EP3671078A1 - Thermally insulated container - Google Patents
Thermally insulated container Download PDFInfo
- Publication number
- EP3671078A1 EP3671078A1 EP20156390.5A EP20156390A EP3671078A1 EP 3671078 A1 EP3671078 A1 EP 3671078A1 EP 20156390 A EP20156390 A EP 20156390A EP 3671078 A1 EP3671078 A1 EP 3671078A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- container
- wall
- container according
- elements
- vacuum insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 claims abstract description 93
- 239000000155 melt Substances 0.000 claims abstract description 49
- 239000011232 storage material Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 7
- 239000011148 porous material Substances 0.000 claims description 4
- 239000003562 lightweight material Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 17
- 210000001503 joint Anatomy 0.000 description 9
- 238000007689 inspection Methods 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 238000013500 data storage Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 230000003139 buffering effect Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000012792 core layer Substances 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000011151 fibre-reinforced plastic Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 241001295925 Gegenes Species 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/02—Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
- F25D3/06—Movable containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/06—Walls
- F25D23/062—Walls defining a cabinet
- F25D23/063—Walls defining a cabinet formed by an assembly of panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2201/00—Insulation
- F25D2201/10—Insulation with respect to heat
- F25D2201/14—Insulation with respect to heat using subatmospheric pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/082—Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
- F25D2303/0822—Details of the element
- F25D2303/08221—Fasteners or fixing means for the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/084—Position of the cold storage material in relationship to a product to be cooled
- F25D2303/0843—Position of the cold storage material in relationship to a product to be cooled on the side of the product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/085—Compositions of cold storage materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2331/00—Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
- F25D2331/80—Type of cooled receptacles
- F25D2331/804—Boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/36—Visual displays
Definitions
- the invention relates to a thermally insulated container according to the preamble of claim 1.
- thermally insulated containers are used, in particular, but by no means exclusively, for transport purposes in order to be able to transport temperature-sensitive goods, for example medicines, while adhering to narrow temperature tolerances.
- a container wall is provided in generic containers, which completely encloses an interior in which the goods to be transported are arranged. At least one closable opening is provided in the container wall in order to be able to introduce the goods to be transported into the container.
- vacuum insulation elements are used for insulation. These vacuum insulation elements have a very high thermal resistance with a relatively small layer thickness, so that for a given external volume there is a relatively large usable volume with sufficient thermal insulation. Due to the vacuum insulation elements, the heat flow is made more difficult both from the outside in and from the inside out, so that the goods to be transported are protected against both excessive heat and excessive cold.
- Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Systems are also known in which dry ice is evaporated and the resulting cold steam is used to cool the interior. The disadvantage of these actively cooled containers is that they are extremely sensitive to interference. If, for example, the electrical air conditioning system or the fan of the dry ice system is not supplied with sufficient electrical energy, one is Sufficient cooling is no longer guaranteed and the transported goods spoil.
- the document WO 2000/40908 A1 discloses a portable refrigerator with a thermally insulated outer shell that defines an interior.
- the outer shell is formed by a plurality of wall elements, namely three side wall elements, a ceiling element, a floor element and a door element, the interior having at least one closable opening.
- the outer shell has two metal skins and a heat-insulating polyurethane foam layer in between.
- the known refrigerator has supports for melt storage elements.
- the invention is based on the basic idea of arranging passive melt storage elements in the container which are filled with a suitable melt storage material.
- Such melt storage elements have the property that they can store or emit a certain amount of heat by phase transformation of the melt storage material.
- the thermal energy required for phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled in reverse, the melt storage material gradually solidifies and emits the stored amount of heat during this phase change.
- the Melt storage elements thus, depending on their respective capacity, reduce the heat flow until the capacity limits are reached.
- melt storage material contains paraffin, for example, heat flow buffering in the temperature range above 0 ° C is made possible. If, on the other hand, a salt solution is contained in the melt storage material, for example, the heat flow can be buffered in the temperature range below 0 ° C.
- each melt storage material has an optimal buffering range depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, each of which is filled with different melt storage materials. This combination of different melt storage materials in one container allows the buffering area to be spread out. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.
- melt storage elements In order to be able to check the readiness for use of the melt storage elements, for example after loading a container, it is advantageous if temperature measuring devices are provided on the melt storage elements with which the temperature of the melt storage element can be measured.
- Known temperature sensors with displays, for example, which change color depending on the temperature, can be used for this purpose.
- the container wall is double-walled with an outer wall and an inner wall.
- the outer wall and the inner wall are each mechanically stable and self-supporting.
- the interior is insulated against heat exchange with several vacuum insulation elements.
- the vacuum insulation elements are arranged between the outer wall and the inner wall.
- the construction of the vacuum insulation elements is basically arbitrary.
- a base body is used for this purpose, which is enclosed in a gas-tight manner with a film.
- the interior space formed by the film is evacuated in order to be able to achieve the desired insulation properties.
- the base body itself gives the vacuum insulation element the required mechanical stability, and open-pore materials should be used to produce the base body in order to ensure sufficient evacuation.
- foil-coated vacuum insulation elements they should preferably not have any protruding edge flaps made of foil, so that the butt joint between adjacent vacuum insulation elements can be made as narrow as possible.
- the insulation effect of the vacuum insulation elements largely depends on the sufficiently low internal gas pressure in the vacuum insulation element. The further the internal gas pressure in the vacuum insulation element increases, the more heat is conducted through the vacuum insulation element.
- the vacuum insulation elements should have a control system for checking the internal gas pressure.
- metal platelets for example, can be arranged below the enveloping film, the internal gas pressure then being able to be derived by applying a temperature jump using suitable diagnostic devices in the area of the metal platelets.
- the container wall should have inspection openings through which the control system for controlling the internal gas pressure is accessible.
- the functionality of the built-in vacuum insulation elements can be checked again at any time, in particular before loading, in order to prevent damage to the goods to be transported due to insufficient insulation, as they do For example, can be caused by micro-leaks in the vacuum insulation elements.
- covers can be provided at the inspection openings, which are preferably transparent so that the control system behind the cover can be viewed from the outside.
- the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other.
- the resulting heat flow resistance essentially results from the addition of the heat flow resistance of the individual layers.
- the container can be designed in the manner of a transport container. If this transport container is also airworthy, temperature-sensitive goods, such as medicines such as vaccines in particular, can be transported over very long distances and long transport times within specified temperature tolerances.
- the container can also be designed in the manner of a transport box with a removable lid.
- transport boxes are particularly advantageous if the container is not to be transported back but the container is disposed of after it has reached its destination.
- Foamed plastics are particularly suitable for producing the container wall of the transport box, since this material itself has a high heat flow resistance and is also available at very low cost.
- a container 01 designed in the manner of a transport container is shown in perspective.
- heat-sensitive goods for example medicines, in particular vaccines
- the base of the container 01 corresponds to the area of a standard pallet.
- the container wall 02 of the container 01 consists of three rectangular side wall elements 03, a rectangular floor element 04, a rectangular ceiling element 05 and a pivotably mounted door element 06.
- the three side wall elements 03, the floor element 04 and the ceiling element 05 are firmly together to form a rectangular interior 07 connected. After closing the door element 06, the interior 07 is enclosed on all sides and is insulated against the flow of heat through the container wall 02 by means of vacuum insulation elements, which are described in more detail below.
- a locking element 08 is used to lock the door element 06, by actuating it in Fig. 1 Locking elements, not shown, can be unlocked or locked.
- a seal can be attached to the closure member 08 in order to secure the container 01 against unauthorized opening.
- a lock for example a cylinder lock, can also be on the locking member 08 or number lock can be provided to prevent unauthorized opening of the container 01.
- guard rails 15 can be attached to the outside in particularly endangered areas.
- the guardrails 15 can be made, for example, from a metal sheet.
- the inside structure of the container 01 is off Fig. 2 evident.
- Six melt storage elements 16 and 17 are arranged on the inside of each of the two side walls 03.
- the melt storage elements 16 are filled with a paraffin-containing melt storage material, whereas the melt storage elements 17 contain a salt solution.
- Fastening rails 18 are used to fasten the melt storage elements 16 and 17 (see also Fig. 3 ), which encompass the melt storage elements 16 and 17 in a form-fitting manner at the upper and lower edges, respectively. In this way, the melt storage elements 16 and 17 can be replaced simply by inserting them into the mounting rails 18 from the door side. After closing the door element 06, the melt storage elements 16 and 17 are fixed on the inside of the container wall 02. This type of attachment allows, in particular, the melt storage elements 16 and 17 to be assembled or disassembled without tools.
- Inspection openings 19 are provided in each of the three side wall elements 03, the base element 04, the ceiling element 05 and the door element 06, the function of which will be explained in detail below.
- a sealing lip 20 is fastened on the inside, with which the sealing joint between the door element 06 on the one hand and the edge of the two opposite side wall elements 03 or the edge of the ceiling element 05 and the floor element 04 is sealed after the door element 06 has been closed.
- Fig. 3 the container 01 is shown schematically in cross section from the front.
- the flat, namely plate-shaped melt storage elements 16 and 17 are arranged parallel to the container wall 02 on the inside 21 of the container 01.
- the container wall 02 itself is constructed with double walls from a dimensionally stable outer wall 22 and a likewise dimensionally stable inner wall 23.
- the vacuum insulation elements 24 provided for insulation are arranged between this mechanically stable double wall made of outer wall 22 and inner wall 23.
- Shock protection elements 25 made of foamed plastic are provided between the vacuum insulation elements 24 and the outer wall 22.
- the size relationships between the outer wall 22, inner wall 23, the vacuum insulation elements 24 and the shock protection elements 25 are shown in Fig. 3 only hinted at in principle.
- the exact structure of the structure of the container wall 02 is off Fig. 4 evident.
- FIG. 4 Perspective cross section shown through the container wall 02 shows that the outer wall 22 and the inner wall 23 are each made of a sandwich material.
- an inner core layer 26 made of plywood and an inner core layer 27 made of foamed plastic are each covered on the outside by cover layers 28 made of fiber-reinforced plastic.
- Fig. 5 One possible embodiment of dimensionally stable melt storage containers 29 is shown. By filling the containers 29 with a suitable melt storage material, the different types of melt storage elements 16 and 17 can be produced.
- Fig. 6 the arrangement of the vacuum insulation panels 24 in a side wall 03 is shown as an example.
