting risk Fus of the filter 5 advantageously estimated as a function of values given respectively by means for estimating or measuring a temperature upstream T ° upstream of the filter 5.
  • the control unit control comprises estimation means a CharSu soot loading, means for comparing the injection cut-off time C1 with the maximum cut-off time tmax and the DinCinj inhibition means of the injection cut-off C1.
  • the exhaust line 8 may comprise a pressure differential sensor 6 at the terminals of the particulate filter 5 for implementing the first mode of estimating the soot loading.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

L'invention concerne un procédé de protection d'un filtre à particules dans une ligne d'échappement contre un risque de fusion (Fus) au moins partielle du filtre pendant une régénération du filtre, une augmentation initiale de la température dans le filtre nécessaire pour un lancement de la régénération étant obtenue par une coupure d'injection (Cl) de carburant dans le moteur. Il est effectué un comptage de temps (CdCoup) de la coupure d'injection (Cl) et il est estimé un temps maximal de coupure (tmax) autorisé et une présence d'un risque de fusion (Fus) du filtre estimée selon une température en amont (T° amont) du filtre et un chargement en suies (CharSu) estimé du filtre. Quand le temps maximal (tmax) est franchi (tautD) par une durée comptée de la coupure d'injection (Cl) et qu'un risque de fusion (Fus) est présent (LimF), il est procédé à une inhibition (DinCinj) de la coupure d'injection (Cl).

Description

PROCEDE DE PROTECTION D'UN FILTRE A PARTICULES DANS UNE LIGNE D'ECHAPPEMENT PENDANT UNE REGENERATION
[0001 ] La présente invention concerne un procédé de protection d'un filtre à particules dans une ligne d'échappement de moteur thermique contre une détérioration due à une température trop forte pendant une régénération du filtre à particules impliquant un risque de fusion au moins partielle du filtre, le filtre étant trop chargé en masse de suies.
[0002] La présente invention s'applique aussi bien à un moteur thermique à allumage par compression, notamment moteur Diesel ou fonctionnant au gazole qu'à un moteur thermique à allumage commandé, notamment moteur à carburant essence, à mélange contenant de l'essence ou à un quelconque carburant émettant des particules de suies lors de sa combustion dans le moteur.
[0003] Les normes anti-pollution à venir, notamment en Europe avec la prochaine application de la réglementation émissions Euro 6 2àme étape, durcissent fortement le seuil à respecter pour les particules émises par les motorisations à Injection Directe d'Essence ou moteurs à allumage commandé puis plus tard à injection indirecte.
[0004] Le respect d'une telle réglementation va imposer d'utiliser un filtre à particules dans la ligne d'échappement de tels moteurs. Un tel filtre à particules pour des motorisations essence, aussi communément appelé GPF pour la dénomination anglaise de « Gasoline Particle Filter », c'est-à-dire de filtre à particules pour carburant essence, ci- après dénommé filtre à particules essence, est relativement similaire à ceux utilisés pour les motorisations Diesel mais ses caractéristiques sont adaptées afin de ne pas pénaliser les performances ou la consommation pour une motorisation à carburant essence.
[0005] La ligne d'échappement d'une motorisation à carburant essence comprend aussi un catalyseur trois voies. Un catalyseur trois voies est destiné à traiter les émissions de monoxyde de carbone ou CO, d'hydrocarbures ou HC et d'oxydes d'azote ou NOx. Il est en général placé à proximité d'un collecteur d'échappement du moteur thermique à carburant essence ou en aval d'une turbine pour un moteur turbocompressé.
[0006] Pour un moteur à allumage par compression ou un moteur à allumage commandé, le filtre à particules d'une ligne d'échappement sert à la rétention de suies en son intérieur. Un système de réduction peut être intégré dans un filtre à particules, ceci en alternative à un système de réduction indépendant ou en complément d'un tel système. Le filtre à particules est alors imprégné d'un catalyseur RCS pour effectuer une réduction catalytique sélective des NOx. Ceci n'est pas limitatif et un filtre à particules peut être non imprégné. C'est un cas fréquent pour les filtres à particules essence étant donné que la ligne d'échappement d'un moteur thermique à essence n'est pas équipée d'un système de réduction catalytique sélective.
[0007] Une ligne d'échappement comprend un conduit de circulation des gaz d'échappement équipé d'organes de traitement chimique et/ou physique des gaz d'échappement, par exemple à la sortie d'un moteur thermique à carburant à essence. Le catalyseur trois voies et le filtre à particules peuvent être logés à l'intérieur d'une enveloppe métallique, aussi appelée sous la dénomination anglaise de « canning » ou avoir deux enveloppes métalliques séparées.
[0008] Au bout d'une durée écoulée ou d'une certaine distance parcourue, un filtre à particules se retrouve chargé en particules, notamment en suies. Il faut alors le nettoyer ou le régénérer. Cette régénération passe par la combustion de ces suies. Pour brûler ces suies, le moteur peut passer dans un mode de combustion spécifique pour augmenter la température des gaz d'échappement environ jusqu'à 650 °C pour brûler les suies, avec ou sans additif d'aide à la combustion des suies, dans le filtre à particules. Une régénération se passe donc sous température élevée en présence d'un apport d'oxygène. [0009] Pour les moteurs thermiques à allumage commandé et notamment à carburant essence, ces conditions peuvent être naturellement présentes pour une régénération passive qui est en fait quasi continue. Donc il n'y a pas de déclenchement de régénération en mode nominal. Il s'ensuit que pour un moteur thermique à carburant essence une zone importante de fonctionnement moteur permet d'apporter la thermique nécessaire et l'oxygène peut être apporté par des coupures d'injection lors de levées de pied ou lors des passages de rapport : cela apporte les conditions des régénérations passives avec des charges en suies dans le filtre relativement peu élevées, par exemple de l'ordre de 3 à 10 grammes.
[0010] Il convient donc que le filtre à particules essence soit positionné au plus près possible du moteur pour avoir une température élevée devant être plus de 600 °C lors d'une régénération. Le catalyseur trois voies requiert aussi un même positionnement et a priorité sur le filtre à particules, ce qui n'est pas défavorable au filtre à particules essence étant donné que le catalyseur trois voies crée un exotherme en aval dans la ligne et donc contribue à élever la température dans la ligne d'échappement à sa sortie. [001 1 ] De plus, la masse de suies contenue dans le filtre à particules est à surveiller. Ceci peut être fait en contrôlant la différence de pression aux bornes du filtre à particules, de préférence avec une estimation du débit des gaz d'échappement dans le filtre à particules. Il est important que cette mesure se fasse aux bornes du filtre à particules et non pas entre quelque part en amont du filtre à particules et quelque part en aval du filtre à particules. En addition ou en complément, ceci peut aussi être fait par une modélisation des émissions de gaz dans la ligne d'échappement servant à l'estimation des particules de suies relâchées dans la ligne d'échappement et stockées dans le filtre à particules.
[0012] Il peut cependant exister un risque de fusion du filtre à particules fonction du chargement en suies du filtre à particules et de la température en amont du filtre à particules, la température du filtre à particules pouvant monter jusqu'à une température limite de fusion. Ce risque est principalement présent pendant une coupure d'injection via la combustion des suies accumulées dans le filtre à particules.
[0013] Lors des coupures d'injections, si la température en amont du filtre à particules est supérieure au seuil de combustion, il y aura alors une combustion des suies qui ont été stockées dans le filtre à particules. Cette combustion entraîne une élévation de la température au sein du filtre à particules. Plus la température en amont du filtre à particules et le chargement sont élevés, plus la température du filtre à particules sera élevée. [0014] Au-delà d'un chargement et à partir d'une limite en température qui varient selon le type de filtre à particules, le filtre à particules commence à se fissurer. Si la température s'élève encore du fait de la combustion des suies qui est exotherme, alors une partie des canaux du filtre à particules peut fondre et donc rendre inefficace le stockage des suies par celui-ci. [0015] Le document FR-A-2 949 815 décrit un procédé de sauvegarde d'un filtre à particules équipant une ligne d'échappement d'un moteur thermique, dans lequel on détermine l'intensité des combustions se produisant dans le filtre par la détermination d'un paramètre représentatif de l'intensité. Lorsque l'intensité d'une combustion est supérieure ou égale à un seuil prédéterminé, on pulvérise dans la ligne d'échappement, en amont de la face d'entrée du filtre, un agent apte à arrêter au moins en partie la combustion dans le filtre. L'agent peut être de l'eau ou du dioxyde de carbone ou une solution d'urée. [0016] Le paramètre utilisé pour déterminer l'intensité de la combustion peut être la température dans le filtre, le gradient de température dans le filtre ou la variation de taux d'oxygène entre l'amont et l'aval du filtre.
[0017] Dans ce document, la prévention contre une fissuration par fusion du filtre à particules est effectuée par pulvérisation d'un agent dans la ligne d'échappement. D'autre part, dans les paramètres considérés, il n'est pas pris en compte le chargement du filtre à particules. Or pour un filtre à particules très chargé, la régénération peut commencer à une température qui n'est pas dangereuse pour le filtre, par exemple une température suffisante pour initier une régénération mais cette température peut dangereusement monter du fait de la combustion d'un chargement élevé de suies dans le filtre, ce qui peut conduire à sa fissuration.
[0018] Par conséquent, le problème à la base de l'invention est, pour un groupe motopropulseur comportant un moteur thermique et une ligne d'échappement logeant un filtre à particules, de surveiller une régénération en cours du filtre à particules afin qu'un risque de fusion du filtre à particules ne soit pas présent.
[0019] Pour atteindre cet objectif, il est prévu selon l'invention un procédé de protection d'un filtre à particules dans une ligne d'échappement de moteur thermique contre une détérioration due à une température maximale atteinte pendant une régénération du filtre impliquant un risque de fusion au moins partielle du filtre, une augmentation initiale de la température dans le filtre nécessaire pour un lancement de la régénération étant obtenue par une coupure d'injection de carburant dans le moteur, caractérisé en ce qu'il est effectué un comptage de temps de la coupure d'injection et il est estimé, d'une part, un temps maximal de coupure autorisé et, d'autre part, une présence d'un risque de fusion du filtre à particules estimés selon une température en amont du filtre à particules et un chargement en suies estimé du filtre à particules, et quand le temps maximal de coupure est franchi par une durée comptée de la coupure d'injection et qu'un risque de fusion du filtre à particules est présent, il est procédé à une inhibition de la coupure d'injection.
[0020] En prenant l'exemple non limitatif d'une régénération d'un filtre à particules pour un moteur à allumage commandé à carburant essence, à mélange contenant de l'essence ou à carburant dégageant des particules de suie lors de sa combustion, une régénération dite passive peut être exécutée dès qu'une température de début de régénération est atteinte. Dans la majorité des cas, le filtre à particules est moyennement chargé en dessous de son chargement maximal et il y a une augmentation de la température du filtre lors de la régénération qui est limitée et n'atteint pas une température risquant d'endommager le filtre à particules et notamment de le fissurer ou même de le porter à fusion.
[0021 ] Par contre, certains roulages, par exemple des roulages urbains relativement courts et à conduite n'impliquant pas ou peu de coupures d'injections, sont très défavorables à la tenue de régénérations. Pour ces types de roulage, quand une régénération est lancée, le filtre à particules peut être plus rempli que pour certains autres types de roulage, par exemple sans que cela soit limitatif avec plus de 10 grammes de suie au lieu d'environ 5 grammes pour un filtre moyennement rempli.
[0022] Pour des températures de début de régénération sensiblement équivalentes, un filtre à particules plus rempli va dégager plus de chaleur qu'un filtre à particules moins rempli. Donc, pour ces types de roulage peu propices aux régénérations, la tenue d'une régénération présente des plus gros risques de fusion du filtre à particules dus au chargement élevé du filtre.
[0023] Avec un filtre rempli de suies, plus la durée de coupure d'injection va être longue, plus d'oxygène va être introduit dans le filtre et plus la réaction de combustion des suies va s'amplifier et la température du filtre monter, étant donné le caractère exothermique de la réaction de combustion des suies. Avec un filtre peu rempli de suies, même un apport conséquent d'oxygène ne va pas conduire à une augmentation très forte de la température du filtre mais seulement à une augmentation modérée. [0024] Une trop forte augmentation de température dans le filtre est ce que veut précisément éviter la présente invention en surveillant un risque de fusion du filtre selon la durée de coupure d'injection et le chargement de suies dans le filtre à particules. Il est évalué un risque de forte montée en température pour un filtre chargé si la coupure d'injection se prolonge et si de l'oxygène est apporté en quantité dans le filtre. C'est pourquoi la présente invention propose d'inhiber la coupure d'injection, donc de ne plus apporter d'oxygène pour la réduction des suies, freinant ainsi la combustion des suies et la régénération du filtre à particules qui pourraient menacer l'intégrité du filtre.
[0025] Ceci ne pouvait être anticipé en surveillant seulement la température de début de régénération. Pour un début de régénération par exemple à 600 °C, la température lors d'une régénération d'un filtre rempli va augmenter très rapidement et atteindre une température critique, ce qui ne sera pas le cas de la température d'un filtre peu rempli. C'est le chargement du filtre à particules et la durée de coupure d'injection, donc l'apport d'oxygène, qui sont prépondérants pour évaluer un risque d'endommagement du filtre à particules, ce que la présente invention prend en compte.
[0026] Avantageusement, le temps maximal de coupure autorisé est estimé selon une température en amont du filtre à particules et un chargement en suies estimé du filtre à particules. C'est ce temps maximal prédéterminé qui forme la protection du filtre à particules contre l'atteinte d'une température trop élevée dans le filtre à particules qui pourrait l'endommager. Ce temps maximal prédéterminé est fixé par expérience en étant spécifique aux caractéristiques du filtre à particules, notamment de son chargement total, de son volume interne de stockage de suies et de sa résistance à l'exposition à des températures élevées.
[0027] Avantageusement, le risque de fusion et/ou le temps maximal de coupure autorisé sont estimés selon une cartographie respective.
[0028] Avantageusement, le chargement en suies est estimé selon une contre-pression mesurée aux bornes du filtre à particules. Ceci est le premier mode d'estimation du chargement en suies du filtre à particules. Ce premier mode d'estimation peut être combiné ou associé avec d'autres modes.
[0029] Avantageusement, le chargement en suies est estimé selon des émissions de particules de suies à partir des émissions de gaz dans la ligne d'échappement estimées selon un modèle d'émission des gaz d'échappement en sortie du moteur thermique donnant les masses de suie retenues dans le filtre à particules. Ceci représente le deuxième mode d'estimation du chargement en suies du filtre à particules. Ce deuxième mode peut tenir compte des régénérations précédentes ayant vidé au moins partiellement le filtre à particules.
[0030] Avantageusement, le modèle prend en compte un régime moteur et un couple du moteur pendant des durées successives. Ces deux paramètres influent principalement sur les émissions de gaz dans la ligne d'échappement et donc sur les particules de suie émises.
[0031] Avantageusement, un facteur multiplicatif prédéterminé de sécurité supérieur à 1 est appliqué au chargement en suies estimé. Ceci représente le troisième mode qui surestime le chargement en suies du filtre à particules pour mieux assure la protection du filtre à particules. [0032] Avantageusement, après une inhibition de la coupure d'injection, si la température dans le filtre descend vers une température inférieure à la température maximale impliquant un risque de fusion tout en étant supérieure à la température dans le filtre nécessaire pour un lancement de la régénération, la coupure d'injection est à nouveau autorisée.
[0033] Une régénération initiale a été lancée mais a été interrompue du fait d'un exotherme trop puissant pouvant endommager le filtre. Une partie du chargement de suies a été brûlée. La régénération suivante pourra débuter avec un chargement en suies diminué donc avec un exotherme moins puissant se créant pendant la régénération et donc moins dangereux pour le filtre à particules. Une coupure d'injection peut donc être à nouveau permise après que le filtre ait diminué de température après l'arrêt de la régénération initiale. Il est possible de prévoir une hystérésis sur un seuil de température pour éviter le lancement de trop de régénérations successives fractionnées.
[0034] L'invention concerne aussi un groupe motopropulseur de véhicule automobile comprenant un moteur thermique, une ligne d'échappement munie d'un filtre à particules, une unité de contrôle commande en charge du fonctionnement du moteur thermique, caractérisé en ce qu'il comprend des moyens de mise en œuvre d'un tel procédé, l'unité de contrôle commande comprenant un compteur de temps de coupure d'injection, des moyens d'estimation d'un temps maximal de coupure estimé en fonction de valeurs données respectivement par des moyens d'estimation ou de mesure d'une température en amont du filtre et des moyens d'estimation d'un chargement de suies dans le filtre, des moyens d'évaluation d'un risque de fusion du filtre, des moyens de comparaison du temps de coupure d'injection avec le temps maximal de coupure et des moyens d'inhibition de la coupure d'injection. [0035] Avantageusement, la ligne d'échappement comprend un capteur de différentiel de pression aux bornes du filtre à particules. Ceci permet de mettre en œuvre le premier mode d'estimation du chargement en suies du filtre à particules.
[0036] D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1 est une représentation schématique d'un ensemble d'un moteur thermique turbocompressé et d'une ligne d'échappement comportant un filtre à particules, un tel ensemble pouvant mettre en œuvre un procédé de protection du filtre selon la présente invention, - la figure 2 est un logigramme d'un mode de réalisation du procédé de protection d'un filtre à particules dans une ligne d'échappement de moteur thermique contre une détérioration, le procédé étant conforme à la présente invention.
[0037] Il est à garder à l'esprit que les figures sont données à titre d'exemples et ne sont pas limitatives de l'invention. Elles constituent des représentations schématiques de principe destinées à faciliter la compréhension de l'invention et ne sont pas nécessairement à l'échelle des applications pratiques. En particulier, les dimensions des différents éléments illustrés ne sont pas représentatives de la réalité.
[0038] Dans ce qui va suivre, il est fait référence à toutes les figures prises en combinaison. Quand il est fait référence à une ou des figures spécifiques, ces figures sont à prendre en combinaison avec les autres figures pour la reconnaissance des références numériques désignées.
[0039] On entend par groupe motopropulseur le moteur thermique et tous ses éléments auxiliaires comme une ligne d'échappement, une unité de contrôle commande en charge du fonctionnement du moteur et du contrôle de la dépollution dans la ligne d'échappement, le groupe motopropulseur pouvant comporter ou non un turbocompresseur.
[0040] En se référant notamment à la figure 1 , tout en prenant en compte les références de la figure 2 manquante à la figure, la figure 1 montre un moteur 1 et une ligne 8 d'échappement pouvant mettre en œuvre le procédé selon la présente invention bien que le moteur 1 et la ligne 8 ne soient pas montrés avec des caractéristiques spécifiques de mise en œuvre de la présente invention.
[0041 ] L'invention concerne un procédé de protection d'un filtre 5 à particules dans une ligne 8 d'échappement de moteur 1 thermique contre une détérioration due à une température maximale atteinte pendant une régénération du filtre 5 impliquant un risque de fusion Fus au moins partielle du filtre 5. Cette température peut dépendre du matériau du filtre 5. La céramique est souvent utilisée comme matériau de filtre 5. On peut considérer qu'un risque de fusion partielle peut apparaître pour une température maximale supérieure à 900 °C.
[0042] Un chargement en suies CharSu du filtre 5 est mesurée ou estimée, au moins par mesure d'un différentiel de pression aux bornes du filtre 5 ou en estimant les émissions dans la ligne 8 d'échappement depuis une dernière régénération et en tenant compte, le cas échéant, de régénérations spontanées ayant entraîné une combustion de suies dans le filtre 5.
[0043] La figure 1 montre aussi une enveloppe 7 métallique respective pour un catalyseur trois voies 3 et le filtre 5 à particules dont seule est référencée 7 l'enveloppe pour le catalyseur trois voies 3. Il est montré un capteur 6 de différentiel de pression ou contre-pression aux bornes du filtre 5 à particules et une sonde à oxygène en amont 4a du catalyseur trois voies 3 et une sonde à oxygène en aval 4b du filtre 5 à particules. Tous les éléments nouvellement mentionnés ne sont pas essentiels pour la mise en œuvre de la présente invention à part le capteur 6 de contre-pression. [0044] Pour lancer une régénération, qui peut être une régénération spontanée ou une régénération ordonnée, une augmentation initiale de la température dans le filtre 5 est nécessaire. Cette augmentation de température initiale est obtenue par une coupure d'injection Cl de carburant dans le moteur 1.
[0045] Selon l'invention, il est effectué un comptage de temps CdCoup de la coupure d'injection Cl et il est estimé, d'une part, un temps maximal de coupure tmax autorisé et, d'autre part, une présence d'un risque de fusion Fus du filtre 5 à particules estimée selon une température en amont T° amont du filtre 5 à particules et un chargement en suies CharSu estimé du filtre 5 à particules.
[0046] Quand le temps maximal de coupure tmax est franchi, ce qui référencé tautD par une durée comptée de la coupure d'injection Cl et qu'un risque de fusion Fus du filtre 5 à particules est présent, ce qui est référencé LimF, les deux conditions tautD et LimF étant nécessaires en étant articulées avec un « ET » à la figure 2, il est procédé à une inhibition DinCinj de la coupure d'injection Cl.
[0047] Le procédé selon l'invention effectue un comptage de temps CdCoup indiquant le temps passé en coupure injection. En fonction du chargement CharSu et de la température en amont T° amont du filtre 5 à partie Jes modélisée, on peut autoriser un temps spécifique ou temps maximal tmax de coupure d'injection Cl avant de demander l'inhibition DinCinj. Selon le procédé conforme à la présente invention, la température maximale du filtre 5 à particules atteignable, au-dessus de laquelle un risque de fusion Fus du filtre 5 est présent, est modélisée en fonction du chargement CharSu et de la température amont T° amont du filtre 5 à particules Lorsque cette température maximale, de par ces deux indicateurs précités, est estimée dépasser la limite fixée, l'inhibition DinCinj des coupures d'injection Ci est mise en place. [0048] Le temps maximal de coupure tmax autorisé est estimé selon une température en amont T° amont du filtre 5 à particules et un chargement en suies CharSu estimé du filtre 5 à particules. Il a été en effet identifié par expériences les températures dans le filtre 5 lors de la combustion des suies qui correspondent respectivement à différents couples de chargement en suies et de temps de coupure d'injection.
[0049] Comme montré à la figure 2, le risque de fusion Fus et/ou le temps maximal de coupure tmax autorisé peuvent être estimés selon une cartographie respective.
[0050] Plusieurs modes de réalisation de l'estimation de suies peuvent être mis en œuvre dans un cadre préférentiel de l'invention. Au moins trois modes d'estimation des suies peuvent être mis en œuvre simultanément ou en alternative.
[0051 ] Dans un premier mode, le chargement en suies CharSu peut être estimé selon une contre-pression mesurée aux bornes du filtre 5 à particules, ceci par le capteur 6 illustré à la figure 1 .
[0052] Dans un deuxième mode, le chargement en suies CharSu peut être estimé à partir d'une estimation des émissions du moteur 1 depuis la dernière régénération avec prise en compte d'une estimation de combustion naturelle des suies depuis la dernière régénération.
[0053] Dans un troisième mode, le chargement en suies CharSu peut être estimé à partir d'une estimation des émissions du moteur 1 prises isolément à laquelle on applique un facteur multiplicatif prédéterminé de sécurité supérieur à 1 .
[0054] La première estimation qui est la plus fiable par différentiel de pression n'est en effet pas toujours disponible et est alors remplacée par l'une des autres estimations. De plus, de fausses mesures peuvent être parfois délivrées par cette première estimation par des trop grandes dispersions et des perturbations des mesures par des éléments se trouvant à proximité du filtre 5 à particules.
[0055] Cela permet de recaler les modes d'estimation les uns par rapport aux autres, la deuxième estimation, moins précise car basée sur les émissions de gaz d'échappement dans la ligne 8 d'échappement étant recalée au moins par rapport à la première estimation et, le cas échéant, la troisième estimation, celle-ci représentant une sécurité de protection du filtre 5 à particules. [0056] Le modèle peut prendre en compte un régime moteur et un couple du moteur 1 pendant des durées successives.
[0057] Après une inhibition DinCinj de la coupure d'injection Cl, si la température dans le filtre 5 descend vers une température inférieure à la température maximale impliquant un risque de fusion Fus tout en étant supérieure à la température dans le filtre 5 nécessaire pour un lancement de la régénération, la coupure d'injection Cl est à nouveau autorisée.
[0058] Une nouvelle régénération prend place sur le restant des suies non brûlées dans le filtre 5 pendant la régénération précédente. Pour éviter les oscillations des demandes d'inhibition DinCinj de coupure, une hystérésis sur le seuil de température peut être mise en oeuvre.
[0059] L'invention concerne aussi un groupe motopropulseur de véhicule automobile comprenant un moteur 1 thermique, une ligne 8 d'échappement, une unité de contrôle commande en charge du fonctionnement du moteur 1 thermique comprenant des moyens de mise en œuvre d'un procédé tel que précédemment décrit. [0060] Selon l'invention, l'unité de contrôle commande comprend un compteur de temps de coupure d'injection Cl, des moyens de mémorisation d'un temps maximal de coupure tmax estimé en fonction de valeurs données respectivement par des moyens d'estimation ou de mesure d'une température en amont T° amont dufiltre 5 et des moyens d'estimation d'un chargement de suies CharSu dans le filtre 5. [0061 ] L'unité de contrôle commande comprend des moyens d'évaluation d'un risque de fusion Fus du filtre 5 avantageusement estimé en fonction de valeurs données respectivement par des moyens d'estimation ou de mesure d'une température en amont T° amont du filtre 5. L'unité de contrôle commande comprend des moyens d'estimation d'un chargement de suies CharSu, des moyens de comparaison du temps de coupure d'injection Cl avec le temps maximal de coupure tmax et des moyens d'inhibition DinCinj de la coupure d'injection Cl.
[0062] La ligne 8 d'échappement peut comprendre un capteur 6 de différentiel de pression aux bornes du filtre 5 à particules pour la mise en œuvre du premier mode d'estimation du chargement en suies.

Claims

Revendications
Procédé de protection d'un filtre (5) à particules dans une ligne (8) d'échappement de moteur (1 ) thermique contre une détérioration due à une température maximale atteinte pendant une régénération du filtre (5) impliquant un risque de fusion (Fus) au moins partielle du filtre (5), une augmentation initiale de la température dans le filtre (5) nécessaire pour un lancement de la régénération étant obtenue par une coupure d'injection (Cl) de carburant dans le moteur (1 ), caractérisé en ce qu'il est effectué un comptage de temps (CdCoup) de la coupure d'injection (Cl) et il est estimé, d'une part, un temps maximal de coupure (tmax) autorisé et, d'autre part, une présence d'un risque de fusion (Fus) du filtre (5) à particules estimés selon une température en amont (T° amont) du filtre (5) à particules et un chargement en suies (CharSu) estimé du filtre (5) à particules, et quand le temps maximal de coupure (tmax) est franchi (tautD) par une durée comptée de la coupure d'injection (Cl) et qu'un risque de fusion (Fus) du filtre (5) à particules est présent (LimF), il est procédé à une inhibition (DinCinj) de la coupure d'injection (Cl).
Procédé selon la revendication 1 , dans lequel le temps maximal de coupure (tmax) autorisé est estimé selon une température en amont (T° amont) du filtre (5) à particules et un chargement en suies (CharSu) estimé du filtre (5) à particules.
Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel le risque de fusion (Fus) et/ou le temps maximal de coupure (tmax) autorisé sont estimés selon une cartographie respective.
Procédé selon l'une quelconque des revendications précédentes, dans lequel le chargement en suies (CharSu) est estimé selon une contre-pression mesurée aux bornes du filtre (5) à particules.
Procédé selon l'une quelconque des revendications précédentes, dans lequel le chargement en suies (CharSu) est estimé selon des émissions de particules de suies à partir des émissions de gaz dans la ligne (8) d'échappement estimées selon un modèle d'émission des gaz d'échappement en sortie du moteur (1 ) thermique donnant les masses de suie retenues dans le filtre (5) à particules.
Procédé selon la revendication 5, dans lequel le modèle prend en compte un régime moteur et un couple du moteur (1 ) pendant des durées successives.
7. Procédé selon l'une quelconque des deux revendications précédentes, dans lequel un facteur multiplicatif prédéterminé de sécurité supérieur à 1 est appliqué au chargement en suies (CharSu) estimé.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel, après une inhibition (DinCinj) de la coupure d'injection (Cl), si la température dans le filtre (5) descend vers une température inférieure à la température maximale impliquant un risque de fusion (Fus) tout en étant supérieure à la température dans le filtre (5) nécessaire pour un lancement de la régénération, la coupure d'injection (Cl) est à nouveau autorisée. 9. Groupe motopropulseur de véhicule automobile comprenant un moteur (1 ) thermique, une ligne (8) d'échappement munie d'un filtre (5) à particules, une unité de contrôle commande en charge du fonctionnement du moteur (1 ) thermique, caractérisé en ce qu'il comprend des moyens de mise en œuvre d'un procédé selon l'une quelconque des revendications précédentes, l'unité de contrôle commande comprenant un compteur de temps de coupure d'injection (Cl), des moyens d'estimation d'un temps maximal de coupure (tmax) estimé en fonction de valeurs données respectivement par des moyens d'estimation ou de mesure d'une température en amont (T° amont) du filtre (5) et des moyens d'estimation d'un chargement de suies (CharSu) dans le filtre (5), des moyens d'évaluation d'un risque de fusion (Fus) du filtre (5), des moyens de comparaison du temps de coupure d'injection (Cl) avec le temps maximal de coupure (tmax) et des moyens d'inhibition (DinCinj) de la coupure d'injection (Cl).
10. Groupe motopropulseur selon la revendication précédente, dans lequel la ligne (8) d'échappement comprend un capteur de différentiel de pression (6) aux bornes du filtre (5) à particules.
EP18773531.1A 2017-09-06 2018-08-27 Procede de protection d'un filtre a particules dans une ligne d'echappement pendant une regeneration Pending EP3679236A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758201A FR3070728B1 (fr) 2017-09-06 2017-09-06 Procede de protection d’un filtre a particules dans une ligne d’echappement pendant une regeneration
PCT/FR2018/052105 WO2019048754A1 (fr) 2017-09-06 2018-08-27 Procede de protection d'un filtre a particules dans une ligne d'echappement pendant une regeneration

Publications (1)

Publication Number Publication Date
EP3679236A1 true EP3679236A1 (fr) 2020-07-15

Family

ID=60020184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18773531.1A Pending EP3679236A1 (fr) 2017-09-06 2018-08-27 Procede de protection d'un filtre a particules dans une ligne d'echappement pendant une regeneration

Country Status (5)

Country Link
EP (1) EP3679236A1 (fr)
CN (1) CN111094728A (fr)
FR (1) FR3070728B1 (fr)
MA (1) MA50075A (fr)
WO (1) WO2019048754A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240252B (zh) * 2020-09-14 2021-10-22 东风汽车集团有限公司 一种混动车型gpf再生分级控制方法及系统
CN112922699B (zh) * 2021-03-01 2022-06-28 潍柴动力股份有限公司 一种dpf再生方法、装置及发动机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4230180A1 (de) * 1992-09-09 1994-03-10 Eberspaecher J Verfahren und Vorrichtung zur Ermittlung des Beladungszustands von Partikelfiltern
JP3885604B2 (ja) * 2002-02-14 2007-02-21 日産自動車株式会社 排気浄化装置
JP4075755B2 (ja) * 2003-09-22 2008-04-16 トヨタ自動車株式会社 内燃機関のフィルタ過昇温抑制方法
FR2949815B1 (fr) 2009-09-04 2012-01-06 Peugeot Citroen Automobiles Sa Procede et dispositif de sauvegarde d'un filtre a particules
SE537854C2 (sv) * 2011-01-31 2015-11-03 Scania Cv Ab Förfarande och system för avgasrening
JP2014145271A (ja) * 2013-01-28 2014-08-14 Toyota Motor Corp 火花点火式内燃機関の排気浄化装置
JP2015151869A (ja) * 2014-02-10 2015-08-24 トヨタ自動車株式会社 内燃機関の制御装置
US9650930B2 (en) * 2015-01-12 2017-05-16 Ford Global Technologies, Llc Emission control device regeneration
US9657664B2 (en) * 2015-02-02 2017-05-23 Ford Global Technologies, Llc Method and system for maintaining a DFSO
US10487715B2 (en) * 2015-08-20 2019-11-26 Ford Global Technologies, Llc Regeneration of particulate filters in autonomously controllable vehicles
US10329977B2 (en) * 2016-01-19 2019-06-25 Ford Global Technologies, Llc Gasoline particle filter temperature control
DE102017105851A1 (de) * 2017-03-17 2017-07-06 FEV Europe GmbH Verbrennungskraftmaschine mit einem Partikelfilter sowie Verfahren zum Bestimmen einer Beladungsrate eines Partikelfilters

Also Published As

Publication number Publication date
FR3070728B1 (fr) 2019-08-30
MA50075A (fr) 2020-07-15
CN111094728A (zh) 2020-05-01
FR3070728A1 (fr) 2019-03-08
WO2019048754A1 (fr) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2009144428A1 (fr) Procede et dispositif de reconnaissance d'une combustion dans un filtre a particules
EP1766202B1 (fr) Systeme d'aide a la regeneration de moyens de depollution associes a des moyens formant catalyseur
FR2802972A1 (fr) Procede de gestion du fonctionnement d'un filtre a particules pour moteur a combustion
FR3070728B1 (fr) Procede de protection d’un filtre a particules dans une ligne d’echappement pendant une regeneration
EP1834074B1 (fr) Protection d'un catalyseur d'oxydation place en amont de filtre à particules pour moteur diesel par limitation de carburant injecte
EP2423477B1 (fr) Procédé de détermination de l'état physique d'un filtre à particules
EP2182191B1 (fr) Procédé de surveillance d'un filtre à particules
WO2006005862A1 (fr) Systeme d'aide a la regeneration de moyens de depollution associes a des moyens formant catalyseur
FR2849103A1 (fr) Procede et systeme de determination de masse de suie dans un filtre a particules
FR2896270A1 (fr) Procede de gestion d'un filtre a particules installe dans le systeme des gaz d'echappement d'un moteur a combustion interne et dispositif pour la mise en oeuvre du procede
EP2532853B1 (fr) Procédé de gestion de la régénération d'un filtre à particules
FR2909044A1 (fr) Dispositif de securite anti-incendie pour vehicule automobile
WO2006005866A1 (fr) Systeme d'aide a la regeneration de moyens de depollution
FR3069279A1 (fr) Procede de lancement d’une regeneration d’un filtre a particules
FR2979091A1 (fr) Procede et dispositif de controle pour la maitrise des emballements de la reaction de regeneration d'un filtre a particules dans un vehicule automobile hybride
EP1413720B1 (fr) Procédé de détermination de la température interne d'un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant
FR3029964A1 (fr) Procede de regeneration d'un filtre a particules d'une ligne d'echappement d'un moteur a combustion interne appartenant a un groupe motopropulseur hybride et vehicule associe
FR2949816A1 (fr) Procede de surveillance d'une ligne d'echappement et diagnostic de defaillance
FR2983522A1 (fr) Regeneration d'un dispositif de post-traitement de gaz d'echappement a modulation de temperature de consigne
FR2949815A1 (fr) Procede et dispositif de sauvegarde d'un filtre a particules
EP4303409A1 (fr) Procédé d'optimisation du chauffage d'un catalyseur pour limiter la consommation de carburant
FR3129434A1 (fr) Procede de diagnostic fonctionnel d’un filtre a particules
FR3085998A1 (fr) Ligne d’echappement de vehicule a circuit de refroidissement par gaz neutre en amont du dispositif de depollution
FR2942501A1 (fr) Dispositif et procede de pilotage d'une montee en temperature d'un filtre a particules de vehicule automobile.
FR3063515A1 (fr) Procede de depollution de gaz d’echappement passant dans au moins deux filtres a particules

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PSA AUTOMOBILES SA

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20200217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220930

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STELLANTIS AUTO SAS