EP3657017B1 - Compresseur frigorifique - Google Patents

Compresseur frigorifique Download PDF

Info

Publication number
EP3657017B1
EP3657017B1 EP19208947.2A EP19208947A EP3657017B1 EP 3657017 B1 EP3657017 B1 EP 3657017B1 EP 19208947 A EP19208947 A EP 19208947A EP 3657017 B1 EP3657017 B1 EP 3657017B1
Authority
EP
European Patent Office
Prior art keywords
duct
gas
equaliser
lubricant
drive chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19208947.2A
Other languages
German (de)
English (en)
Other versions
EP3657017A1 (fr
Inventor
Jens MANNEWITZ
Robin Langebach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP3657017A1 publication Critical patent/EP3657017A1/fr
Application granted granted Critical
Publication of EP3657017B1 publication Critical patent/EP3657017B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/128Crankcases

Definitions

  • the invention relates to a refrigerant compressor, in particular for a refrigeration system, comprising an overall housing, a compressor unit arranged in the overall housing, a mechanical compressor drive unit arranged in a drive space of the overall housing for the compressor unit, a lubricant bath forming in the drive space, a lubricant bath in the overall housing separated from the drive space running inlet channel, via which the compressor unit sucks in refrigerant to be compressed.
  • the invention is therefore based on the object of creating a refrigerant compressor in which the lubricant throw is reduced as much as possible. Please refer U.S. 2015/240798 A1 , which addresses a similar problem.
  • this object is achieved according to the invention in that the inlet duct and the drive chamber are connected via a gas equalization duct which permits permanent gas equalization between them and which has an opening on the drive chamber side on the one hand and an opening on the inlet duct side on the other hand and whose duct length between the openings is at least corresponds to twice an equivalent channel diameter, in particular a smallest equivalent channel diameter, of the gas equalization channel.
  • the refrigerant compressor works optimally due to the permanent gas equalization via the gas equalization duct, since there is always gas equalization between the drive space and the inlet duct to compensate for pressure variations caused by blow-by flows or other effects, and on the other hand due to the channel length of the gas equalization channel prevents lubricant, in particular lubricant droplets, from being transported from the opening on the drive chamber side via the opening on the inlet channel side into the inlet channel and leading to an increased throw of lubricant on the outlet side of the refrigerant compressor.
  • the channel length of the gas equalization channel corresponds to at least three times, better at least four times, preferably at least five times and preferably at least six times the equivalent channel diameter.
  • An equivalent channel diameter of the gas equalization channel is to be understood as the diameter of a circular channel cross-section whose channel cross-sectional area corresponds to the cross-sectional area of the gas equalization channel if its cross-sectional shape deviates from a circular cross-sectional shape.
  • the gas equalization channel has a channel length of at least 40 mm, better at least 60 mm, even better at least 80 mm, preferably at least 100 mm and preferably at least 110 mm.
  • the gas equalization channel has a channel cross-sectional area of at least 80 mm 2 , better at least 120 mm 2 , even better at least 180 mm 2 , preferably at least 250 mm 2 and particularly preferably at least 300 mm 2 since such a minimum cross-sectional area improves gas balancing, particularly due to the lower interference losses.
  • the opening of the gas equalization channel on the drive chamber side is higher than the lubricant bath of the drive chamber in the direction of gravity.
  • the opening of the gas equalization duct on the drive chamber side is arranged in the direction of gravity at least at the height of a drive shaft of the compressor drive unit.
  • the opening of the gas equalization duct on the drive space side is arranged laterally next to the compressor drive unit in the drive space.
  • the opening of the gas equalization channel on the inlet channel side is higher in the direction of gravity than the accumulation of lubricant in the inlet channel.
  • the inlet channel and the drive chamber are separated from one another by a separating element, in particular a partition wall of the overall housing, it is preferably provided that the gas equalization channel passes through a separating element between the drive chamber and the inlet channel.
  • An optimal spatial arrangement of the gas equalization duct results when the gas equalization duct extends over at least half of its duct length in or along the drive space.
  • the function of the gas equalization duct is particularly optimal when, during gas equalization in the gas equalization duct, a gas column located between the openings moves back and forth in the gas equalization duct without flowing through the gas equalization duct, i.e. the gas column does not penetrate the entire gas equalization duct in its entirety but instead at least a significant proportion, that is, for example at least a third of its length, remains in the gas equalization channel.
  • a further optimal solution provides that a gas column lying between the openings moves back and forth in the gas equalization channel during the suction gas pulsations occurring in the inlet channel in such a way that it does not cause any transport of lubricant droplets from the drive chamber into the inlet channel.
  • a gas column in the gas duct between the openings only moves back and forth in the gas equalization duct during the suction gas pulsations in the inlet duct such that the maximum amount of lubricant droplets present at the opening on the drive compartment side enter the gas equalization duct, but not emerge from its inlet port side opening.
  • the gas equalization channel can have any course, for example straight or curved or curved, as long as the channel length and cross-sectional area meet the conditions mentioned at the outset.
  • the gas equalization channel could be arranged on an outside of the overall housing.
  • the gas equalization channel is arranged in the overall housing.
  • the gas equalization channel can be formed by a separate part that is arranged in the overall housing and is held, for example, on a housing wall, or can be designed as a channel that is integrated into the overall housing.
  • the gas equalization channel only connects the inlet channel running in the overall housing to the drive chamber, but not, for example, to cylinder heads seated on the overall housing or into the intake chambers of these cylinder heads.
  • a structurally particularly simple and therefore advantageous solution provides that the inlet duct passes through an engine compartment in the overall housing and that the accumulation of lubricant forms on the bottom side of the engine compartment.
  • the gas equalization duct connects the drive compartment with the engine compartment.
  • a lubricant return is provided, which supplies lubricant from a lubricant accumulation forming in the inlet duct to the drive chamber, and which in particular prevents lubricant from being transported from the drive chamber into the inlet duct.
  • a particularly favorable solution provides that this includes a check valve, which either acts directly between the inlet channel and the drive chamber or is assigned to a channel running between the inlet channel and the drive chamber, so that the check valve allows lubricant to be transported from the drive chamber prevented from entering the intake port.
  • the refrigerant compressor is a semi-hermetic compressor, in which the inlet channel flows through the engine compartment to cool the drive motor.
  • the compressor unit could be designed in any way.
  • the compressor unit is designed as a piston compressor unit.
  • the compressor drive unit includes a drive shaft, in particular a crankshaft, with eccentrics and connecting rods driven by them.
  • a in 1 illustrated embodiment of a refrigerant compressor 10 according to the invention for a refrigeration system not shown in the drawing comprises an overall housing 12, which has a compressor section 14, in which, for example, in Figures 2 to 4 shown compressor unit 16 is arranged, which in the illustrated embodiment at least one, preferably several cylinder bores 22 with in has this movable piston 24, wherein the cylinder bores 22 are each closed, for example, by an applied valve plate 26, on which cylinder heads 28 are arranged on a side opposite the cylinder bores 22, which cylinder heads are mounted on the overall housing 12.
  • the individual pistons 24 of the compressor unit 16 are driven by a mechanical compressor drive unit 32, which is arranged in a drive chamber 34 of the compressor section 14 and which, for example, comprises a drive shaft 38 which can be rotated about an axis 36 and is provided with eccentrics 42, which in turn are connected by means of connecting rods 44 are coupled to the pistons 24 to move them in the cylinder bores 22.
  • a mechanical compressor drive unit 32 which is arranged in a drive chamber 34 of the compressor section 14 and which, for example, comprises a drive shaft 38 which can be rotated about an axis 36 and is provided with eccentrics 42, which in turn are connected by means of connecting rods 44 are coupled to the pistons 24 to move them in the cylinder bores 22.
