EP2876389B1 - Thermally insulated container - Google Patents

Thermally insulated container Download PDF

Info

Publication number
EP2876389B1
EP2876389B1 EP14004268.0A EP14004268A EP2876389B1 EP 2876389 B1 EP2876389 B1 EP 2876389B1 EP 14004268 A EP14004268 A EP 14004268A EP 2876389 B1 EP2876389 B1 EP 2876389B1
Authority
EP
European Patent Office
Prior art keywords
elements
wall
container
vacuum insulation
container according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP14004268.0A
Other languages
German (de)
French (fr)
Other versions
EP2876389A1 (en
Inventor
Joachim Kuhn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Va Q Tec AG
Original Assignee
Va Q Tec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33461829&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2876389(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Va Q Tec AG filed Critical Va Q Tec AG
Publication of EP2876389A1 publication Critical patent/EP2876389A1/en
Application granted granted Critical
Publication of EP2876389B1 publication Critical patent/EP2876389B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • F25D23/063Walls defining a cabinet formed by an assembly of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08221Fasteners or fixing means for the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/084Position of the cold storage material in relationship to a product to be cooled
    • F25D2303/0843Position of the cold storage material in relationship to a product to be cooled on the side of the product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/085Compositions of cold storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/804Boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/36Visual displays

Definitions

  • the invention relates to a thermally insulated container according to the preamble of claim 1.
  • thermally insulated containers are used in particular, but not exclusively, for transportation purposes in order to convey temperature-sensitive goods, for example medicines, while maintaining close temperature tolerances.
  • a container wall is provided in generic containers, which completely encloses an interior, in which the material to be transported is arranged. At least one closable opening is provided in the container wall in order to be able to introduce the item to be transported into the container.
  • Vacuum insulation elements In order to keep the heat flow through the container wall as low as possible, vacuum insulation elements are used for insulation. Vacuum insulation elements have a very high heat transfer resistance at a relatively low layer thickness, so that given a given outer volume, a relatively large usable volume is given with sufficient heat insulation. Due to the vacuum insulation elements, the heat flow from the outside to the inside as well as from the inside to the outside is made more difficult, so that the goods to be transported are protected against excessive heat as well as against excessive cold.
  • Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Also known are systems in which dry ice is evaporated and the resulting cold vapor is used to cool the interior. These actively cooled containers have the disadvantage that they are extremely sensitive to disturbances. For example, if the electric air conditioning or the fan of the dry ice system is not supplied with sufficient electrical energy, then sufficient cooling is no longer guaranteed and the transported goods spoils.
  • thermally insulated container cooled with an active cooling system, for transportation ( JP 2002-264717 A ), which is designed as a truck semi-trailer, is the starting point for the teaching of the present invention.
  • insulated containers for transport purposes on the type of transport boxes with removable lid are known ( US 6,062,040 A ).
  • a foamed plastic is used to produce the container wall of the transport box.
  • the thermally insulated container is a container in the manner of a transport container.
  • This transport container has three side wall elements, a ceiling element, a bottom element and at least one door element.
  • the door element is pivotally mounted about a vertical axis.
  • the interior of the transport container is easily accessible.
  • the transport container is characterized in that the container wall is double-walled with a dimensionally stable outer wall and a dimensionally stable inner wall.
  • the vacuum insulation elements are located between the outer wall and the inner wall. In order to be able to be arranged between the outer wall and the inner wall, the vacuum insulation elements are formed as thermal insulation panels. All wall elements of the transport container are insulated with at least one vacuum insulation element.
  • the vacuum insulation elements are formed is basically arbitrary.
  • a base body is used, which is enclosed gas-tight with a film.
  • the interior formed by the film is evacuated to thereby realize the desired insulation properties.
  • the main body itself gives the vacuum insulation element the required mechanical stability, wherein open-porous materials should be used to produce the basic body in order to ensure sufficient evacuability.
  • film-coated vacuum insulation elements are used, they should preferably have no protruding edge tabs made of film, so that the Butt joint between adjacent vacuum insulation elements can be made as narrow as possible.
  • the vacuum insulation elements should have a control system for controlling the internal gas pressure.
  • metal flakes can be arranged below the enveloping film, wherein the internal gas pressure can then be derived by applying a temperature jump using suitable diagnostic equipment in the area of the metal flakes.
  • the container wall should have inspection openings, through which the control system for controlling the internal gas pressure is accessible.
  • the control system for controlling the internal gas pressure is accessible.
  • covers may be provided on the access openings, which are preferably transparent, so that the control system located behind the cover can be inspected from the outside.
  • the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other.
  • the resulting heat flow resistance results essentially from the addition of the heat flow resistance of the individual layers.
  • melt storage elements which are filled with a suitable melt storage material.
  • Such melt storage elements have the property that they can store or release a certain amount of heat by phase transformation of the melt storage material. In other words, this means that the melt storage material melts in the melt storage element when heated until the entire supply of melt storage material has gone into the liquid phase.
  • the heat energy required for the phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled inversely, the melt storage material gradually solidifies and releases the stored amount of heat during this phase transformation. As a result, the melt storage elements thus buffer the heat flow according to their respective capacity until the capacity limits are reached.
  • melt storage material for example paraffin
  • a heat flow buffering in the temperature range above 0 ° C is possible. If, by contrast, a salt solution is contained in the melt storage material, for example, the heat flow can be buffered below 0 ° C. in the temperature range.
  • each melt storage material has an optimal buffering area depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, which are each filled with different melt storage materials.
  • the buffer area can be spread. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.
  • temperature measuring devices are provided on the melt storage elements, with which the temperature of the melt storage element can be measured.
  • known temperature sensors can be used with displays that discolor depending on the temperature.
  • a trained in the manner of a transport container container 01 is shown in perspective.
  • heat-sensitive goods such as drugs, especially vaccines, can be transported over long distances on the plane.
  • the base of the container 01 corresponds to the area of a standard pallet.
  • the container wall 02 of the container 01 consists of three rectangular side wall elements 03, a rectangular bottom element 04, a rectangular ceiling element 05 and a pivotally mounted door element 06.
  • the three side wall elements 03, the bottom element 04 and the ceiling element 05 are fixed to form a rectangular interior 07 connected. After closing the door member 06, the interior 07 is enclosed on all sides and insulated against the flow of heat through the container wall 02 by means of vacuum insulation elements, which are described in more detail below.
  • a closure member 08 To lock the door member 06 is a closure member 08, by the actuation in Fig. 1 Unlocked locking elements can be unlocked or locked. On the closure member 08, a seal can be attached to secure the container 01 against unauthorized opening. Alternatively or in addition thereto, a lock, for example a cylinder lock or number lock, may be provided on the closure member 08 in order to preclude unauthorized opening of the container 01.
  • a data storage device 10 is mounted in a recess. It is protected from the outside by a cover 11 (see also Fig. 9 ). To protect the container wall 02 against the ingress of sharp objects can be mounted on the outside guard rails 15 in particularly vulnerable areas.
  • the guard rails 15 may be made for example of a metal sheet.
  • the inside structure of the container 01 is made Fig. 2 seen.
  • the melt storage elements 16 are included filled with a paraffin-containing melt storage material, whereas the melt storage elements 17 contain a salt solution.
  • the melt storage elements 16 and 17 serve mounting rails 18 (see also Fig. 3 ), which engage round the melt storage elements 16 and 17 in each case at the upper or lower edge in a form-fitting manner. In this way, the melt storage elements 16 and 17 can be easily replaced by being inserted from the door side into the mounting rails 18.
  • the melt storage elements 16 and 17 are fixed to the inside of the container wall 02. This type of attachment allows in particular, the melting storage elements 16 and 17 without tools to assemble or disassemble.
  • each inspection openings 19 are provided, whose function will be explained in more detail below.
  • a sealing lip 20 is fixed on the inside, with the closing of the door member 06, the parting line between the door member 06 on the one hand and the edge of the two opposite side wall elements 03 and the edge of the ceiling element 05 and the bottom element 04 is sealed.
  • Fig. 3 the container 01 is shown schematically in cross-section from the front.
  • the flat, namely plate-shaped melt storage elements 16 and 17 are arranged parallel to the container wall 02 on the inner side 21 of the container 01.
  • the container wall 02 itself is double-walled from a dimensionally stable outer wall 22 and a likewise dimensionally stable inner wall 23 constructed. Between this mechanically stable double wall of outer wall 22 and inner wall 23 provided for isolation vacuum insulation elements 24 are arranged. Between the vacuum insulation elements 24 and the outer wall 22 impact protection elements 25 are provided made of foamed plastic. The size ratios between outer wall 22, inner wall 23, the vacuum insulation elements 24 and the impact protection elements 25 are in Fig. 3 only indicated in principle. The exact structure of the structure of the container wall 02 is off Fig. 4 seen.
  • FIG. 4 illustrated perspective cross section through the container wall 02 shows that the outer wall 22 and the inner wall 23 are each made of a sandwich material.
  • an inner core layer 26 of plywood and an inner core layer 27 of foamed plastic are each covered on the outside by cover layers 28 of fiber-reinforced plastic
  • Fig. 5 a possible embodiment of dimensionally stable melt storage containers 29 is shown. By filling the containers 29 with a suitable melt storage material, the various types of melt storage elements 16 and 17 can be made.
  • FIG. 6 The arrangement of the vacuum insulation panels 24 is shown by way of example in a side wall 03.
  • Four vacuum insulation elements 24 are arranged adjacent to one another in all side wall elements 03 and correspondingly also in the bottom element 04, in the ceiling element 05 and in the door element 06. This ensures that if a vacuum insulation element is damaged, for example caused by a microleakage, not all the insulation in the corresponding container wall fails. Rather, a sufficient insulation of the container 01 is still given in total in case of failure of a single vacuum insulation element.
  • the flat, formed in the manner of thermal insulation panels vacuum insulation elements 24 touch each other in butt joints 30. In order to minimize the heat is transferred in the butt joints 30, an insulating material can be arranged in the butt joints 30.
  • vacuum insulation elements 24 should, if possible, have no projecting film tabs so that vacuum insulation elements 24 can be mounted in the butt joints 30 as closely as possible.
  • a further layer of vacuum insulation elements may also be provided in the container wall 02, wherein, if possible, the butt joints 30 should be offset from one another in the case of several layers.
  • each vacuum insulation element 24 there is a control system 31 for controlling the internal gas pressure.
  • the four control systems 31 of the four vacuum insulation elements 24 are each arranged adjacent to each other in the middle of the container wall, so that the four different control systems 31 are accessible through a single access opening 19 therethrough.
  • Fig. 7 the inspection opening 19 is shown enlarged with the four arranged behind a cover 32 control systems 31.
  • the cover 32 is removed and placed a test head of a diagnostic device on the control systems 31.
  • Structure and function of the control system 31 and structure of the vacuum insulation elements 24 are made Fig. 8 seen.
  • the in Fig. 8 shown cross section through the vacuum insulation elements 24 shows an open-pore base body 33 which is gas-tight with a film 34 spanned.
  • the gas-tight interior 35 formed by the film 34 is evacuated in order to give the vacuum insulation element 24 the desired insulation properties.
  • the control system 31 is placed on the inside of the film 34, which consists of a metal plate 36 and an intermediate layer 37. With a test head 38, a defined temperature jump can then be applied to the control system 31, wherein from the signal response to the temperature jump, the internal gas pressure in the interior 35 can be derived.
  • the data storage device 10 is connected via a cable 12 with an internal temperature sensor for measuring the temperature in the interior 07 and with an outside temperature sensor for measuring the ambient temperature surrounding the container 01. At regular intervals, the internal temperature and the outside temperature are measured and the resulting measurement data stored in the data storage device 10 for documentation purposes.
  • the current internal temperature or the current outside temperature can be displayed and read from the outside through the transparent cover 11.
  • an unillustrated GPS receiver can be connected to the data storage device 10, so that the position data of the container 01 can be stored with the data storage device 10 for documentation purposes.
  • the function of the container 01 for temperature insulation is based on the in 10 to FIG. 12 illustrated temperature curves are exemplified.
  • Fig. 10 a situation is schematically illustrated in which the container 01 is exposed to an outside temperature profile 39.
  • the corresponding change in the internal temperature in the interior 07 of the container 01 is presented with the internal temperature profile 40.
  • the outdoor temperature profile 39 includes a temperature jump of 10 ° C to 30 ° C over a period of 6 hours.
  • This change in the outside temperature initially leads to no temperature change in the interior 07, because the amounts of heat that are transmitted through the vacuum insulation elements 24 are buffered by the melt storage elements 16 and 17 by phase transformation of the melt storage material. Only after a time delay, when large quantities of the melt storage material have already undergone a phase transformation, the internal temperature in the interior 07 increases very slowly.
  • Out Fig. 11 is a second outdoor temperature profile 41 and the resulting internal temperature profile 42 in the interior 07 of the container 01 offered.
  • the outdoor temperature profile 41 goes through after the positive temperature jump to 30 ° C immediately thereafter a negative temperature jump to just over 0 ° C. Also the negative temperature jump lasts 6 hours. Also, the negative temperature jump is buffered by the melt storage elements 16 and 17, wherein the melt storage elements in turn regenerate by lowering the temperature, so that a subsequent positive temperature jump can in turn be easily buffered.
  • a real outdoor temperature profile 43 and a resulting indoor temperature profile 44 are plotted, which were logged in a long-term trial over 210 hours.
  • the different curves of the outside temperature profile 43 and the inside temperature profile 44 correspond to the different measuring points outside or within the container 01.
  • Fig. 11 Immediately apparent, the internal temperature remains despite a considerable fluctuations in the outside temperature within a narrow temperature band, so that temperature-sensitive goods in the interior of the container 07 are effectively protected from excessive temperature fluctuations.