- Four vacuum insulation elements 24 are arranged adjacent to one another in all side wall elements 03 and correspondingly also in floor element 04, in ceiling element 05 and in door element 06. This ensures that if a vacuum insulation element is damaged, for example caused by a micro leak, not all of the insulation in the corresponding container wall fails. Rather, even if a single vacuum insulation element fails, there is still sufficient insulation of the container 01 as a whole.
- vacuum insulation elements 24 should, if possible, not have any protruding film tabs, so that vacuum insulation elements 24 can be mounted in the butt joints 30 as tightly as possible.
- a further layer of vacuum insulation elements can also be provided in the container wall 02, the butt joints 30 being offset from one another if possible in the case of a plurality of layers.
- a control system 31 for checking the internal gas pressure is present on each vacuum insulation element 24.
- the four control systems 31 of the four vacuum insulation elements 24 are each arranged adjacent to one another in the middle of the container wall, so that the four different control systems 31 are accessible through a single inspection opening 19.
- Fig. 7 the inspection opening 19 is shown enlarged with the four control systems 31 arranged behind a cover 32.
- the cover 32 is removed and a test head of a diagnostic device is placed on the control systems 31. Structure and function of the control system 31 and structure of the vacuum insulation elements 24 are off Fig. 8 evident.
- the in Fig. 8 The cross section shown through the vacuum insulation elements 24 shows an open-pore base body 33, which is gas-tightly covered with a film 34.
- the gas-tight interior 35 formed by the film 34 is evacuated in order to give the vacuum insulation element 24 the desired insulation properties.
- the control system 31 is placed on the inside of the film 34, which consists of a metal plate 36 and an intermediate layer 37. A defined temperature jump can then be applied to the control system 31 with a test head 38, the internal gas pressure in the interior 35 being able to be derived from the signal response to the temperature jump.
- the data storage device 10 is connected via a cable 12 to an internal temperature sensor for measuring the temperature in the interior 07 and to an external temperature sensor for measuring the ambient temperature surrounding the container 01.
- the internal temperature and the external temperature are measured at regular time intervals and the measurement data obtained are stored in the data storage device 10 for documentation purposes.
- the current internal temperature or the current external temperature can be shown on a display 13 and can be read from the outside through the transparent cover 11.
- a GPS receiver (not shown) can be connected to the data storage device 10 via a connection 14, so that the position data of the container 01 can be stored with the data storage device 10 for documentation purposes.
- the function of the container 01 for temperature insulation should be based on the in 10 to 12 temperature curves shown are exemplified.
- Fig. 10 a situation is schematically shown in which the container 01 is exposed to an outside temperature profile 39.
- the corresponding change in the internal temperature in the interior 07 of the container 01 is indicated with the internal temperature profile 40.
- the outside temperature profile 39 includes a temperature jump from 10 ° C to 30 ° C over a period of 6 hours.
- This change in the outside temperature initially does not lead to a change in temperature in the interior 07, because the amounts of heat caused by the Vacuum insulation elements 24 are let through, are buffered by the melt storage elements 16 and 17 by phase transformation of the melt storage material. Only after a time delay, when large amounts of the melt storage material have already undergone a phase change, does the inside temperature in the interior 07 rise very slowly.
- a second outside temperature profile 41 and the resulting inside temperature profile 42 are plotted in the interior 07 of the container 01.
- the outside temperature profile 41 immediately undergoes a negative temperature jump to just above 0 ° C.
- the negative temperature jump also lasts 6 hours.
- the negative temperature jump is also buffered by the melt storage elements 16 and 17, the melt storage elements regenerating again by lowering the temperature, so that a subsequent positive temperature jump can in turn be buffered without further notice.
- a real outside temperature profile 43 and a resulting inside temperature profile 44 are plotted, which was recorded in a long-term test over 210 hours.
- the different curves of the outside temperature profile 43 and the inside temperature profile 44 correspond to the different measuring points outside or inside the container 01 Fig. 11 immediately apparent, the inside temperature remains within a narrow temperature band despite considerable fluctuations in the outside temperature, so that temperature-sensitive goods in the interior of the container 07 are effectively protected against excessive temperature fluctuations.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Packages (AREA)
Abstract
Wärmegedämmter Behälter (01), insbesondere für Transportzwecke, mit einer Behälterwandung (02), die einen Innenraum (07) vollständig umschließt, wobei der Innenraum (07) zumindest eine verschließbare Öffnung aufweist und mit zumindest einem Vakuumisolationselement (24) gegen Wärmeaustausch isoliert ist. Im Behälter (01) ist zumindest ein passives Schmelzspeicherelement (16, 17) vorgesehen, das mit einem Schmelzspeichermaterial gefüllt ist.Thermally insulated container (01), in particular for transport purposes, with a container wall (02) which completely encloses an interior (07), the interior (07) having at least one closable opening and being insulated against heat exchange with at least one vacuum insulation element (24). At least one passive melt storage element (16, 17) is provided in the container (01) and is filled with a melt storage material.
Description
Die Erfindung betrifft einen wärmegedämmten Behälter nach dem Oberbegriff des Anspruchs 1.The invention relates to a thermally insulated container according to the preamble of
Solche wärmegedämmten Behälter werden insbesondere, jedoch keineswegs ausschließlich, für Transportzwecke genutzt, um temperaturempfindliche Waren, beispielsweise Medikamente, bei Einhaltung enger Temperaturtoleranzen befördern zu können. Dazu ist bei gattungsgemäßen Behältern eine Behälterwandung vorgesehen, die einen Innenraum, in dem das zu transportierende Gut angeordnet wird, vollständig umschließt. In der Behälterwandung ist zumindest eine verschließbare Öffnung vorgesehen, um das zu transportierende Gut in den Behälter einbringen zu können.Such thermally insulated containers are used, in particular, but by no means exclusively, for transport purposes in order to be able to transport temperature-sensitive goods, for example medicines, while adhering to narrow temperature tolerances. For this purpose, a container wall is provided in generic containers, which completely encloses an interior in which the goods to be transported are arranged. At least one closable opening is provided in the container wall in order to be able to introduce the goods to be transported into the container.
Um den Wärmefluss durch die Behälterwandung hindurch möglichst gering zu halten, werden Vakuumisolationselemente zur Isolation verwendet. Diese Vakuumisolationselemente haben einen sehr hohen Wärmedurchgangswiderstand bei relativ geringer Schichtdicke, so dass bei gegebenem Außenvolumen ein relativ großes Nutzvolumen bei ausreichender Wärmeisolation gegeben ist. Durch die Vakuumisolationselemente wird der Wärmefluss sowohl von außen nach innen als auch von innen nach außen erschwert, so dass die zu transportierende Ware sowohl gegen übermäßige Wärme als auch gegen übermäßige Kälte geschützt ist.In order to keep the heat flow through the container wall as low as possible, vacuum insulation elements are used for insulation. These vacuum insulation elements have a very high thermal resistance with a relatively small layer thickness, so that for a given external volume there is a relatively large usable volume with sufficient thermal insulation. Due to the vacuum insulation elements, the heat flow is made more difficult both from the outside in and from the inside out, so that the goods to be transported are protected against both excessive heat and excessive cold.
Aus dem Stand der Technik sind wärmegedämmte Behälter bekannt, bei denen zur zusätzlichen Kühlung aktive Kühlsysteme eingesetzt werden. Beispielsweise ist es bekannt, dass der Innenraum des Behälters mittels einer elektrischen Klimatisierungsanlage temperiert wird. Auch sind Systeme bekannt, bei denen Trockeneis verdampft wird und der dabei entstehende kalte Dampf zur Kühlung des Innenraums eingesetzt wird. Diese aktiv gekühlten Behälter haben den Nachteil, dass sie außerordentlich empfindlich gegen Störungen sind. Wird beispielsweise die elektrische Klimaanlage oder der Ventilator der Trockeneisanlage nicht mit ausreichender elektrischer Energie versorgt, so ist eine ausreichende Kühlung nicht mehr gewährleistet und die transportierte Ware verdirbt.Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Systems are also known in which dry ice is evaporated and the resulting cold steam is used to cool the interior. The disadvantage of these actively cooled containers is that they are extremely sensitive to interference. If, for example, the electrical air conditioning system or the fan of the dry ice system is not supplied with sufficient electrical energy, one is Sufficient cooling is no longer guaranteed and the transported goods spoil.
Das Dokument
Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, einen wärmegedämmten Behälter mit einer alternativen wärmedämmenden Wandkonstruktion vorzuschlagen.Starting from this prior art, it is an object of the present invention to propose a heat-insulated container with an alternative heat-insulating wall construction.
Diese Aufgabe wird durch einen Behälter nach der Lehre des Anspruchs 1 gelöst.This object is achieved by a container according to the teaching of
Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent claims.
Die Erfindung beruht auf dem Grundgedanken, im Behälter passive Schmelzspeicherelemente, die mit einem geeigneten Schmelzspeichermaterial gefüllt sind, anzuordnen. Derartige Schmelzspeicherelemente haben die Eigenschaft, dass sie eine bestimmte Wärmemenge durch Phasenumwandlung des Schmelzspeichermaterials speichern bzw. abgeben können. Dies bedeutet mit anderen Worten, dass das Schmelzspeichermaterial im Schmelzspeicherelement bei Erwärmung so lange schmilzt, bis der gesamte Vorrat an Schmelzspeichermaterial in die flüssige Phase übergegangen ist. Die zur Phasenumwandlung des Schmelzspeichermaterials erforderliche Wärmeenergie wird somit im Schmelzspeichermaterial gespeichert und führt nicht zu einer Temperaturerhöhung. Wird das Schmelzspeichermaterial umgekehrt abgekühlt, so erstarrt das Schmelzspeichermaterial nach und nach und gibt bei dieser Phasenumwandlung die gespeicherte Wärmemenge ab. Im Ergebnis puffern die Schmelzspeicherelemente somit entsprechend ihrer jeweiligen Kapazität den Wärmefluss bis zum Erreichen der Kapazitätsgrenzen ab.The invention is based on the basic idea of arranging passive melt storage elements in the container which are filled with a suitable melt storage material. Such melt storage elements have the property that they can store or emit a certain amount of heat by phase transformation of the melt storage material. In other words, this means that the melt storage material in the melt storage element melts when heated until the entire supply of melt storage material has passed into the liquid phase. The thermal energy required for phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled in reverse, the melt storage material gradually solidifies and emits the stored amount of heat during this phase change. As a result, the Melt storage elements thus, depending on their respective capacity, reduce the heat flow until the capacity limits are reached.