  • a lubricant bath 48 is formed in a bottom region 46 of the drive chamber 34 that is the lowest in the direction of gravity, in which lubricant for lubricating the compressor unit 16 and the compressor drive unit 32 collects, which is conveyed via conveying elements (not shown), for example pump elements, of both the compressor unit 16 and the compressor drive unit 32 supplied for lubrication.
  • the overall housing 12 also includes a motor section 52 which is arranged following the compressor section 14 in the direction of the axis 36 and which encloses a motor compartment 54 in which a motor 56, in particular an electric drive motor, is arranged, the stator 62 of which is fixedly arranged in the motor section 52 , while its rotor 64 is seated on a rotor shaft 66 which preferably runs coaxially to the drive shaft 38 and is in particular integrally connected thereto and is therefore also rotatable about the axis 36 in order to drive the drive shaft 38 of the compressor drive unit 32.
  • a motor 56 in particular an electric drive motor
  • the drive compartment 34 and the motor compartment 54 are separated from one another by separating elements, for example by a partition wall 72 which preferably carries a bearing unit for the drive shaft 38 and the rotor shaft 66 .
  • Bearing unit 74 preferably forms a bearing sleeve 76 molded onto partition wall 72.
  • an inlet connection 82 for the refrigerant to be compressed by the refrigerant compressor 10 is provided in the region of the motor section 52, via which the refrigerant enters an inlet channel, designated as a whole with 84, of the overall housing 12, which runs through the motor compartment 54 to the partition wall 72 and, following the partition 72, merges into a distributor 86 running in the compressor section 14, from which the refrigerant to be compressed then enters the inlet chambers of the cylinder heads 28, is compressed by the compressor unit 16 and is supplied to outlet chambers of the cylinder heads 28 as compressed refrigerant , from which it enters an outlet channel 94 in the housing section 14 and is guided therefrom to an outlet port 96 .
  • lubricant In the inlet duct 84, in particular in the area of the engine compartment 54, lubricant usually settles in such refrigerant compressors, which on the one hand results from lubricant separated from the refrigerant sucked in and on the other hand from lubricant escaping in the area of the bearing unit 74, and forms a lubricant accumulation 102 in the area of a lowest point 104 of the inlet duct 84, particularly in the engine compartment 54.
  • This lubricant should be removed from the inlet duct 84 to reduce the lubricant throw at the outlet port 96 of the refrigerant compressor 10.
  • a lubricant return is provided in the partition wall 72 between the inlet channel 84 , in particular the engine compartment 54 , and the drive compartment 34 , which feeds lubricant from the lubricant accumulation 102 into the drive compartment 34 .
  • a non-return valve 106 is arranged, which only allows lubricant to pass from the lubricant accumulation 102 in the inlet channel 84 into the lubricant bath 48 .
  • the pressure differences occurring between the inlet channel 84 and the drive chamber 34 when the refrigerant compressor is running are used to act on the accumulation of lubricant 102 and cause it to pass through the non-return valve 106 into the lubricant bath 48 .
  • an in 2 , 3 and 5 illustrated gas equalization duct 112 is provided, which penetrates the partition 72 and allows the aforementioned gas equalization between the drive space 34 and the inlet duct 84, in particular the engine space 54 in this case.
  • the gas equalization channel 112 runs in particular in such a way that, as in 2 shown, an opening 114 of the same on the drive compartment side is located in the drive compartment 34 at a sufficient distance from a surface 118 of the lubricant bath 48 in the drive compartment 34 and an opening 116 of the gas equalization conduit 112 on the inlet conduit side is also located at a sufficient height above the accumulation of lubricant 102 in the inlet conduit 84, in particular in the engine compartment 54 .
  • the gas equalization channel 112 is preferably formed by a tube which is inserted into the partition wall 72 and held by it, the tube preferably extending from the partition wall 72 into the drive chamber 34 .
  • the inlet duct 112 designed in such a way that it has a channel length L between the opening 114 on the drive chamber side and the opening 116 on the inlet channel side, which is at least 40 mm, even better at least 60 mm, preferably at least 80 mm and very preferably at least 100 mm or even better at least 110 mm.