Description

Die Erfindung betrifft einen wärmegedämmten Behälter nach dem Oberbegriff des Anspruchs 1.The invention relates to a thermally insulated container according to the preamble of claim 1.

Solche wärmegedämmten Behälter werden insbesondere, jedoch keineswegs ausschließlich, für Transportzwecke genutzt, um temperaturempfindliche Waren, beispielsweise Medikamente, bei Einhaltung enger Temperaturtoleranzen befördern zu können. Dazu ist bei gattungsgemäßen Behältern eine Behälterwandung vorgesehen, die einen Innenraum, in dem das zu transportierende Gut angeordnet wird, vollständig umschließt. In der Behälterwandung ist zumindest eine verschließbare Öffnung vorgesehen, um das zu transportierende Gut in den Behälter einbringen zu können.Such thermally insulated containers are used in particular, but not exclusively, for transportation purposes in order to convey temperature-sensitive goods, for example medicines, while maintaining close temperature tolerances. For this purpose, a container wall is provided in generic containers, which completely encloses an interior, in which the material to be transported is arranged. At least one closable opening is provided in the container wall in order to be able to introduce the item to be transported into the container.

Um den Wärmefluss durch die Behälterwandung hindurch möglichst gering zu halten, werden Vakuumisolationselemente zur Isolation verwendet. Vakuumisolationselemente haben einen sehr hohen Wärmedurchgangswiderstand bei relativ geringer Schichtdicke, so dass bei gegebenem Außenvolumen ein relativ großes Nutzvolumen bei ausreichender Wärmeisolation gegeben ist. Durch die Vakuumisolationselemente wird der Wärmefluss sowohl von außen nach innen als auch von innen nach außen erschwert, so dass die zu transportierende Ware sowohl gegen übermäßige Wärme als auch gegen übermäßige Kälte geschützt ist.In order to keep the heat flow through the container wall as low as possible, vacuum insulation elements are used for insulation. Vacuum insulation elements have a very high heat transfer resistance at a relatively low layer thickness, so that given a given outer volume, a relatively large usable volume is given with sufficient heat insulation. Due to the vacuum insulation elements, the heat flow from the outside to the inside as well as from the inside to the outside is made more difficult, so that the goods to be transported are protected against excessive heat as well as against excessive cold.

Aus dem Stand der Technik sind wärmegedämmte Behälter bekannt, bei denen zur zusätzlichen Kühlung aktive Kühlsysteme eingesetzt werden. Beispielsweise ist es bekannt, dass der Innenraum des Behälters mittels einer elektrischen Klimatisierungsanlage temperiert wird. Auch sind Systeme bekannt, bei denen Trockeneis verdampft wird und der dabei entstehende kalte Dampf zur Kühlung des Innenraums eingesetzt wird. Diese aktiv gekühlten Behälter haben den Nachteil, dass sie außerordentlich empfindlich gegen Störungen sind. Wird beispielsweise die elektrische Klimaanlage oder der Ventilator der Trockeneisanlage nicht mit ausreichender elektrischer Energie versorgt, so ist eine ausreichende Kühlung nicht mehr gewährleistet und die transportierte Ware verdirbt.Thermally insulated containers are known from the prior art, in which active cooling systems are used for additional cooling. For example, it is known that the interior of the container is tempered by means of an electrical air conditioning system. Also known are systems in which dry ice is evaporated and the resulting cold vapor is used to cool the interior. These actively cooled containers have the disadvantage that they are extremely sensitive to disturbances. For example, if the electric air conditioning or the fan of the dry ice system is not supplied with sufficient electrical energy, then sufficient cooling is no longer guaranteed and the transported goods spoils.

Ein mit einem aktiven Kühlsystem gekühlter wärmegedämmter Behälter für Transportzwecke ( JP 2002-264717 A ), der als Lkw-Auflieger ausgeführt ist, ist Ausgangspunkt für die Lehre der vorliegenden Erfindung.A thermally insulated container, cooled with an active cooling system, for transportation ( JP 2002-264717 A ), which is designed as a truck semi-trailer, is the starting point for the teaching of the present invention.

Allgemein sind natürlich auch wärmegedämmte Behälter für Transportzwecke nach Art von Transportboxen mit abnehmbarem Deckel bekannt ( US 6,062,040 A ). Zur Herstellung der Behälterwandung der Transportbox wird ein geschäumter Kunststoff verwendet.In general, of course, insulated containers for transport purposes on the type of transport boxes with removable lid are known ( US 6,062,040 A ). To produce the container wall of the transport box, a foamed plastic is used.

Ausgehend von dem oben angesprochenen Stand der Technik ( JP 2002-264717 A ) liegt der Lehre das Problem zugrunde, einen besonders zweckmäßig aufgebauten und handhabbaren Transportcontainer vorzuschlagen.
Diese Aufgabe wird durch einen Behälter nach der Lehre des Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
Based on the above-mentioned prior art ( JP 2002-264717 A ) The teaching is based on the problem to propose a particularly expedient and manageable transport container.
This object is achieved by a container according to the teaching of claim 1. Advantageous embodiments of the invention are the subject of the dependent claims.

Gemäß der Erfindung handelt es sich bei dem wärmegedämmten Behälter um einen Behälter in der Art eines Transportcontainers. Dieser Transportcontainer hat drei Seitenwandelemente, ein Deckenelement, ein Bodenelement und mindestens ein Türelement. Das Türelement ist um eine Vertikalachse schwenkbar gelagert. Damit ist der Innenraum des Transportcontainers gut zugänglich.According to the invention, the thermally insulated container is a container in the manner of a transport container. This transport container has three side wall elements, a ceiling element, a bottom element and at least one door element. The door element is pivotally mounted about a vertical axis. Thus, the interior of the transport container is easily accessible.