Je nach Schmelzpunkt des Schmelzspeichermaterials ergeben sich andere Pufferungsbereiche zur Abpufferung des Wärmeflusses. Enthält das Schmelzspeichermaterial beispielsweise Paraffin, wird eine Wärmeflusspufferung im Temperaturbereich oberhalb von 0° C ermöglicht. Ist dagegen im Schmelzspeichermaterial beispielsweise eine Salzlösung enthalten, kann der Wärmefluss im Temperaturbereich unterhalb von 0° C abgepuffert werden.Depending on the melting point of the melt storage material, there are other buffering areas for buffering the heat flow. If the melt storage material contains paraffin, for example, heat flow buffering in the temperature range above 0 ° C is made possible. If, on the other hand, a salt solution is contained in the melt storage material, for example, the heat flow can be buffered in the temperature range below 0 ° C.
Da jedes Schmelzspeichermaterial abhängig von seinem jeweiligen Schmelzpunkt einen optimalen Pufferungsbereich aufweist, ist es für bestimmte Anwendungen besonders vorteilhaft, wenn im Behälter zumindest zwei verschiedene Schmelzspeicherelemente vorgesehen sind, die jeweils mit unterschiedlichen Schmelzspeichermaterialien gefüllt sind. Durch diese Kombination von unterschiedlichen Schmelzspeichermaterialien in einem Behälter kann der Pufferungsbereich aufgespreizt werden. Dabei ist es besonders vorteilhaft, wenn die mit unterschiedlichen Schmelzspeichermaterialien gefüllten Schmelzspeicherelemente in mehreren Schichten im Behälter angeordnet sind.Since each melt storage material has an optimal buffering range depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, each of which is filled with different melt storage materials. This combination of different melt storage materials in one container allows the buffering area to be spread out. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.
Um die Einsatzbereitschaft der Schmelzspeicherelemente prüfen zu können, beispielsweise nach dem Beladen eines Behälters, ist es vorteilhaft, wenn an den Schmelzspeicherelementen Temperaturmesseinrichtungen vorgesehen sind, mit denen die Temperatur des Schmelzspeicherelements gemessen werden kann. Dazu können beispielsweise bekannte Temperatursensoren mit Displays Verwendung finden, die sich in Abhängigkeit der Temperatur verfärben.In order to be able to check the readiness for use of the melt storage elements, for example after loading a container, it is advantageous if temperature measuring devices are provided on the melt storage elements with which the temperature of the melt storage element can be measured. Known temperature sensors with displays, for example, which change color depending on the temperature, can be used for this purpose.
Bei dem erfindungsgemäßen Behälter ist die Behälterwandung doppelwandig mit einer Außenwandung und einer Innenwandung ausgebildet. Die Außenwandung und die Innenwandung sind jeweils mechanisch stabil und selbsttragend ausgebildet. Der Innenraum ist mit mehreren Vakuumisolationselementen gegen Wärmeaustausch isoliert. Die Vakuumisolationselemente sind zwischen der Außenwandung und der Innenwandung angeordnet.In the container according to the invention, the container wall is double-walled with an outer wall and an inner wall. The outer wall and the inner wall are each mechanically stable and self-supporting. The interior is insulated against heat exchange with several vacuum insulation elements. The vacuum insulation elements are arranged between the outer wall and the inner wall.
In welcher Konstruktionsweise die Vakuumisolationselemente ausgebildet sind, ist grundsätzlich beliebig. Nach einer bevorzugten Ausführungsform wird dazu ein Grundkörper verwendet, der mit einer Folie gasdicht umschlossen ist. Der von der Folie gebildete Innenraum wird evakuiert, um dadurch die gewünschten Isolationseigenschaften realisieren zu können. Der Grundkörper selbst gibt dem Vakuumisolationselement die erforderliche mechanische Stabilität, wobei zur Herstellung des Grundkörpers offenporigen Werkstoffe verwendet werden sollten, um eine ausreichende Evakuierbarkeit zu gewährleisten.The construction of the vacuum insulation elements is basically arbitrary. According to a preferred embodiment, a base body is used for this purpose, which is enclosed in a gas-tight manner with a film. The interior space formed by the film is evacuated in order to be able to achieve the desired insulation properties. The base body itself gives the vacuum insulation element the required mechanical stability, and open-pore materials should be used to produce the base body in order to ensure sufficient evacuation.
Werden folienummantelte Vakuumisolationselemente verwendet, sollten diese vorzugsweise keine überstehenden Randlaschen aus Folie aufweisen, damit die Stoßfuge zwischen benachbarten Vakuumisolationselementen möglichst eng gestaltet werden kann.If foil-coated vacuum insulation elements are used, they should preferably not have any protruding edge flaps made of foil, so that the butt joint between adjacent vacuum insulation elements can be made as narrow as possible.
Die Isolationswirkung der Vakuumisolationselemente hängt maßgeblich davon ab, dass im Vakuumisolationselement ein ausreichend niedriger Innengasdruck herrscht. Je weiter der Innengasdruck im Vakuumisolationselement zunimmt, desto mehr Wärme wird durch das Vakuumisolationselement hindurchgeleitet. Um die Funktionstüchtigkeit der Vakuumisolationselemente jederzeit auch nach dem Einbau in den Behälter prüfen zu können, sollten die Vakuumisolationselemente ein Kontrollsystem zu Kontrolle des Innengasdrucks aufweisen. Dazu können unterhalb der Hüllfolie beispielsweise Metallplättchen angeordnet werden, wobei der Innengasdruck dann unter Einsatz geeigneter Diagnosegeräte im Bereich der Metallplättchen durch Aufbringung eines Temperatursprungs abgeleitet werden kann.The insulation effect of the vacuum insulation elements largely depends on the sufficiently low internal gas pressure in the vacuum insulation element. The further the internal gas pressure in the vacuum insulation element increases, the more heat is conducted through the vacuum insulation element. In order to be able to check the functionality of the vacuum insulation elements at any time even after installation in the container, the vacuum insulation elements should have a control system for checking the internal gas pressure. For this purpose, metal platelets, for example, can be arranged below the enveloping film, the internal gas pressure then being able to be derived by applying a temperature jump using suitable diagnostic devices in the area of the metal platelets.
Werden die Vakuumisolationselemente hinter der Behälterwandung eingebaut, beispielsweise bei Verwendung eines doppelwandigen Behälters, sollte die Behälterwandung Revisionsöffnungen aufweisen, durch die das Kontrollsystem zur Kontrolle des Innengasdrucks zugänglich ist. Auf diese Weise kann die Funktionstüchtigkeit der eingebauten Vakuumisolationselemente jederzeit, insbesondere vor dem Beladen, erneut geprüft werden, um Beschädigungen an dem zu transportierenden Gut durch unzureichende Isolation, wie sie beispielsweise durch Mikrolecks in den Vakuumisolationselementen verursacht sein kann, zu vermeiden.If the vacuum insulation elements are installed behind the container wall, for example when using a double-walled container, the container wall should have inspection openings through which the control system for controlling the internal gas pressure is accessible. In this way, the functionality of the built-in vacuum insulation elements can be checked again at any time, in particular before loading, in order to prevent damage to the goods to be transported due to insufficient insulation, as they do For example, can be caused by micro-leaks in the vacuum insulation elements.
Um die Beschädigung der Vakuumisolationselemente durch Eindringen von Fremdkörpern auszuschließen, können an den Revisionsöffnungen Abdeckungen vorgesehen sein, die vorzugsweise transparent sind, damit das hinter der Abdeckung befindliche Kontrollsystem von außen in Augenschein genommen werden kann.In order to prevent damage to the vacuum insulation elements by the penetration of foreign bodies, covers can be provided at the inspection openings, which are preferably transparent so that the control system behind the cover can be viewed from the outside.
Zur Erhöhung des Wärmeflusswiderstands können die Vakuumisolationselemente auch in mehreren Schichten übereinander oder hintereinander angeordnet werden. Der resultierende Wärmeflusswiderstand ergibt sich dabei im Wesentlichen aus der Addition des Wärmeflusswiderstands der einzelnen Schichten.To increase the heat flow resistance, the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other. The resulting heat flow resistance essentially results from the addition of the heat flow resistance of the individual layers.
Nach einer ersten Ausführungsform der Erfindung kann der Behälter in der Art eines Transportcontainers ausgebildet sein. Ist dieser Transportcontainer zudem flugtauglich, können temperaturempfindliche Waren, beispielsweise Medikamente wie insbesondere Impfstoffe, über sehr weite Entfernungen und lange Transportzeiten innerhalb vorgegebener Temperaturtoleranzen transportiert werden.According to a first embodiment of the invention, the container can be designed in the manner of a transport container. If this transport container is also airworthy, temperature-sensitive goods, such as medicines such as vaccines in particular, can be transported over very long distances and long transport times within specified temperature tolerances.
Bei einer alternativen, nicht beanspruchten Ausführungsform kann der Behälter auch in der Art einer Transportbox mit abnehmbarem Deckel ausgebildet sein. Solche Transportboxen sind insbesondere dann von Vorteil, wenn ein Rücktransport des Behälters nicht vorgesehen ist, sondern der Behälter nach Erreichen des Ziels entsorgt wird.In an alternative, not claimed embodiment, the container can also be designed in the manner of a transport box with a removable lid. Such transport boxes are particularly advantageous if the container is not to be transported back but the container is disposed of after it has reached its destination.
Um die Kosten der Transportbox zu verringern, ist es denkbar, lediglich Teilbereiche der Behälterwandung der Transportbox, insbesondere Deckel und Boden der Transportbox, mit jeweils zumindest einem Vakuumisolationselement zu isolieren, da beispielsweise Deckel und Boden aufgrund ihrer großen Fläche die relativ größten Wärmemengen durchtreten lassen, wohingegen andere Teile der Behälterwandung von untergeordneter Bedeutung sind.In order to reduce the costs of the transport box, it is conceivable to insulate only partial areas of the container wall of the transport box, in particular the lid and base of the transport box, with at least one vacuum insulation element, since for example the lid and base allow the relatively largest amounts of heat to pass through due to their large area whereas other parts of the container wall are of minor importance.
Zur Herstellung der Behälterwandung der Transportbox sind insbesondere geschäumte Kunststoffe geeignet, da dieses Material selbst einen hohen Wärmeflusswiderstand hat und zudem sehr preisgünstig verfügbar ist.Foamed plastics are particularly suitable for producing the container wall of the transport box, since this material itself has a high heat flow resistance and is also available at very low cost.