  • the gas equalization channel 112 has a channel cross-sectional area Q that is at least 80 mm 2 , better 120 mm 2 , even better at least 180 mm 2 , preferably at least 250 mm 2 or very particularly advantageously at least 300 mm 2 .
  • the channel length L of the gas equalization channel 112 corresponds to at least twice, better at least three times, even better at least four times, preferably at least five times and preferably at least six times the equivalent channel diameter AD, with the equivalent channel diameter AD being the diameter of an im corresponds to the cross section of a circular gas equalization channel 112 or, in the case of a gas equalization channel 112 with a cross-sectional shape that deviates from a circular cross-section, corresponds to the channel diameter of a channel cross-sectional area Q that is circular in cross-section, which is the same size as the channel cross-sectional area Q' of the gas equalization channel 112 that deviates from the circular cross-sectional shape.
  • gas equalization channel 112 make it possible that essentially no transport of lubricant, in particular no transport of lubricant droplets, takes place through the gas equalization channel 112 from the drive chamber 34 into the inlet channel 84 , in particular the motor chamber 54 .
  • the duct length L and the duct cross-sectional area Q of the gas equalization duct 112 form a gas column in the latter, which moves back and forth due to the pressure differences 84 between the opening 114 on the drive compartment side and the opening 116 on the inlet duct side, with the movements of the gas column due to the large cross-sectional area Q and the large channel length L of the gas equalization channel 112 are limited in such a way that when the gas column moves back and forth no droplets of lubricant are transported from the opening 114 on the drive chamber side in the drive chamber 34 to the opening 116 on the inlet channel side and escape from this.
  • the lubricant droplets entering through the opening 114 on the drive chamber side do not migrate as far as the opening 116 on the inlet channel side, but only into the gas equalization channel 112 and essentially out of it again to the opening 114 on the drive chamber side, or only as far as that they remain in the gas equalization channel 112 and are optionally deposited there.
  • the solution according to the invention allows, on the one hand, the lubricant accumulating in intake duct 84 and in particular in engine compartment 54 to be fed from lubricant pool 102 via check valve 106 to lubricant bath 48 in drive compartment 34 and, on the other hand, to prevent lubricant droplets from escaping from drive compartment 34 via gas equalization duct 112 the inlet channel 84, in particular the engine compartment 54, and thus to reduce the overall lubricant throw in such refrigerant compressors, particularly when they are operated as transcritical CO 2 machines.
  • the above dimensioned and functioning gas equalization channel 112 thus allows a significant overall reduction in the lubricant throw at the outlet port 96.
  • the gas equalization duct 112' is designed to slope downwards in the direction of the drive chamber 34, so that its opening 116' on the inlet duct side is higher in the direction of gravity than the opening 114' on the drive chamber side, so that if lubricant settles in the gas equalization duct 112', this is due to under the effect of gravity from the opening 114 ′ on the drive chamber side and collects in the lubricant bath 48 .
  • the gas equalization channel 112" is designed in such a way that it has a lowest point 122 between the opening 114" on the drive compartment side and the opening 116" on the inlet channel side, in which lubricant collects that is separated in the gas equalization channel 112".
  • the deepest point 122 is assigned a drain opening 124 that is smaller in relation to the channel cross-sectional area Q, in particular smaller by a factor of 10, which allows the lubricant collecting in the deepest point 122 to escape from the gas equalization channel 112" and - possibly also through an additional line - is fed to the lubricant bath 48 by the action of gravity.
  • Such a lowest point 122 in the direction of gravity can be achieved, for example, in such a way that the gas equalization duct 112" has a deflection pointing downwards in the direction of gravity, whereby this deflection is preferably located in the drive chamber 34, so that the lubricant emerging from the drip opening can reach the lubricant bath 48 without a further line is supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Claims (14)

  1. Compresseur frigorifique, en particulier pour une installation frigorifique, comprenant un carter intégral (12), une unité de compresseur (16) disposée dans le carter intégral (12), une unité d'entraînement de compresseur (32) mécanique, disposée dans une chambre d'entraînement (34) du carter intégral (12) pour l'unité de compresseur (16), un bain de lubrifiant (48) se formant dans la chambre d'entraînement (34), un canal d'entrée (84) s'étendant de manière séparée de la chambre d'entraînement (34) dans le carter intégral (12), par l'intermédiaire duquel l'unité de compresseur (16) aspire le fluide frigorifique à comprimer, dans lequel le canal d'entrée (84) et la chambre d'entraînement (34) sont reliés par l'intermédiaire d'un canal d'équilibrage de gaz (112) admettant entre ceux-ci un équilibrage de gaz permanent, qui présente d'une part une ouverture côté chambre d'entraînement (114) et d'autre part une ouverture côté entrée (116) et dont la longueur de canal (L) entre les ouvertures (114, 116) correspond au moins au double d'un diamètre de canal équivalent (AD), en particulier un diamètre de canal équivalent (AD) le plus petit, du canal d'équilibrage de gaz (112),
    caractérisé en ce que le canal d'entrée (84) passe à travers un compartiment moteur (54) dans le carter intégral (12) et qu'une accumulation de lubrifiant (102) se forme côté fond du compartiment moteur (54), que l'ouverture côté canal d'entrée (116) du canal d'équilibrage de gaz (112) dans le sens de la pesanteur se situe plus haut que l'accumulation de lubrifiant (102) dans le canal d'entrée (84).
  2. Compresseur frigorifique selon la revendication 1, caractérisé en ce que la longueur de canal (L) du canal d'équilibrage de gaz (112) correspond à au moins un triple, encore mieux au moins un quadruple, de préférence au moins un quintuple et préférentiellement au moins un sextuple du diamètre de canal équivalent (AD).
  3. Compresseur frigorifique selon le préambule de la revendication 1 ou selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'équilibrage de gaz (112) présente une longueur de canal (L) qui atteint au moins 40 mm, mieux au moins 60 mm, encore mieux au moins 80 mm, de préférence au moins 100 mm et préférentiellement au moins 110 mm.
  4. Compresseur frigorifique selon le préambule de la revendication 1 ou selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'équilibrage de gaz (112) présente une superficie de section de canal (Q) qui atteint au moins 80 mm2, mieux au moins 120 mm2, encore mieux au moins 180 mm2, préférentiellement au moins 250 mm2 et de manière particulièrement préférée au moins 300 mm2.
  5. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ouverture côté chambre d'entraînement (114) du canal d'équilibrage de gaz (112) dans le sens de la pesanteur se situe plus haut que le bain de lubrifiant (48) dans la chambre d'entraînement (34).
  6. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ouverture côté chambre d'entraînement (114) du canal d'équilibrage de gaz (112) est disposée dans le sens de la pesanteur au moins au niveau d'un arbre d'entraînement (38) de l'unité d'entraînement de compresseur (32).
  7. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ouverture côté chambre d'entraînement (114) du canal d'équilibrage de gaz (112) est disposée latéralement à côté de l'unité d'entraînement de compresseur (32) dans la chambre d'entraînement (34).
  8. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'équilibrage de gaz (112) passe à travers un élément de séparation (72) entre la chambre d'entraînement (34) et le canal d'entrée (84).
  9. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'équilibrage de gaz (112) s'étend sur au moins la moitié de sa longueur de canal (L) dans ou le long de la chambre d'entraînement (34).
  10. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que lors de l'équilibrage de gaz dans le canal d'équilibrage de gaz (112), une colonne de gaz située entre les ouvertures (114, 116) se déplace en va-et-vient dans le canal d'équilibrage de gaz (112), sans traverser le canal d'équilibrage de gaz (112), en ce qu'en particulier une colonne de gaz située entre les ouvertures (114, 116) se déplace en va-et-vient dans le canal d'équilibrage de gaz (112) lorsque des pulsations de gaz aspiré apparaissent dans le canal d'entrée (84), qu'elle ne provoque pas de transport de gouttelettes de lubrifiant à partir de la chambre d'entraînement (34) dans le canal d'entrée (84), en ce qu'en particulier une colonne de gaz située dans le canal d'équilibrage de gaz (112) entre les ouvertures (114, 116) se déplace en va-et-vient dans le canal d'équilibrage de gaz (112) dans le cas de pulsations de gaz aspiré dans le canal d'entrée (84) uniquement de sorte que des gouttelettes de lubrifiant présentes sur l'ouverture côté chambre d'entraînement (114) au maximum entrent dans le canal d'équilibrage de gaz (112), mais ne sortent pas de l'ouverture côté entrée (116) de celui-ci.
  11. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le canal d'équilibrage de gaz (112) relie la chambre d'entraînement (34) au compartiment moteur (54).
  12. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un retour de lubrifiant (106) est prévu, lequel amène le lubrifiant à la chambre d'entraînement (34) à partir d'une accumulation de lubrifiant (102) se formant dans le canal d'entrée (84), et lequel empêche en particulier un transport de lubrifiant à partir de la chambre d'entraînement (34) dans le canal d'entrée (84), en ce qu'en particulier un retour de lubrifiant (106) comprend un clapet antiretour.
  13. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que le compresseur frigorifique est un compresseur semi-hermétique, pour lequel le canal d'entrée (84) traverse le compartiment moteur (54) pour le refroidissement d'un moteur d'entraînement (56).
  14. Compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de compresseur (16) est réalisée sous la forme d'une unité de compresseur à piston, en ce qu'en particulier l'unité d'entraînement de compresseur (32) comprend un arbre d'entraînement (38) avec des excentriques (42) et des bielles (44) entraînées par ceux-ci.
EP19208947.2A 2018-11-22 2019-11-13 Compresseur frigorifique Active EP3657017B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018129473.5A DE102018129473A1 (de) 2018-11-22 2018-11-22 Kältemittelverdichter

Publications (2)

Publication Number Publication Date
EP3657017A1 EP3657017A1 (fr) 2020-05-27
EP3657017B1 true EP3657017B1 (fr) 2023-09-06

Family

ID=68581463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19208947.2A Active EP3657017B1 (fr) 2018-11-22 2019-11-13 Compresseur frigorifique

Country Status (6)

Country Link
US (1) US11543160B2 (fr)
EP (1) EP3657017B1 (fr)
CN (1) CN111207059B (fr)
AU (1) AU2019268187B2 (fr)
DE (1) DE102018129473A1 (fr)
RU (1) RU2731373C1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022113123A1 (de) * 2022-05-24 2023-11-30 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichtereinheit
US20230384002A1 (en) * 2022-05-31 2023-11-30 Trane International Inc. Refrigerant compressor with wear sleeve and lubricant blends for handling debris-laden fluids

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713513A (en) * 1971-06-10 1973-01-30 Fedders Corp Crankcase evacuation and oil return system
SU737643A1 (ru) * 1976-01-20 1980-05-30 Предприятие П/Я А-3304 Поршневой компрессор
JPS60198386A (ja) * 1984-03-21 1985-10-07 Matsushita Electric Ind Co Ltd 能力可変圧縮機
US5591011A (en) * 1995-09-18 1997-01-07 Carrier Corporation Multi-refrigerant compressor
DE19726943C2 (de) * 1997-06-25 2000-03-23 Bitzer Kuehlmaschinenbau Gmbh Kältemittelkompressor
US7260951B2 (en) * 2001-04-05 2007-08-28 Bristol Compressors International, Inc. Pressure equalization system
JP2002339865A (ja) * 2001-05-17 2002-11-27 Toyota Industries Corp 車両空調用圧縮機および該車両空調用圧縮機を備えた空調装置
DE10323381B3 (de) * 2003-05-23 2005-03-03 Danfoss A/S Kältemittelverdichter
DE102007042318B4 (de) * 2007-09-06 2017-11-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kompakter trockenlaufender Kolbenverdichter
DE102009006040A1 (de) * 2009-01-24 2010-07-29 Bock Kältemaschinen GmbH Verdichter
CN201972893U (zh) * 2011-01-21 2011-09-14 佛山市广顺电器有限公司 一种压缩机内进气自动冷却结构
JP5370425B2 (ja) * 2011-07-19 2013-12-18 ダイキン工業株式会社 圧縮機
HUE035664T2 (en) * 2012-10-01 2018-05-28 Maekawa Seisakusho Kk Piston compressor
DE102013203268A1 (de) * 2013-02-27 2014-08-28 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichteranlage
CN106870333B (zh) * 2017-01-24 2021-10-19 广东美芝制冷设备有限公司 电动压缩机和制冷设备
US20180340526A1 (en) * 2017-05-26 2018-11-29 Lennox Industries Inc. Method and apparatus for common pressure and oil equalization in multi-compressor systems

Also Published As

Publication number Publication date
CN111207059B (zh) 2022-12-30
AU2019268187A1 (en) 2020-06-11
CN111207059A (zh) 2020-05-29
US20200166250A1 (en) 2020-05-28
DE102018129473A1 (de) 2020-05-28
EP3657017A1 (fr) 2020-05-27
AU2019268187B2 (en) 2021-11-04
RU2731373C1 (ru) 2020-09-02
US11543160B2 (en) 2023-01-03
BR102019024492A2 (pt) 2020-07-14

Similar Documents

Publication Publication Date Title
DE10248926B4 (de) Kompressor
EP2321533B1 (fr) Filtre d'huile et silenceur pour un compresseur à vis
DE112015004113T5 (de) Kompressor mit Ölrückführeinheit
EP3657017B1 (fr) Compresseur frigorifique
DE4006338A1 (de) Taumelscheibenkompressor mit internem kaeltemittel/schmiermittel-trennsystem
DE102013106344B4 (de) Kältemittelverdichter
EP1234975B1 (fr) Unité cylindre-piston haute pression
EP2229532B1 (fr) Compresseur à piston
EP2961985B1 (fr) Installation de compression d'un réfrigérant
DE19802461C2 (de) Kühlmittelverdichter
DE2332411C3 (de) Rotationskolbenverdichter
DE10337974B4 (de) Schmiervorrichtung für einen Kolbenverdichter
DE2250947A1 (de) Verdichter fuer kaeltemaschinen
WO2016091548A1 (fr) Carter de guidage de lubrifiant à fonction de séparation et reflux
WO2018054524A1 (fr) Moteur de moteur à combustion interne, moteur à combustion interne et procédé permettant de lubrifier un palier de piston et d'axe de bielle lors du fonctionnement du moteur
DE102008025322B4 (de) Kältemittelverdichter
DE3923059C2 (fr)
DE102013113611A1 (de) Brennkraftmaschine mit einer Trockensumpfschmierung
DE3936357A1 (de) Fluegelzellenverdichter
DE102005039268B4 (de) Kolben eines Kolbenverdichters, insbesondere eines Kältemittelverdichters
EP4283123A1 (fr) Unité de compresseur de réfrigérant
WO2014166788A1 (fr) Compresseur frigorifique
WO2023174888A1 (fr) Pompe à huile pour un véhicule automobile
DE102018124757A1 (de) Elektrisch angetriebene Verdichteranordnung
DE8214683U1 (de) Pumpe, insbesondere hochdruckpumpe zur foerderung von fluessigkeiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201126

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221028

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230405

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009235

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231129

Year of fee payment: 5

Ref country code: IT

Payment date: 20231124

Year of fee payment: 5

Ref country code: FR

Payment date: 20231123

Year of fee payment: 5

Ref country code: DE

Payment date: 20231127

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230906