Der Transportbehälter zeichnet sich dadurch aus, dass die Behälterwandung doppelwandig mit einer formstabilen Außenwandung und einer formstabilen Innenwandung ausgebildet ist. Die Vakuumisolationselemente befinden sich zwischen der Außenwandung und der Innenwandung. Um zwischen der Außenwandung und der Innenwandung angeordnet sein zu können, sind die Vakuumisolationselemente als Wärmedämmplatten ausgebildet. Alle Wandelemente des Transportcontainers sind mit jeweils zumindest einem Vakuum isolationselement isoliert.The transport container is characterized in that the container wall is double-walled with a dimensionally stable outer wall and a dimensionally stable inner wall. The vacuum insulation elements are located between the outer wall and the inner wall. In order to be able to be arranged between the outer wall and the inner wall, the vacuum insulation elements are formed as thermal insulation panels. All wall elements of the transport container are insulated with at least one vacuum insulation element.

In welcher Konstruktionsweise die Vakuumisolationselemente ausgebildet sind, ist grundsätzlich beliebig. Nach einer bevorzugten Ausführungsform wird dazu ein Grundkörper verwendet, der mit einer Folie gasdicht umschlossen ist. Der von der Folie gebildete Innenraum wird evakuiert, um dadurch die gewünschten Isolationseigenschaften realisieren zu können. Der Grundkörper selbst gibt dem Vakuumisolationselement die erforderliche mechanische Stabilität, wobei zur Herstellung des Grundkörpers offenporigen Werkstoffe verwendet werden sollten, um eine ausreichende Evakuierbarkeit zu gewährleisten.In which construction the vacuum insulation elements are formed is basically arbitrary. According to a preferred embodiment, a base body is used, which is enclosed gas-tight with a film. The interior formed by the film is evacuated to thereby realize the desired insulation properties. The main body itself gives the vacuum insulation element the required mechanical stability, wherein open-porous materials should be used to produce the basic body in order to ensure sufficient evacuability.

Werden folienummantelte Vakuumisolationselemente verwendet, sollten diese vorzugsweise keine überstehenden Randlaschen aus Folie aufweisen, damit die Stoßfuge zwischen benachbarten Vakuumisolationselementen möglichst eng gestaltet werden kann.If film-coated vacuum insulation elements are used, they should preferably have no protruding edge tabs made of film, so that the Butt joint between adjacent vacuum insulation elements can be made as narrow as possible.

Die Isolationswirkung der Vakuumisolationselemente hängt maßgeblich davon ab, dass im Vakuumisolationselement ein ausreichend niedriger Innengasdruck herrscht. Je weiter der Innengasdruck im Vakuumisolationselement zunimmt, desto mehr Wärme wird durch das Vakuumisolationselement hindurchgeleitet Um die Funktionstüchtigkeit der Vakuumisolationselemente jederzeit auch nach dem Einbau in den Behälter prüfen zu können, sollten die Vakuumisolationselemente ein Kontrollsystem zu Kontrolle des Innengasdrucks aufweisen. Dazu können unterhalb der Hüllfolie beispielsweise Metallplättchen angeordnet werden, wobei der Innengasdruck dann unter Einsatz geeigneter Diagnosegeräte im Bereich der Metallplättchen durch Aufbringung eines Temperatursprungs abgeleitet werden kann.The insulating effect of the vacuum insulation elements depends largely on the fact that in the vacuum insulation element, a sufficiently low internal gas pressure prevails. The further the internal gas pressure in the vacuum insulation element increases, the more heat is passed through the vacuum insulation element. In order to be able to check the functionality of the vacuum insulation elements at any time after installation in the container, the vacuum insulation elements should have a control system for controlling the internal gas pressure. For this purpose, for example, metal flakes can be arranged below the enveloping film, wherein the internal gas pressure can then be derived by applying a temperature jump using suitable diagnostic equipment in the area of the metal flakes.

Bevorzugt sollte die Behälterwandung Revisionsöffnungen aufweisen, durch die das Kontrollsystem zur Kontrolle des Innengasdrucks zugänglich ist. Auf diese Weise kann die Funktionstüchtigkeit der eingebauten Vakuumisolationselemente jederzeit, insbesondere vor dem Beladen, erneut geprüft werden, um Beschädigungen an dem zu transportierenden Gut durch unzureichende Isolation, wie sie beispielsweise durch Mikrolecks in den Vakuumisolationselementen verursacht sein kann, zu vermeiden.Preferably, the container wall should have inspection openings, through which the control system for controlling the internal gas pressure is accessible. In this way, the functionality of the built-in vacuum insulation elements can be rechecked at any time, especially before loading, to avoid damage to the goods to be transported by insufficient insulation, as may be caused for example by micro-leaks in the vacuum insulation elements.

Um die Beschädigung der Vakuumisolationselemente durch Eindringen von Fremdkörpern auszuschließen, können an den Revisionsöffnungen Abdeckungen vorgesehen sein, die vorzugsweise transparent sind, damit das hinter der Abdeckung befindliche Kontrollsystem von außen in Augenschein genommen werden kann.In order to prevent the damage of the vacuum insulation elements by penetration of foreign bodies, covers may be provided on the access openings, which are preferably transparent, so that the control system located behind the cover can be inspected from the outside.

Zur Erhöhung des Wärmeflusswiderstands können die Vakuumisolationselemente auch in mehreren Schichten übereinander oder hintereinander angeordnet werden. Der resultierende Wärmeflusswiderstand ergibt sich dabei im Wesentlichen aus der Addition des Wärmeflusswiderstands der einzelnen Schichten.To increase the heat flow resistance, the vacuum insulation elements can also be arranged in several layers one above the other or one behind the other. The resulting heat flow resistance results essentially from the addition of the heat flow resistance of the individual layers.

Durch Einbau von mehreren Vakuumisolationselementen in die verschiedenen Behälterwandungen wird eine verbesserte Schadensredundanz erreicht, da bei Beschädigung eines einzelnen Vakuumisolationselements die Isolationseigenschaften des Behälters nur relativ gering beeinflusst werden.By incorporating several vacuum insulation elements in the different container walls improved damage redundancy is achieved because damage to a single vacuum insulation element, the insulation properties of the container are affected only relatively small.

Im Behälter kann man passive Schmelzspeicherelemente, die mit einem geeigneten Schmelzspeichermaterial gefüllt sind, anordnen. Derartige Schmelzspeicherelemente haben die Eigenschaft, dass sie eine bestimmte Wärmemenge durch Phasenumwandlung des Schmelzspeichermaterials speichern bzw. abgeben können. Dies bedeutet mit anderen Worten, dass das Schmelzspeichermaterial im Schmelzspeicherelement bei Erwärmung so lange schmilzt, bis der gesamte Vorrat an Schmelzspeichermaterial in die flüssige Phase übergegangen ist. Die zur Phasenumwandlung des Schmelzspeichermaterials erforderliche Wärmeenergie wird somit im Schmelzspeichermaterial gespeichert und führt nicht zu einer Temperaturerhöhung. Wird das Schmelzspeichermaterial umgekehrt abgekühlt, so erstarrt das Schmelzspeichermaterial nach und nach und gibt bei dieser Phasenumwandlung die gespeicherte Wärmemenge ab. Im Ergebnis puffern die Schmelzspeicherelemente somit entsprechend ihrer jeweiligen Kapazität den Wärmefluss bis zum Erreichen der Kapazitätsgrenzen ab.In the container, one can arrange passive melt storage elements which are filled with a suitable melt storage material. Such melt storage elements have the property that they can store or release a certain amount of heat by phase transformation of the melt storage material. In other words, this means that the melt storage material melts in the melt storage element when heated until the entire supply of melt storage material has gone into the liquid phase. The heat energy required for the phase transformation of the melt storage material is thus stored in the melt storage material and does not lead to an increase in temperature. If the melt storage material is cooled inversely, the melt storage material gradually solidifies and releases the stored amount of heat during this phase transformation. As a result, the melt storage elements thus buffer the heat flow according to their respective capacity until the capacity limits are reached.

Je nach Schmelzpunkt des Schmelzspeichermaterials ergeben sich andere Pufferungsbereiche zur Abpufferung des Wärmeflusses. Enthält das Schmelzspeichermaterial beispielsweise Paraffin, wird eine Wärmeflusspufferung im Temperaturbereich oberhalb von 0° C ermöglicht. Ist dagegen im Schmelzspeichermaterial beispielsweise eine Salzlösung enthalten, kann der Wärmefluss im Temperaturbereich unterhalb von 0° C abgepuffert werden.Depending on the melting point of the melt-storing material, other buffering areas result for buffering the heat flow. Contains the melt storage material, for example paraffin, a heat flow buffering in the temperature range above 0 ° C is possible. If, by contrast, a salt solution is contained in the melt storage material, for example, the heat flow can be buffered below 0 ° C. in the temperature range.

Da jedes Schmelzspeichermaterial abhängig von seinem jeweiligen Schmelzpunkt einen optimalen Pufferungsbereich aufweist, ist es für bestimmte Anwendungen besonders vorteilhaft, wenn im Behälter zumindest zwei verschiedene Schmelzspeicherelemente vorgesehen sind, die jeweils mit unterschiedlichen Schmelzspeichermaterialien gefüllt sind. Durch diese Kombination von unterschiedlichen Schmelzspeichermaterialien in einem Behälter kann der Pufferungsbereich aufgespreizt werden. Dabei ist es besonders vorteilhaft, wenn die mit unterschiedlichen Schmelzspeichermaterialien gefüllten Schmelzspeicherelemente in mehreren Schichten im Behälter angeordnet sind.Since each melt storage material has an optimal buffering area depending on its respective melting point, it is particularly advantageous for certain applications if at least two different melt storage elements are provided in the container, which are each filled with different melt storage materials. By this combination of different melt storage materials in a container, the buffer area can be spread. It is particularly advantageous if the melt storage elements filled with different melt storage materials are arranged in several layers in the container.

Um die Einsatzbereitschaft der Schmelzspeicherelemente prüfen zu können, beispielsweise nach dem Beladen eines Behälters, ist es vorteilhaft, wenn an den Schmelzspeicherelementen Temperaturmesseinrichtungen vorgesehen sind, mit denen die Temperatur des Schmelzspeicherelements gemessen werden kann. Dazu können beispielsweise bekannte Temperatursensoren mit Displays Verwendung finden, die sich in Abhängigkeit der Temperatur verfärben.In order to check the operational readiness of the melt storage elements, for example after loading a container, it is advantageous if temperature measuring devices are provided on the melt storage elements, with which the temperature of the melt storage element can be measured. For this purpose, for example, known temperature sensors can be used with displays that discolor depending on the temperature.

Eine Ausführungsform der Erfindung ist in den Zeichnungen schematisch dargestellt und wird nachfolgend beispielhaft erläutert.An embodiment of the invention is shown schematically in the drawings and is explained below by way of example.

Es zeigen:

Fig. 1
einen Transportcontainer in perspektivischer Ansicht von außen;
Fig. 2
den Transportcontainer gemäß Fig. 1 mit geöffneter Tür in perspektivischer Ansicht;
Fig. 3
den Transportcontainer gemäß Fig. 1 im Querschnitt;
Fig. 4
die Behälterwandung des Transportcontainers gemäß Fig. 1 im perspektivischen Schnitt;
Fig. 5
die Schmelzspeicherelemente des Transportcontainers gemäß Fig. 1 in perspektivischer Ansicht;
Fig. 6
die Anordnung der Vakuumisolationselemente an einer Seitenwandung des Transportcontainers gemäß Fig. 1 in seitlicher Ansicht;
Fig. 7
eine Revisionsöffnung in einer Behälterwandung des Transportcontainers gemäß Fig. 1;
Fig. 8
ein Vakuumisolationselement des Transportcontainers gemäß Fig. 1 im Querschnitt;
Fig. 9
den Datenspeicher am Transportcontainer gemäß Fig. 1 in vergrößerter perspektivischer Ansicht;
Fig. 10
die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Aufbringung eines positiven Außentemperatursprungs;
Fig. 11
die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Aufbringung eines positiven und eines negativen Außentemperatursprungs;
Fig. 12
die Innentemperaturkurve im Innenraum des Transportcontainers gemäß Fig. 1 bei Durchlaufen eines Außentemperaturprofils.
Show it:
Fig. 1
a transport container in perspective view from the outside;
Fig. 2
according to the transport container Fig. 1 with open door in perspective view;
Fig. 3
according to the transport container Fig. 1 in cross-section;
Fig. 4
the container wall of the transport container according to Fig. 1 in perspective section;
Fig. 5
the melting storage elements of the transport container according to Fig. 1 in perspective view;
Fig. 6
the arrangement of the vacuum insulation elements on a side wall of the transport container according to Fig. 1 in lateral view;
Fig. 7
an inspection opening in a container wall of the transport container according to Fig. 1 ;
Fig. 8
a vacuum insulation element of the transport container according to Fig. 1 in cross-section;
Fig. 9
the data store at the transport container according to Fig. 1 in an enlarged perspective view;
Fig. 10
the internal temperature curve in the interior of the transport container according to Fig. 1 when applying a positive outside temperature jump;
Fig. 11
the internal temperature curve in the interior of the transport container according to Fig. 1 when applying a positive and a negative outside temperature jump;
Fig. 12
the internal temperature curve in the interior of the transport container according to Fig. 1 when passing through an outdoor temperature profile.

In Fig. 1 ist ein in der Art eines Transportcontainers ausgebildeter Behälter 01 perspektivisch dargestellt. Im Behälter 01 können wärmesensible Güter, beispielsweise Medikamente, insbesondere Impfstoffe, über weite Strecken auch im Flugzeug transportiert werden. Die Grundfläche des Behälters 01 entspricht der Fläche einer Standardpalette.In Fig. 1 a trained in the manner of a transport container container 01 is shown in perspective. In the container 01 heat-sensitive goods, such as drugs, especially vaccines, can be transported over long distances on the plane. The base of the container 01 corresponds to the area of a standard pallet.

Die Behälterwandung 02 des Behälters 01 besteht aus drei rechteckigen Seitenwandelementen 03, einem rechteckigen Bodenelement 04, einem rechteckigen Deckenelement 05 und einem schwenkbar gelagerten Türelement 06. Die drei Seitenwandelemente 03, das Bodenelement 04 und das Deckenelement 05 sind unter Bildung eines rechteckförmigen Innenraums 07 fest miteinander verbunden. Nach Schließen des Türelements 06 ist der Innenraum 07 allseitig umschlossen und gegen den Durchfluss von Wärme durch die Behälterwandung 02 mittels Vakuumisolationselementen, die nachfolgend näher beschrieben sind, isoliert.The container wall 02 of the container 01 consists of three rectangular side wall elements 03, a rectangular bottom element 04, a rectangular ceiling element 05 and a pivotally mounted door element 06. The three side wall elements 03, the bottom element 04 and the ceiling element 05 are fixed to form a rectangular interior 07 connected. After closing the door member 06, the interior 07 is enclosed on all sides and insulated against the flow of heat through the container wall 02 by means of vacuum insulation elements, which are described in more detail below.

Zum Verriegeln des Türelements 06 dient ein Verschlussorgan 08, durch dessen Betätigung in Fig. 1 nicht dargestellte Riegelelemente entriegelt bzw. verriegelt werden können. Am Verschlussorgan 08 kann ein Siegel angebracht werden, um den Behälter 01 gegen unbefugtes Öffnen zu sichern. Alternativ bzw. additiv dazu kann am Verschlussorgan 08 auch ein Schloss, beispielweise ein Zylinderschloss oder Nummernschloss, vorgesehen sein, um ein unbefugtes Öffnen des Behälters 01 auszuschließen.To lock the door member 06 is a closure member 08, by the actuation in Fig. 1 Unlocked locking elements can be unlocked or locked. On the closure member 08, a seal can be attached to secure the container 01 against unauthorized opening. Alternatively or in addition thereto, a lock, for example a cylinder lock or number lock, may be provided on the closure member 08 in order to preclude unauthorized opening of the container 01.

An der Unterseite des Bodenelements 04 sind zwei Leisten 09 angebracht, durch die ein Zwischenraum zwischen dem Bodenelement 04 und der Aufstandsfläche gebildet wird. In diesen Zwischenraum können Zinken eines Transportstaplers eingeschoben werden, um den Behälter 01 mit dem Stapler anheben und transportieren zu können. An der Oberseite des Türelements 06 ist in einer Vertiefung ein Datenspeichergerät 10 befestigt. Es ist nach außen hin von einer Abdeckung 11 geschützt (siehe auch Fig. 9). Zum Schutz der Behälterwandung 02 gegen das Eindringen von spitzen Gegenständen können an der Außenseite Schutzplanken 15 in besonders gefährdeten Bereichen angebracht werden. Die Schutzplanken 15 können beispielsweise aus einem Metallblech hergestellt sein.On the underside of the bottom element 04 two strips 09 are attached, by which a gap between the bottom element 04 and the footprint is formed. In this space tines of a transport stacker can be inserted to lift the container 01 with the truck and to be able to transport. At the top of the door member 06, a data storage device 10 is mounted in a recess. It is protected from the outside by a cover 11 (see also Fig. 9 ). To protect the container wall 02 against the ingress of sharp objects can be mounted on the outside guard rails 15 in particularly vulnerable areas. The guard rails 15 may be made for example of a metal sheet.

Der innenseitige Aufbau des Behälters 01 ist aus Fig. 2 ersichtlich. An der Innenseite der beiden seitlichen Seitenwandungen 03 sind jeweils sechs Schmelzspeicherelemente 16 und 17 angeordnet. Die Schmelzspeicherelemente 16 sind dabei mit einem paraffinhaltigen Schmelzspeichermaterial gefüllt, wohingegen die Schmelzspeicherelemente 17 eine Salzlösung enthalten. Zur Befestigung der Schmelzspeicherelemente 16 und 17 dienen Befestigungsschienen 18 (siehe auch Fig. 3), die die Schmelzspeicherelemente 16 und 17 jeweils am oberen bzw. unteren Rand formschlüssig umgreifen. Auf diese Weise können die Schmelzspeicherelemente 16 und 17 einfach dadurch ausgewechselt werden, dass sie von der Türseite her in die Befestigungsschienen 18 eingeschoben werden. Nach Schließen des Türelements 06 sind die Schmelzspeicherelemente 16 und 17 an der Innenseite der Behälterwandung 02 fixiert. Diese Art der Befestigung erlaubt es insbesondere, die Schmelzspeicherelemente 16 und 17 ohne Werkzeug zu montieren bzw. zu demontieren.The inside structure of the container 01 is made Fig. 2 seen. On the inside of the two lateral side walls 03 each six melt storage elements 16 and 17 are arranged. The melt storage elements 16 are included filled with a paraffin-containing melt storage material, whereas the melt storage elements 17 contain a salt solution. For fastening the melt storage elements 16 and 17 serve mounting rails 18 (see also Fig. 3 ), which engage round the melt storage elements 16 and 17 in each case at the upper or lower edge in a form-fitting manner. In this way, the melt storage elements 16 and 17 can be easily replaced by being inserted from the door side into the mounting rails 18. After closing the door element 06, the melt storage elements 16 and 17 are fixed to the inside of the container wall 02. This type of attachment allows in particular, the melting storage elements 16 and 17 without tools to assemble or disassemble.

In den drei Seitenwandelementen 03, dem Bodenelement 04, dem Deckenelement 05 und dem Türelement 06 sind jeweils Revisionsöffnungen 19 vorgesehen, deren Funktion nachfolgend noch detailliert erläutert wird.In the three side wall elements 03, the bottom element 04, the ceiling element 05 and the door element 06 each inspection openings 19 are provided, whose function will be explained in more detail below.

Am Außenumfang des Türelements 06 ist innenseitig eine Dichtlippe 20 befestigt, mit der nach Schließen des Türelements 06 die Trennfuge zwischen dem Türelement 06 einerseits und dem Rand der zwei gegenüberliegenden Seitenwandelemente 03 bzw. dem Rand des Deckenelements 05 und des Bodenelements 04 abgedichtet wird.On the outer periphery of the door member 06, a sealing lip 20 is fixed on the inside, with the closing of the door member 06, the parting line between the door member 06 on the one hand and the edge of the two opposite side wall elements 03 and the edge of the ceiling element 05 and the bottom element 04 is sealed.

In Fig. 3 ist der Behälter 01 im Querschnitt von vorne schematisch dargestellt. Die flächigen, nämlich plattenförmigen Schmelzspeicherelemente 16 und 17 sind parallel zur Behälterwandung 02 auf der Innenseite 21 des Behälters 01 angeordnet.In Fig. 3 the container 01 is shown schematically in cross-section from the front. The flat, namely plate-shaped melt storage elements 16 and 17 are arranged parallel to the container wall 02 on the inner side 21 of the container 01.

Die Behälterwandung 02 selbst ist doppelwandig aus einer formstabilen Außenwandung 22 und einer ebenfalls formstabilen Innenwandung 23 aufgebaut. Zwischen dieser mechanisch stabilen Doppelwand aus Außenwandung 22 und Innenwandung 23 sind die zur Isolation vorgesehenen Vakuumisolationselemente 24 angeordnet. Zwischen den Vakuumisolationselementen 24 und der Außenwandung 22 sind Stoßschutzelemente 25 aus geschäumtem Kunststoff vorgesehen. Die Größenverhältnisse zwischen Außenwandung 22, Innenwandung 23, den Vakuumisolationselementen 24 und den Stoßschutzelementen 25 sind in Fig. 3 nur im Prinzip angedeutet. Die genaue Struktur des Aufbaus der Behälterwandung 02 ist aus Fig. 4 ersichtlich.The container wall 02 itself is double-walled from a dimensionally stable outer wall 22 and a likewise dimensionally stable inner wall 23 constructed. Between this mechanically stable double wall of outer wall 22 and inner wall 23 provided for isolation vacuum insulation elements 24 are arranged. Between the vacuum insulation elements 24 and the outer wall 22 impact protection elements 25 are provided made of foamed plastic. The size ratios between outer wall 22, inner wall 23, the vacuum insulation elements 24 and the impact protection elements 25 are in Fig. 3 only indicated in principle. The exact structure of the structure of the container wall 02 is off Fig. 4 seen.

Der in Fig. 4 dargestellte perspektivische Querschnitt durch die Behälterwandung 02 zeigt, dass die Außenwandung 22 und die Innenwandung 23 jeweils aus einem Sandwichmaterial hergestellt sind. In diesem Sandwichmaterial werden eine innere Kernschicht 26 aus Sperrholz und eine innere Kernschicht 27 aus geschäumtem Kunststoff jeweils außenseitig von Deckschichten 28 aus faserverstärktem Kunststoff bedecktThe in Fig. 4 illustrated perspective cross section through the container wall 02 shows that the outer wall 22 and the inner wall 23 are each made of a sandwich material. In this sandwich material, an inner core layer 26 of plywood and an inner core layer 27 of foamed plastic are each covered on the outside by cover layers 28 of fiber-reinforced plastic

In Fig. 5 ist eine mögliche Ausführungsform von formstabilen Schmelzspeicherbehältern 29 dargestellt. Durch Befüllung der Behälter 29 mit einem geeigneten Schmelzspeichermaterial können die verschiedenen Typen von Schmelzspeicherelementen 16 und 17 hergestellt werden.In Fig. 5 a possible embodiment of dimensionally stable melt storage containers 29 is shown. By filling the containers 29 with a suitable melt storage material, the various types of melt storage elements 16 and 17 can be made.

In Fig. 6 ist die Anordnung der Vakuumisolationspaneele 24 in einer Seitenwandung 03 beispielhaft dargestellt Jeweils vier Vakuumisolationselemente 24 sind in allen Seitenwandelementen 03 und entsprechend auch im Bodenelement 04, im Deckenelement 05 und im Türelement 06 zueinander benachbart angeordnet. Dadurch ist gewährleistet, dass bei Beschädigung eines Vakuumisolationselements, beispielsweise verursacht durch ein Mikroleck, nicht die gesamte Isolation in der entsprechenden Behälterwandung ausfällt. Vielmehr ist auch bei Ausfall eines einzelnen Vakuumisolationselements immer noch eine ausreichende Isolation des Behälters 01 insgesamt gegeben. Die flächigen, in der Art von Wärmedämmplatten ausgebildeten Vakuumisolationselemente 24 berühren sich in Stoßfugen 30. Damit möglichst wenig Wärme in den Stoßfugen 30 übertragen wird, kann in den Stoßfugen 30 ein Dämmmaterial angeordnet werden. Außerdem sollten die Vakuumisolationselemente 24 nach Möglichkeit keine überstehenden Folienlaschen aufweisen, damit Vakuumisolationselemente 24 in den Stoßfugen 30 möglichst eng anliegend montiert werden können. Zur Erhöhung des Wärmedurchflusswiderstands kann außerdem noch eine weitere Schicht von Vakuumisolationselementen in der Behälterwandung 02 vorgesehen sein, wobei bei mehreren Schichten die Stoßfugen 30 nach Möglichkeit gegeneinander versetzt sein sollten.In Fig. 6 The arrangement of the vacuum insulation panels 24 is shown by way of example in a side wall 03. Four vacuum insulation elements 24 are arranged adjacent to one another in all side wall elements 03 and correspondingly also in the bottom element 04, in the ceiling element 05 and in the door element 06. This ensures that if a vacuum insulation element is damaged, for example caused by a microleakage, not all the insulation in the corresponding container wall fails. Rather, a sufficient insulation of the container 01 is still given in total in case of failure of a single vacuum insulation element. The flat, formed in the manner of thermal insulation panels vacuum insulation elements 24 touch each other in butt joints 30. In order to minimize the heat is transferred in the butt joints 30, an insulating material can be arranged in the butt joints 30. In addition, the vacuum insulation elements 24 should, if possible, have no projecting film tabs so that vacuum insulation elements 24 can be mounted in the butt joints 30 as closely as possible. In order to increase the heat flow resistance, a further layer of vacuum insulation elements may also be provided in the container wall 02, wherein, if possible, the butt joints 30 should be offset from one another in the case of several layers.

An jedem Vakuumisolationselement 24 ist ein Kontrollsystem 31 zur Kontrolle des Innengasdrucks vorhanden. Die vier Kontrollsysteme 31 der vier Vakuumisolationselemente 24 sind dabei jeweils benachbart zueinander in der Mitte der Behälterwandung angeordnet, damit die vier verschiedenen Kontrollsysteme 31 durch eine einzige Revisionsöffnung 19 hindurch zugänglich sind.At each vacuum insulation element 24 there is a control system 31 for controlling the internal gas pressure. The four control systems 31 of the four vacuum insulation elements 24 are each arranged adjacent to each other in the middle of the container wall, so that the four different control systems 31 are accessible through a single access opening 19 therethrough.

In Fig. 7 ist die Revisionsöffnung 19 mit den vier hinter einer Abdeckung 32 angeordneten Kontrollsystemen 31 vergrößert dargestellt. Zur Kontrolle des Innengasdrucks in den Vakuumisolationselementen 24 wird die Abdeckung 32 abgenommen und ein Prüfkopf eines Diagnosegeräts auf die Kontrollsysteme 31 aufgelegt. Aufbau und Funktion des Kontrollsystems 31 und Struktur der Vakuumisolationselemente 24 sind aus Fig. 8 ersichtlich.In Fig. 7 the inspection opening 19 is shown enlarged with the four arranged behind a cover 32 control systems 31. To control the internal gas pressure in the vacuum insulation elements 24, the cover 32 is removed and placed a test head of a diagnostic device on the control systems 31. Structure and function of the control system 31 and structure of the vacuum insulation elements 24 are made Fig. 8 seen.

Der in Fig. 8 dargestellte Querschnitt durch die Vakuumisolationselemente 24 zeigt einen offenporigen Grundkörper 33, der gasdicht mit einer Folie 34 umspannt ist. Der von der Folie 34 gebildete gasdichte Innenraum 35 wird evakuiert, um dem Vakuumisolationselement 24 die gewünschten Isolationseigenschaften zu geben. Zur Prüfung des Innengasdrucks im Innenraum 35 des Vakuumisolationselements 24 wird an der Innenseite der Folie 34 das Kontrollsystem 31 platziert, das aus einem Metallplättchen 36 und einer Zwischenlage 37 besteht. Mit einem Prüfkopf 38 kann dann ein definierter Temperatursprung auf das Kontrollsystem 31 aufgebracht werden, wobei aus der Signalantwort auf den Temperatursprung der Innengasdruck im Innenraum 35 ableitbar ist.The in Fig. 8 shown cross section through the vacuum insulation elements 24 shows an open-pore base body 33 which is gas-tight with a film 34 spanned. The gas-tight interior 35 formed by the film 34 is evacuated in order to give the vacuum insulation element 24 the desired insulation properties. To check the internal gas pressure in the interior 35 of the vacuum insulation element 24, the control system 31 is placed on the inside of the film 34, which consists of a metal plate 36 and an intermediate layer 37. With a test head 38, a defined temperature jump can then be applied to the control system 31, wherein from the signal response to the temperature jump, the internal gas pressure in the interior 35 can be derived.

Wie aus Fig. 9 ersichtlich, ist das Datenspeichergerät 10 über ein Kabel 12 mit einem Innentemperatursensor zu Messung der Temperatur im Innenraum 07 und mit einem Außentemperatursensor zur Messung der den Behälter 01 umgebenden Umgebungstemperatur verbunden. In regelmäßigen Zeitabständen werden die Innentemperatur und die Außentemperatur gemessen und die dabei anfallenden Messdaten im Datenspeichergerät 10 zu Dokumentationszwecken abgespeichert. An einem Display 13 kann die aktuelle Innentemperatur bzw. die aktuelle Außentemperatur angezeigt und von außen durch die transparente Abdeckung 11 abgelesen werden. Über einen Anschluss 14 kann ein nicht dargestellter GPS-Empfänger an das Datenspeichergerät 10 angeschlossen werden, so dass die Positionsdaten des Behälters 01 mit dem Datenspeichergerät 10 zu Dokumentationszwecken gespeichert werden können.How out Fig. 9 it can be seen, the data storage device 10 is connected via a cable 12 with an internal temperature sensor for measuring the temperature in the interior 07 and with an outside temperature sensor for measuring the ambient temperature surrounding the container 01. At regular intervals, the internal temperature and the outside temperature are measured and the resulting measurement data stored in the data storage device 10 for documentation purposes. On a display 13, the current internal temperature or the current outside temperature can be displayed and read from the outside through the transparent cover 11. Via a connection 14, an unillustrated GPS receiver can be connected to the data storage device 10, so that the position data of the container 01 can be stored with the data storage device 10 for documentation purposes.

Die Funktion des Behälters 01 zur Temperaturisolation soll anhand der in Fig. 10 bis Fig. 12 dargestellten Temperaturkurven beispielhaft erläutert werden.The function of the container 01 for temperature insulation is based on the in 10 to FIG. 12 illustrated temperature curves are exemplified.

In Fig. 10 ist eine Situation schematisch dargestellt, in der der Behälter 01 einem Außentemperaturprofil 39 ausgesetzt ist. Die entsprechende Änderung der Innentemperatur im Innenraum 07 des Behälters 01 ist mit dem Innentemperaturprofil 40 angetragen. Das Außentemperaturprofil 39 beinhaltet einen Temperatursprung von 10° C auf 30° C über eine Dauer von 6 Stunden. Diese Änderung der Außentemperatur führt im Innenraum 07 zunächst zu keiner Temperaturänderung, weil die Wärmemengen, die durch die Vakuumisolationselemente 24 durchgelassen werden, von den Schmelzspeicherelementen 16 bzw. 17 durch Phasenumwandlung des Schmelzspeichermaterials abgepuffert werden. Erst nach einer Zeitverzögerung, wenn große Mengen des Schmelzspeichermaterials bereits eine Phasenumwandlung durchlaufen haben, steigt die Innentemperatur im Innenraum 07 sehr langsam an.In Fig. 10 a situation is schematically illustrated in which the container 01 is exposed to an outside temperature profile 39. The corresponding change in the internal temperature in the interior 07 of the container 01 is presented with the internal temperature profile 40. The outdoor temperature profile 39 includes a temperature jump of 10 ° C to 30 ° C over a period of 6 hours. This change in the outside temperature initially leads to no temperature change in the interior 07, because the amounts of heat that are transmitted through the vacuum insulation elements 24 are buffered by the melt storage elements 16 and 17 by phase transformation of the melt storage material. Only after a time delay, when large quantities of the melt storage material have already undergone a phase transformation, the internal temperature in the interior 07 increases very slowly.

Aus Fig. 11 ist ein zweites Außentemperaturprofil 41 und das daraus resultierende Innentemperaturprofil 42 im Innenraum 07 des Behälters 01 angetragen. Das Außentemperaturprofil 41 durchläuft nach dem positiven Temperatursprung auf 30° C unmittelbar danach einen negativen Temperatursprung auf knapp über 0° C. Auch der negative Temperatursprung dauert 6 Stunden. Auch der negative Temperatursprung wird durch die Schmelzspeicherelemente 16 und 17 abgepuffert, wobei sich die Schmelzspeicherelemente durch die Absenkung der Temperatur wiederum regenerieren, so dass ein anschließender positiver Temperatursprung wiederum ohne Weiteres abgepuffert werden kann.Out Fig. 11 is a second outdoor temperature profile 41 and the resulting internal temperature profile 42 in the interior 07 of the container 01 offered. The outdoor temperature profile 41 goes through after the positive temperature jump to 30 ° C immediately thereafter a negative temperature jump to just over 0 ° C. Also the negative temperature jump lasts 6 hours. Also, the negative temperature jump is buffered by the melt storage elements 16 and 17, wherein the melt storage elements in turn regenerate by lowering the temperature, so that a subsequent positive temperature jump can in turn be easily buffered.

In Fig. 12 sind ein reales Außentemperaturprofil 43 und ein daraus resultierendes Innentemperaturprofil 44 angetragen, das in einem Langzeitversuch über 210 Stunden protokolliert wurde. Die unterschiedlichen Kurven des Außentemperaturprofils 43 und des Innentemperaturprofils 44 entsprechen den verschiedenen Messpunkten außerhalb bzw. innerhalb des Behälters 01. Wie aus Fig. 11 unmittelbar ersichtlich, bleibt die Innentemperatur trotz erheblicher Schwankungen der Außentemperatur innerhalb eines schmalen Temperaturbands, so dass temperaturempfindliche Waren im Innenraum des Behälters 07 wirksam vor übermäßigen Temperaturschwankungen geschützt sind.In Fig. 12 For example, a real outdoor temperature profile 43 and a resulting indoor temperature profile 44 are plotted, which were logged in a long-term trial over 210 hours. The different curves of the outside temperature profile 43 and the inside temperature profile 44 correspond to the different measuring points outside or within the container 01. As out Fig. 11 Immediately apparent, the internal temperature remains despite a considerable fluctuations in the outside temperature within a narrow temperature band, so that temperature-sensitive goods in the interior of the container 07 are effectively protected from excessive temperature fluctuations.

Claims (11)

  1. Thermally insulated container for transport purposes, having a container wall (02) which completely encloses an interior (07) and is formed by three side wall elements (03), a cover element (05), a bottom element (04) and at least one door element (06), wherein the door element (06) is mounted on one of the side wall elements (03) so as to be pivotable about a vertical axis, wherein the interior (07) is insulated against heat exchange by a plurality of vacuum insulation elements (24) designed as thermal insulation panels, characterized in that the container is designed as a transport container (01) and has, on the underside of the bottom element (04), functional elements (09) which allow the insertion of the prongs of a forklift, in that the container wall (02) is designed in all wall elements (03, 04, 05, 06) to be double-walled with a dimensionally stable outer wall (22) and a dimensionally stable inner wall (23), in that the outer wall (22) and/or the inner wall (23) consist or consists of a sandwich material with a plurality of material layers (26, 27, 28), in that the vacuum insulation elements (24) are arranged between the outer wall (22) and the inner wall (23) in all wall elements (02, 03, 04, 05, 06), in that a plurality of melt-storage elements (16, 17) can be arranged on the inner side (21) of the inner wall (23), in that the melt-storage elements (16, 17) can be releasibly fastened in the container without a tool, and in that, to fasten the melt-storage elements (16, 17) in the container, fastening rails (18) are mounted on the inner sides (21) of the side wall elements (03) and engage in a form-fitting manner around each of the melt-storage elements (16, 17) at the upper or lower edge and into which the melt-storage elements (16, 17) can be inserted from the door side.
  2. Container according to Claim 1, characterized in that the door (06) of the transport container (01) can be locked by a closure member (08), wherein, preferably, a seal can be mounted on the closure member (08) and/or a lock for blocking off the transport container (01) is provided on the closure member (08).
  3. Container according to Claim 1 or 2, characterized in that the sandwich material has a first outer cover layer (28) of fibre-reinforced plastic and/or an inner core layer (26) of plywood and/or an inner core layer (27) of foamed plastic, in particular foamed polyurethane plastic, and/or a second outer cover layer (28) of fibre-reinforced plastic.
  4. Container according to one of Claims 1 to 3, characterized in that impact protection elements (25), in particular impact protection elements (25) of foamed plastic, are arranged between the vacuum insulation elements (24) on the one hand and the outer wall (22) and/or inner wall (23) on the other hand.
  5. Container according to one of Claims 1 to 4, characterized in that in each case a plurality of vacuum insulation elements (24) are provided for insulation in each individual wall element (03, 04, 05, 06) .
  6. Container according to Claim 5, characterized in that at least two, in particular in each case four, vacuum insulation elements (24) are arranged next to one another in the wall elements (03, 04, 05, 06), wherein adjacent vacuum insulation elements (24) contact one another in a butt joint (30), wherein, preferably, a thermally insulating material is arranged in the butt joint (30).
  7. Container according to one of Claims 1 to 6, characterized in that a sealing member (20) is arranged in the separating joint between the door (06) and opening of the transport container (01).
  8. Container according to one of Claims 1 to 7, characterized in that the vacuum insulation elements (24) are arranged in the region of the opening of the transport container (01) in such a way that, after closing the door (06), the vacuum insulation elements (24) at least slightly overlap in the region of the separating joint, wherein, preferably, the width of the overlap corresponds at least to half the thickness of the vacuum insulation elements (24).
  9. Container according to one of Claims 1 to 8, characterized in that a supporting frame, in particular composed of metal profiles, for mechanically supporting the container wall is provided on the transport container (01).
  10. Container according to one of Claims 1 to 9, characterized in that each vacuum insulation element (24) has an internal or external monitoring system (31) for monitoring the internal gas pressure in the vacuum insulation element (24), in that at least one inspection opening (19) is provided in the inner wall (23) of the transport container (01), through which opening the monitoring system (31) for monitoring the internal gas pressure in the vacuum insulation element (24) is accessible, and in that the inspection opening (19) is closed by an, in particular transparent, covering (32).
  11. Container according to one of Claims 1 to 10, characterized in that at least one temperature sensor by means of which the inner temperature can be measured is provided on the transport container (01).
EP14004268.0A 2003-05-19 2004-05-05 Thermally insulated container Revoked EP2876389B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322764A DE10322764A1 (en) 2003-05-19 2003-05-19 Containers with vacuum insulation and melt storage materials
EP04738481.3A EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP04738481.3A Division-Into EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container
EP04738481.3A Division EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container

Publications (2)

Publication Number Publication Date
EP2876389A1 EP2876389A1 (en) 2015-05-27
EP2876389B1 true EP2876389B1 (en) 2018-01-10

Family

ID=33461829

Family Applications (3)

Application Number Title Priority Date Filing Date
EP20156390.5A Active EP3671078B1 (en) 2003-05-19 2004-05-05 Thermally insulated container
EP04738481.3A Active EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container
EP14004268.0A Revoked EP2876389B1 (en) 2003-05-19 2004-05-05 Thermally insulated container

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP20156390.5A Active EP3671078B1 (en) 2003-05-19 2004-05-05 Thermally insulated container
EP04738481.3A Active EP1625338B2 (en) 2003-05-19 2004-05-05 Heat insulated container

Country Status (4)

Country Link
US (1) US20070051734A1 (en)
EP (3) EP3671078B1 (en)
DE (1) DE10322764A1 (en)
WO (1) WO2004104498A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018104488U1 (en) 2018-08-03 2018-08-14 Va-Q-Tec Ag Pallet container for the transport of temperature-sensitive goods
DE202018106306U1 (en) 2018-11-06 2018-11-13 Va-Q-Tec Ag Temperable container with vacuum insulation elements
WO2022033628A1 (en) 2020-08-12 2022-02-17 Va-Q-Tec Ag Transport container for a temperature-controlled transport of temperature-sensitive goods

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322764A1 (en) 2003-05-19 2004-12-30 Va-Q-Tec Ag Containers with vacuum insulation and melt storage materials
DE102006045471A1 (en) * 2006-09-26 2008-04-03 Va-Q-Tec Ag Method for determining the gas pressure in evacuated bodies
WO2009035661A1 (en) 2007-09-11 2009-03-19 Cold Chain Technologies, Inc. Insulated pallet shipper and methods of making and using the same
US7823394B2 (en) * 2007-11-02 2010-11-02 Reflect Scientific, Inc. Thermal insulation technique for ultra low temperature cryogenic processor
DE102009004353A1 (en) * 2009-01-08 2010-07-15 SCHÜCO International KG Device and method for room temperature control and thermal room conditioning
US20100200599A1 (en) * 2009-02-10 2010-08-12 Robert Molthen Vacuum insulated container
TW201205267A (en) * 2010-07-26 2012-02-01 Wistron Corp Detecting device capable of economizing electricity and detecting method thereof
FR2974353B1 (en) * 2011-04-19 2014-06-13 Emball Iso ISOTHERMAL CONDITIONING DEVICE FOR THERMOSENSITIVE PRODUCTS
US20130255306A1 (en) * 2012-03-27 2013-10-03 William T. Mayer Passive thermally regulated shipping container employing phase change material panels containing dual immiscible phase change materials
US9140481B2 (en) * 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
DE102012022398B4 (en) * 2012-11-16 2019-03-21 delta T Gesellschaft für Medizintechnik mbH Modular insulated container
DE102012025192A1 (en) * 2012-12-10 2014-06-12 Va-Q-Tec Ag Method and apparatus for the preconditioning of latent heat storage elements
DE202013001161U1 (en) 2012-12-11 2013-03-28 Va-Q-Tec Ag Bottle cooler and latent heat storage element for a bottle cooler
DE102013002555A1 (en) 2012-12-18 2014-06-18 Va-Q-Tec Ag Method and apparatus for the preconditioning of latent heat storage elements
FR3001721A1 (en) * 2013-02-05 2014-08-08 Sofrigam System for ensuring compliance of low temperature conditions for products e.g. drugs, transported in refrigerating box, has temperature sensor placed inside transport box, and CPU intended to record temperatures measured by sensor
EP3126761A4 (en) * 2014-04-04 2017-11-29 Sunwell Engineering Company Limited A storage unit for maintaining a generally constant temperature
DE102014007987A1 (en) 2014-05-30 2015-12-03 Va-Q-Tec Ag Transport container system
DE202014004515U1 (en) * 2014-05-30 2015-09-03 Va-Q-Tec Ag Transport container system
GB2530077A (en) 2014-09-12 2016-03-16 Peli Biothermal Ltd Thermally insulated containers
DE202014008489U1 (en) 2014-10-27 2016-01-28 Va-Q-Tec Ag Box-shaped transport container
DE102014015770A1 (en) 2014-10-27 2016-04-28 Va-Q-Tec Ag Box-shaped transport container
DE102014016393A1 (en) 2014-11-07 2016-05-12 Va-Q-Tec Ag transport container
DE202014008814U1 (en) 2014-11-07 2016-02-11 Va-Q-Tec Ag transport container
DE202015004047U1 (en) 2015-06-10 2016-09-14 Va-Q-Tec Ag Heat-insulating body for a cooling unit and cooling unit with a heat-insulating body
DE102015007277A1 (en) 2015-06-10 2016-12-15 Va-Q-Tec Ag Heat-insulating body for a cooling unit and cooling unit with a heat-insulating body
EP3341665A4 (en) * 2015-09-11 2019-05-01 The Sure Chill Company Limited Portable refrigeration apparatus
US10604326B2 (en) 2015-10-06 2020-03-31 Cold Chain Technologies, Llc. Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
EP3359889B1 (en) * 2015-10-06 2020-08-05 Cold Chain Technologies, LLC Thermally insulated shipping system for pallet-sized payload
US11591133B2 (en) 2015-10-06 2023-02-28 Cold Chain Technologies, Llc Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
US10583978B2 (en) 2015-10-06 2020-03-10 Cold Chain Technologies, Llc Pallet cover compromising one or more temperature-control members and kit for use in making the pallet cover
DE202016001097U1 (en) * 2016-01-28 2017-05-02 Va-Q-Tec Ag Transport container system
EP3228960A1 (en) 2016-04-08 2017-10-11 ROTTER, Thomas Vacuum insulation element, vacuum insulation package and vacuum insulation crate
JP6925106B2 (en) * 2016-07-19 2021-08-25 富士フイルム富山化学株式会社 Transport device
JP6870985B2 (en) * 2016-12-28 2021-05-12 旭ファイバーグラス株式会社 Vacuum heat insulating material
DE102017000622B4 (en) 2017-01-25 2023-10-26 Va-Q-Tec Ag Method for preparing a transport container
NL2018588B1 (en) * 2017-03-28 2018-03-26 Turtle B V Flight case suited to transport musical instruments
US11511928B2 (en) 2017-05-09 2022-11-29 Cold Chain Technologies, Llc Shipping system for storing and/or transporting temperature-sensitive materials
EP3634879B1 (en) 2017-05-09 2023-11-01 Cold Chain Technologies, LLC Shipping system for storing and/or transporting temperature-sensitive materials
FR3076285B1 (en) * 2018-01-03 2021-01-15 Sofrigam DEVICE AND METHOD FOR GUARANTEEING A RELIABLE TEMPERATURE READING IN A THERMO-INSULATING CASE.
US10935299B2 (en) * 2018-06-13 2021-03-02 Cedric Davis Quick freeze cooler
DE202018104807U1 (en) 2018-08-21 2018-08-28 Va-Q-Tec Ag Vacuum-insulated stacking container for the temperature-controlled transport of foodstuffs
US11137190B2 (en) 2019-06-28 2021-10-05 Cold Chain Technologies, Llc Method and system for maintaining temperature-sensitive materials within a desired temperature range for a period of time
US20210403224A1 (en) * 2020-06-24 2021-12-30 World Courier Management Limited Packaging system for transporting temperature-sensitive products
US20220081200A1 (en) * 2020-09-11 2022-03-17 Sonoco Development, Inc. Passive Temperature Controlled Packaging System as a ULD
EP4288351A1 (en) * 2021-02-03 2023-12-13 Peli Biothermal LLC Passive thermally controlled condition-in-place shipping container

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313993A (en) 1980-04-14 1982-02-02 Mcglory Joseph J Laminated insulation
US4845959A (en) 1988-06-27 1989-07-11 Fort Valley State College Fruits and vegetables precooling, shipping and storage container
WO1992015506A1 (en) 1991-03-05 1992-09-17 Eurotainer Ab Shipping container for goods sensitive of temperature
WO1997012100A1 (en) 1995-09-25 1997-04-03 Owens Corning Modular insulation panels and insulated structures
US5669233A (en) 1996-03-11 1997-09-23 Tcp Reliable Inc. Collapsible and reusable shipping container
FR2762899A1 (en) 1997-05-02 1998-11-06 Applic Gaz Sa Thermally insulated portable container serving as e.g. ice-box
US5924302A (en) 1997-03-27 1999-07-20 Foremost In Packaging Systems, Inc. Insulated shipping container
US6062040A (en) 1996-08-30 2000-05-16 Vesture Corporation Insulated chest and method
US6065314A (en) 1998-05-22 2000-05-23 Nicholson; John W. Lock for freight containers
WO2000040908A1 (en) 1999-01-07 2000-07-13 Unilever Plc Freezer cabinet
US6244458B1 (en) 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
US20020099567A1 (en) 2001-01-23 2002-07-25 Joao Raymond Anthony Apparatus and method for providing shipment information
JP2002264717A (en) 2001-03-12 2002-09-18 Isuzu Motors Ltd Body of insulated van
DE10243120A1 (en) 2002-09-17 2004-03-25 N. Romijn B.V. Transporting container for temperature-sensitive products has insulating core between outer and inner skins of wall, and outer skin has reinforcing layer with braid or fabric and also layer of elastic synthetic material or rubber
DE10322764A1 (en) 2003-05-19 2004-12-30 Va-Q-Tec Ag Containers with vacuum insulation and melt storage materials

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091842A (en) 1977-07-28 1978-05-30 The Dow Chemical Company Resealable sealing assembly for inspection port hole
US4351271A (en) 1980-09-04 1982-09-28 Paul Mueller Company Refrigerated receiver
JPS63188481U (en) * 1987-05-22 1988-12-02
JPH04302978A (en) * 1991-03-28 1992-10-26 Matsushita Refrig Co Ltd Cold-heat storage type thermal insulation container
US5351718A (en) 1993-06-28 1994-10-04 Barton David D Access plug flange
US5522216A (en) 1994-01-12 1996-06-04 Marlow Industries, Inc. Thermoelectric refrigerator
JPH0868591A (en) * 1994-08-29 1996-03-12 Toshiba Corp Heat-insulating box
US5518033A (en) 1994-09-19 1996-05-21 Sepco Industries Vessel inspection plug and method of installing same in vessel
US5520220A (en) 1995-08-29 1996-05-28 Barton; David D. Access mounting flange for cold temperature chemical processing equipment
US5950450A (en) * 1996-06-12 1999-09-14 Vacupanel, Inc. Containment system for transporting and storing temperature-sensitive materials
US5865346A (en) 1997-01-07 1999-02-02 Del Zotto; William M. Self-contained fueling system and method
JPH10239199A (en) 1997-02-28 1998-09-11 Toshiba Corp Device for measuring degree of vacuum
JPH10292984A (en) 1997-04-18 1998-11-04 Hitachi Ltd Refrigerator
US5893479A (en) 1997-07-17 1999-04-13 Berberat; Henry Storage tank vault
US5899088A (en) * 1998-05-14 1999-05-04 Throwleigh Technologies, L.L.C. Phase change system for temperature control
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
CN1148529C (en) 1999-02-18 2004-05-05 协和股份有限公司 Thermal decomposer for waste
DE60036572T2 (en) * 1999-04-12 2008-10-23 Isuzu Motors Ltd. Heat-insulating wall element and method for its production
US6470821B1 (en) 1999-05-26 2002-10-29 Insulated Shipping Containers Method and apparatus for the evaluation of vacuum insulation panels
DE10015876A1 (en) * 2000-03-30 2001-10-11 Jobst H Kerspe Vacuum insulation panel for lining refrigerating units, cold storage rooms and similar items comprises cover foils which are welded to one another so that the panel contact edges are at least largely free from protrusions
DE10058566C2 (en) 2000-08-03 2002-10-31 Va Q Tec Ag Foil-wrapped, evacuated thermal insulation body and manufacturing process for it
AUPR312901A0 (en) * 2001-02-15 2001-03-08 Creative Packaging Services Pty Ltd Temperature retaining container
DE10148587C1 (en) * 2001-03-19 2002-11-28 Hans Zucker Gmbh & Co Kg Thermal container includes thermal insulators which are embedded in annular insulation flange and lid which is releasably seated in flange
US6718776B2 (en) 2001-07-10 2004-04-13 University Of Alabama In Huntsville Passive thermal control enclosure for payloads
US20030082357A1 (en) * 2001-09-05 2003-05-01 Cem Gokay Multi-layer core for vacuum insulation panel and insulated container including vacuum insulation panel
JP2003106760A (en) * 2001-09-27 2003-04-09 Mitsubishi Corp Highly heat insulating composite panel and structure using the same
DE10158441A1 (en) 2001-11-29 2003-06-18 Va Q Tec Ag Determination of the gas pressure inside a film enclosed insulation panel by application of a vacuum connection piece to a measurement plate beneath the film insulation film so that the film is lifted away from the plate
DE10215213C1 (en) 2002-04-06 2003-09-11 Va Q Tec Ag Gas pressure in sheet-enveloped evacuated thermal insulation panel determining device, has built-in covered metal plate acting as thermal reservoir

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313993A (en) 1980-04-14 1982-02-02 Mcglory Joseph J Laminated insulation
US4845959A (en) 1988-06-27 1989-07-11 Fort Valley State College Fruits and vegetables precooling, shipping and storage container
WO1992015506A1 (en) 1991-03-05 1992-09-17 Eurotainer Ab Shipping container for goods sensitive of temperature
WO1997012100A1 (en) 1995-09-25 1997-04-03 Owens Corning Modular insulation panels and insulated structures
US5669233A (en) 1996-03-11 1997-09-23 Tcp Reliable Inc. Collapsible and reusable shipping container
US6062040A (en) 1996-08-30 2000-05-16 Vesture Corporation Insulated chest and method
US5924302A (en) 1997-03-27 1999-07-20 Foremost In Packaging Systems, Inc. Insulated shipping container
FR2762899A1 (en) 1997-05-02 1998-11-06 Applic Gaz Sa Thermally insulated portable container serving as e.g. ice-box
US6065314A (en) 1998-05-22 2000-05-23 Nicholson; John W. Lock for freight containers
US6244458B1 (en) 1998-07-09 2001-06-12 Thermo Solutions, Inc. Thermally insulated container
WO2000040908A1 (en) 1999-01-07 2000-07-13 Unilever Plc Freezer cabinet
US20020099567A1 (en) 2001-01-23 2002-07-25 Joao Raymond Anthony Apparatus and method for providing shipment information
JP2002264717A (en) 2001-03-12 2002-09-18 Isuzu Motors Ltd Body of insulated van
DE10243120A1 (en) 2002-09-17 2004-03-25 N. Romijn B.V. Transporting container for temperature-sensitive products has insulating core between outer and inner skins of wall, and outer skin has reinforcing layer with braid or fabric and also layer of elastic synthetic material or rubber
DE10322764A1 (en) 2003-05-19 2004-12-30 Va-Q-Tec Ag Containers with vacuum insulation and melt storage materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018104488U1 (en) 2018-08-03 2018-08-14 Va-Q-Tec Ag Pallet container for the transport of temperature-sensitive goods
KR20200015422A (en) 2018-08-03 2020-02-12 바-큐-텍 아게 Pallet container for transport of temparature-sensitive products
US11325746B2 (en) 2018-08-03 2022-05-10 Va-Q-Tec Ag Pallet container for the transport of temperature-sensitive products
DE202018106306U1 (en) 2018-11-06 2018-11-13 Va-Q-Tec Ag Temperable container with vacuum insulation elements
EP3650781A1 (en) 2018-11-06 2020-05-13 va-Q-tec AG Temperature-controllable container with vacuum insulation elements
US11629911B2 (en) 2018-11-06 2023-04-18 Va-Q-Tec Ag Temperature-controllable container with vacuum insulation elements
WO2022033628A1 (en) 2020-08-12 2022-02-17 Va-Q-Tec Ag Transport container for a temperature-controlled transport of temperature-sensitive goods

Also Published As

Publication number Publication date
EP1625338A2 (en) 2006-02-15
WO2004104498A3 (en) 2005-03-31
DE10322764A1 (en) 2004-12-30
EP1625338B1 (en) 2020-02-12
EP3671078A1 (en) 2020-06-24
US20070051734A1 (en) 2007-03-08
WO2004104498A2 (en) 2004-12-02
EP2876389A1 (en) 2015-05-27
EP1625338B2 (en) 2023-04-12
EP3671078B1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
EP2876389B1 (en) Thermally insulated container
DE69533667T2 (en) PALLET BASED COOLED TRANSPORT SYSTEM
EP2041502B1 (en) Transport container for maintaining the temperature of frozen goods
DE102012022398B4 (en) Modular insulated container
WO2020038939A1 (en) Transport container
EP3921583B1 (en) Transport container
DE4342947A1 (en) Wall element
DE102015113693A1 (en) Thermally insulated transport container with heat insulation applied to the walls and wall construction of such a container
DE102007008351A1 (en) Self-cooling transport container for sample transport, e.g. for medical and oncologocial samples having a vacuum enclosed sample storage space that is cooled by making use of latent heat principles
DE3915925A1 (en) CONTAINER FOR THE TEMPERATURE AND AIR CONDITIONED TRANSPORT OF PERSONAL GOODS
EP2354729B1 (en) Device for adjusting cryogenic temperatures
WO2004001305A1 (en) Refrigerator and freezer device
DE202020103635U1 (en) Holding system and transport system
DE4342948A1 (en) Thermal insulation element
DE202010011159U1 (en) cooling box
EP3986806A1 (en) Packaging for pharmaceutical products
EP2069742A2 (en) Method and device for determining the gas pressure in evacuated bodies
EP1915045B1 (en) Operating, storage and transport container for IT equipment
DE102006040697B3 (en) Container for the storage and transport of information technology equipment has inner rectangular profiled metal frame
EP3738898A1 (en) Container for hazardous goods
DE1297540B (en) Thermally insulated transport container
EP3293468A1 (en) Cold transport container
DE60013908T2 (en) CONTAINER FOR SENSITIVE FREIGHT
DE102013100935B3 (en) Fire protection bulkhead for mounting on vertical wall of switchgear cabinet, has support face that is provided in mounting plane of hood and whose edge is provided with extending groove into which intumescent seal is inserted
DE635451C (en) Fridge wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141218

AC Divisional application: reference to earlier application

Ref document number: 1625338

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

R17P Request for examination filed (corrected)

Effective date: 20151015

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20160713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171009

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VA-Q-TEC AG

AC Divisional application: reference to earlier application

Ref document number: 1625338

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015633

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004015633

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PELICAN BIOTHERMAL LLC

Effective date: 20181010

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220524

Year of fee payment: 19

Ref country code: GB

Payment date: 20220520

Year of fee payment: 19

Ref country code: FR

Payment date: 20220523

Year of fee payment: 19

Ref country code: DE

Payment date: 20220519

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220519

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004015633

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004015633

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20221207

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20221207