Durch Einbau von mehreren Vakuumisolationselementen in die verschiedenen Behälterwandungen wird eine verbesserte Schadensredundanz erreicht, da bei Beschädigung eines einzelnen Vakuumisolationselements die Isolationseigenschaften des Behälters nur relativ gering beeinflusst werden.By installing several vacuum insulation elements in the different container walls, an improved damage redundancy is achieved, since the insulation properties of the container are only influenced relatively little if a single vacuum insulation element is damaged.
Eine Ausführungsform der Erfindung ist in den Zeichnungen schematisch dargestellt und wird nachfolgend beispielhaft erläutert.An embodiment of the invention is shown schematically in the drawings and is explained below by way of example.
Es zeigen:
- Fig. 1
- einen Transportcontainer in perspektivischer Ansicht von außen;
- Fig. 2
- den Transportcontainer gemäß
Fig. 1 mit geöffneter Tür in perspektivischer Ansicht; - Fig. 3
- den Transportcontainer gemäß
Fig. 1 im Querschnitt; - Fig. 4
- die Behälterwandung des Transportcontainers gemäß
Fig. 1 im perspektivischen Schnitt; - Fig. 5
- die Schmelzspeicherelemente des Transportcontainers gemäß
Fig. 1 in perspektivischer Ansicht; - Fig. 6
- die Anordnung der Vakuumisolationselemente an einer Seitenwandung des Transportcontainers gemäß
Fig. 1 in seitlicher Ansicht; - Fig. 7
- eine Revisionsöffnung in einer Behälterwandung des Transportcontainers gemäß
Fig. 1 ; - Fig. 8
- ein Vakuumisolationselement des Transportcontainers gemäß
Fig. 1 im Querschnitt; - Fig. 9
- den Datenspeicher am Transportcontainer gemäß
Fig. 1 in vergrößerter perspektivischer Ansicht; - Fig. 10
- die Innentemperaturkurve im Innenraum des Transportcontainers gemäß
Fig. 1 bei Aufbringung eines positiven Außentemperatursprungs; - Fig. 11
- die Innentemperaturkurve im Innenraum des Transportcontainers gemäß
Fig. 1 bei Aufbringung eines positiven und eines negativen Außentemperatursprungs; - Fig. 12
- die Innentemperaturkurve im Innenraum des Transportcontainers gemäß
Fig. 1 bei Durchlaufen eines Außentemperaturprofils.
- Fig. 1
- a transport container in a perspective view from the outside;
- Fig. 2
- the transport container according to
Fig. 1 with opened door in perspective view; - Fig. 3
- the transport container according to
Fig. 1 in cross section; - Fig. 4
- the container wall of the transport container according to
Fig. 1 in perspective section; - Fig. 5
- the melt storage elements of the transport container according to
Fig. 1 in perspective view; - Fig. 6
- the arrangement of the vacuum insulation elements on a side wall of the transport container according to
Fig. 1 in a side view; - Fig. 7
- an inspection opening in a container wall of the transport container according to
Fig. 1 ; - Fig. 8
- a vacuum insulation element of the transport container according to
Fig. 1 in cross section; - Fig. 9
- the data storage on the transport container according to
Fig. 1 in an enlarged perspective view; - Fig. 10
- the inside temperature curve in the interior of the transport container according to
Fig. 1 when applying a positive jump in outside temperature; - Fig. 11
- the inside temperature curve in the interior of the transport container according to
Fig. 1 when applying a positive and a negative jump in outside temperature; - Fig. 12
- the inside temperature curve in the interior of the transport container according to
Fig. 1 when going through an outside temperature profile.
In
Die Behälterwandung 02 des Behälters 01 besteht aus drei rechteckigen Seitenwandelementen 03, einem rechteckigen Bodenelement 04, einem rechteckigen Deckenelement 05 und einem schwenkbar gelagerten Türelement 06. Die drei Seitenwandelemente 03, das Bodenelement 04 und das Deckenelement 05 sind unter Bildung eines rechteckförmigen Innenraums 07 fest miteinander verbunden. Nach Schließen des Türelements 06 wird der Innenraum 07 allseitig umschlossen und ist gegen den Durchfluss von Wärme durch die Behälterwandung 02 mittels Vakuumisolationselementen, die nachfolgend näher beschrieben sind, isoliert.The
Zum Verriegeln des Türelements 06 dient ein Verschlussorgan 08, durch dessen Betätigung in
An der Unterseite des Bodenelements 04 sind zwei Leisten 09 angebracht, durch die ein Zwischenraum zwischen dem Bodenelement 04 und der Aufstandsfläche gebildet wird. In diesen Zwischenraum können die Zinken eines Transportstaplers eingeschoben werden, um den Behälter 01 mit einem Stapler anheben und transportieren zu können. An der Oberseite des Türelements 06 ist in einer Vertiefung ein Datenspeichergerät 10 befestigt und wird nach außen hin von einer Abdeckung 11 geschützt (siehe auch
Der innenseitige Aufbau des Behälters 01 ist aus
In den drei Seitenwandelementen 03, dem Bodenelement 04, dem Deckenelement 05 und dem Türelement 06 sind jeweils Revisionsöffnungen 19 vorgesehen, deren Funktion nachfolgend noch detailliert erläutert wird.
Am Außenumfang des Türelements 06 ist innenseitig eine Dichtlippe 20 befestigt, mit der nach Schließen des Türelements 06 die Trennfuge zwischen dem Türelement 06 einerseits und dem Rand der zwei gegenüberliegenden Seitenwandelemente 03 bzw. dem Rand des Deckenelements 05 und des Bodenelements 04 abgedichtet wird.On the outside of the
In
Der in
In
In
An jedem Vakuumisolationselement 24 ist ein Kontrollsystem 31 zur Kontrolle des Innengasdrucks vorhanden. Die vier Kontrollsysteme 31 der vier Vakuumisolationselemente 24 sind dabei jeweils benachbart zueinander in der Mitte der Behälterwandung angeordnet, damit die vier verschiedenen Kontrollsysteme 31 durch eine einzige Revisionsöffnung 19 hindurch zugänglich sind.A
In
Der in
Wie aus
Die Funktion des Behälters 01 zur Temperaturisolation soll anhand der in
In
Aus
In
Nachfolgend sind weitere, auch unabhängig realisierbare und/oder mit den voranstehenden Aspekten kombinierbare Aspekte der vorliegenden Erfindung zusammengestellt:
- 1. Wärmegedämmter Behälter, insbesondere für Transportzwecke, mit einer Behälterwandung (02), die einen Innenraum (07) vollständig umschließt, wobei der Innenraum (07) zumindest eine verschließbare Öffnung aufweist und mit zumindest einem Vakuumisolationselement (24) gegen Wärmeaustausch isoliert ist, dadurch gekennzeichnet, dass im Behälter (01) zumindest ein passives Schmelzspeicherelement vorgesehen ist, das mit einem Schmelzspeichermaterial gefüllt ist.
- 2.
Behälter nach Aspekt 1, dadurch gekennzeichnet, dass das Schmelzspeicherelement in der Art eines Schmelzspeicherbehälters (29) mit einer formstabilen Gefäßwandung ausgebildet ist, die das Schmelzspeichermaterial flüssigkeitsdicht umschließt. - 3.
Behälter nach Aspekt 2, dadurch gekennzeichnet, dass die Schmelzspeicherbehälter (29) eine flächige Gestalt aufweisen und parallel zur Behälterwandung (02) im Behälter (01) angeordnet werden können. - 4. Behälter nach einem der Aspekte 1
bis 3, dadurch gekennzeichnet, dass das Schmelzspeichermaterial Paraffin enthält. - 5. Behälter nach einem der Aspekte 1
bis 3, dadurch gekennzeichnet, dass das Schmelzspeichermaterial eine Salzlösung enthält. - 6. Behälter nach einem der Aspekte 1
bis 5, dadurch gekennzeichnet, dass im Behälter (01) zumindest zwei verschieden Schmelzspeicherelemente (16, 17) vorgesehen sind, die jeweils mit unterschiedlichen Schmelzspeichermaterialen gefüllt sind. - 7.
Behälter nach Aspekt 6, dadurch gekennzeichnet, dass die unterschiedlichen Schmelzspeichermaterialen in den verschieden Schmelzspeicherelementen (16, 17) jeweils einen unter- schiedlichen Schmelzpunkt aufweisen. - 8. Behälter nach einem der Aspekte 1
bis 7, dadurch gekennzeichnet, dass im Behälter mehrere Schmelzspeicherelemente in mehreren Schichten angeordnet sind, wobei die Schmelzspeicherelemente der verschiedenen Schichten insbesondere mit jeweils unterschiedlichen Schmelzspeichermaterialen gefüllt sind. - 9. Behälter nach einem der Aspekte 1
bis 8, dadurch gekennzeichnet, dass die Schmelzspeicherelemente (16, 17) insbesondere ohne Werkzeug lösbar im Behälter befestigt werden können. - 10. Behälter nach Aspekt 9, dadurch gekennzeichnet, dass zur Befestigung der Schmelzspeicherelemente (16, 17) im Behälter (01) zumindest eine Befestigungsschiene (18) vorgesehen ist, die den Rand der Schmelzspeicherelemente (16, 17) formschlüssig an umgreift.
- 11. Behälter nach einem der Aspekte 1
bis 10, dadurch gekennzeichnet, dass an zumindest einem Schmelzspeicherelement (16, 17) eine Temperaturmesseinrichtung, insbesondere ein sich in Abhängigkeit der Temperatur verfärbender Temperatursensor, vorgesehen ist, mit dem die Temperatur des Schmelzspeicherelements (16, 17) gemessen werden kann. - 12. Behälter nach einem der Aspekte 1
bis 11, dadurch gekennzeichnet, dass das Vakuumisolationselement (24) einen Grundkörper (33) aufweist, der insbesondere aus mikroporöser Kieselsäure, Fasermaterial, Mikrofasermaterial oder offenporigem Polymerschaum besteht, und der von einer Folie (34) gasdicht umschlossen wird, wobei der von der Folie (34) dadurch gebildete Innenraum (35) evakuiert ist. - 13.
Behälter nach Aspekt 12, dadurch gekennzeichnet, dass die Folie (34) des Vakuumisolationselements (24) keine überstehenden Randlaschen aufweist. - 14. Behälter nach einem der Aspekte 1
bis 13, dadurch gekennzeichnet, dass das Vakuumisolationselement (24)eine Schichtdicke von 5 mm bis 100 mm aufweist. - 15. Behälter nach einem der Aspekte 1
bis 14, dadurch gekennzeichnet, dass das Vakuumisolationselement (24) ein internes oder externes Kontrollsystem (31) zur Kontrolle des Innengasdruckes im Vakuumisolationselement (24) aufweist. - 16.
Behälter nach Aspekt 15, dadurch gekennzeichnet, dass in der Behälterwandung (02) zumindest eine Revisionsöffnung (19) vorhanden ist, durch die das Kontrollsystem (31) zur Kontrolle des Innengasdruckes im Vakuumisolationselement (24) zugänglich ist. - 17.
Behälter nach Aspekt 16, dadurch gekennzeichnet, dass die Revisionsöffnung (19) mit einer insbesondere transparenten Abdeckung (32) verschlossen werden kann. - 18. Behälter nach einem der Aspekte 1
bis 17, dadurch gekennzeichnet, dass die Vakuumisolationselemente (24) eine flächige Gestalt aufweisen, insbesondere in der Art von Wärmedämmplatten ausgebildet sind. - 19. Behälter nach einem der Aspekte 1
bis 18, dadurch gekennzeichnet, dass die Behälterwandung (02) von mehreren, insbesondere rechteckigen und flächigen, Wandelementen (03, 04, 05, 06) gebildet wird, insbesondere dass drei Seitenwandelemente (03), ein Deckenelement (05), ein Bodenelement (04) und ein Türelement (06) vorgesehen sind. - 20.
Behälter nach Aspekt 19, dadurch gekennzeichnet, dass in jedem einzelnen Wandelement (03, 04, 05, 06) jeweils mehrere Vakuumisolationselemente (24) zur Isolation vorgesehen sind. - 21.
Behälter nach Aspekt 20, dadurch gekennzeichnet, dass zumindest zwei, insbesondere jeweils vier, Vakuumisolationselemente ((24) nebeneinander in den Wandelementen (03, 04, 05, 06) angeordnet sind, wobei benachbarte Vakuumisolationselemente (24) einander in einer Stoßfuge (30) berühren. - 22.
Behälter nach Aspekt 21, dadurch gekennzeichnet, dass in der Stoßfuge (30) ein wärmeisolierendes Dämmmaterial angeordnet ist. - 23. Behälter nach einem der Aspekte 20
bis 22, dadurch gekennzeichnet, dass die Vakuumisolationselemente in zumindest zwei Schichten übereinander angeordnet sind. - 24.
Behälter nach Aspekt 23, dadurch gekennzeichnet, dass die Stoßfugen zwischen benachbarten Vakuumisolationselementen in verschiedenen Schichten gegeneinander versetzt sind. - 25. Behälter nach einem der Aspekte 1
bis 24, dadurch gekennzeichnet, dass von mehreren Vakuumisolationselementen (24) ein Dämmkörper gebildet wird, der das Innenvolumen (07) allseitig umschließt. - 26. Behälter nach einem der Aspekte 1
bis 25, dadurch gekennzeichnet, dass die Behälterwandung aus Holzplatten und/oder Kunststoffplatten und/oder Metallverbundplatten hergestellt ist. - 27. Behälter nach einem der Aspekte 1
bis 26, dadurch gekennzeichnet, dass die Behälterwandung (02) doppelwandig mit einer Außenwandung (22) und einer Innenwandung (23) ausgebildet ist. - 28.
Behälter nach Aspekt 27, dadurch gekennzeichnet, dass Außenwandung (22) und Innenwandung (23) jeweils mechanisch stabil und selbsttragend ausgebildet sind. - 29.
Behälter nach Aspekt 28, dadurch gekennzeichnet, dass die Außenwandung (22) und/oder die Innenwandung (23) aus einem Leichtbaumaterial, insbesondere einem Sandwichmaterial mit mehreren Materialschichten (26, 27, 28), hergestellt ist. - 30.
Behälter nach Aspekt 29, dadurch gekennzeichnet, dass das Sandwichmaterial eine erste äußere Deckschicht (28) aus faserverstärktem Kunststoff und/oder eine innere Kernschicht (26) aus Sperrholz und/oder eine innere Kernschicht (27) aus geschäumtem Kunststoff, insbesondere geschäumtem Polyurethankunststoff, und/oder eine zweite äußere Deckschicht (28) aus faserverstärktem Kunststoff aufweist. - 31. Behälter nach einem der Aspekte 27
bis 30, dadurch gekennzeichnet, dass die Vakuumisolationselemente (24) zwischen Außenwandung (22) und Innenwandung (23) angeordnet sind. - 32.
Behälter nach Aspekt 31, dadurch gekennzeichnet, dass zwischen den Vakuumisolationselementen (24) einerseits und der Außenwandung (22) und/oder Innenwandung (23) anderseits Stoßschutzelemente (25), insbesondere Stoßschutzelemente (25) aus geschäumtem Kunststoff, angeordnet sind. - 33. Behälter nach einem der Aspekte 27
bis 32, dadurch gekennzeichnet, dass die Schmelzspeicherelemente (16, 17) auf der Innenseite (21) der Innenwandung (23) der doppelwandigen Behälterwandung (02) angeordnet sind. - 34. Behälter nach einem der Aspekte 1
bis 33, dadurch gekennzeichnet, dass der Behälter (01) in der Art eines insbesondere flugtauglichen Transportcontainers ausgebildet ist. - 35.
Behälter nach Aspekt 34, dadurch gekennzeichnet, dass eine Behälterwandung (02) oder ein Teil einer Behälterwandung in der Art einer beweglich gelagerten Tür (06) zum Verschließen der Öffnung des Innenraums (07) des Transportcontainers (01) ausgebildet ist, wobei die Tür insbesondere um eine Vertikalachse schwenkbar gelagert ist. - 36.
Behälter nach Aspekt 34 oder 35, dadurch gekennzeichnet, dass alle Wandelemente (03, 04, 05, 06) des Transportcontainers mit jeweils zumindest einem Vakuumisolationselement (24) isoliert sind. - 37. Behälter nach einem der Aspekte 34
bis 36, dadurch gekennzeichnet, dass in der Trennfuge zwischen Tür (06) und Öffnung des Transportcontainers (01) ein Dichtorgan (20), insbesondere eine doppelte Dichtlippe, angeordnet ist. - 38. Behälter nach einem der Aspekte 34
bis 37, dadurch gekennzeichnet, dass die Vakuumisolationselemente im Bereich der Öffnung des Transportcontainers derart angeordnet sind, dass sich die Vakuumisolationselemente nach Schließen der Tür im Bereich der Trennfuge zumindest geringfügig überlappen. - 39.
Behälter nach Aspekt 38, dadurch gekennzeichnet, dass die Breite der Überlappung zumindest der halben Dicke der Vakuumisolationselemente entspricht. - 40. Behälter nach einem der Aspekte 34
bis 39, dadurch gekennzeichnet, dass die Tür (06) des Transportcontainers (01) mit einem Verschlussorgan (08) verriegelbar ist. - 41.
Behälter nach Aspekt 40, dadurch gekennzeichnet, dass am Verschlussorgan (08) ein Siegel anbringbar ist. - 42.
Behälter nach Aspekt 40oder 41, dadurch gekennzeichnet, dass am Verschlussorgan (08) ein Schloss zum Absperren des Transportcontainers (01) vorgesehen ist. - 43. Behälter nach einem der Aspekte 34
bis 42, dadurch gekennzeichnet, dass der Transportcontainer (01) Funktionselemente (09) zum Eingriff von Staplerzinken aufweist. - 44. Behälter nach einem der Aspekte 34
bis 43, dadurch gekennzeichnet, dass am Transportcontainer (01) zumindest ein Temperatursensor vorgesehen ist, mit dem die Außentemperatur und/oder die Innentemperatur messbar ist. - 45. Behälter nach einem der Aspekte 34
bis 44, dadurch gekennzeichnet, dass am Transportcontainer (01) ein Positionssensor, insbesondere ein GPS-Empfangsgerät, vorgesehen ist, mit dem die Position des Behälters bestimmbar ist. - 46.
Behälter nach Aspekt 44 oder 45, dadurch gekennzeichnet, dass am Transportcontainer (01) ein Datenspeichergerät (10) vorgesehen ist, mit dem Messergebnisse des Temperatursensors und/oder des GPS-Empfangsgeräts gespeichert werden können. - 47. Behälter nach einem der Aspekte 1
bis 33, dadurch gekennzeichnet, dass der Behälter in der Art einer, insbesondere wannenförmigen, Transportbox mit einem abnehmbaren Deckel zum Verschließen der Öffnung des Innenraums ausgebildet ist. - 48. Behälter nach Aspekt 47, dadurch gekennzeichnet, dass nur Teilbereiche der Behälterwandung der Transportbox, insbesondere nur Deckel und Boden der Transportbox, mit jeweils zumindest einem Vakuumisolationselement isoliert sind.
- 49. Behälter nach Aspekt 47 oder 48, dadurch gekennzeichnet, dass die Behälterwandung der Transportbox aus einem geschäumten Kunststoff hergestellt ist.
- 50. Behälter nach einem der Aspekte 1 bis 49, dadurch gekennzeichnet, dass der Behälter zum Transport von pharmazeutischen und/oder biotechnologischen Produkten, insbesondere Impfstoffen, oder Farben oder Lacken vorgesehen ist.
- 51. Behälter nach einem der Aspekte 1 bis 50, dadurch gekennzeichnet, dass am Behälter ein Stützrahmen, insbesondere aus Metallprofilen, zur mechanischen Abstützung der Behälterwandung vorgesehen ist.
- 1. Thermally insulated container, in particular for transport purposes, with a container wall (02) which completely encloses an interior (07), the interior (07) having at least one closable opening and with at least a vacuum insulation element (24) is insulated against heat exchange, characterized in that at least one passive melt storage element is provided in the container (01) and is filled with a melt storage material.
- 2. Container according to
aspect 1, characterized in that the melt storage element is designed in the manner of a melt storage container (29) with a dimensionally stable vessel wall which encloses the melt storage material in a liquid-tight manner. - 3. Container according to
aspect 2, characterized in that the melt storage containers (29) have a flat shape and can be arranged parallel to the container wall (02) in the container (01). - 4. Container according to one of
aspects 1 to 3, characterized in that the melt storage material contains paraffin. - 5. Container according to one of
aspects 1 to 3, characterized in that the melt storage material contains a salt solution. - 6. Container according to one of
aspects 1 to 5, characterized in that at least two different melt storage elements (16, 17) are provided in the container (01), each of which is filled with different melt storage materials. - 7. Container according to
aspect 6, characterized in that the different melt storage materials in the different melt storage elements (16, 17) each have a different melting point. - 8. Container according to one of the
aspects 1 to 7, characterized in that a plurality of melt storage elements are arranged in a plurality of layers in the container, the melt storage elements of the different layers being filled in particular with different melt storage materials. - 9. Container according to one of the
aspects 1 to 8, characterized in that the melt storage elements (16, 17) can be detachably fastened in the container, in particular without tools. - 10. Container according to aspect 9, characterized in that for fastening the melt storage elements (16, 17) in the container (01) at least one fastening rail (18) is provided which engages around the edge of the melt storage elements (16, 17) in a form-fitting manner.
- 11. Container according to one of the
aspects 1 to 10, characterized in that a temperature measuring device, in particular a temperature sensor that changes color depending on the temperature, is provided on at least one melt storage element (16, 17), with which the temperature of the melt storage element (16, 17 ) can be measured. - 12. Container according to one of
aspects 1 to 11, characterized in that the vacuum insulation element (24) has a base body (33), which consists in particular of microporous silica, fiber material, microfiber material or open-pore polymer foam, and which is gas-tight from a film (34) is enclosed, the inner space (35) formed thereby by the film (34) being evacuated. - 13. Container according to
aspect 12, characterized in that the film (34) of the vacuum insulation element (24) has no protruding edge tabs. - 14. Container according to one of
aspects 1 to 13, characterized in that the vacuum insulation element (24) has a layer thickness of 5 mm to 100 mm. - 15. Container according to one of the
aspects 1 to 14, characterized in that the vacuum insulation element (24) has an internal or external control system (31) for checking the internal gas pressure in the vacuum insulation element (24). - 16. A container according to
aspect 15, characterized in that at least one inspection opening (19) is present in the container wall (02) through which is accessible to the control system (31) for checking the internal gas pressure in the vacuum insulation element (24). - 17. A container according to
aspect 16, characterized in that the inspection opening (19) can be closed with an in particular transparent cover (32). - 18. Container according to one of
aspects 1 to 17, characterized in that the vacuum insulation elements (24) have a flat shape, in particular are designed in the manner of thermal insulation boards. - 19. Container according to one of the
aspects 1 to 18, characterized in that the container wall (02) is formed by several, in particular rectangular and flat, wall elements (03, 04, 05, 06), in particular that three side wall elements (03) Ceiling element (05), a floor element (04) and a door element (06) are provided. - 20. Container according to
aspect 19, characterized in that in each individual wall element (03, 04, 05, 06) a plurality of vacuum insulation elements (24) are provided for insulation. - 21. Container according to
aspect 20, characterized in that at least two, in particular four, vacuum insulation elements ((24) are arranged next to one another in the wall elements (03, 04, 05, 06), with adjacent vacuum insulation elements (24) in a butt joint ( 30) touch. - 22. Container according to
aspect 21, characterized in that a heat-insulating insulation material is arranged in the butt joint (30). - 23. Container according to one of the
aspects 20 to 22, characterized in that the vacuum insulation elements are arranged one above the other in at least two layers. - 24. Container according to
aspect 23, characterized in that the butt joints between adjacent vacuum insulation elements in different layers are offset from one another. - 25. Container according to one of the
aspects 1 to 24, characterized in that an insulating body is formed by several vacuum insulation elements (24), which encloses the inner volume (07) on all sides. - 26. Container according to one of the
aspects 1 to 25, characterized in that the container wall is made of wooden panels and / or plastic panels and / or metal composite panels. - 27. Container according to one of the
aspects 1 to 26, characterized in that the container wall (02) is double-walled with an outer wall (22) and an inner wall (23). - 28. Container according to
aspect 27, characterized in that the outer wall (22) and inner wall (23) are each mechanically stable and self-supporting. - 29. Container according to
aspect 28, characterized in that the outer wall (22) and / or the inner wall (23) is made of a lightweight material, in particular a sandwich material with a plurality of material layers (26, 27, 28). - 30. Container according to
aspect 29, characterized in that the sandwich material has a first outer cover layer (28) made of fiber-reinforced plastic and / or an inner core layer (26) made of plywood and / or an inner core layer (27) made of foamed plastic, in particular foamed polyurethane plastic , and / or has a second outer cover layer (28) made of fiber-reinforced plastic. - 31. Container according to one of the
aspects 27 to 30, characterized in that the vacuum insulation elements (24) are arranged between the outer wall (22) and the inner wall (23). - 32. Container according to
aspect 31, characterized in that between the vacuum insulation elements (24) on the one hand and the outer wall (22) and / or Inner wall (23) on the other hand shock protection elements (25), in particular shock protection elements (25) made of foamed plastic, are arranged. - 33. Container according to one of the
aspects 27 to 32, characterized in that the melt storage elements (16, 17) are arranged on the inside (21) of the inner wall (23) of the double-walled container wall (02). - 34. Container according to one of the
aspects 1 to 33, characterized in that the container (01) is designed in the manner of a transport container which is particularly suitable for flying. - 35. Container according to
aspect 34, characterized in that a container wall (02) or part of a container wall is designed in the manner of a movably mounted door (06) for closing the opening of the interior (07) of the transport container (01), the Door in particular is pivotally mounted about a vertical axis. - 36. Container according to
aspect 34 or 35, characterized in that all wall elements (03, 04, 05, 06) of the transport container are each insulated with at least one vacuum insulation element (24). - 37. Container according to one of the
aspects 34 to 36, characterized in that a sealing element (20), in particular a double sealing lip, is arranged in the joint between the door (06) and the opening of the transport container (01). - 38. Container according to one of the
aspects 34 to 37, characterized in that the vacuum insulation elements are arranged in the region of the opening of the transport container in such a way that the vacuum insulation elements overlap at least slightly after the door is closed in the region of the joint. - 39. Container according to
aspect 38, characterized in that the width of the overlap corresponds to at least half the thickness of the vacuum insulation elements. - 40. Container according to one of the
aspects 34 to 39, characterized in that the door (06) of the transport container (01) can be locked with a locking member (08). - 41. Container according to
aspect 40, characterized in that a seal can be attached to the closure member (08). - 42. Container according to
40 or 41, characterized in that a lock is provided on the closure member (08) to shut off the transport container (01).aspect - 43. Container according to one of the
aspects 34 to 42, characterized in that the transport container (01) has functional elements (09) for engaging forklift tines. - 44. Container according to one of the
aspects 34 to 43, characterized in that at least one temperature sensor is provided on the transport container (01) with which the outside temperature and / or the inside temperature can be measured. - 45. Container according to one of the
aspects 34 to 44, characterized in that a position sensor, in particular a GPS receiving device, is provided on the transport container (01) with which the position of the container can be determined. - 46. Container according to
aspect 44 or 45, characterized in that a data storage device (10) is provided on the transport container (01), with which measurement results of the temperature sensor and / or the GPS receiving device can be stored. - 47. Container according to one of the
aspects 1 to 33, characterized in that the container is designed in the manner of a, in particular trough-shaped, transport box with a removable lid for closing the opening of the interior. - 48. Container according to aspect 47, characterized in that only partial areas of the container wall of the transport box, in particular only the lid and bottom of the transport box, are each insulated with at least one vacuum insulation element.
- 49. Container according to aspect 47 or 48, characterized in that the container wall of the transport box is made of a foamed plastic.
- 50. Container according to one of the
aspects 1 to 49, characterized in that the container is provided for the transport of pharmaceutical and / or biotechnological products, in particular vaccines, or paints or varnishes. - 51. Container according to one of the
aspects 1 to 50, characterized in that a support frame, in particular made of metal profiles, is provided on the container for mechanical support of the container wall.
Claims (15)
dadurch gekennzeichnet,
dass die Behälterwandung (02) doppelwandig mit einer Außenwandung (22) und einer Innenwandung (23) ausgebildet ist,
dass die Außenwandung (22) und die Innenwandung (23) jeweils mechanisch stabil und selbsttragend ausgebildet sind,
dass der Innenraum (07) mit mehreren Vakuumisolationselementen (24) gegen Wärmeaustausch isoliert ist und
dass die Vakuumisolationselemente (24) zwischen der Außenwandung (22) und der Innenwandung (23) angeordnet sind.Thermally insulated container, in particular for transport purposes, with a container wall (02) which completely encloses an interior (07) and is formed by a plurality of wall elements (03, 04, 05, 06), namely by three side wall elements (03), a ceiling element (05 ), a base element (04) and a door element (06), the interior (07) having at least one closable opening and in the container (01) several passive melt storage elements (16, 17) are provided, each of which is filled with a melt storage material,
characterized,
that the container wall (02) is double-walled with an outer wall (22) and an inner wall (23),
that the outer wall (22) and the inner wall (23) are each mechanically stable and self-supporting,
that the interior (07) is insulated against heat exchange with a plurality of vacuum insulation elements (24) and
that the vacuum insulation elements (24) are arranged between the outer wall (22) and the inner wall (23).
vorzugsweise wobei zur Befestigung der Schmelzspeicherelemente (16, 17) im Behälter (01) mehrere Befestigungsschienen (18) vorgesehen sind, die einen Rand der Schmelzspeicherelemente (16, 17) formschlüssig umgreifen.Container according to claim 1, characterized in that the melt storage elements (16, 17) can be detachably fastened in the container (01), in particular without tools,
Preferably, a plurality of fastening rails (18) are provided for fastening the melt storage elements (16, 17) in the container (01), said fastening rails engaging around an edge of the melt storage elements (16, 17) in a form-fitting manner.
vorzugsweise wobei das Türelement (06) als beweglich gelagerte Tür (06) zum Verschließen der Öffnung des Innenraums (07) des Transportcontainers (01) ausgebildet ist, wobei die Tür (06) insbesondere um eine Vertikalachse schwenkbar gelagert ist.Container according to one of claims 1 to 10, characterized in that the container (01) is designed in the manner of a transport container which is particularly suitable for flying,
Preferably, the door element (06) as a movably mounted door (06) for closing the opening of the interior (07) of the transport container (01) is formed, wherein the door (06) is in particular pivotally mounted about a vertical axis.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10322764A DE10322764A1 (en) | 2003-05-19 | 2003-05-19 | Containers with vacuum insulation and melt storage materials |
PCT/DE2004/000953 WO2004104498A2 (en) | 2003-05-19 | 2004-05-05 | Heat insulated container |
EP04738481.3A EP1625338B2 (en) | 2003-05-19 | 2004-05-05 | Heat insulated container |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04738481.3A Division EP1625338B2 (en) | 2003-05-19 | 2004-05-05 | Heat insulated container |
EP04738481.3A Division-Into EP1625338B2 (en) | 2003-05-19 | 2004-05-05 | Heat insulated container |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3671078A1 true EP3671078A1 (en) | 2020-06-24 |
EP3671078B1 EP3671078B1 (en) | 2024-02-14 |
Family
ID=33461829
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20156390.5A Expired - Lifetime EP3671078B1 (en) | 2003-05-19 | 2004-05-05 | Thermally insulated container |
EP14004268.0A Revoked EP2876389B1 (en) | 2003-05-19 | 2004-05-05 | Thermally insulated container |
EP04738481.3A Expired - Lifetime EP1625338B2 (en) | 2003-05-19 | 2004-05-05 | Heat insulated container |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14004268.0A Revoked EP2876389B1 (en) | 2003-05-19 | 2004-05-05 | Thermally insulated container |
EP04738481.3A Expired - Lifetime EP1625338B2 (en) | 2003-05-19 | 2004-05-05 | Heat insulated container |
Country Status (4)
Country | Link |
---|---|
US (1) | US20070051734A1 (en) |
EP (3) | EP3671078B1 (en) |
DE (1) | DE10322764A1 (en) |
WO (1) | WO2004104498A2 (en) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10322764A1 (en) | 2003-05-19 | 2004-12-30 | Va-Q-Tec Ag | Containers with vacuum insulation and melt storage materials |
DE102006045471A1 (en) * | 2006-09-26 | 2008-04-03 | Va-Q-Tec Ag | Method for determining the gas pressure in evacuated bodies |
US9180998B2 (en) | 2007-09-11 | 2015-11-10 | Cold Chain Technologies, Inc. | Insulated pallet shipper and methods of making and using the same |
US7823394B2 (en) * | 2007-11-02 | 2010-11-02 | Reflect Scientific, Inc. | Thermal insulation technique for ultra low temperature cryogenic processor |
DE102009004353A1 (en) * | 2009-01-08 | 2010-07-15 | SCHÜCO International KG | Device and method for room temperature control and thermal room conditioning |
US20100200599A1 (en) * | 2009-02-10 | 2010-08-12 | Robert Molthen | Vacuum insulated container |
TW201205267A (en) * | 2010-07-26 | 2012-02-01 | Wistron Corp | Detecting device capable of economizing electricity and detecting method thereof |
FR2974353B1 (en) * | 2011-04-19 | 2014-06-13 | Emball Iso | ISOTHERMAL CONDITIONING DEVICE FOR THERMOSENSITIVE PRODUCTS |
US20130255306A1 (en) * | 2012-03-27 | 2013-10-03 | William T. Mayer | Passive thermally regulated shipping container employing phase change material panels containing dual immiscible phase change materials |
US9140481B2 (en) * | 2012-04-02 | 2015-09-22 | Whirlpool Corporation | Folded vacuum insulated structure |
DE102012022398B4 (en) * | 2012-11-16 | 2019-03-21 | delta T Gesellschaft für Medizintechnik mbH | Modular insulated container |
DE102012025192A1 (en) * | 2012-12-10 | 2014-06-12 | Va-Q-Tec Ag | Method and apparatus for the preconditioning of latent heat storage elements |
DE202013001161U1 (en) | 2012-12-11 | 2013-03-28 | Va-Q-Tec Ag | Bottle cooler and latent heat storage element for a bottle cooler |
DE102013002555A1 (en) | 2012-12-18 | 2014-06-18 | Va-Q-Tec Ag | Method and apparatus for the preconditioning of latent heat storage elements |
FR3001721A1 (en) * | 2013-02-05 | 2014-08-08 | Sofrigam | System for ensuring compliance of low temperature conditions for products e.g. drugs, transported in refrigerating box, has temperature sensor placed inside transport box, and CPU intended to record temperatures measured by sensor |
US11248830B2 (en) * | 2014-04-04 | 2022-02-15 | Sunwell Engineering Company Limited | Storage unit for maintaining a generally constant temperature |
DE102014007987A1 (en) | 2014-05-30 | 2015-12-03 | Va-Q-Tec Ag | Transport container system |
DE202014004515U1 (en) * | 2014-05-30 | 2015-09-03 | Va-Q-Tec Ag | Transport container system |
GB2530077A (en) * | 2014-09-12 | 2016-03-16 | Peli Biothermal Ltd | Thermally insulated containers |
DE202014008489U1 (en) | 2014-10-27 | 2016-01-28 | Va-Q-Tec Ag | Box-shaped transport container |
DE102014015770A1 (en) | 2014-10-27 | 2016-04-28 | Va-Q-Tec Ag | Box-shaped transport container |
DE202014008814U1 (en) | 2014-11-07 | 2016-02-11 | Va-Q-Tec Ag | transport container |
DE102014016393A1 (en) | 2014-11-07 | 2016-05-12 | Va-Q-Tec Ag | transport container |
DE102015007277A1 (en) | 2015-06-10 | 2016-12-15 | Va-Q-Tec Ag | Heat-insulating body for a cooling unit and cooling unit with a heat-insulating body |
DE202015004047U1 (en) | 2015-06-10 | 2016-09-14 | Va-Q-Tec Ag | Heat-insulating body for a cooling unit and cooling unit with a heat-insulating body |
WO2017044934A1 (en) * | 2015-09-11 | 2017-03-16 | The Sure Chill Company Limited | Portable refrigeration apparatus |
US10583978B2 (en) | 2015-10-06 | 2020-03-10 | Cold Chain Technologies, Llc | Pallet cover compromising one or more temperature-control members and kit for use in making the pallet cover |
US11591133B2 (en) | 2015-10-06 | 2023-02-28 | Cold Chain Technologies, Llc | Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover |
CA3001048C (en) | 2015-10-06 | 2020-11-24 | Cold Chain Technologies, Inc. | Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover |
US11964795B2 (en) | 2015-10-06 | 2024-04-23 | Cold Chain Technologies, Llc | Device comprising one or more temperature-control members and kit for use in making the device |
EP3359889B1 (en) | 2015-10-06 | 2020-08-05 | Cold Chain Technologies, LLC | Thermally insulated shipping system for pallet-sized payload |
DE202016001097U1 (en) | 2016-01-28 | 2017-05-02 | Va-Q-Tec Ag | Transport container system |
EP3228960A1 (en) | 2016-04-08 | 2017-10-11 | ROTTER, Thomas | Vacuum insulation element, vacuum insulation package and vacuum insulation crate |
JP6925106B2 (en) * | 2016-07-19 | 2021-08-25 | 富士フイルム富山化学株式会社 | Transport device |
JP6870985B2 (en) * | 2016-12-28 | 2021-05-12 | 旭ファイバーグラス株式会社 | Vacuum heat insulating material |
DE102017000622B4 (en) | 2017-01-25 | 2023-10-26 | Va-Q-Tec Ag | Method for preparing a transport container |
NL2018588B1 (en) * | 2017-03-28 | 2018-03-26 | Turtle B V | Flight case suited to transport musical instruments |
US11511928B2 (en) | 2017-05-09 | 2022-11-29 | Cold Chain Technologies, Llc | Shipping system for storing and/or transporting temperature-sensitive materials |
WO2018208986A1 (en) | 2017-05-09 | 2018-11-15 | Cold Chain Technologies, Inc. | Shipping system for storing and/or transporting temperature-sensitive materials |
FR3076285B1 (en) * | 2018-01-03 | 2021-01-15 | Sofrigam | DEVICE AND METHOD FOR GUARANTEEING A RELIABLE TEMPERATURE READING IN A THERMO-INSULATING CASE. |
US10935299B2 (en) * | 2018-06-13 | 2021-03-02 | Cedric Davis | Quick freeze cooler |
DE202018104488U1 (en) * | 2018-08-03 | 2018-08-14 | Va-Q-Tec Ag | Pallet container for the transport of temperature-sensitive goods |
US11999559B2 (en) | 2018-08-10 | 2024-06-04 | Cold Chain Technologies, Llc | Apparatus and method for protectively covering temperature sensitive products |
DE202018104807U1 (en) | 2018-08-21 | 2018-08-28 | Va-Q-Tec Ag | Vacuum-insulated stacking container for the temperature-controlled transport of foodstuffs |
DE202018106306U1 (en) | 2018-11-06 | 2018-11-13 | Va-Q-Tec Ag | Temperable container with vacuum insulation elements |
US11137190B2 (en) | 2019-06-28 | 2021-10-05 | Cold Chain Technologies, Llc | Method and system for maintaining temperature-sensitive materials within a desired temperature range for a period of time |
US20210070539A1 (en) | 2019-09-05 | 2021-03-11 | Cold Chain Technologies, Llc | Shipping system for temperature-sensitive materials |
PL241881B1 (en) * | 2020-02-03 | 2022-12-19 | Univ West Pomeranian Szczecin Tech | Method of securing a refrigerated container and a cover for securing a refrigerated container |
US20210403224A1 (en) * | 2020-06-24 | 2021-12-30 | World Courier Management Limited | Packaging system for transporting temperature-sensitive products |
DE202020104675U1 (en) * | 2020-08-12 | 2020-09-30 | Va-Q-Tec Ag | Transport container for temperature-controlled transport of temperature-sensitive goods |
US20220081200A1 (en) * | 2020-09-11 | 2022-03-17 | Sonoco Development, Inc. | Passive Temperature Controlled Packaging System as a ULD |
EP4288351A1 (en) * | 2021-02-03 | 2023-12-13 | Peli Biothermal LLC | Passive thermally controlled condition-in-place shipping container |
WO2024102719A2 (en) * | 2022-11-07 | 2024-05-16 | Peli Biothermal Llc | Passive thermally controlled shipping container and methods of in-place thermal conditioning, holistic evaluation of thermal integrity, repairing or replacing deficient components and loading |
EP4410704A1 (en) | 2023-01-31 | 2024-08-07 | Rep Ip Ag | Transport container for transporting temperature-sensitive goods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63188481U (en) * | 1987-05-22 | 1988-12-02 | ||
JPH04302978A (en) * | 1991-03-28 | 1992-10-26 | Matsushita Refrig Co Ltd | Cold-heat storage type thermal insulation container |
WO1997012100A1 (en) * | 1995-09-25 | 1997-04-03 | Owens Corning | Modular insulation panels and insulated structures |
WO2000040908A1 (en) | 1999-01-07 | 2000-07-13 | Unilever Plc | Freezer cabinet |
DE10148587C1 (en) * | 2001-03-19 | 2002-11-28 | Hans Zucker Gmbh & Co Kg | Thermal container includes thermal insulators which are embedded in annular insulation flange and lid which is releasably seated in flange |
JP2003106760A (en) * | 2001-09-27 | 2003-04-09 | Mitsubishi Corp | Highly heat insulating composite panel and structure using the same |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4091842A (en) | 1977-07-28 | 1978-05-30 | The Dow Chemical Company | Resealable sealing assembly for inspection port hole |
US4313993A (en) | 1980-04-14 | 1982-02-02 | Mcglory Joseph J | Laminated insulation |
US4351271A (en) | 1980-09-04 | 1982-09-28 | Paul Mueller Company | Refrigerated receiver |
US4845959A (en) | 1988-06-27 | 1989-07-11 | Fort Valley State College | Fruits and vegetables precooling, shipping and storage container |
SE467106B (en) | 1991-03-05 | 1992-05-25 | Eurotainer Ab | TRANSPORT CONTAINERS FOR TEMPERATURE-SENSITIVE GOODS |
US5351718A (en) | 1993-06-28 | 1994-10-04 | Barton David D | Access plug flange |
US5522216A (en) | 1994-01-12 | 1996-06-04 | Marlow Industries, Inc. | Thermoelectric refrigerator |
JPH0868591A (en) * | 1994-08-29 | 1996-03-12 | Toshiba Corp | Heat-insulating box |
US5518033A (en) | 1994-09-19 | 1996-05-21 | Sepco Industries | Vessel inspection plug and method of installing same in vessel |
US5520220A (en) | 1995-08-29 | 1996-05-28 | Barton; David D. | Access mounting flange for cold temperature chemical processing equipment |
US5669233A (en) | 1996-03-11 | 1997-09-23 | Tcp Reliable Inc. | Collapsible and reusable shipping container |
US7253731B2 (en) | 2001-01-23 | 2007-08-07 | Raymond Anthony Joao | Apparatus and method for providing shipment information |
US5950450A (en) * | 1996-06-12 | 1999-09-14 | Vacupanel, Inc. | Containment system for transporting and storing temperature-sensitive materials |
US5918478A (en) | 1996-08-30 | 1999-07-06 | Vesture Corporation | Insulated chest and method |
US5865346A (en) | 1997-01-07 | 1999-02-02 | Del Zotto; William M. | Self-contained fueling system and method |
JPH10239199A (en) † | 1997-02-28 | 1998-09-11 | Toshiba Corp | Device for measuring degree of vacuum |
US5924302A (en) | 1997-03-27 | 1999-07-20 | Foremost In Packaging Systems, Inc. | Insulated shipping container |
JPH10292984A (en) | 1997-04-18 | 1998-11-04 | Hitachi Ltd | Refrigerator |
FR2762899A1 (en) | 1997-05-02 | 1998-11-06 | Applic Gaz Sa | Thermally insulated portable container serving as e.g. ice-box |
US5893479A (en) | 1997-07-17 | 1999-04-13 | Berberat; Henry | Storage tank vault |
US5899088A (en) * | 1998-05-14 | 1999-05-04 | Throwleigh Technologies, L.L.C. | Phase change system for temperature control |
US6065314A (en) | 1998-05-22 | 2000-05-23 | Nicholson; John W. | Lock for freight containers |
US6244458B1 (en) | 1998-07-09 | 2001-06-12 | Thermo Solutions, Inc. | Thermally insulated container |
US6209343B1 (en) * | 1998-09-29 | 2001-04-03 | Life Science Holdings, Inc. | Portable apparatus for storing and/or transporting biological samples, tissues and/or organs |
WO2000048753A1 (en) | 1999-02-18 | 2000-08-24 | Kyowa Co., Ltd. | Thermal decomposer for waste |
EP1045079B1 (en) * | 1999-04-12 | 2007-10-03 | Isuzu Motors Limited | Heat insulating wall member, and method of manufacturing the same |
US6470821B1 (en) | 1999-05-26 | 2002-10-29 | Insulated Shipping Containers | Method and apparatus for the evaluation of vacuum insulation panels |
DE10015876A1 (en) * | 2000-03-30 | 2001-10-11 | Jobst H Kerspe | Vacuum insulation panel for lining refrigerating units, cold storage rooms and similar items comprises cover foils which are welded to one another so that the panel contact edges are at least largely free from protrusions |
DE10058566C2 (en) | 2000-08-03 | 2002-10-31 | Va Q Tec Ag | Foil-wrapped, evacuated thermal insulation body and manufacturing process for it |
AUPR312901A0 (en) | 2001-02-15 | 2001-03-08 | Creative Packaging Services Pty Ltd | Temperature retaining container |
JP2002264717A (en) | 2001-03-12 | 2002-09-18 | Isuzu Motors Ltd | Body of insulated van |
US6718776B2 (en) † | 2001-07-10 | 2004-04-13 | University Of Alabama In Huntsville | Passive thermal control enclosure for payloads |
US20030082357A1 (en) * | 2001-09-05 | 2003-05-01 | Cem Gokay | Multi-layer core for vacuum insulation panel and insulated container including vacuum insulation panel |
DE10158441A1 (en) | 2001-11-29 | 2003-06-18 | Va Q Tec Ag | Determination of the gas pressure inside a film enclosed insulation panel by application of a vacuum connection piece to a measurement plate beneath the film insulation film so that the film is lifted away from the plate |
DE10215213C1 (en) | 2002-04-06 | 2003-09-11 | Va Q Tec Ag | Gas pressure in sheet-enveloped evacuated thermal insulation panel determining device, has built-in covered metal plate acting as thermal reservoir |
DE10243120A1 (en) | 2002-09-17 | 2004-03-25 | N. Romijn B.V. | Transporting container for temperature-sensitive products has insulating core between outer and inner skins of wall, and outer skin has reinforcing layer with braid or fabric and also layer of elastic synthetic material or rubber |
DE10322764A1 (en) | 2003-05-19 | 2004-12-30 | Va-Q-Tec Ag | Containers with vacuum insulation and melt storage materials |
-
2003
- 2003-05-19 DE DE10322764A patent/DE10322764A1/en not_active Withdrawn
-
2004
- 2004-05-05 EP EP20156390.5A patent/EP3671078B1/en not_active Expired - Lifetime
- 2004-05-05 EP EP14004268.0A patent/EP2876389B1/en not_active Revoked
- 2004-05-05 WO PCT/DE2004/000953 patent/WO2004104498A2/en active Application Filing
- 2004-05-05 US US10/557,398 patent/US20070051734A1/en not_active Abandoned
- 2004-05-05 EP EP04738481.3A patent/EP1625338B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63188481U (en) * | 1987-05-22 | 1988-12-02 | ||
JPH04302978A (en) * | 1991-03-28 | 1992-10-26 | Matsushita Refrig Co Ltd | Cold-heat storage type thermal insulation container |
WO1997012100A1 (en) * | 1995-09-25 | 1997-04-03 | Owens Corning | Modular insulation panels and insulated structures |
WO2000040908A1 (en) | 1999-01-07 | 2000-07-13 | Unilever Plc | Freezer cabinet |
DE10148587C1 (en) * | 2001-03-19 | 2002-11-28 | Hans Zucker Gmbh & Co Kg | Thermal container includes thermal insulators which are embedded in annular insulation flange and lid which is releasably seated in flange |
JP2003106760A (en) * | 2001-09-27 | 2003-04-09 | Mitsubishi Corp | Highly heat insulating composite panel and structure using the same |
Also Published As
Publication number | Publication date |
---|---|
EP3671078B1 (en) | 2024-02-14 |
EP2876389B1 (en) | 2018-01-10 |
DE10322764A1 (en) | 2004-12-30 |
WO2004104498A3 (en) | 2005-03-31 |
EP2876389A1 (en) | 2015-05-27 |
WO2004104498A2 (en) | 2004-12-02 |
EP1625338B1 (en) | 2020-02-12 |
EP1625338B2 (en) | 2023-04-12 |
US20070051734A1 (en) | 2007-03-08 |
EP1625338A2 (en) | 2006-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3671078B1 (en) | Thermally insulated container | |
DE3843287C2 (en) | ||
EP2041502B1 (en) | Transport container for maintaining the temperature of frozen goods | |
DE69533667T2 (en) | PALLET BASED COOLED TRANSPORT SYSTEM | |
EP2943414A1 (en) | Modular insulated container and method for operating same | |
WO2020038939A1 (en) | Transport container | |
DE102015113693A1 (en) | Thermally insulated transport container with heat insulation applied to the walls and wall construction of such a container | |
WO2014094995A2 (en) | Method for preconditioning latent heat storage elements | |
EP2354729B1 (en) | Device for adjusting cryogenic temperatures | |
DE3915925A1 (en) | CONTAINER FOR THE TEMPERATURE AND AIR CONDITIONED TRANSPORT OF PERSONAL GOODS | |
WO2018015350A1 (en) | Refrigerated container and method for transporting cryosamples | |
DE202020103635U1 (en) | Holding system and transport system | |
DE202010011159U1 (en) | cooling box | |
WO2008037451A2 (en) | Method and device for determining the gas pressure in evacuated bodies | |
DE202004016939U1 (en) | Portable thermally insulating transport container with a lid comprises inner and outer shells which bracket vacuum insulation panels and their protection elements | |
EP3293468B1 (en) | Cold transport container | |
DE102006040697B3 (en) | Container for the storage and transport of information technology equipment has inner rectangular profiled metal frame | |
EP1915045B1 (en) | Operating, storage and transport container for IT equipment | |
DE112007003664T5 (en) | Wall construction for an insulated enclosure | |
DE102016002472A1 (en) | insulating insert | |
DE202012003101U1 (en) | Retrofittable insulation system for storage or transport containers for goods to be tempered | |
DE102017102845B4 (en) | reusable transport container | |
EP2381239B1 (en) | Corrosion inspection device | |
DE2360032A1 (en) | PROCESS FOR GENERATING LOW TEMPERATURES IN TEST CHAMBERS DURING HIGH PERFORMANCE TESTS OF EQUIPMENT | |
EP3912928A1 (en) | Holding system and transport system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1625338 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201222 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB IT LI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220125 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230905 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1625338 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015891 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |