EP3671078A1 - Thermally insulated container - Google Patents

Thermally insulated container Download PDF

Info

Publication number
EP3671078A1
EP3671078A1 EP20156390.5A EP20156390A EP3671078A1 EP 3671078 A1 EP3671078 A1 EP 3671078A1 EP 20156390 A EP20156390 A EP 20156390A EP 3671078 A1 EP3671078 A1 EP 3671078A1
Authority
EP
European Patent Office
Prior art keywords
container
wall
container according
elements
vacuum insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20156390.5A
Other languages
German (de)
French (fr)
Other versions
EP3671078B1 (en
Inventor
Dr. Joachim Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Va Q Tec AG
Original Assignee
Va Q Tec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33461829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3671078(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Va Q Tec AG filed Critical Va Q Tec AG
Publication of EP3671078A1 publication Critical patent/EP3671078A1/en
Application granted granted Critical
Publication of EP3671078B1 publication Critical patent/EP3671078B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08221Fasteners or fixing means for the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • F25D2303/0843Position of the cold storage material in relationship to a product to be cooled on the side of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/085Compositions of cold storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays

Definitions

  • the invention relates to a thermally insulated container according to the preamble of claim 1.
  • thermally insulated containers are used, in particular, but by no means exclusively, for transport purposes in order to be able to transport temperature-sensitive goods, for example medicines, while adhering to narrow temperature tolerances.
  • a container wall is provided in generic containers, which completely encloses an interior in which the goods to be transported are arranged. At least one closable opening is provided in the container wall in order to be able to introduce the goods to be transported into the container.
  • vacuum insulation elements are used for insulation. These vacuum insulation elements have a very high thermal resistance with a relatively small layer thickness, so that for a given external volume there is a relatively large usable volume with sufficient thermal insulation. Due to the vacuum insulation elements, the heat flow is made more difficult both from the outside in and from the inside out, so that the goods to be transported are protected against both excessive heat and excessive cold.
  • Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Systems are also known in which dry ice is evaporated and the resulting cold steam is used to cool the interior. The disadvantage of these actively cooled containers is that they are extremely sensitive to interference. If, for example, the electrical air conditioning system or the fan of the dry ice system is not supplied with sufficient electrical energy, one is Sufficient cooling is no longer guaranteed and the transported goods spoil.
  • the document WO 2000/40908 A1 discloses a portable refrigerator with a thermally insulated outer shell that defines an interior.
  • the outer shell is formed by a plurality of wall elements, namely three side wall elements, a ceiling element, a floor element and a door element, the interior having at least one closable opening.
  • the outer shell has two metal skins and a heat-insulating polyurethane foam layer in between.
  • the known refrigerator has supports for melt storage elements.
  • the invention is based on the basic idea of arranging passive melt storage elements in the container which are filled with a suitable melt storage material.
  • Such melt storage elements have the property that they can store or emit a certain amount of heat by phase transformation of the melt storage material.
  • the thermal energy required for phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled in reverse, the melt storage material gradually solidifies and emits the stored amount of heat during this phase change.
  • the Melt storage elements thus, depending on their respective capacity, reduce the heat flow until the capacity limits are reached.
  • melt storage material contains paraffin, for example, heat flow buffering in the temperature range above 0 ° C is made possible. If, on the other hand, a salt solution is contained in the melt storage material, for example, the heat flow can be buffered in the temperature range below 0 ° C.
  • each melt storage material has an optimal buffering range depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, each of which is filled with different melt storage materials. This combination of different melt storage materials in one container allows the buffering area to be spread out. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.
  • melt storage elements In order to be able to check the readiness for use of the melt storage elements, for example after loading a container, it is advantageous if temperature measuring devices are provided on the melt storage elements with which the temperature of the melt storage element can be measured.
  • Known temperature sensors with displays, for example, which change color depending on the temperature, can be used for this purpose.
  • the container wall is double-walled with an outer wall and an inner wall.
  • the outer wall and the inner wall are each mechanically stable and self-supporting.
  • the interior is insulated against heat exchange with several vacuum insulation elements.
  • the vacuum insulation elements are arranged between the outer wall and the inner wall.
  • the construction of the vacuum insulation elements is basically arbitrary.
  • a base body is used for this purpose, which is enclosed in a gas-tight manner with a film.
  • the interior space formed by the film is evacuated in order to be able to achieve the desired insulation properties.
  • the base body itself gives the vacuum insulation element the required mechanical stability, and open-pore materials should be used to produce the base body in order to ensure sufficient evacuation.
  • foil-coated vacuum insulation elements they should preferably not have any protruding edge flaps made of foil, so that the butt joint between adjacent vacuum insulation elements can be made as narrow as possible.
  • the insulation effect of the vacuum insulation elements largely depends on the sufficiently low internal gas pressure in the vacuum insulation element. The further the internal gas pressure in the vacuum insulation element increases, the more heat is conducted through the vacuum insulation element.
  • the vacuum insulation elements should have a control system for checking the internal gas pressure.
  • metal platelets for example, can be arranged below the enveloping film, the internal gas pressure then being able to be derived by applying a temperature jump using suitable diagnostic devices in the area of the metal platelets.
  • the container wall should have inspection openings through which the control system for controlling the internal gas pressure is accessible.
  • the functionality of the built-in vacuum insulation elements can be checked again at any time, in particular before loading, in order to prevent damage to the goods to be transported due to insufficient insulation, as they do For example, can be caused by micro-leaks in the vacuum insulation elements.
  • covers can be provided at the inspection openings, which are preferably transparent so that the control system behind the cover can be viewed from the outside.
  • the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other.
  • the resulting heat flow resistance essentially results from the addition of the heat flow resistance of the individual layers.
  • the container can be designed in the manner of a transport container. If this transport container is also airworthy, temperature-sensitive goods, such as medicines such as vaccines in particular, can be transported over very long distances and long transport times within specified temperature tolerances.
  • the container can also be designed in the manner of a transport box with a removable lid.
  • transport boxes are particularly advantageous if the container is not to be transported back but the container is disposed of after it has reached its destination.
  • Foamed plastics are particularly suitable for producing the container wall of the transport box, since this material itself has a high heat flow resistance and is also available at very low cost.
  • a container 01 designed in the manner of a transport container is shown in perspective.
  • heat-sensitive goods for example medicines, in particular vaccines
  • the base of the container 01 corresponds to the area of a standard pallet.
  • the container wall 02 of the container 01 consists of three rectangular side wall elements 03, a rectangular floor element 04, a rectangular ceiling element 05 and a pivotably mounted door element 06.
  • the three side wall elements 03, the floor element 04 and the ceiling element 05 are firmly together to form a rectangular interior 07 connected. After closing the door element 06, the interior 07 is enclosed on all sides and is insulated against the flow of heat through the container wall 02 by means of vacuum insulation elements, which are described in more detail below.
  • a locking element 08 is used to lock the door element 06, by actuating it in Fig. 1 Locking elements, not shown, can be unlocked or locked.
  • a seal can be attached to the closure member 08 in order to secure the container 01 against unauthorized opening.
  • a lock for example a cylinder lock, can also be on the locking member 08 or number lock can be provided to prevent unauthorized opening of the container 01.
  • guard rails 15 can be attached to the outside in particularly endangered areas.
  • the guardrails 15 can be made, for example, from a metal sheet.
  • the inside structure of the container 01 is off Fig. 2 evident.
  • Six melt storage elements 16 and 17 are arranged on the inside of each of the two side walls 03.
  • the melt storage elements 16 are filled with a paraffin-containing melt storage material, whereas the melt storage elements 17 contain a salt solution.
  • Fastening rails 18 are used to fasten the melt storage elements 16 and 17 (see also Fig. 3 ), which encompass the melt storage elements 16 and 17 in a form-fitting manner at the upper and lower edges, respectively. In this way, the melt storage elements 16 and 17 can be replaced simply by inserting them into the mounting rails 18 from the door side. After closing the door element 06, the melt storage elements 16 and 17 are fixed on the inside of the container wall 02. This type of attachment allows, in particular, the melt storage elements 16 and 17 to be assembled or disassembled without tools.
  • Inspection openings 19 are provided in each of the three side wall elements 03, the base element 04, the ceiling element 05 and the door element 06, the function of which will be explained in detail below.
  • a sealing lip 20 is fastened on the inside, with which the sealing joint between the door element 06 on the one hand and the edge of the two opposite side wall elements 03 or the edge of the ceiling element 05 and the floor element 04 is sealed after the door element 06 has been closed.
  • Fig. 3 the container 01 is shown schematically in cross section from the front.
  • the flat, namely plate-shaped melt storage elements 16 and 17 are arranged parallel to the container wall 02 on the inside 21 of the container 01.
  • the container wall 02 itself is constructed with double walls from a dimensionally stable outer wall 22 and a likewise dimensionally stable inner wall 23.
  • the vacuum insulation elements 24 provided for insulation are arranged between this mechanically stable double wall made of outer wall 22 and inner wall 23.
  • Shock protection elements 25 made of foamed plastic are provided between the vacuum insulation elements 24 and the outer wall 22.
  • the size relationships between the outer wall 22, inner wall 23, the vacuum insulation elements 24 and the shock protection elements 25 are shown in Fig. 3 only hinted at in principle.
  • the exact structure of the structure of the container wall 02 is off Fig. 4 evident.
  • FIG. 4 Perspective cross section shown through the container wall 02 shows that the outer wall 22 and the inner wall 23 are each made of a sandwich material.
  • an inner core layer 26 made of plywood and an inner core layer 27 made of foamed plastic are each covered on the outside by cover layers 28 made of fiber-reinforced plastic.
  • Fig. 5 One possible embodiment of dimensionally stable melt storage containers 29 is shown. By filling the containers 29 with a suitable melt storage material, the different types of melt storage elements 16 and 17 can be produced.
  • Fig. 6 the arrangement of the vacuum insulation panels 24 in a side wall 03 is shown as an example.
  • Four vacuum insulation elements 24 are arranged adjacent to one another in all side wall elements 03 and correspondingly also in floor element 04, in ceiling element 05 and in door element 06. This ensures that if a vacuum insulation element is damaged, for example caused by a micro leak, not all of the insulation in the corresponding container wall fails. Rather, even if a single vacuum insulation element fails, there is still sufficient insulation of the container 01 as a whole.
  • vacuum insulation elements 24 should, if possible, not have any protruding film tabs, so that vacuum insulation elements 24 can be mounted in the butt joints 30 as tightly as possible.
  • a further layer of vacuum insulation elements can also be provided in the container wall 02, the butt joints 30 being offset from one another if possible in the case of a plurality of layers.
  • a control system 31 for checking the internal gas pressure is present on each vacuum insulation element 24.
  • the four control systems 31 of the four vacuum insulation elements 24 are each arranged adjacent to one another in the middle of the container wall, so that the four different control systems 31 are accessible through a single inspection opening 19.
  • Fig. 7 the inspection opening 19 is shown enlarged with the four control systems 31 arranged behind a cover 32.
  • the cover 32 is removed and a test head of a diagnostic device is placed on the control systems 31. Structure and function of the control system 31 and structure of the vacuum insulation elements 24 are off Fig. 8 evident.
  • the in Fig. 8 The cross section shown through the vacuum insulation elements 24 shows an open-pore base body 33, which is gas-tightly covered with a film 34.
  • the gas-tight interior 35 formed by the film 34 is evacuated in order to give the vacuum insulation element 24 the desired insulation properties.
  • the control system 31 is placed on the inside of the film 34, which consists of a metal plate 36 and an intermediate layer 37. A defined temperature jump can then be applied to the control system 31 with a test head 38, the internal gas pressure in the interior 35 being able to be derived from the signal response to the temperature jump.
  • the data storage device 10 is connected via a cable 12 to an internal temperature sensor for measuring the temperature in the interior 07 and to an external temperature sensor for measuring the ambient temperature surrounding the container 01.
  • the internal temperature and the external temperature are measured at regular time intervals and the measurement data obtained are stored in the data storage device 10 for documentation purposes.
  • the current internal temperature or the current external temperature can be shown on a display 13 and can be read from the outside through the transparent cover 11.
  • a GPS receiver (not shown) can be connected to the data storage device 10 via a connection 14, so that the position data of the container 01 can be stored with the data storage device 10 for documentation purposes.
  • the function of the container 01 for temperature insulation should be based on the in 10 to 12 temperature curves shown are exemplified.
  • Fig. 10 a situation is schematically shown in which the container 01 is exposed to an outside temperature profile 39.
  • the corresponding change in the internal temperature in the interior 07 of the container 01 is indicated with the internal temperature profile 40.
  • the outside temperature profile 39 includes a temperature jump from 10 ° C to 30 ° C over a period of 6 hours.
  • This change in the outside temperature initially does not lead to a change in temperature in the interior 07, because the amounts of heat caused by the Vacuum insulation elements 24 are let through, are buffered by the melt storage elements 16 and 17 by phase transformation of the melt storage material. Only after a time delay, when large amounts of the melt storage material have already undergone a phase change, does the inside temperature in the interior 07 rise very slowly.
  • a second outside temperature profile 41 and the resulting inside temperature profile 42 are plotted in the interior 07 of the container 01.
  • the outside temperature profile 41 immediately undergoes a negative temperature jump to just above 0 ° C.
  • the negative temperature jump also lasts 6 hours.
  • the negative temperature jump is also buffered by the melt storage elements 16 and 17, the melt storage elements regenerating again by lowering the temperature, so that a subsequent positive temperature jump can in turn be buffered without further notice.
  • a real outside temperature profile 43 and a resulting inside temperature profile 44 are plotted, which was recorded in a long-term test over 210 hours.
  • the different curves of the outside temperature profile 43 and the inside temperature profile 44 correspond to the different measuring points outside or inside the container 01 Fig. 11 immediately apparent, the inside temperature remains within a narrow temperature band despite considerable fluctuations in the outside temperature, so that temperature-sensitive goods in the interior of the container 07 are effectively protected against excessive temperature fluctuations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)

Abstract

Wärmegedämmter Behälter (01), insbesondere für Transportzwecke, mit einer Behälterwandung (02), die einen Innenraum (07) vollständig umschließt, wobei der Innenraum (07) zumindest eine verschließbare Öffnung aufweist und mit zumindest einem Vakuumisolationselement (24) gegen Wärmeaustausch isoliert ist. Im Behälter (01) ist zumindest ein passives Schmelzspeicherelement (16, 17) vorgesehen, das mit einem Schmelzspeichermaterial gefüllt ist.Thermally insulated container (01), in particular for transport purposes, with a container wall (02) which completely encloses an interior (07), the interior (07) having at least one closable opening and being insulated against heat exchange with at least one vacuum insulation element (24). At least one passive melt storage element (16, 17) is provided in the container (01) and is filled with a melt storage material.

Description

Die Erfindung betrifft einen wärmegedämmten Behälter nach dem Oberbegriff des Anspruchs 1.The invention relates to a thermally insulated container according to the preamble of claim 1.

Solche wärmegedämmten Behälter werden insbesondere, jedoch keineswegs ausschließlich, für Transportzwecke genutzt, um temperaturempfindliche Waren, beispielsweise Medikamente, bei Einhaltung enger Temperaturtoleranzen befördern zu können. Dazu ist bei gattungsgemäßen Behältern eine Behälterwandung vorgesehen, die einen Innenraum, in dem das zu transportierende Gut angeordnet wird, vollständig umschließt. In der Behälterwandung ist zumindest eine verschließbare Öffnung vorgesehen, um das zu transportierende Gut in den Behälter einbringen zu können.Such thermally insulated containers are used, in particular, but by no means exclusively, for transport purposes in order to be able to transport temperature-sensitive goods, for example medicines, while adhering to narrow temperature tolerances. For this purpose, a container wall is provided in generic containers, which completely encloses an interior in which the goods to be transported are arranged. At least one closable opening is provided in the container wall in order to be able to introduce the goods to be transported into the container.

Um den Wärmefluss durch die Behälterwandung hindurch möglichst gering zu halten, werden Vakuumisolationselemente zur Isolation verwendet. Diese Vakuumisolationselemente haben einen sehr hohen Wärmedurchgangswiderstand bei relativ geringer Schichtdicke, so dass bei gegebenem Außenvolumen ein relativ großes Nutzvolumen bei ausreichender Wärmeisolation gegeben ist. Durch die Vakuumisolationselemente wird der Wärmefluss sowohl von außen nach innen als auch von innen nach außen erschwert, so dass die zu transportierende Ware sowohl gegen übermäßige Wärme als auch gegen übermäßige Kälte geschützt ist.In order to keep the heat flow through the container wall as low as possible, vacuum insulation elements are used for insulation. These vacuum insulation elements have a very high thermal resistance with a relatively small layer thickness, so that for a given external volume there is a relatively large usable volume with sufficient thermal insulation. Due to the vacuum insulation elements, the heat flow is made more difficult both from the outside in and from the inside out, so that the goods to be transported are protected against both excessive heat and excessive cold.

Aus dem Stand der Technik sind wärmegedämmte Behälter bekannt, bei denen zur zusätzlichen Kühlung aktive Kühlsysteme eingesetzt werden. Beispielsweise ist es bekannt, dass der Innenraum des Behälters mittels einer elektrischen Klimatisierungsanlage temperiert wird. Auch sind Systeme bekannt, bei denen Trockeneis verdampft wird und der dabei entstehende kalte Dampf zur Kühlung des Innenraums eingesetzt wird. Diese aktiv gekühlten Behälter haben den Nachteil, dass sie außerordentlich empfindlich gegen Störungen sind. Wird beispielsweise die elektrische Klimaanlage oder der Ventilator der Trockeneisanlage nicht mit ausreichender elektrischer Energie versorgt, so ist eine ausreichende Kühlung nicht mehr gewährleistet und die transportierte Ware verdirbt.Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Systems are also known in which dry ice is evaporated and the resulting cold steam is used to cool the interior. The disadvantage of these actively cooled containers is that they are extremely sensitive to interference. If, for example, the electrical air conditioning system or the fan of the dry ice system is not supplied with sufficient electrical energy, one is Sufficient cooling is no longer guaranteed and the transported goods spoil.

Das Dokument WO 2000/40908 A1 offenbart einen portablen Kühlschrank mit einer wärmegedämmten Außenschale, die einen Innenraum definiert. Die Außenschale ist von mehreren Wandelementen gebildet, nämlich von drei Seitenwandelementen, einem Deckenelement, einem Bodenelement und einem Türelement, wobei der Innenraum zumindest eine verschließbare Öffnung aufweist. Die Außenschale weist zwei Metallhäute und dazwischen eine wärmedämmende Polyurethanschaumschicht. Der bekannte Kühlschrank hat Träger für Schmelzspeicherelemente.The document WO 2000/40908 A1 discloses a portable refrigerator with a thermally insulated outer shell that defines an interior. The outer shell is formed by a plurality of wall elements, namely three side wall elements, a ceiling element, a floor element and a door element, the interior having at least one closable opening. The outer shell has two metal skins and a heat-insulating polyurethane foam layer in between. The known refrigerator has supports for melt storage elements.

Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, einen wärmegedämmten Behälter mit einer alternativen wärmedämmenden Wandkonstruktion vorzuschlagen.Starting from this prior art, it is an object of the present invention to propose a heat-insulated container with an alternative heat-insulating wall construction.

Diese Aufgabe wird durch einen Behälter nach der Lehre des Anspruchs 1 gelöst.This object is achieved by a container according to the teaching of claim 1.

Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent claims.

Die Erfindung beruht auf dem Grundgedanken, im Behälter passive Schmelzspeicherelemente, die mit einem geeigneten Schmelzspeichermaterial gefüllt sind, anzuordnen. Derartige Schmelzspeicherelemente haben die Eigenschaft, dass sie eine bestimmte Wärmemenge durch Phasenumwandlung des Schmelzspeichermaterials speichern bzw. abgeben können. Dies bedeutet mit anderen Worten, dass das Schmelzspeichermaterial im Schmelzspeicherelement bei Erwärmung so lange schmilzt, bis der gesamte Vorrat an Schmelzspeichermaterial in die flüssige Phase übergegangen ist. Die zur Phasenumwandlung des Schmelzspeichermaterials erforderliche Wärmeenergie wird somit im Schmelzspeichermaterial gespeichert und führt nicht zu einer Temperaturerhöhung. Wird das Schmelzspeichermaterial umgekehrt abgekühlt, so erstarrt das Schmelzspeichermaterial nach und nach und gibt bei dieser Phasenumwandlung die gespeicherte Wärmemenge ab. Im Ergebnis puffern die Schmelzspeicherelemente somit entsprechend ihrer jeweiligen Kapazität den Wärmefluss bis zum Erreichen der Kapazitätsgrenzen ab.The invention is based on the basic idea of arranging passive melt storage elements in the container which are filled with a suitable melt storage material. Such melt storage elements have the property that they can store or emit a certain amount of heat by phase transformation of the melt storage material. In other words, this means that the melt storage material in the melt storage element melts when heated until the entire supply of melt storage material has passed into the liquid phase. The thermal energy required for phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled in reverse, the melt storage material gradually solidifies and emits the stored amount of heat during this phase change. As a result, the Melt storage elements thus, depending on their respective capacity, reduce the heat flow until the capacity limits are reached.

Je nach Schmelzpunkt des Schmelzspeichermaterials ergeben sich andere Pufferungsbereiche zur Abpufferung des Wärmeflusses. Enthält das Schmelzspeichermaterial beispielsweise Paraffin, wird eine Wärmeflusspufferung im Temperaturbereich oberhalb von 0° C ermöglicht. Ist dagegen im Schmelzspeichermaterial beispielsweise eine Salzlösung enthalten, kann der Wärmefluss im Temperaturbereich unterhalb von 0° C abgepuffert werden.Depending on the melting point of the melt storage material, there are other buffering areas for buffering the heat flow. If the melt storage material contains paraffin, for example, heat flow buffering in the temperature range above 0 ° C is made possible. If, on the other hand, a salt solution is contained in the melt storage material, for example, the heat flow can be buffered in the temperature range below 0 ° C.

Da jedes Schmelzspeichermaterial abhängig von seinem jeweiligen Schmelzpunkt einen optimalen Pufferungsbereich aufweist, ist es für bestimmte Anwendungen besonders vorteilhaft, wenn im Behälter zumindest zwei verschiedene Schmelzspeicherelemente vorgesehen sind, die jeweils mit unterschiedlichen Schmelzspeichermaterialien gefüllt sind. Durch diese Kombination von unterschiedlichen Schmelzspeichermaterialien in einem Behälter kann der Pufferungsbereich aufgespreizt werden. Dabei ist es besonders vorteilhaft, wenn die mit unterschiedlichen Schmelzspeichermaterialien gefüllten Schmelzspeicherelemente in mehreren Schichten im Behälter angeordnet sind.Since each melt storage material has an optimal buffering range depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, each of which is filled with different melt storage materials. This combination of different melt storage materials in one container allows the buffering area to be spread out. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.

Um die Einsatzbereitschaft der Schmelzspeicherelemente prüfen zu können, beispielsweise nach dem Beladen eines Behälters, ist es vorteilhaft, wenn an den Schmelzspeicherelementen Temperaturmesseinrichtungen vorgesehen sind, mit denen die Temperatur des Schmelzspeicherelements gemessen werden kann. Dazu können beispielsweise bekannte Temperatursensoren mit Displays Verwendung finden, die sich in Abhängigkeit der Temperatur verfärben.In order to be able to check the readiness for use of the melt storage elements, for example after loading a container, it is advantageous if temperature measuring devices are provided on the melt storage elements with which the temperature of the melt storage element can be measured. Known temperature sensors with displays, for example, which change color depending on the temperature, can be used for this purpose.

Bei dem erfindungsgemäßen Behälter ist die Behälterwandung doppelwandig mit einer Außenwandung und einer Innenwandung ausgebildet. Die Außenwandung und die Innenwandung sind jeweils mechanisch stabil und selbsttragend ausgebildet. Der Innenraum ist mit mehreren Vakuumisolationselementen gegen Wärmeaustausch isoliert. Die Vakuumisolationselemente sind zwischen der Außenwandung und der Innenwandung angeordnet.In the container according to the invention, the container wall is double-walled with an outer wall and an inner wall. The outer wall and the inner wall are each mechanically stable and self-supporting. The interior is insulated against heat exchange with several vacuum insulation elements. The vacuum insulation elements are arranged between the outer wall and the inner wall.

In welcher Konstruktionsweise die Vakuumisolationselemente ausgebildet sind, ist grundsätzlich beliebig. Nach einer bevorzugten Ausführungsform wird dazu ein Grundkörper verwendet, der mit einer Folie gasdicht umschlossen ist. Der von der Folie gebildete Innenraum wird evakuiert, um dadurch die gewünschten Isolationseigenschaften realisieren zu können. Der Grundkörper selbst gibt dem Vakuumisolationselement die erforderliche mechanische Stabilität, wobei zur Herstellung des Grundkörpers offenporigen Werkstoffe verwendet werden sollten, um eine ausreichende Evakuierbarkeit zu gewährleisten.The construction of the vacuum insulation elements is basically arbitrary. According to a preferred embodiment, a base body is used for this purpose, which is enclosed in a gas-tight manner with a film. The interior space formed by the film is evacuated in order to be able to achieve the desired insulation properties. The base body itself gives the vacuum insulation element the required mechanical stability, and open-pore materials should be used to produce the base body in order to ensure sufficient evacuation.

Werden folienummantelte Vakuumisolationselemente verwendet, sollten diese vorzugsweise keine überstehenden Randlaschen aus Folie aufweisen, damit die Stoßfuge zwischen benachbarten Vakuumisolationselementen möglichst eng gestaltet werden kann.If foil-coated vacuum insulation elements are used, they should preferably not have any protruding edge flaps made of foil, so that the butt joint between adjacent vacuum insulation elements can be made as narrow as possible.

Die Isolationswirkung der Vakuumisolationselemente hängt maßgeblich davon ab, dass im Vakuumisolationselement ein ausreichend niedriger Innengasdruck herrscht. Je weiter der Innengasdruck im Vakuumisolationselement zunimmt, desto mehr Wärme wird durch das Vakuumisolationselement hindurchgeleitet. Um die Funktionstüchtigkeit der Vakuumisolationselemente jederzeit auch nach dem Einbau in den Behälter prüfen zu können, sollten die Vakuumisolationselemente ein Kontrollsystem zu Kontrolle des Innengasdrucks aufweisen. Dazu können unterhalb der Hüllfolie beispielsweise Metallplättchen angeordnet werden, wobei der Innengasdruck dann unter Einsatz geeigneter Diagnosegeräte im Bereich der Metallplättchen durch Aufbringung eines Temperatursprungs abgeleitet werden kann.The insulation effect of the vacuum insulation elements largely depends on the sufficiently low internal gas pressure in the vacuum insulation element. The further the internal gas pressure in the vacuum insulation element increases, the more heat is conducted through the vacuum insulation element. In order to be able to check the functionality of the vacuum insulation elements at any time even after installation in the container, the vacuum insulation elements should have a control system for checking the internal gas pressure. For this purpose, metal platelets, for example, can be arranged below the enveloping film, the internal gas pressure then being able to be derived by applying a temperature jump using suitable diagnostic devices in the area of the metal platelets.

Werden die Vakuumisolationselemente hinter der Behälterwandung eingebaut, beispielsweise bei Verwendung eines doppelwandigen Behälters, sollte die Behälterwandung Revisionsöffnungen aufweisen, durch die das Kontrollsystem zur Kontrolle des Innengasdrucks zugänglich ist. Auf diese Weise kann die Funktionstüchtigkeit der eingebauten Vakuumisolationselemente jederzeit, insbesondere vor dem Beladen, erneut geprüft werden, um Beschädigungen an dem zu transportierenden Gut durch unzureichende Isolation, wie sie beispielsweise durch Mikrolecks in den Vakuumisolationselementen verursacht sein kann, zu vermeiden.If the vacuum insulation elements are installed behind the container wall, for example when using a double-walled container, the container wall should have inspection openings through which the control system for controlling the internal gas pressure is accessible. In this way, the functionality of the built-in vacuum insulation elements can be checked again at any time, in particular before loading, in order to prevent damage to the goods to be transported due to insufficient insulation, as they do For example, can be caused by micro-leaks in the vacuum insulation elements.

Um die Beschädigung der Vakuumisolationselemente durch Eindringen von Fremdkörpern auszuschließen, können an den Revisionsöffnungen Abdeckungen vorgesehen sein, die vorzugsweise transparent sind, damit das hinter der Abdeckung befindliche Kontrollsystem von außen in Augenschein genommen werden kann.In order to prevent damage to the vacuum insulation elements by the penetration of foreign bodies, covers can be provided at the inspection openings, which are preferably transparent so that the control system behind the cover can be viewed from the outside.

Zur Erhöhung des Wärmeflusswiderstands können die Vakuumisolationselemente auch in mehreren Schichten übereinander oder hintereinander angeordnet werden. Der resultierende Wärmeflusswiderstand ergibt sich dabei im Wesentlichen aus der Addition des Wärmeflusswiderstands der einzelnen Schichten.To increase the heat flow resistance, the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other. The resulting heat flow resistance essentially results from the addition of the heat flow resistance of the individual layers.

Nach einer ersten Ausführungsform der Erfindung kann der Behälter in der Art eines Transportcontainers ausgebildet sein. Ist dieser Transportcontainer zudem flugtauglich, können temperaturempfindliche Waren, beispielsweise Medikamente wie insbesondere Impfstoffe, über sehr weite Entfernungen und lange Transportzeiten innerhalb vorgegebener Temperaturtoleranzen transportiert werden.According to a first embodiment of the invention, the container can be designed in the manner of a transport container. If this transport container is also airworthy, temperature-sensitive goods, such as medicines such as vaccines in particular, can be transported over very long distances and long transport times within specified temperature tolerances.

Bei einer alternativen, nicht beanspruchten Ausführungsform kann der Behälter auch in der Art einer Transportbox mit abnehmbarem Deckel ausgebildet sein. Solche Transportboxen sind insbesondere dann von Vorteil, wenn ein Rücktransport des Behälters nicht vorgesehen ist, sondern der Behälter nach Erreichen des Ziels entsorgt wird.In an alternative, not claimed embodiment, the container can also be designed in the manner of a transport box with a removable lid. Such transport boxes are particularly advantageous if the container is not to be transported back but the container is disposed of after it has reached its destination.

Um die Kosten der Transportbox zu verringern, ist es denkbar, lediglich Teilbereiche der Behälterwandung der Transportbox, insbesondere Deckel und Boden der Transportbox, mit jeweils zumindest einem Vakuumisolationselement zu isolieren, da beispielsweise Deckel und Boden aufgrund ihrer großen Fläche die relativ größten Wärmemengen durchtreten lassen, wohingegen andere Teile der Behälterwandung von untergeordneter Bedeutung sind.In order to reduce the costs of the transport box, it is conceivable to insulate only partial areas of the container wall of the transport box, in particular the lid and base of the transport box, with at least one vacuum insulation element, since for example the lid and base allow the relatively largest amounts of heat to pass through due to their large area whereas other parts of the container wall are of minor importance.

Zur Herstellung der Behälterwandung der Transportbox sind insbesondere geschäumte Kunststoffe geeignet, da dieses Material selbst einen hohen Wärmeflusswiderstand hat und zudem sehr preisgünstig verfügbar ist.Foamed plastics are particularly suitable for producing the container wall of the transport box, since this material itself has a high heat flow resistance and is also available at very low cost.

Durch Einbau von mehreren Vakuumisolationselementen in die verschiedenen Behälterwandungen wird eine verbesserte Schadensredundanz erreicht, da bei Beschädigung eines einzelnen Vakuumisolationselements die Isolationseigenschaften des Behälters nur relativ gering beeinflusst werden.By installing several vacuum insulation elements in the different container walls, an improved damage redundancy is achieved, since the insulation properties of the container are only influenced relatively little if a single vacuum insulation element is damaged.

Eine Ausführungsform der Erfindung ist in den Zeichnungen schematisch dargestellt und wird nachfolgend beispielhaft erläutert.An embodiment of the invention is shown schematically in the drawings and is explained below by way of example.

Es zeigen:

Fig. 1
einen Transportcontainer in perspektivischer Ansicht von außen;
Fig. 2
den Transportcontainer gemäß Fig. 1 mit geöffneter Tür in perspektivischer Ansicht;
Fig. 3
den Transportcontainer gemäß Fig. 1 im Querschnitt;
Fig. 4
die Behälterwandung des Transportcontainers gemäß Fig. 1 im perspektivischen Schnitt;
Fig. 5
die Schmelzspeicherelemente des Transportcontainers gemäß Fig. 1 in perspektivischer Ansicht;
Fig. 6
die Anordnung der Vakuumisolationselemente an einer Seitenwandung des Transportcontainers gemäß Fig. 1 in seitlicher Ansicht;
Fig. 7
eine Revisionsöffnung in einer Behälterwandung des Transportcontainers gemäß Fig. 1;
Fig. 8
ein Vakuumisolationselement des Transportcontainers gemäß Fig. 1 im Querschnitt;
Fig. 9
den Datenspeicher am Transportcontainer gemäß Fig. 1 in vergrößerter perspektivischer Ansicht;
Fig. 10
die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Aufbringung eines positiven Außentemperatursprungs;
Fig. 11
die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Aufbringung eines positiven und eines negativen Außentemperatursprungs;
Fig. 12
die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Durchlaufen eines Außentemperaturprofils.
Show it:
Fig. 1
a transport container in a perspective view from the outside;
Fig. 2
the transport container according to Fig. 1 with opened door in perspective view;
Fig. 3
the transport container according to Fig. 1 in cross section;
Fig. 4
the container wall of the transport container according to Fig. 1 in perspective section;
Fig. 5
the melt storage elements of the transport container according to Fig. 1 in perspective view;
Fig. 6
the arrangement of the vacuum insulation elements on a side wall of the transport container according to Fig. 1 in a side view;
Fig. 7
an inspection opening in a container wall of the transport container according to Fig. 1 ;
Fig. 8
a vacuum insulation element of the transport container according to Fig. 1 in cross section;
Fig. 9
the data storage on the transport container according to Fig. 1 in an enlarged perspective view;
Fig. 10
the inside temperature curve in the interior of the transport container according to Fig. 1 when applying a positive jump in outside temperature;
Fig. 11
the inside temperature curve in the interior of the transport container according to Fig. 1 when applying a positive and a negative jump in outside temperature;
Fig. 12
the inside temperature curve in the interior of the transport container according to Fig. 1 when going through an outside temperature profile.

In Fig. 1 ist ein in der Art eines Transportcontainers ausgebildeter Behälter 01 perspektivisch dargestellt. Im Behälter 01 können wärmesensible Güter, beispielsweise Medikamente, insbesondere Impfstoffe, über weite Strecken auch im Flugzeug transportiert werden. Die Grundfläche des Behälters 01 entspricht der Fläche einer Standardpalette.In Fig. 1 a container 01 designed in the manner of a transport container is shown in perspective. In container 01, heat-sensitive goods, for example medicines, in particular vaccines, can also be transported over long distances by plane. The base of the container 01 corresponds to the area of a standard pallet.

Die Behälterwandung 02 des Behälters 01 besteht aus drei rechteckigen Seitenwandelementen 03, einem rechteckigen Bodenelement 04, einem rechteckigen Deckenelement 05 und einem schwenkbar gelagerten Türelement 06. Die drei Seitenwandelemente 03, das Bodenelement 04 und das Deckenelement 05 sind unter Bildung eines rechteckförmigen Innenraums 07 fest miteinander verbunden. Nach Schließen des Türelements 06 wird der Innenraum 07 allseitig umschlossen und ist gegen den Durchfluss von Wärme durch die Behälterwandung 02 mittels Vakuumisolationselementen, die nachfolgend näher beschrieben sind, isoliert.The container wall 02 of the container 01 consists of three rectangular side wall elements 03, a rectangular floor element 04, a rectangular ceiling element 05 and a pivotably mounted door element 06. The three side wall elements 03, the floor element 04 and the ceiling element 05 are firmly together to form a rectangular interior 07 connected. After closing the door element 06, the interior 07 is enclosed on all sides and is insulated against the flow of heat through the container wall 02 by means of vacuum insulation elements, which are described in more detail below.

Zum Verriegeln des Türelements 06 dient ein Verschlussorgan 08, durch dessen Betätigung in Fig. 1 nicht dargestellte Riegelelemente entriegelt bzw. verriegelt werden können. Am Verschlussorgan 08 kann ein Siegel angebracht werden, um den Behälter 01 gegen unbefugtes Öffnen zu sichern. Alternativ bzw. additiv dazu kann am Verschlussorgan 08 auch ein Schloss, beispielweise ein Zylinderschloss oder Nummernschloss, vorgesehen sein, um ein unbefugtes Öffnen des Behälters 01 auszuschließen.A locking element 08 is used to lock the door element 06, by actuating it in Fig. 1 Locking elements, not shown, can be unlocked or locked. A seal can be attached to the closure member 08 in order to secure the container 01 against unauthorized opening. As an alternative or in addition to this, a lock, for example a cylinder lock, can also be on the locking member 08 or number lock can be provided to prevent unauthorized opening of the container 01.

An der Unterseite des Bodenelements 04 sind zwei Leisten 09 angebracht, durch die ein Zwischenraum zwischen dem Bodenelement 04 und der Aufstandsfläche gebildet wird. In diesen Zwischenraum können die Zinken eines Transportstaplers eingeschoben werden, um den Behälter 01 mit einem Stapler anheben und transportieren zu können. An der Oberseite des Türelements 06 ist in einer Vertiefung ein Datenspeichergerät 10 befestigt und wird nach außen hin von einer Abdeckung 11 geschützt (siehe auch Fig. 9). Zum Schutz der Behälterwandung 02 gegen das Eindringen von spitzen Gegenständen können an der Außenseite Schutzplanken 15 in besonders gefährdeten Bereichen angebracht werden. Die Schutzplanken 15 können beispielsweise aus einem Metallblech hergestellt sein.On the underside of the base element 04, two strips 09 are attached, through which an intermediate space is formed between the base element 04 and the contact surface. The tines of a transport forklift can be inserted into this space in order to be able to lift and transport the container 01 with a forklift. A data storage device 10 is fastened in a recess on the top of the door element 06 and is protected from the outside by a cover 11 (see also Fig. 9 ). To protect the container wall 02 against the penetration of pointed objects, guard rails 15 can be attached to the outside in particularly endangered areas. The guardrails 15 can be made, for example, from a metal sheet.

Der innenseitige Aufbau des Behälters 01 ist aus Fig. 2 ersichtlich. An der Innenseite der beiden seitlichen Seitenwandungen 03 sind jeweils sechs Schmelzspeicherelemente 16 und 17 angeordnet. Die Schmelzspeicherelemente 16 sind dabei mit einem paraffinhaltigen Schmelzspeichermaterial gefüllt, wohingegen die Schmelzspeicherelemente 17 eine Salzlösung enthalten. Zur Befestigung der Schmelzspeicherelemente 16 und 17 dienen Befestigungsschienen 18 (siehe auch Fig. 3), die die Schmelzspeicherelemente 16 und 17 jeweils am oberen bzw. unteren Rand formschlüssig umgreifen. Auf diese Weise können die Schmelzspeicherelemente 16 und 17 einfach dadurch ausgewechselt werden, dass sie von der Türseite her in die Befestigungsschienen 18 eingeschoben werden. Nach Schließen des Türelements 06 sind die Schmelzspeicherelemente 16 und 17 an der Innenseite der Behälterwandung 02 fixiert. Diese Art der Befestigung erlaubt es insbesondere, die Schmelzspeicherelemente 16 und 17 ohne Werkzeug zu montieren bzw. zu demontieren.The inside structure of the container 01 is off Fig. 2 evident. Six melt storage elements 16 and 17 are arranged on the inside of each of the two side walls 03. The melt storage elements 16 are filled with a paraffin-containing melt storage material, whereas the melt storage elements 17 contain a salt solution. Fastening rails 18 are used to fasten the melt storage elements 16 and 17 (see also Fig. 3 ), which encompass the melt storage elements 16 and 17 in a form-fitting manner at the upper and lower edges, respectively. In this way, the melt storage elements 16 and 17 can be replaced simply by inserting them into the mounting rails 18 from the door side. After closing the door element 06, the melt storage elements 16 and 17 are fixed on the inside of the container wall 02. This type of attachment allows, in particular, the melt storage elements 16 and 17 to be assembled or disassembled without tools.

In den drei Seitenwandelementen 03, dem Bodenelement 04, dem Deckenelement 05 und dem Türelement 06 sind jeweils Revisionsöffnungen 19 vorgesehen, deren Funktion nachfolgend noch detailliert erläutert wird.Inspection openings 19 are provided in each of the three side wall elements 03, the base element 04, the ceiling element 05 and the door element 06, the function of which will be explained in detail below.

Am Außenumfang des Türelements 06 ist innenseitig eine Dichtlippe 20 befestigt, mit der nach Schließen des Türelements 06 die Trennfuge zwischen dem Türelement 06 einerseits und dem Rand der zwei gegenüberliegenden Seitenwandelemente 03 bzw. dem Rand des Deckenelements 05 und des Bodenelements 04 abgedichtet wird.On the outside of the door element 06, a sealing lip 20 is fastened on the inside, with which the sealing joint between the door element 06 on the one hand and the edge of the two opposite side wall elements 03 or the edge of the ceiling element 05 and the floor element 04 is sealed after the door element 06 has been closed.

In Fig. 3 ist der Behälter 01 im Querschnitt von vorne schematisch dargestellt. Die flächigen, nämlich plattenförmigen Schmelzspeicherelemente 16 und 17 sind parallel zur Behälterwandung 02 auf der Innenseite 21 des Behälters 01 angeordnet. Die Behälterwandung 02 selbst ist doppelwandig aus einer formstabilen Außenwandung 22 und einer ebenfalls formstabilen Innenwandung 23 aufgebaut. Zwischen dieser mechanisch stabilen Doppelwand aus Außenwandung 22 und Innenwandung 23 sind die zur Isolation vorgesehenen Vakuumisolationselemente 24 angeordnet. Zwischen den Vakuumisolationselementen 24 und der Außenwandung 22 sind Stoßschutzelemente 25 aus geschäumtem Kunststoff vorgesehen. Die Größenverhältnisse zwischen Außenwandung 22, Innenwandung 23, den Vakuumisolationselementen 24 und den Stoßschutzelementen 25 sind in Fig. 3 nur im Prinzip angedeutet. Die genaue Struktur des Aufbaus der Behälterwandung 02 ist aus Fig. 4 ersichtlich.In Fig. 3 the container 01 is shown schematically in cross section from the front. The flat, namely plate-shaped melt storage elements 16 and 17 are arranged parallel to the container wall 02 on the inside 21 of the container 01. The container wall 02 itself is constructed with double walls from a dimensionally stable outer wall 22 and a likewise dimensionally stable inner wall 23. The vacuum insulation elements 24 provided for insulation are arranged between this mechanically stable double wall made of outer wall 22 and inner wall 23. Shock protection elements 25 made of foamed plastic are provided between the vacuum insulation elements 24 and the outer wall 22. The size relationships between the outer wall 22, inner wall 23, the vacuum insulation elements 24 and the shock protection elements 25 are shown in Fig. 3 only hinted at in principle. The exact structure of the structure of the container wall 02 is off Fig. 4 evident.

Der in Fig. 4 dargestellte perspektivische Querschnitt durch die Behälterwandung 02 zeigt, dass die Außenwandung 22 und die Innenwandung 23 jeweils aus einem Sandwichmaterial hergestellt sind. In diesem Sandwichmaterial werden eine innere Kernschicht 26 aus Sperrholz und eine innere Kernschicht 27 aus geschäumtem Kunststoff jeweils außenseitig von Deckschichten 28 aus faserverstärktem Kunststoff bedeckt.The in Fig. 4 Perspective cross section shown through the container wall 02 shows that the outer wall 22 and the inner wall 23 are each made of a sandwich material. In this sandwich material, an inner core layer 26 made of plywood and an inner core layer 27 made of foamed plastic are each covered on the outside by cover layers 28 made of fiber-reinforced plastic.

In Fig. 5 ist eine mögliche Ausführungsform von formstabilen Schmelzspeicherbehältern 29 dargestellt. Durch Befüllung der Behälter 29 mit einem geeigneten Schmelzspeichermaterial können die verschiedenen Typen von Schmelzspeicherelementen 16 und 17 hergestellt werden.In Fig. 5 One possible embodiment of dimensionally stable melt storage containers 29 is shown. By filling the containers 29 with a suitable melt storage material, the different types of melt storage elements 16 and 17 can be produced.

In Fig. 6 ist die Anordnung der Vakuumisolationspaneele 24 in einer Seitenwandung 03 beispielhaft dargestellt. Jeweils vier Vakuumisolationselemente 24 sind in allen Seitenwandelementen 03 und entsprechend auch im Bodenelement 04, im Deckenelement 05 und im Türelement 06 zueinander benachbart angeordnet. Dadurch ist gewährleistet, dass bei Beschädigung eines Vakuumisolationselements, beispielsweise verursacht durch ein Mikroleck, nicht die gesamte Isolation in der entsprechenden Behälterwandung ausfällt. Vielmehr ist auch bei Ausfall eines einzelnen Vakuumisolationselements immer noch eine ausreichende Isolation des Behälters 01 insgesamt gegeben. Die flächigen, in der Art von Wärmedämmplatten ausgebildeten Vakuumisolationselemente 24 berühren sich in Stoßfugen 30. Damit möglichst wenig Wärme in den Stoßfugen 30 übertragen wird, kann in den Stoßfugen 30 ein Dämmmaterial angeordnet werden. Außerdem sollten die Vakuumisolationselemente 24 nach Möglichkeit keine überstehenden Folienlaschen aufweisen, damit Vakuumisolationselemente 24 in den Stoßfugen 30 möglichst enganliegend montiert werden können. Zur Erhöhung des Wärmedurchflusswiderstands kann außerdem noch eine weitere Schicht von Vakuumisolationselementen in der Behälterwandung 02 vorgesehen sein, wobei bei mehreren Schichten die Stoßfugen 30 nach Möglichkeit gegeneinander versetzt sein sollten.In Fig. 6 the arrangement of the vacuum insulation panels 24 in a side wall 03 is shown as an example. Four vacuum insulation elements 24 are arranged adjacent to one another in all side wall elements 03 and correspondingly also in floor element 04, in ceiling element 05 and in door element 06. This ensures that if a vacuum insulation element is damaged, for example caused by a micro leak, not all of the insulation in the corresponding container wall fails. Rather, even if a single vacuum insulation element fails, there is still sufficient insulation of the container 01 as a whole. The flat vacuum insulation elements 24, which are designed in the manner of thermal insulation panels, touch in butt joints 30. In order that as little heat as possible is transferred in the butt joints 30, an insulating material can be arranged in the butt joints 30. In addition, the vacuum insulation elements 24 should, if possible, not have any protruding film tabs, so that vacuum insulation elements 24 can be mounted in the butt joints 30 as tightly as possible. To increase the heat flow resistance, a further layer of vacuum insulation elements can also be provided in the container wall 02, the butt joints 30 being offset from one another if possible in the case of a plurality of layers.

An jedem Vakuumisolationselement 24 ist ein Kontrollsystem 31 zur Kontrolle des Innengasdrucks vorhanden. Die vier Kontrollsysteme 31 der vier Vakuumisolationselemente 24 sind dabei jeweils benachbart zueinander in der Mitte der Behälterwandung angeordnet, damit die vier verschiedenen Kontrollsysteme 31 durch eine einzige Revisionsöffnung 19 hindurch zugänglich sind.A control system 31 for checking the internal gas pressure is present on each vacuum insulation element 24. The four control systems 31 of the four vacuum insulation elements 24 are each arranged adjacent to one another in the middle of the container wall, so that the four different control systems 31 are accessible through a single inspection opening 19.

In Fig. 7 ist die Revisionsöffnung 19 mit den vier hinter einer Abdeckung 32 angeordneten Kontrollsystemen 31 vergrößert dargestellt. Zur Kontrolle des Innengasdrucks in den Vakuumisolationselementen 24 wird die Abdeckung 32 abgenommen und ein Prüfkopf eines Diagnosegeräts auf die Kontrollsysteme 31 aufgelegt. Aufbau und Funktion des Kontrollsystems 31 und Struktur der Vakuumisolationselemente 24 sind aus Fig. 8 ersichtlich.In Fig. 7 the inspection opening 19 is shown enlarged with the four control systems 31 arranged behind a cover 32. To check the internal gas pressure in the vacuum insulation elements 24, the cover 32 is removed and a test head of a diagnostic device is placed on the control systems 31. Structure and function of the control system 31 and structure of the vacuum insulation elements 24 are off Fig. 8 evident.

Der in Fig. 8 dargestellte Querschnitt durch die Vakuumisolationselemente 24 zeigt einen offenporigen Grundkörper 33, der gasdicht mit einer Folie 34 umspannt ist. Der von der Folie 34 gebildete gasdichte Innenraum 35 wird evakuiert, um dem Vakuumisolationselement 24 die gewünschten Isolationseigenschaften zu geben. Zur Prüfung des Innengasdrucks im Innenraum 35 des Vakuumisolationselements 24 wird an der Innenseite der Folie 34 das Kontrollsystem 31 platziert, das aus einem Metallplättchen 36 und einer Zwischenlage 37 besteht. Mit einem Prüfkopf 38 kann dann ein definierter Temperatursprung auf das Kontrollsystem 31 aufgebracht werden, wobei aus der Signalantwort auf den Temperatursprung der Innengasdruck im Innenraum 35 ableitbar ist.The in Fig. 8 The cross section shown through the vacuum insulation elements 24 shows an open-pore base body 33, which is gas-tightly covered with a film 34. The gas-tight interior 35 formed by the film 34 is evacuated in order to give the vacuum insulation element 24 the desired insulation properties. To check the internal gas pressure in the interior 35 of the vacuum insulation element 24, the control system 31 is placed on the inside of the film 34, which consists of a metal plate 36 and an intermediate layer 37. A defined temperature jump can then be applied to the control system 31 with a test head 38, the internal gas pressure in the interior 35 being able to be derived from the signal response to the temperature jump.

Wie aus Fig. 9 ersichtlich, ist das Datenspeichergerät 10 über ein Kabel 12 mit einem Innentemperatursensor zu Messung der Temperatur im Innenraum 07 und mit einem Außentemperatursensor zur Messung der den Behälter 01 umgebenden Umgebungstemperatur verbunden. In regelmäßigen Zeitabständen werden die Innentemperatur und die Außentemperatur gemessen und die dabei anfallenden Messdaten im Datenspeichergerät 10 zu Dokumentationszwecken abgespeichert. An einem Display 13 kann die aktuelle Innentemperatur bzw. die aktuelle Außentemperatur angezeigt und von außen durch die transparente Abdeckung 11 abgelesen werden. Über einen Anschluss 14 kann ein nicht dargestellter GPS-Empfänger an das Datenspeichergerät 10 angeschlossen werden, so dass die Positionsdaten des Behälters 01 mit dem Datenspeichergerät 10 zu Dokumentationszwecken gespeichert werden können.How out Fig. 9 As can be seen, the data storage device 10 is connected via a cable 12 to an internal temperature sensor for measuring the temperature in the interior 07 and to an external temperature sensor for measuring the ambient temperature surrounding the container 01. The internal temperature and the external temperature are measured at regular time intervals and the measurement data obtained are stored in the data storage device 10 for documentation purposes. The current internal temperature or the current external temperature can be shown on a display 13 and can be read from the outside through the transparent cover 11. A GPS receiver (not shown) can be connected to the data storage device 10 via a connection 14, so that the position data of the container 01 can be stored with the data storage device 10 for documentation purposes.

Die Funktion des Behälters 01 zur Temperaturisolation soll anhand der in Fig. 10 bis Fig. 12 dargestellten Temperaturkurven beispielhaft erläutert werden.The function of the container 01 for temperature insulation should be based on the in 10 to 12 temperature curves shown are exemplified.

In Fig. 10 ist eine Situation schematisch dargestellt, in der der Behälter 01 einem Außentemperaturprofil 39 ausgesetzt ist. Die entsprechende Änderung der Innentemperatur im Innenraum 07 des Behälters 01 ist mit dem Innentemperaturprofil 40 angetragen. Das Außentemperaturprofil 39 beinhaltet einen Temperatursprung von 10° C auf 30° C über eine Dauer von 6 Stunden. Diese Änderung der Außentemperatur führt im Innenraum 07 zunächst zu keiner Temperaturänderung, weil die Wärmemengen, die durch die Vakuumisolationselemente 24 durchgelassen werden, von den Schmelzspeicherelementen 16 bzw. 17 durch Phasenumwandlung des Schmelzspeichermaterials abgepuffert werden. Erst nach einer Zeitverzögerung, wenn große Mengen des Schmelzspeichermaterials bereits eine Phasenumwandlung durchlaufen haben, steigt die Innentemperatur im Innenraum 07 sehr langsam an.In Fig. 10 a situation is schematically shown in which the container 01 is exposed to an outside temperature profile 39. The corresponding change in the internal temperature in the interior 07 of the container 01 is indicated with the internal temperature profile 40. The outside temperature profile 39 includes a temperature jump from 10 ° C to 30 ° C over a period of 6 hours. This change in the outside temperature initially does not lead to a change in temperature in the interior 07, because the amounts of heat caused by the Vacuum insulation elements 24 are let through, are buffered by the melt storage elements 16 and 17 by phase transformation of the melt storage material. Only after a time delay, when large amounts of the melt storage material have already undergone a phase change, does the inside temperature in the interior 07 rise very slowly.

Aus Fig. 11 ist ein zweites Außentemperaturprofil 41 und das daraus resultierende Innentemperaturprofil 42 im Innenraum 07 des Behälters 01 angetragen. Das Außentemperaturprofil 41 durchläuft nach dem positiven Temperatursprung auf 30° C unmittelbar danach einen negativen Temperatursprung auf knapp über 0° C. Auch der negative Temperatursprung dauert 6 Stunden. Auch der negative Temperatursprung wird durch die Schmelzspeicherelemente 16 und 17 abgepuffert, wobei sich die Schmelzspeicherelemente durch die Absenkung der Temperatur wiederum regenerieren, so dass ein anschließender positiver Temperatursprung wiederum ohne Weiteres abgepuffert werden kann.Out Fig. 11 a second outside temperature profile 41 and the resulting inside temperature profile 42 are plotted in the interior 07 of the container 01. After the positive temperature jump to 30 ° C., the outside temperature profile 41 immediately undergoes a negative temperature jump to just above 0 ° C. The negative temperature jump also lasts 6 hours. The negative temperature jump is also buffered by the melt storage elements 16 and 17, the melt storage elements regenerating again by lowering the temperature, so that a subsequent positive temperature jump can in turn be buffered without further notice.

In Fig. 12 sind ein reales Außentemperaturprofil 43 und ein daraus resultierendes Innentemperaturprofil 44 angetragen, das in einem Langzeitversuch über 210 Stunden protokolliert wurde. Die unterschiedlichen Kurven des Außentemperaturprofils 43 und des Innentemperaturprofils 44 entsprechen den verschiedenen Messpunkten außerhalb bzw. innerhalb des Behälters 01. Wie aus Fig. 11 unmittelbar ersichtlich, bleibt die Innentemperatur trotz erheblicher Schwankungen der Außentemperatur innerhalb eines schmalen Temperaturbands, so dass temperaturempfindliche Waren im Innenraum des Behälters 07 wirksam vor übermäßigen Temperaturschwankungen geschützt sind.In Fig. 12 a real outside temperature profile 43 and a resulting inside temperature profile 44 are plotted, which was recorded in a long-term test over 210 hours. The different curves of the outside temperature profile 43 and the inside temperature profile 44 correspond to the different measuring points outside or inside the container 01 Fig. 11 immediately apparent, the inside temperature remains within a narrow temperature band despite considerable fluctuations in the outside temperature, so that temperature-sensitive goods in the interior of the container 07 are effectively protected against excessive temperature fluctuations.

Nachfolgend sind weitere, auch unabhängig realisierbare und/oder mit den voranstehenden Aspekten kombinierbare Aspekte der vorliegenden Erfindung zusammengestellt:

  1. 1. Wärmegedämmter Behälter, insbesondere für Transportzwecke, mit einer Behälterwandung (02), die einen Innenraum (07) vollständig umschließt, wobei der Innenraum (07) zumindest eine verschließbare Öffnung aufweist und mit zumindest einem Vakuumisolationselement (24) gegen Wärmeaustausch isoliert ist, dadurch gekennzeichnet, dass im Behälter (01) zumindest ein passives Schmelzspeicherelement vorgesehen ist, das mit einem Schmelzspeichermaterial gefüllt ist.
  2. 2. Behälter nach Aspekt 1, dadurch gekennzeichnet, dass das Schmelzspeicherelement in der Art eines Schmelzspeicherbehälters (29) mit einer formstabilen Gefäßwandung ausgebildet ist, die das Schmelzspeichermaterial flüssigkeitsdicht umschließt.
  3. 3. Behälter nach Aspekt 2, dadurch gekennzeichnet, dass die Schmelzspeicherbehälter (29) eine flächige Gestalt aufweisen und parallel zur Behälterwandung (02) im Behälter (01) angeordnet werden können.
  4. 4. Behälter nach einem der Aspekte 1 bis 3, dadurch gekennzeichnet, dass das Schmelzspeichermaterial Paraffin enthält.
  5. 5. Behälter nach einem der Aspekte 1 bis 3, dadurch gekennzeichnet, dass das Schmelzspeichermaterial eine Salzlösung enthält.
  6. 6. Behälter nach einem der Aspekte 1 bis 5, dadurch gekennzeichnet, dass im Behälter (01) zumindest zwei verschieden Schmelzspeicherelemente (16, 17) vorgesehen sind, die jeweils mit unterschiedlichen Schmelzspeichermaterialen gefüllt sind.
  7. 7. Behälter nach Aspekt 6, dadurch gekennzeichnet, dass die unterschiedlichen Schmelzspeichermaterialen in den verschieden Schmelzspeicherelementen (16, 17) jeweils einen unter- schiedlichen Schmelzpunkt aufweisen.
  8. 8. Behälter nach einem der Aspekte 1 bis 7, dadurch gekennzeichnet, dass im Behälter mehrere Schmelzspeicherelemente in mehreren Schichten angeordnet sind, wobei die Schmelzspeicherelemente der verschiedenen Schichten insbesondere mit jeweils unterschiedlichen Schmelzspeichermaterialen gefüllt sind.
  9. 9. Behälter nach einem der Aspekte 1 bis 8, dadurch gekennzeichnet, dass die Schmelzspeicherelemente (16, 17) insbesondere ohne Werkzeug lösbar im Behälter befestigt werden können.
  10. 10. Behälter nach Aspekt 9, dadurch gekennzeichnet, dass zur Befestigung der Schmelzspeicherelemente (16, 17) im Behälter (01) zumindest eine Befestigungsschiene (18) vorgesehen ist, die den Rand der Schmelzspeicherelemente (16, 17) formschlüssig an umgreift.
  11. 11. Behälter nach einem der Aspekte 1 bis 10, dadurch gekennzeichnet, dass an zumindest einem Schmelzspeicherelement (16, 17) eine Temperaturmesseinrichtung, insbesondere ein sich in Abhängigkeit der Temperatur verfärbender Temperatursensor, vorgesehen ist, mit dem die Temperatur des Schmelzspeicherelements (16, 17) gemessen werden kann.
  12. 12. Behälter nach einem der Aspekte 1 bis 11, dadurch gekennzeichnet, dass das Vakuumisolationselement (24) einen Grundkörper (33) aufweist, der insbesondere aus mikroporöser Kieselsäure, Fasermaterial, Mikrofasermaterial oder offenporigem Polymerschaum besteht, und der von einer Folie (34) gasdicht umschlossen wird, wobei der von der Folie (34) dadurch gebildete Innenraum (35) evakuiert ist.
  13. 13. Behälter nach Aspekt 12, dadurch gekennzeichnet, dass die Folie (34) des Vakuumisolationselements (24) keine überstehenden Randlaschen aufweist.
  14. 14. Behälter nach einem der Aspekte 1 bis 13, dadurch gekennzeichnet, dass das Vakuumisolationselement (24) eine Schichtdicke von 5 mm bis 100 mm aufweist.
  15. 15. Behälter nach einem der Aspekte 1 bis 14, dadurch gekennzeichnet, dass das Vakuumisolationselement (24) ein internes oder externes Kontrollsystem (31) zur Kontrolle des Innengasdruckes im Vakuumisolationselement (24) aufweist.
  16. 16. Behälter nach Aspekt 15, dadurch gekennzeichnet, dass in der Behälterwandung (02) zumindest eine Revisionsöffnung (19) vorhanden ist, durch die das Kontrollsystem (31) zur Kontrolle des Innengasdruckes im Vakuumisolationselement (24) zugänglich ist.
  17. 17. Behälter nach Aspekt 16, dadurch gekennzeichnet, dass die Revisionsöffnung (19) mit einer insbesondere transparenten Abdeckung (32) verschlossen werden kann.
  18. 18. Behälter nach einem der Aspekte 1 bis 17, dadurch gekennzeichnet, dass die Vakuumisolationselemente (24) eine flächige Gestalt aufweisen, insbesondere in der Art von Wärmedämmplatten ausgebildet sind.
  19. 19. Behälter nach einem der Aspekte 1 bis 18, dadurch gekennzeichnet, dass die Behälterwandung (02) von mehreren, insbesondere rechteckigen und flächigen, Wandelementen (03, 04, 05, 06) gebildet wird, insbesondere dass drei Seitenwandelemente (03), ein Deckenelement (05), ein Bodenelement (04) und ein Türelement (06) vorgesehen sind.
  20. 20. Behälter nach Aspekt 19, dadurch gekennzeichnet, dass in jedem einzelnen Wandelement (03, 04, 05, 06) jeweils mehrere Vakuumisolationselemente (24) zur Isolation vorgesehen sind.
  21. 21. Behälter nach Aspekt 20, dadurch gekennzeichnet, dass zumindest zwei, insbesondere jeweils vier, Vakuumisolationselemente ((24) nebeneinander in den Wandelementen (03, 04, 05, 06) angeordnet sind, wobei benachbarte Vakuumisolationselemente (24) einander in einer Stoßfuge (30) berühren.
  22. 22. Behälter nach Aspekt 21, dadurch gekennzeichnet, dass in der Stoßfuge (30) ein wärmeisolierendes Dämmmaterial angeordnet ist.
  23. 23. Behälter nach einem der Aspekte 20 bis 22, dadurch gekennzeichnet, dass die Vakuumisolationselemente in zumindest zwei Schichten übereinander angeordnet sind.
  24. 24. Behälter nach Aspekt 23, dadurch gekennzeichnet, dass die Stoßfugen zwischen benachbarten Vakuumisolationselementen in verschiedenen Schichten gegeneinander versetzt sind.
  25. 25. Behälter nach einem der Aspekte 1 bis 24, dadurch gekennzeichnet, dass von mehreren Vakuumisolationselementen (24) ein Dämmkörper gebildet wird, der das Innenvolumen (07) allseitig umschließt.
  26. 26. Behälter nach einem der Aspekte 1 bis 25, dadurch gekennzeichnet, dass die Behälterwandung aus Holzplatten und/oder Kunststoffplatten und/oder Metallverbundplatten hergestellt ist.
  27. 27. Behälter nach einem der Aspekte 1 bis 26, dadurch gekennzeichnet, dass die Behälterwandung (02) doppelwandig mit einer Außenwandung (22) und einer Innenwandung (23) ausgebildet ist.
  28. 28. Behälter nach Aspekt 27, dadurch gekennzeichnet, dass Außenwandung (22) und Innenwandung (23) jeweils mechanisch stabil und selbsttragend ausgebildet sind.
  29. 29. Behälter nach Aspekt 28, dadurch gekennzeichnet, dass die Außenwandung (22) und/oder die Innenwandung (23) aus einem Leichtbaumaterial, insbesondere einem Sandwichmaterial mit mehreren Materialschichten (26, 27, 28), hergestellt ist.
  30. 30. Behälter nach Aspekt 29, dadurch gekennzeichnet, dass das Sandwichmaterial eine erste äußere Deckschicht (28) aus faserverstärktem Kunststoff und/oder eine innere Kernschicht (26) aus Sperrholz und/oder eine innere Kernschicht (27) aus geschäumtem Kunststoff, insbesondere geschäumtem Polyurethankunststoff, und/oder eine zweite äußere Deckschicht (28) aus faserverstärktem Kunststoff aufweist.
  31. 31. Behälter nach einem der Aspekte 27 bis 30, dadurch gekennzeichnet, dass die Vakuumisolationselemente (24) zwischen Außenwandung (22) und Innenwandung (23) angeordnet sind.
  32. 32. Behälter nach Aspekt 31, dadurch gekennzeichnet, dass zwischen den Vakuumisolationselementen (24) einerseits und der Außenwandung (22) und/oder Innenwandung (23) anderseits Stoßschutzelemente (25), insbesondere Stoßschutzelemente (25) aus geschäumtem Kunststoff, angeordnet sind.
  33. 33. Behälter nach einem der Aspekte 27 bis 32, dadurch gekennzeichnet, dass die Schmelzspeicherelemente (16, 17) auf der Innenseite (21) der Innenwandung (23) der doppelwandigen Behälterwandung (02) angeordnet sind.
  34. 34. Behälter nach einem der Aspekte 1 bis 33, dadurch gekennzeichnet, dass der Behälter (01) in der Art eines insbesondere flugtauglichen Transportcontainers ausgebildet ist.
  35. 35. Behälter nach Aspekt 34, dadurch gekennzeichnet, dass eine Behälterwandung (02) oder ein Teil einer Behälterwandung in der Art einer beweglich gelagerten Tür (06) zum Verschließen der Öffnung des Innenraums (07) des Transportcontainers (01) ausgebildet ist, wobei die Tür insbesondere um eine Vertikalachse schwenkbar gelagert ist.
  36. 36. Behälter nach Aspekt 34 oder 35, dadurch gekennzeichnet, dass alle Wandelemente (03, 04, 05, 06) des Transportcontainers mit jeweils zumindest einem Vakuumisolationselement (24) isoliert sind.
  37. 37. Behälter nach einem der Aspekte 34 bis 36, dadurch gekennzeichnet, dass in der Trennfuge zwischen Tür (06) und Öffnung des Transportcontainers (01) ein Dichtorgan (20), insbesondere eine doppelte Dichtlippe, angeordnet ist.
  38. 38. Behälter nach einem der Aspekte 34 bis 37, dadurch gekennzeichnet, dass die Vakuumisolationselemente im Bereich der Öffnung des Transportcontainers derart angeordnet sind, dass sich die Vakuumisolationselemente nach Schließen der Tür im Bereich der Trennfuge zumindest geringfügig überlappen.
  39. 39. Behälter nach Aspekt 38, dadurch gekennzeichnet, dass die Breite der Überlappung zumindest der halben Dicke der Vakuumisolationselemente entspricht.
  40. 40. Behälter nach einem der Aspekte 34 bis 39, dadurch gekennzeichnet, dass die Tür (06) des Transportcontainers (01) mit einem Verschlussorgan (08) verriegelbar ist.
  41. 41. Behälter nach Aspekt 40, dadurch gekennzeichnet, dass am Verschlussorgan (08) ein Siegel anbringbar ist.
  42. 42. Behälter nach Aspekt 40 oder 41, dadurch gekennzeichnet, dass am Verschlussorgan (08) ein Schloss zum Absperren des Transportcontainers (01) vorgesehen ist.
  43. 43. Behälter nach einem der Aspekte 34 bis 42, dadurch gekennzeichnet, dass der Transportcontainer (01) Funktionselemente (09) zum Eingriff von Staplerzinken aufweist.
  44. 44. Behälter nach einem der Aspekte 34 bis 43, dadurch gekennzeichnet, dass am Transportcontainer (01) zumindest ein Temperatursensor vorgesehen ist, mit dem die Außentemperatur und/oder die Innentemperatur messbar ist.
  45. 45. Behälter nach einem der Aspekte 34 bis 44, dadurch gekennzeichnet, dass am Transportcontainer (01) ein Positionssensor, insbesondere ein GPS-Empfangsgerät, vorgesehen ist, mit dem die Position des Behälters bestimmbar ist.
  46. 46. Behälter nach Aspekt 44 oder 45, dadurch gekennzeichnet, dass am Transportcontainer (01) ein Datenspeichergerät (10) vorgesehen ist, mit dem Messergebnisse des Temperatursensors und/oder des GPS-Empfangsgeräts gespeichert werden können.
  47. 47. Behälter nach einem der Aspekte 1 bis 33, dadurch gekennzeichnet, dass der Behälter in der Art einer, insbesondere wannenförmigen, Transportbox mit einem abnehmbaren Deckel zum Verschließen der Öffnung des Innenraums ausgebildet ist.
  48. 48. Behälter nach Aspekt 47, dadurch gekennzeichnet, dass nur Teilbereiche der Behälterwandung der Transportbox, insbesondere nur Deckel und Boden der Transportbox, mit jeweils zumindest einem Vakuumisolationselement isoliert sind.
  49. 49. Behälter nach Aspekt 47 oder 48, dadurch gekennzeichnet, dass die Behälterwandung der Transportbox aus einem geschäumten Kunststoff hergestellt ist.
  50. 50. Behälter nach einem der Aspekte 1 bis 49, dadurch gekennzeichnet, dass der Behälter zum Transport von pharmazeutischen und/oder biotechnologischen Produkten, insbesondere Impfstoffen, oder Farben oder Lacken vorgesehen ist.
  51. 51. Behälter nach einem der Aspekte 1 bis 50, dadurch gekennzeichnet, dass am Behälter ein Stützrahmen, insbesondere aus Metallprofilen, zur mechanischen Abstützung der Behälterwandung vorgesehen ist.
In the following, further aspects of the present invention which can also be implemented independently and / or can be combined with the above aspects are summarized:
  1. 1. Thermally insulated container, in particular for transport purposes, with a container wall (02) which completely encloses an interior (07), the interior (07) having at least one closable opening and with at least a vacuum insulation element (24) is insulated against heat exchange, characterized in that at least one passive melt storage element is provided in the container (01) and is filled with a melt storage material.
  2. 2. Container according to aspect 1, characterized in that the melt storage element is designed in the manner of a melt storage container (29) with a dimensionally stable vessel wall which encloses the melt storage material in a liquid-tight manner.
  3. 3. Container according to aspect 2, characterized in that the melt storage containers (29) have a flat shape and can be arranged parallel to the container wall (02) in the container (01).
  4. 4. Container according to one of aspects 1 to 3, characterized in that the melt storage material contains paraffin.
  5. 5. Container according to one of aspects 1 to 3, characterized in that the melt storage material contains a salt solution.
  6. 6. Container according to one of aspects 1 to 5, characterized in that at least two different melt storage elements (16, 17) are provided in the container (01), each of which is filled with different melt storage materials.
  7. 7. Container according to aspect 6, characterized in that the different melt storage materials in the different melt storage elements (16, 17) each have a different melting point.
  8. 8. Container according to one of the aspects 1 to 7, characterized in that a plurality of melt storage elements are arranged in a plurality of layers in the container, the melt storage elements of the different layers being filled in particular with different melt storage materials.
  9. 9. Container according to one of the aspects 1 to 8, characterized in that the melt storage elements (16, 17) can be detachably fastened in the container, in particular without tools.
  10. 10. Container according to aspect 9, characterized in that for fastening the melt storage elements (16, 17) in the container (01) at least one fastening rail (18) is provided which engages around the edge of the melt storage elements (16, 17) in a form-fitting manner.
  11. 11. Container according to one of the aspects 1 to 10, characterized in that a temperature measuring device, in particular a temperature sensor that changes color depending on the temperature, is provided on at least one melt storage element (16, 17), with which the temperature of the melt storage element (16, 17 ) can be measured.
  12. 12. Container according to one of aspects 1 to 11, characterized in that the vacuum insulation element (24) has a base body (33), which consists in particular of microporous silica, fiber material, microfiber material or open-pore polymer foam, and which is gas-tight from a film (34) is enclosed, the inner space (35) formed thereby by the film (34) being evacuated.
  13. 13. Container according to aspect 12, characterized in that the film (34) of the vacuum insulation element (24) has no protruding edge tabs.
  14. 14. Container according to one of aspects 1 to 13, characterized in that the vacuum insulation element (24) has a layer thickness of 5 mm to 100 mm.
  15. 15. Container according to one of the aspects 1 to 14, characterized in that the vacuum insulation element (24) has an internal or external control system (31) for checking the internal gas pressure in the vacuum insulation element (24).
  16. 16. A container according to aspect 15, characterized in that at least one inspection opening (19) is present in the container wall (02) through which is accessible to the control system (31) for checking the internal gas pressure in the vacuum insulation element (24).
  17. 17. A container according to aspect 16, characterized in that the inspection opening (19) can be closed with an in particular transparent cover (32).
  18. 18. Container according to one of aspects 1 to 17, characterized in that the vacuum insulation elements (24) have a flat shape, in particular are designed in the manner of thermal insulation boards.
  19. 19. Container according to one of the aspects 1 to 18, characterized in that the container wall (02) is formed by several, in particular rectangular and flat, wall elements (03, 04, 05, 06), in particular that three side wall elements (03) Ceiling element (05), a floor element (04) and a door element (06) are provided.
  20. 20. Container according to aspect 19, characterized in that in each individual wall element (03, 04, 05, 06) a plurality of vacuum insulation elements (24) are provided for insulation.
  21. 21. Container according to aspect 20, characterized in that at least two, in particular four, vacuum insulation elements ((24) are arranged next to one another in the wall elements (03, 04, 05, 06), with adjacent vacuum insulation elements (24) in a butt joint ( 30) touch.
  22. 22. Container according to aspect 21, characterized in that a heat-insulating insulation material is arranged in the butt joint (30).
  23. 23. Container according to one of the aspects 20 to 22, characterized in that the vacuum insulation elements are arranged one above the other in at least two layers.
  24. 24. Container according to aspect 23, characterized in that the butt joints between adjacent vacuum insulation elements in different layers are offset from one another.
  25. 25. Container according to one of the aspects 1 to 24, characterized in that an insulating body is formed by several vacuum insulation elements (24), which encloses the inner volume (07) on all sides.
  26. 26. Container according to one of the aspects 1 to 25, characterized in that the container wall is made of wooden panels and / or plastic panels and / or metal composite panels.
  27. 27. Container according to one of the aspects 1 to 26, characterized in that the container wall (02) is double-walled with an outer wall (22) and an inner wall (23).
  28. 28. Container according to aspect 27, characterized in that the outer wall (22) and inner wall (23) are each mechanically stable and self-supporting.
  29. 29. Container according to aspect 28, characterized in that the outer wall (22) and / or the inner wall (23) is made of a lightweight material, in particular a sandwich material with a plurality of material layers (26, 27, 28).
  30. 30. Container according to aspect 29, characterized in that the sandwich material has a first outer cover layer (28) made of fiber-reinforced plastic and / or an inner core layer (26) made of plywood and / or an inner core layer (27) made of foamed plastic, in particular foamed polyurethane plastic , and / or has a second outer cover layer (28) made of fiber-reinforced plastic.
  31. 31. Container according to one of the aspects 27 to 30, characterized in that the vacuum insulation elements (24) are arranged between the outer wall (22) and the inner wall (23).
  32. 32. Container according to aspect 31, characterized in that between the vacuum insulation elements (24) on the one hand and the outer wall (22) and / or Inner wall (23) on the other hand shock protection elements (25), in particular shock protection elements (25) made of foamed plastic, are arranged.
  33. 33. Container according to one of the aspects 27 to 32, characterized in that the melt storage elements (16, 17) are arranged on the inside (21) of the inner wall (23) of the double-walled container wall (02).
  34. 34. Container according to one of the aspects 1 to 33, characterized in that the container (01) is designed in the manner of a transport container which is particularly suitable for flying.
  35. 35. Container according to aspect 34, characterized in that a container wall (02) or part of a container wall is designed in the manner of a movably mounted door (06) for closing the opening of the interior (07) of the transport container (01), the Door in particular is pivotally mounted about a vertical axis.
  36. 36. Container according to aspect 34 or 35, characterized in that all wall elements (03, 04, 05, 06) of the transport container are each insulated with at least one vacuum insulation element (24).
  37. 37. Container according to one of the aspects 34 to 36, characterized in that a sealing element (20), in particular a double sealing lip, is arranged in the joint between the door (06) and the opening of the transport container (01).
  38. 38. Container according to one of the aspects 34 to 37, characterized in that the vacuum insulation elements are arranged in the region of the opening of the transport container in such a way that the vacuum insulation elements overlap at least slightly after the door is closed in the region of the joint.
  39. 39. Container according to aspect 38, characterized in that the width of the overlap corresponds to at least half the thickness of the vacuum insulation elements.
  40. 40. Container according to one of the aspects 34 to 39, characterized in that the door (06) of the transport container (01) can be locked with a locking member (08).
  41. 41. Container according to aspect 40, characterized in that a seal can be attached to the closure member (08).
  42. 42. Container according to aspect 40 or 41, characterized in that a lock is provided on the closure member (08) to shut off the transport container (01).
  43. 43. Container according to one of the aspects 34 to 42, characterized in that the transport container (01) has functional elements (09) for engaging forklift tines.
  44. 44. Container according to one of the aspects 34 to 43, characterized in that at least one temperature sensor is provided on the transport container (01) with which the outside temperature and / or the inside temperature can be measured.
  45. 45. Container according to one of the aspects 34 to 44, characterized in that a position sensor, in particular a GPS receiving device, is provided on the transport container (01) with which the position of the container can be determined.
  46. 46. Container according to aspect 44 or 45, characterized in that a data storage device (10) is provided on the transport container (01), with which measurement results of the temperature sensor and / or the GPS receiving device can be stored.
  47. 47. Container according to one of the aspects 1 to 33, characterized in that the container is designed in the manner of a, in particular trough-shaped, transport box with a removable lid for closing the opening of the interior.
  48. 48. Container according to aspect 47, characterized in that only partial areas of the container wall of the transport box, in particular only the lid and bottom of the transport box, are each insulated with at least one vacuum insulation element.
  49. 49. Container according to aspect 47 or 48, characterized in that the container wall of the transport box is made of a foamed plastic.
  50. 50. Container according to one of the aspects 1 to 49, characterized in that the container is provided for the transport of pharmaceutical and / or biotechnological products, in particular vaccines, or paints or varnishes.
  51. 51. Container according to one of the aspects 1 to 50, characterized in that a support frame, in particular made of metal profiles, is provided on the container for mechanical support of the container wall.

Claims (15)

Wärmegedämmter Behälter, insbesondere für Transportzwecke, mit einer Behälterwandung (02), die einen Innenraum (07) vollständig umschließt und von mehreren Wandelementen (03, 04, 05, 06) gebildet wird, nämlich von drei Seitenwandelementen (03), einem Deckenelement (05), einem Bodenelement (04) und einem Türelement (06), wobei der Innenraum (07) zumindest eine verschließbare Öffnung aufweist und im Behälter (01) mehrere passive Schmelzspeicherelemente (16, 17) vorgesehen sind, die jeweils mit einem Schmelzspeichermaterial gefüllt sind,
dadurch gekennzeichnet,
dass die Behälterwandung (02) doppelwandig mit einer Außenwandung (22) und einer Innenwandung (23) ausgebildet ist,
dass die Außenwandung (22) und die Innenwandung (23) jeweils mechanisch stabil und selbsttragend ausgebildet sind,
dass der Innenraum (07) mit mehreren Vakuumisolationselementen (24) gegen Wärmeaustausch isoliert ist und
dass die Vakuumisolationselemente (24) zwischen der Außenwandung (22) und der Innenwandung (23) angeordnet sind.
Thermally insulated container, in particular for transport purposes, with a container wall (02) which completely encloses an interior (07) and is formed by a plurality of wall elements (03, 04, 05, 06), namely by three side wall elements (03), a ceiling element (05 ), a base element (04) and a door element (06), the interior (07) having at least one closable opening and in the container (01) several passive melt storage elements (16, 17) are provided, each of which is filled with a melt storage material,
characterized,
that the container wall (02) is double-walled with an outer wall (22) and an inner wall (23),
that the outer wall (22) and the inner wall (23) are each mechanically stable and self-supporting,
that the interior (07) is insulated against heat exchange with a plurality of vacuum insulation elements (24) and
that the vacuum insulation elements (24) are arranged between the outer wall (22) and the inner wall (23).
Behälter nach Anspruch 1, dadurch gekennzeichnet, dass die Schmelzspeicherelemente (16, 17) insbesondere ohne Werkzeug lösbar im Behälter (01) befestigbar sind,
vorzugsweise wobei zur Befestigung der Schmelzspeicherelemente (16, 17) im Behälter (01) mehrere Befestigungsschienen (18) vorgesehen sind, die einen Rand der Schmelzspeicherelemente (16, 17) formschlüssig umgreifen.
Container according to claim 1, characterized in that the melt storage elements (16, 17) can be detachably fastened in the container (01), in particular without tools,
Preferably, a plurality of fastening rails (18) are provided for fastening the melt storage elements (16, 17) in the container (01), said fastening rails engaging around an edge of the melt storage elements (16, 17) in a form-fitting manner.
Behälter nach Anspruch 2, dadurch gekennzeichnet, dass die Schmelzspeicherelemente (16, 17) dadurch auswechselbar sind, dass sie von der Türseite her in die Befestigungsschienen (18) einschiebbar sind, derart, dass nach Schließen des Türelements (06) die Schmelzspeicherelemente (16, 17) an der Innenseite der Behälterwandung (02) fixiert sind.A container according to claim 2, characterized in that the melt storage elements (16, 17) can be exchanged in that they can be inserted into the fastening rails (18) from the door side, such that after the door element (06) is closed, the melt storage elements (16, 17) are fixed on the inside of the container wall (02). Behälter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jedes Vakuumisolationselement (24) einen Grundkörper (33) aus einem offenporigen Werkstof aufweist, der von einer Folie (34) gasdicht umschlossen ist, wobei der von der Folie (34) dadurch gebildete Innenraum (35) evakuiert ist.Container according to one of claims 1 to 3, characterized in that each vacuum insulation element (24) has a base body (33) made of an open-pore material, which is enclosed in a gas-tight manner by a film (34), the one formed by the film (34) thereby Interior (35) is evacuated. Behälter nach Anspruch 4, dadurch gekennzeichnet, dass die Folie (34) jedes Vakuumisolationselements (24) keine überstehenden Randlaschen aufweist, vorzugsweise wobei das Vakuumisolationselement (24) eine Schichtdicke von 5 mm bis 100 mm aufweist.Container according to claim 4, characterized in that the film (34) of each vacuum insulation element (24) has no projecting edge tabs, preferably wherein the vacuum insulation element (24) has a layer thickness of 5 mm to 100 mm. Behälter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Vakuumisolationselemente (24) in der Art von Wärmedämmplatten bzw. Vakuumisolationspaneelen ausgebildet sind.Container according to one of claims 1 to 5, characterized in that the vacuum insulation elements (24) are designed in the manner of thermal insulation panels or vacuum insulation panels. Behälter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in jedem einzelnen Wandelement (03, 04, 05, 06) jeweils mehrere Vakuumisolationselemente (24) zur Isolation vorgesehen sind.Container according to one of claims 1 to 6, characterized in that in each individual wall element (03, 04, 05, 06) several vacuum insulation elements (24) are provided for insulation. Behälter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass von mehreren Vakuumisolationselementen (24) ein Dämmkörper gebildet wird, der das Innenvolumen (07) allseitig umschließt.Container according to one of claims 1 to 7, characterized in that an insulating body is formed by a plurality of vacuum insulation elements (24), which encloses the inner volume (07) on all sides. Behälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Außenwandung (22) und die Innenwandung (23) aus einem Leichtbaumaterial hergestellt ist.Container according to one of claims 1 to 8, characterized in that the outer wall (22) and the inner wall (23) is made of a lightweight material. Behälter nach Anspruch 9, dadurch gekennzeichnet, dass die Außenwandung (22) und/oder die Innenwandung (23) aus einem Sandwichmaterial, vorzugsweise mit mehreren Materialschichten (26, 27, 28), hergestellt ist.Container according to claim 9, characterized in that the outer wall (22) and / or the inner wall (23) is made of a sandwich material, preferably with a plurality of material layers (26, 27, 28). Behälter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Behälter (01) in der Art eines insbesondere flugtauglichen Transportcontainers ausgebildet ist,
vorzugsweise wobei das Türelement (06) als beweglich gelagerte Tür (06) zum Verschließen der Öffnung des Innenraums (07) des Transportcontainers (01) ausgebildet ist, wobei die Tür (06) insbesondere um eine Vertikalachse schwenkbar gelagert ist.
Container according to one of claims 1 to 10, characterized in that the container (01) is designed in the manner of a transport container which is particularly suitable for flying,
Preferably, the door element (06) as a movably mounted door (06) for closing the opening of the interior (07) of the transport container (01) is formed, wherein the door (06) is in particular pivotally mounted about a vertical axis.
Behälter nach Anspruch 11, dadurch gekennzeichnet, dass alle Wandelemente (03, 04, 05, 06) des Transportcontainers (01) mit jeweils zumindest einem Vakuumisolationselement (24) isoliert sind.Container according to claim 11, characterized in that all wall elements (03, 04, 05, 06) of the transport container (01) are each insulated with at least one vacuum insulation element (24). Behälter nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass der Transportcontainer (01) Funktionselemente (09) zum Eingriff von Staplerzinken aufweist.Container according to one of claims 11 or 12, characterized in that the transport container (01) has functional elements (09) for engaging forklift tines. Behälter nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass an der Unterseite des Bodenelements (04) zwei Leisten angebracht sind, durch die ein Zwischenraum zwischen dem Bodenelement (04) und einer Aufstandsfläche gebildet wird, wobei in diesen Zwischenraum die Zinken eines Transportstaplers einschiebbar sind, um den Behälter (01) mit einem Stapler anheben und transportieren zu können.Container according to one of claims 11 to 13, characterized in that two strips are attached to the underside of the base element (04), through which a space is formed between the base element (04) and a contact surface, the tines of a transport truck in this space can be inserted in order to be able to lift and transport the container (01) with a forklift. Behälter nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass am Behälter (01) ein Stützrahmen, insbesondere aus Metallprofilen, zur mechanischen Abstützung der Behälterwandung (02) vorgesehen ist.Container according to one of claims 1 to 14, characterized in that a support frame, in particular made of metal profiles, is provided on the container (01) for mechanical support of the container wall (02).
EP20156390.5A 2003-05-19 2004-05-05 Thermally insulated container Expired - Lifetime EP3671078B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10322764A DE10322764A1 (en) 2003-05-19 2003-05-19 Containers with vacuum insulation and melt storage materials
EP04738481.3A EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container
PCT/DE2004/000953 WO2004104498A2 (en) 2003-05-19 2004-05-05 Heat insulated container

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP04738481.3A Division EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container
EP04738481.3A Division-Into EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container

Publications (2)

Publication Number Publication Date
EP3671078A1 true EP3671078A1 (en) 2020-06-24
EP3671078B1 EP3671078B1 (en) 2024-02-14

Family

ID=33461829

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20156390.5A Expired - Lifetime EP3671078B1 (en) 2003-05-19 2004-05-05 Thermally insulated container
EP14004268.0A Revoked EP2876389B1 (en) 2003-05-19 2004-05-05 Thermally insulated container
EP04738481.3A Expired - Lifetime EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP14004268.0A Revoked EP2876389B1 (en) 2003-05-19 2004-05-05 Thermally insulated container
EP04738481.3A Expired - Lifetime EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container

Country Status (4)

Country Link
US (1) US20070051734A1 (en)
EP (3) EP3671078B1 (en)
DE (1) DE10322764A1 (en)
WO (1) WO2004104498A2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322764A1 (en) 2003-05-19 2004-12-30 Va-Q-Tec Ag Containers with vacuum insulation and melt storage materials
DE102006045471A1 (en) * 2006-09-26 2008-04-03 Va-Q-Tec Ag Method for determining the gas pressure in evacuated bodies
CA2699413C (en) 2007-09-11 2013-09-10 Mark Banks Insulated pallet shipper and methods of making and using the same
US7823394B2 (en) * 2007-11-02 2010-11-02 Reflect Scientific, Inc. Thermal insulation technique for ultra low temperature cryogenic processor
DE102009004353A1 (en) * 2009-01-08 2010-07-15 SCHÜCO International KG Device and method for room temperature control and thermal room conditioning
US20100200599A1 (en) * 2009-02-10 2010-08-12 Robert Molthen Vacuum insulated container
TW201205267A (en) * 2010-07-26 2012-02-01 Wistron Corp Detecting device capable of economizing electricity and detecting method thereof
FR2974353B1 (en) * 2011-04-19 2014-06-13 Emball Iso ISOTHERMAL CONDITIONING DEVICE FOR THERMOSENSITIVE PRODUCTS
US20130255306A1 (en) * 2012-03-27 2013-10-03 William T. Mayer Passive thermally regulated shipping container employing phase change material panels containing dual immiscible phase change materials
US8944541B2 (en) * 2012-04-02 2015-02-03 Whirlpool Corporation Vacuum panel cabinet structure for a refrigerator
DE102012022398B4 (en) * 2012-11-16 2019-03-21 delta T Gesellschaft für Medizintechnik mbH Modular insulated container
DE102012025192A1 (en) 2012-12-10 2014-06-12 Va-Q-Tec Ag Method and apparatus for the preconditioning of latent heat storage elements
DE202013001161U1 (en) 2012-12-11 2013-03-28 Va-Q-Tec Ag Bottle cooler and latent heat storage element for a bottle cooler
DE102013002555A1 (en) 2012-12-18 2014-06-18 Va-Q-Tec Ag Method and apparatus for the preconditioning of latent heat storage elements
FR3001721A1 (en) * 2013-02-05 2014-08-08 Sofrigam System for ensuring compliance of low temperature conditions for products e.g. drugs, transported in refrigerating box, has temperature sensor placed inside transport box, and CPU intended to record temperatures measured by sensor
EP3126761A4 (en) * 2014-04-04 2017-11-29 Sunwell Engineering Company Limited A storage unit for maintaining a generally constant temperature
DE102014007987A1 (en) 2014-05-30 2015-12-03 Va-Q-Tec Ag Transport container system
DE202014004515U1 (en) * 2014-05-30 2015-09-03 Va-Q-Tec Ag Transport container system
GB2530077A (en) * 2014-09-12 2016-03-16 Peli Biothermal Ltd Thermally insulated containers
DE202014008489U1 (en) 2014-10-27 2016-01-28 Va-Q-Tec Ag Box-shaped transport container
DE102014015770A1 (en) 2014-10-27 2016-04-28 Va-Q-Tec Ag Box-shaped transport container
DE202014008814U1 (en) 2014-11-07 2016-02-11 Va-Q-Tec Ag transport container
DE102014016393A1 (en) 2014-11-07 2016-05-12 Va-Q-Tec Ag transport container
DE102015007277A1 (en) 2015-06-10 2016-12-15 Va-Q-Tec Ag Heat-insulating body for a cooling unit and cooling unit with a heat-insulating body
DE202015004047U1 (en) 2015-06-10 2016-09-14 Va-Q-Tec Ag Heat-insulating body for a cooling unit and cooling unit with a heat-insulating body
CN108351146B (en) * 2015-09-11 2021-04-20 确保冷藏有限公司 Portable refrigeration equipment
CA3001048C (en) 2015-10-06 2020-11-24 Cold Chain Technologies, Inc. Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
CA3001052C (en) 2015-10-06 2020-04-28 Cold Chain Technologies, Inc. Thermally insulated shipping system for pallet-sized payload, methods of making and using the same, and kit for use therein
US10583978B2 (en) 2015-10-06 2020-03-10 Cold Chain Technologies, Llc Pallet cover compromising one or more temperature-control members and kit for use in making the pallet cover
US11591133B2 (en) 2015-10-06 2023-02-28 Cold Chain Technologies, Llc Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
US11964795B2 (en) 2015-10-06 2024-04-23 Cold Chain Technologies, Llc Device comprising one or more temperature-control members and kit for use in making the device
DE202016001097U1 (en) 2016-01-28 2017-05-02 Va-Q-Tec Ag Transport container system
EP3228960A1 (en) 2016-04-08 2017-10-11 ROTTER, Thomas Vacuum insulation element, vacuum insulation package and vacuum insulation crate
JP6925106B2 (en) * 2016-07-19 2021-08-25 富士フイルム富山化学株式会社 Transport device
JP6870985B2 (en) * 2016-12-28 2021-05-12 旭ファイバーグラス株式会社 Vacuum heat insulating material
DE102017000622B4 (en) 2017-01-25 2023-10-26 Va-Q-Tec Ag Method for preparing a transport container
NL2018588B1 (en) * 2017-03-28 2018-03-26 Turtle B V Flight case suited to transport musical instruments
US11511928B2 (en) 2017-05-09 2022-11-29 Cold Chain Technologies, Llc Shipping system for storing and/or transporting temperature-sensitive materials
WO2018208986A1 (en) 2017-05-09 2018-11-15 Cold Chain Technologies, Inc. Shipping system for storing and/or transporting temperature-sensitive materials
FR3076285B1 (en) * 2018-01-03 2021-01-15 Sofrigam DEVICE AND METHOD FOR GUARANTEEING A RELIABLE TEMPERATURE READING IN A THERMO-INSULATING CASE.
US10935299B2 (en) * 2018-06-13 2021-03-02 Cedric Davis Quick freeze cooler
DE202018104488U1 (en) * 2018-08-03 2018-08-14 Va-Q-Tec Ag Pallet container for the transport of temperature-sensitive goods
US11999559B2 (en) 2018-08-10 2024-06-04 Cold Chain Technologies, Llc Apparatus and method for protectively covering temperature sensitive products
DE202018104807U1 (en) 2018-08-21 2018-08-28 Va-Q-Tec Ag Vacuum-insulated stacking container for the temperature-controlled transport of foodstuffs
DE202018106306U1 (en) * 2018-11-06 2018-11-13 Va-Q-Tec Ag Temperable container with vacuum insulation elements
US11137190B2 (en) 2019-06-28 2021-10-05 Cold Chain Technologies, Llc Method and system for maintaining temperature-sensitive materials within a desired temperature range for a period of time
EP4025522A4 (en) 2019-09-05 2023-12-27 Cold Chain Technologies, LLC Shipping system for temperature-sensitive materials
US20210403224A1 (en) * 2020-06-24 2021-12-30 World Courier Management Limited Packaging system for transporting temperature-sensitive products
DE202020104675U1 (en) * 2020-08-12 2020-09-30 Va-Q-Tec Ag Transport container for temperature-controlled transport of temperature-sensitive goods
US20220081200A1 (en) * 2020-09-11 2022-03-17 Sonoco Development, Inc. Passive Temperature Controlled Packaging System as a ULD
EP4288351A1 (en) * 2021-02-03 2023-12-13 Peli Biothermal LLC Passive thermally controlled condition-in-place shipping container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188481U (en) * 1987-05-22 1988-12-02
JPH04302978A (en) * 1991-03-28 1992-10-26 Matsushita Refrig Co Ltd Cold-heat storage type thermal insulation container
WO1997012100A1 (en) * 1995-09-25 1997-04-03 Owens Corning Modular insulation panels and insulated structures
WO2000040908A1 (en) 1999-01-07 2000-07-13 Unilever Plc Freezer cabinet
DE10148587C1 (en) * 2001-03-19 2002-11-28 Hans Zucker Gmbh & Co Kg Thermal container includes thermal insulators which are embedded in annular insulation flange and lid which is releasably seated in flange
JP2003106760A (en) * 2001-09-27 2003-04-09 Mitsubishi Corp Highly heat insulating composite panel and structure using the same

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091842A (en) 1977-07-28 1978-05-30 The Dow Chemical Company Resealable sealing assembly for inspection port hole
US4313993A (en) 1980-04-14 1982-02-02 Mcglory Joseph J Laminated insulation
US4351271A (en) 1980-09-04 1982-09-28 Paul Mueller Company Refrigerated receiver
US4845959A (en) 1988-06-27 1989-07-11 Fort Valley State College Fruits and vegetables precooling, shipping and storage container
SE467106B (en) 1991-03-05 1992-05-25 Eurotainer Ab TRANSPORT CONTAINERS FOR TEMPERATURE-SENSITIVE GOODS
US5351718A (en) 1993-06-28 1994-10-04 Barton David D Access plug flange
US5522216A (en) 1994-01-12 1996-06-04 Marlow Industries, Inc. Thermoelectric refrigerator
JPH0868591A (en) * 1994-08-29 1996-03-12 Toshiba Corp Heat-insulating box
US5518033A (en) 1994-09-19 1996-05-21 Sepco Industries Vessel inspection plug and method of installing same in vessel
US5520220A (en) 1995-08-29 1996-05-28 Barton; David D. Access mounting flange for cold temperature chemical processing equipment
US5669233A (en) 1996-03-11 1997-09-23 Tcp Reliable Inc. Collapsible and reusable shipping container
US7253731B2 (en) 2001-01-23 2007-08-07 Raymond Anthony Joao Apparatus and method for providing shipment information
US5950450A (en) * 1996-06-12 1999-09-14 Vacupanel, Inc. Containment system for transporting and storing temperature-sensitive materials
US5918478A (en) 1996-08-30 1999-07-06 Vesture Corporation Insulated chest and method
US5865346A (en) 1997-01-07 1999-02-02 Del Zotto; William M. Self-contained fueling system and method
JPH10239199A (en) 1997-02-28 1998-09-11 Toshiba Corp Device for measuring degree of vacuum
US5924302A (en) 1997-03-27 1999-07-20 Foremost In Packaging Systems, Inc. Insulated shipping container
JPH10292984A (en) 1997-04-18 1998-11-04 Hitachi Ltd Refrigerator
FR2762899A1 (en) 1997-05-02 1998-11-06 Applic Gaz Sa Thermally insulated portable container serving as e.g. ice-box
US5893479A (en) 1997-07-17 1999-04-13 Berberat; Henry Storage tank vault
US5899088A (en) * 1998-05-14 1999-05-04 Throwleigh Technologies, L.L.C. Phase change system for temperature control
US6065314A (en) 1998-05-22 2000-05-23 Nicholson; John W. Lock for freight containers
US6244458B1 (en) 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
KR100368938B1 (en) 1999-02-18 2003-01-24 가부시키가이샤 교와코포레이션 Thermal decomposer for waste
EP1045079B1 (en) * 1999-04-12 2007-10-03 Isuzu Motors Limited Heat insulating wall member, and method of manufacturing the same
US6470821B1 (en) 1999-05-26 2002-10-29 Insulated Shipping Containers Method and apparatus for the evaluation of vacuum insulation panels
DE10015876A1 (en) * 2000-03-30 2001-10-11 Jobst H Kerspe Vacuum insulation panel for lining refrigerating units, cold storage rooms and similar items comprises cover foils which are welded to one another so that the panel contact edges are at least largely free from protrusions
DE10058566C2 (en) 2000-08-03 2002-10-31 Va Q Tec Ag Foil-wrapped, evacuated thermal insulation body and manufacturing process for it
AUPR312901A0 (en) 2001-02-15 2001-03-08 Creative Packaging Services Pty Ltd Temperature retaining container
JP2002264717A (en) * 2001-03-12 2002-09-18 Isuzu Motors Ltd Body of insulated van
US6718776B2 (en) 2001-07-10 2004-04-13 University Of Alabama In Huntsville Passive thermal control enclosure for payloads
US20030082357A1 (en) * 2001-09-05 2003-05-01 Cem Gokay Multi-layer core for vacuum insulation panel and insulated container including vacuum insulation panel
DE10158441A1 (en) 2001-11-29 2003-06-18 Va Q Tec Ag Determination of the gas pressure inside a film enclosed insulation panel by application of a vacuum connection piece to a measurement plate beneath the film insulation film so that the film is lifted away from the plate
DE10215213C1 (en) 2002-04-06 2003-09-11 Va Q Tec Ag Gas pressure in sheet-enveloped evacuated thermal insulation panel determining device, has built-in covered metal plate acting as thermal reservoir
DE10243120A1 (en) 2002-09-17 2004-03-25 N. Romijn B.V. Transporting container for temperature-sensitive products has insulating core between outer and inner skins of wall, and outer skin has reinforcing layer with braid or fabric and also layer of elastic synthetic material or rubber
DE10322764A1 (en) 2003-05-19 2004-12-30 Va-Q-Tec Ag Containers with vacuum insulation and melt storage materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188481U (en) * 1987-05-22 1988-12-02
JPH04302978A (en) * 1991-03-28 1992-10-26 Matsushita Refrig Co Ltd Cold-heat storage type thermal insulation container
WO1997012100A1 (en) * 1995-09-25 1997-04-03 Owens Corning Modular insulation panels and insulated structures
WO2000040908A1 (en) 1999-01-07 2000-07-13 Unilever Plc Freezer cabinet
DE10148587C1 (en) * 2001-03-19 2002-11-28 Hans Zucker Gmbh & Co Kg Thermal container includes thermal insulators which are embedded in annular insulation flange and lid which is releasably seated in flange
JP2003106760A (en) * 2001-09-27 2003-04-09 Mitsubishi Corp Highly heat insulating composite panel and structure using the same

Also Published As

Publication number Publication date
EP2876389A1 (en) 2015-05-27
DE10322764A1 (en) 2004-12-30
WO2004104498A3 (en) 2005-03-31
EP1625338A2 (en) 2006-02-15
WO2004104498A2 (en) 2004-12-02
EP1625338B2 (en) 2023-04-12
EP3671078B1 (en) 2024-02-14
US20070051734A1 (en) 2007-03-08
EP2876389B1 (en) 2018-01-10
EP1625338B1 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
EP3671078B1 (en) Thermally insulated container
DE3843287C2 (en)
EP2041502B1 (en) Transport container for maintaining the temperature of frozen goods
DE69533667T2 (en) PALLET BASED COOLED TRANSPORT SYSTEM
DE102012022398B4 (en) Modular insulated container
EP3687922A1 (en) Transport container
DE102015113693A1 (en) Thermally insulated transport container with heat insulation applied to the walls and wall construction of such a container
WO2014094995A2 (en) Method for preconditioning latent heat storage elements
EP3921583B1 (en) Transport container
DE3915925A1 (en) CONTAINER FOR THE TEMPERATURE AND AIR CONDITIONED TRANSPORT OF PERSONAL GOODS
WO2018015350A1 (en) Refrigerated container and method for transporting cryosamples
DE202020103635U1 (en) Holding system and transport system
EP2354729B1 (en) Device for adjusting cryogenic temperatures
DE202010011159U1 (en) cooling box
EP2069742A2 (en) Method and device for determining the gas pressure in evacuated bodies
EP3293468B1 (en) Cold transport container
DE102006040697B3 (en) Container for the storage and transport of information technology equipment has inner rectangular profiled metal frame
DE20301839U1 (en) Thermal insulation container with vacuum insulation panels
EP1915045B1 (en) Operating, storage and transport container for IT equipment
DE1297540B (en) Thermally insulated transport container
DE112007003664T5 (en) Wall construction for an insulated enclosure
DE102016002472A1 (en) insulating insert
DE202012003101U1 (en) Retrofittable insulation system for storage or transport containers for goods to be tempered
DE102021121242A1 (en) Thermally insulated slide-in container for aviation transport containers
DE102017102845B4 (en) reusable transport container

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 1625338

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201222

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230905

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1625338

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015891

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL