EP3656245B1 - Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage - Google Patents

Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage Download PDF

Info

Publication number
EP3656245B1
EP3656245B1 EP18208376.6A EP18208376A EP3656245B1 EP 3656245 B1 EP3656245 B1 EP 3656245B1 EP 18208376 A EP18208376 A EP 18208376A EP 3656245 B1 EP3656245 B1 EP 3656245B1
Authority
EP
European Patent Office
Prior art keywords
gold
weight
alloy
alloying element
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18208376.6A
Other languages
German (de)
English (en)
Other versions
EP3656245A1 (fr
Inventor
Damien Colas
Frédéric DIOLOGENT
Gauthier DEPIERRE
Saphir LE MAITRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Priority to EP18208376.6A priority Critical patent/EP3656245B1/fr
Publication of EP3656245A1 publication Critical patent/EP3656245A1/fr
Application granted granted Critical
Publication of EP3656245B1 publication Critical patent/EP3656245B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • A44C27/003Metallic alloys

Definitions

  • the present invention relates to a gold alloy.
  • the gold alloy comprises at least 990 ⁇ by weight of gold, or even at least 999 ⁇ . It has a hardness and stability compatible for use in the luxury industry, in particular for the manufacture of watchmaking or jewelery objects.
  • Jewelery gold is generally made of an alloy whose alloying elements provide the necessary hardness properties and/or make it possible to change the color. Thus, depending on its degree of purity and its alloying elements, gold can be yellow, white, pink, gray.
  • Pure gold, or quasi-pure ( ⁇ 990 ⁇ by weight of gold), has hardness properties which may prove to be unsatisfactory, the material being too ductile to produce certain objects such as fine jewelry items.
  • the alloys comprising at least 990 ⁇ by weight of gold or 24-carat gold have a Vickers hardness which is generally around 30 HV in the annealed state and around 65 HV in the annealed state. hardened state.
  • the hardness properties can be improved by means of specific treatments, in particular by hardening by solid solution, by hardening by plastic deformation (hardening) or by hardening by precipitation.
  • These treatments which can be combined, are based on the formation of obstacles to the movements of the dislocations responsible for the plastic deformation of the gold.
  • preventing or reducing the movements of the dislocations makes it possible to harden the gold.
  • Hardening by solid solution corresponds to the introduction into a metal matrix, which is generally pure, of a minority element (solute, soluble in the metal matrix).
  • Strain hardening is achieved by plastic deformation of a metal or alloy. It includes a heat treatment step. During hardening, the metal or alloy undergoes plastic deformations inducing dislocations.
  • the solute atoms can slow down the movement of the dislocations by interacting with them within the crystalline structure, that is to say the grains. This phenomenon can be amplified when the solute atoms have a strongly different size (lower or higher) than that of the atoms of the hardened metal, in this case gold.
  • the size and atomic mass of the solute atoms can have an influence on the hardness.
  • the improvement in hardness is proportional to the difference in atomic radius between the solvent and the solute.
  • the hardness can increase when the atomic mass of the solute is significantly lower than that of gold.
  • Structural hardening corresponds to the formation of precipitates in the metal or alloy. These precipitates are generally distributed homogeneously, for example at the grain boundaries or within the grains. These precipitates can result from the homogenization of the alloy or metal, for example following the formation of a more stable phase during a thermal quenching step. These precipitates can form obstacles to the movements of the dislocations and thus improve the hardness of the metal or the alloy.
  • the alloying elements can contribute to the improvement of the hardness of gold but the room for maneuver is narrow when the alloy comprises at least 990 ⁇ by weight of gold.
  • the document EP 0 882 805 describes an alloy comprising: gold, 200 to 2000 ppm of calcium, beryllium, germanium or boron and 10 to 1000 ppm of a rare earth.
  • the document JP PH093570 describes an alloy comprising: gold, 200 to 2000 ppm of calcium, beryllium or boron, 10 to 1000 ppm of a rare earth, 10 to 1000 ppm of aluminium, silicon, cobalt, nickel, tin or lead, 10 to 10,000 ppm ruthenium, iridium or rhodium.
  • the document JP 2003-328059 describes an alloy comprising gold, 0.12 to 0.28% yttrium, 0.02 to 0.18% calcium, and optionally 0.02 to 0.16% beryllium, boron, aluminum, silicon , nickel, copper, germanium, palladium, tin or antimony.
  • the document EP 0 685 565 discloses a gold alloy, having a Vickers hardness of 100 or greater, comprising between 618 and 734 ppm of calcium, beryllium, germanium and/or boron, and between 161 and 613 ppm of rare earths (including yttrium), the amount of rare earths is therefore lower than the amount of calcium, beryllium, germanium and boron.
  • alloys Although these alloys have a satisfactory hardness, it remains difficult to obtain an alloy comprising at least 990 ⁇ by weight of gold that can be used in the manufacture of timepieces or durable jewelry. This is all the more true for the luxury industry, where the quality of the articles must be irreproachable. To do this, it is preferable to have an alloy having a hardness greater than or equal to 90 HV, advantageously greater than or equal to 100 HV. This hardness is commonly considered sufficient to obtain excellent resistance of the article to scratches in particular.
  • the present invention solves this problem thanks to the development of an alloy based on gold and two alloying elements allowing the manufacture of high quality articles with great durability.
  • the present invention is defined in the appended claims.
  • the Applicant has discovered that the alloy of gold with certain specific elements makes it possible to improve its properties of hardness, enough to make it compatible for manufacturing watchmaking or jewelery objects, without requiring a specific aging treatment. .
  • the gold alloy used corresponds to Chuk Kam or 24-carat gold, the definition of which varies according to national or regional regulations.
  • the definition adopted for a 24 carat gold is that of China (24 carat gold comprising at least 990 ⁇ by weight of gold), advantageously that of Taiwan (at least 995 ⁇ by weight of gold), more advantageously that of Europe (at least 999 ⁇ by weight of gold).
  • the various quantities of the constituents of the gold alloy are expressed in percentage by weight or in tenths of a percentage by weight (per thousand, ⁇ ), relative to the weight of the gold alloy.
  • the gold alloy includes 990 ⁇ in gold weight, it means that it includes 990 grams of the gold element per 1000 grams of gold alloy.
  • the process for preparing the timepiece or jewelry item further comprises a step of shaping this gold alloy.
  • the invention also relates to the gold alloy used to prepare the watch or jewelry object.
  • This gold alloy has a hardness greater than or equal to 90 HV, advantageously greater than or equal to 100 HV and even more advantageously greater than or equal to 110 HV.
  • the watch or jewelry article according to the invention can be a piece of jewelry, a leather-based article or a clothing accessory. It can also be a watch, a writing accessory or a decorative item. For example, it could be one of the following items: ring, earring, necklace, bracelet, pendant, watch, belt or purse buckle, tie pin, cufflinks, clip ticket, a hairpin, a pen or even a paper knife.
  • the gold alloy comprises at least 990 ⁇ by weight of gold, advantageously at least 995 ⁇ by weight of gold, more advantageously at least 999 ⁇ by weight of gold.
  • the gold alloy comprises between 999 ⁇ and 999.4 ⁇ by weight of gold, and even more advantageously between 999 ⁇ and 999.3 ⁇ by weight Golden. According to a particular embodiment, it may comprise 999.2 ⁇ by weight of gold.
  • the person skilled in the art will know how to supplement with the sufficient quantity of alloying elements, first (Si, Y, Ti, Ge and their mixtures) and second alloying elements (Sn, Ge and their mixtures), to reach 1000 ⁇ .
  • the gold alloy comprises at least 995 ⁇ by weight of gold, it comprises a total amount greater than or equal to 0.6 ⁇ and less than or equal to 5 ⁇ of the first alloying element and the second alloying element. alloy.
  • the gold alloy comprises between at least 999 ⁇ by weight of gold, it comprises a total amount greater than or equal to 0.6 ⁇ and less than or equal to 1 ⁇ of the first alloying element and the second alloying element. 'alloy.
  • the watchmaking or jewelery article according to the invention advantageously comprises a gold alloy comprising between 5.10 and 8.00 ⁇ by weight of the first alloying element, more advantageously between 2.55 and 4.00 ⁇ , even more advantageously between 0.51 ⁇ and 0.90 ⁇ , preferably between 0.51 ⁇ and 0.80 ⁇ .
  • the watchmaking or jewelery article according to the invention advantageously comprises a gold alloy comprising between 2.00 and 4.90 ⁇ by weight of the second alloying element, more advantageously between 1.00 and 2.45 ⁇ , even more advantageously between 0.10 ⁇ and 0.49 ⁇ , preferably between 0.20 ⁇ and 0.49 ⁇ .
  • the total quantity of alloying elements (first + second) is less than or equal to 10 ⁇ , advantageously less than or equal to 5 ⁇ , more advantageously less than or equal to 1 ⁇ , by weight relative to the weight of the gold alloy . It is greater than or equal to 0.6 ⁇ , advantageously greater than or equal to 0.7 ⁇ .
  • the gold alloy has a ratio by weight of the first alloying element to the second alloying element strictly greater than 1, preferably greater than 1.5 and less than 9, more preferably a weight ratio equal to 2.
  • the quantity by weight of the first alloying element is always greater than the quantity by weight of the second alloying element.
  • the first alloying element is chosen from silicon, yttrium, titanium, germanium and mixtures thereof.
  • the second alloying element is tin or germanium or a mixture of tin and germanium.
  • the first alloying element is germanium
  • the second alloying element is tin
  • germanium is the second alloying element and is present in a lower amount by weight than the other alloying element.
  • germanium is associated with silicon, yttrium or titanium, the proportion by weight of germanium is the smallest.
  • the first element is silicon, yttrium, or germanium.
  • titanium can cause processing problems due to its affinity with oxygen.
  • the first alloying element is silicon.
  • the gold alloy comprising silicon as the first alloying element has a Vickers hardness which is advantageously greater than 100 HV.
  • the gold alloy is an alloy of gold, silicon and germanium (AuSiGe).
  • the Si/Ge weight ratio is advantageously equal to 2.
  • the gold alloy is an alloy of gold, silicon and tin (AuSiSn).
  • the Si/Sn weight ratio is advantageously equal to 2.
  • This alloy advantageously comprises at least 995 ⁇ by weight of gold and a total quantity greater than or equal to 0.6 ⁇ and less than or equal to 5 ⁇ of the first alloying element and of the second alloying element. More advantageously, it comprises at least 999 ⁇ by weight of gold and a total quantity greater than or equal to 0.6 ⁇ and less than or equal to 1 ⁇ of the first alloying element and of the second alloying element. Preferably, this alloy comprises between 999 ⁇ and 999.4 ⁇ by weight of gold, more preferably between 999 ⁇ and 999.3 ⁇ by weight of gold. The respective amounts and combinations of the alloying elements are as indicated above.
  • step a the respective proportions of the metals correspond to the proportions of the final alloy. This step is carried out conventionally, according to the techniques known to those skilled in the art.
  • Step a) consists in mixing and melting the various metals so as to form a homogeneous mixture. This step is advantageously carried out by heating the mixture until the desired temperature is reached.
  • the alloying is advantageously carried out by an induction furnace, for example.
  • step a) is carried out at a temperature between 850°C and 1500°C, advantageously between 900°C and 1450°C.
  • step b) corresponds to a homogenization treatment which involves bringing the alloy back into solution.
  • step b) and the work hardening of step c) make it possible to increase the hardness of the alloy.
  • Optional step b) is advantageously carried out at a temperature between 600 and 800°C, more advantageously between 700 and 800°C.
  • step b) The duration of step b) is between 45 and 120 minutes, more advantageously between 45 and 60 minutes.
  • step b) can make it possible to standardize the composition of alloying elements and to ensure homogeneity of the mechanical properties of the alloy thanks to solution treatment and the dissemination of alloying elements in gold. It also makes it possible to reduce or eliminate any internal stresses that may result from heterogeneous solidification. Finally, it makes it possible to freeze the microstructure and to keep a supersaturated solution, which can prove to be useful when step d) of aging is implemented.
  • Stage b) can be followed by a cooling stage allowing the structure of the alloy to be fixed, prior to stage c). It advantageously consists in carrying out thermal quenching in air or in water. Even though air quenching is much slower than water quenching, the alloys obtained according to these two routes have similar hardness properties.
  • Thermal quenching advantageously with water, makes it possible to supersaturate the alloy with alloying elements, in particular when one or more alloying elements are little or not soluble at ambient temperature.
  • step c) corresponds to hardening by deformation, for example by rolling. It is advantageously carried out between 50 and 99% reduction in thickness, more advantageously between 60 and 95%. In other words, the alloy undergoes a deformation advantageously comprised between 65 and 90%.
  • the embodiments in which the first alloying element is silicon are particularly advantageous because it is possible to obtain a Vickers hardness greater than 100 HV with a work hardening of 75% and greater than 110 HV with a work hardening of 90%. In the other embodiments, a work hardening of 90% is preferred.
  • step c) The alloy obtained following step c) can optionally be subjected to an aging step, in particular by heating.
  • the method is advantageously free of step d) of ageing.
  • the optional step d) of aging corresponds to structural hardening by precipitation.
  • the structural hardening is manifested by the formation of precipitates of various origins within the alloy, either at the grain boundaries or within the grains.
  • the aging step d) is optional. It can be carried out at a temperature between 150°C and 300°C. Its duration is advantageously between 0.5 and 3 hours.
  • the aging can be carried out in air or, when the composition of the gold alloy is sensitive to oxidation, in an inert atmosphere, for example under argon.
  • the alloy obtained at the end of hardening, or aging can then be shaped according to conventional techniques to form the watchmaking or jewelery article according to the invention.
  • the shaping is carried out by cold or hot deformation, then by stamping, cutting, machining, for example by means of a cutting tool or by electroerosion or by means of a laser.
  • the shaping can be carried out by additive manufacturing.
  • the alloy is first transformed into powder form.
  • Shaping by rolling in step c) corresponds to work hardening. It was made using a bench rolling mill. A lamella with a thickness of less than 7 mm is passed several times between the two rolls of the rolling mill, the spacing of which is controlled by a handwheel. Two theoretical strain levels were applied at 75% and 90%. To ensure better reproducibility during this step, all the samples are deformed at a height of 0.35 mm per pass with a constant rolling speed of the rollers of 3.95 m/minute.
  • Examples 2 to 14 relate to various compositions of gold alloys comprising at least one alloying element from among calcium, yttrium, titanium, germanium, tin and silicon.
  • the figure 1 illustrates the as-cast hardnesses, after strain hardening, possibly after ageing, of these compositions and of pure gold (CE-1).
  • the figure 1 shows that the effect of hardening by solid solution (as cast) remains insufficient for these gold alloy compositions. However, the malleability of these compositions allows deformation rates of 90% without cracking.
  • the AuPd (CE-2) and AuZr (CE-3) compositions are not satisfactory insofar as the gain in hardness is less than 100 HV (80-85 HV) and remains too limited compared to pure gold ( CE-1, 65HV).
  • the AuCa (CE-14) composition could be suitable to have a sufficiently hard gold alloy.
  • this composition requires an aging step.
  • it is difficult to implement because calcium is not very soluble in gold (1.8 atomic % at 800° C.) and oxidizes easily during heat treatments, which creates an embrittling phase. This is also the case for AuCaSi (CE-11).
  • compositions (AuTiGe (INV-7), AuGeSn (INV-9), AuYGe (INV-10) and AuSiGe (INV-12) have a hardness greater than 100 HV after work hardening at 90% .
  • the composition Au 999 Ge 0.665 Si 0.335 could not be implemented due to complete cracking of the sample after work hardening of a few percent.
  • the Au 999 Ge 1 composition (not shown) has a relatively low as-cast hardness comparable to that of fine gold (30 HV). After 75% hardening, it is only 50 HV, which is insufficient.
  • Silicon makes it possible to increase the hardness after work hardening when it is present as the main alloying element (INV-12 and INV-13).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Adornments (AREA)

Description

    DOMAINE DE L'INVENTION
  • La présente invention concerne un alliage d'or. L'alliage d'or comprend au moins 990 ‰ en poids d'or, voire au moins 999 ‰. Il présente une dureté et une stabilité compatibles pour une utilisation dans l'industrie du luxe, notamment pour la fabrication d'objets d'horlogerie ou de joaillerie.
  • ÉTAT ANTÉRIEUR DE LA TECHNIQUE
  • De tous temps, l'or a été utilisé comme matériau pour fabriquer des articles de joaillerie ou de la monnaie.
  • L'or de joaillerie est généralement constitué d'un alliage dont les éléments d'alliage procurent des propriétés de dureté nécessaire et/ou permettent de changer la couleur. Ainsi, en fonction de son degré de pureté et de ses éléments d'alliage, l'or peut être jaune, blanc, rose, gris.
  • La pureté de l'or est indiquée en carats. De manière générale, selon la règlementation Européenne, l'or 24 carats comprend au moins 999 ‰ en poids d'or alors que l'or 18 carats en comprend 750 ‰ et l'or 14 carats 584 ‰. Selon les réglementations locales, la pureté de l'or peut varier :
    • Chine : au moins 990 ‰ en poids d'or pour être marqué « Chuk Kam »,
    • Taiwan : au moins 995 ‰ en poids d'or pour être marqué 24 carats,
    • Japon : au moins 998.5 ‰ en poids d'or pour être marqué 24 carats,
    • Europe : au moins 999 ‰ en poids d'or pour être marqué 24 carats.
  • L'or pur, ou quasi pur (≥ 990 ‰ en poids d'or), présente des propriétés de dureté qui peuvent s'avérer insatisfaisantes, le matériau étant trop ductile pour réaliser certains objets comme des articles de joaillerie fins. En effet, les alliages comprenant au moins 990 ‰ en poids d'or ou l'or 24 carats présentent une dureté Vickers qui est généralement de l'ordre de 30 HV à l'état recuit et de l'ordre de 65 HV à l'état écroui.
  • Ainsi, dans certains cas et en fonction des caractéristiques recherchées, les propriétés de dureté peuvent être améliorées grâce à des traitements spécifiques, notamment par durcissement par solution solide, par durcissement par déformation plastique (écrouissage) ou par durcissement par précipitation. Ces traitements, qui peuvent être combinés, reposent sur la formation d'obstacles aux mouvements des dislocations responsables de la déformation plastique de l'or. Ainsi, empêcher ou diminuer les mouvements des dislocations permet de durcir l'or.
  • Le durcissement par solution solide correspond à l'introduction dans une matrice métallique, qui est généralement pure, d'un élément minoritaire (soluté, soluble dans la matrice métallique).
  • Le durcissement par écrouissage est réalisé par déformation plastique d'un métal ou d'un alliage. Il comporte une étape de traitement thermique Lors de l'écrouissage, le métal, ou l'alliage, subit des déformations plastiques induisant des dislocations.
  • Ces techniques reposent sur le mouvement de dislocations, plus précisément, sur la formation d'obstacles au mouvement des dislocations.
  • Par exemple, lors d'un durcissement par solution solide, la présence du soluté créé des obstacles au mouvement des dislocations. En effet, les atomes de soluté peuvent ralentir le mouvement des dislocations en interagissant avec celles-ci au sein de la structure cristalline, c'est-à-dire des grains. Ce phénomène peut être amplifié lorsque les atomes de soluté ont une taille fortement différente (inférieure ou supérieure) de celle des atomes du métal durci, en l'occurrence l'or.
  • En ce qui concerne les alliages d'or comprenant au moins 990 ‰ en poids d'or, la taille et la masse atomique des atomes de soluté peuvent avoir une influence sur la dureté. En général, l'amélioration de la dureté est proportionnelle à la différence de rayon atomique entre le solvant et le soluté. Ainsi, la dureté peut augmenter lorsque la masse atomique du soluté est nettement inférieure à celle de l'or.
  • Lorsque le durcissement par solution solide ou par écrouissage ne permet pas d'atteindre la dureté espérée, il est possible de mettre en œuvre un durcissement structural par précipitation notamment dans le cas d'alliages précieux. Le durcissement structural correspond à la formation de précipités dans le métal ou l'alliage. Ces précipités sont généralement répartis de manière homogène, par exemple au niveau des joints de grains ou au sein des grains. Ces précipités peuvent résulter de l'homogénéisation de l'alliage ou du métal, par exemple suite à la formation d'une phase plus stable lors d'une étape de trempe thermique. Ces précipités peuvent former des obstacles aux mouvements des dislocations et ainsi améliorer la dureté du métal ou de l'alliage.
  • Bien que le durcissement structural par précipitation permette d'augmenter la dureté d'un alliage, sa mise en œuvre peut fragiliser l'alliage obtenu. D'autre part, le rapport entre le gain de dureté et l'augmentation de la fragilité peut s'avérer négatif pour les caractéristiques globales de l'alliage. Il est donc préférable de pouvoir atteindre la dureté désirée en s'affranchissant de ce type de procédé.
  • Comme déjà indiqué, les éléments d'alliage peuvent contribuer à l'amélioration de la dureté de l'or mais la marge de manœuvre est étroite lorsque l'alliage comprend au moins 990 ‰ en poids d'or.
  • Le document EP 0 882 805 décrit un alliage comprenant : de l'or, 200 à 2000 ppm de calcium, béryllium, germanium ou bore et 10 à 1000 ppm d'une terre rare. Le document JP PH093570 décrit un alliage comprenant : de l'or, 200 à 2000 ppm de calcium, béryllium ou bore, 10 à 1000 ppm d'une terre rare, 10 à 1000 ppm d'aluminium, silicium, cobalt, nickel, étain ou plomb, 10 à 10000 ppm de ruthénium, iridium ou rhodium. Le document JP 2003-328059 décrit un alliage comprenant de l'or, 0,12 à 0,28 % d'yttrium, 0,02 à 0,18 % de calcium, et éventuellement 0,02 à 0,16 % de béryllium, bore, aluminium, silicium, nickel, cuivre, germanium, palladium, étain ou antimoine.
  • Le document EP 0 685 565 divulgue un alliage d'or, présentant une dureté Vickers de 100 ou plus, comprenant entre 618 et 734 ppm de calcium, de béryllium, de germanium et/ou de bore, et entre 161 et 613 ppm de terres rares (y compris l'yttrium), la quantité de terres rares est donc inférieure à la quantité de calcium, de béryllium, de germanium et de bore.
  • Bien que ces alliages présentent une dureté satisfaisante, il reste délicat d'obtenir un alliage comprenant au moins 990 ‰ en poids d'or utilisable dans la confection d'articles d'horlogerie ou de joaillerie durable. Ceci est d'autant plus vrai pour l'industrie du luxe dont la qualité des articles doit être irréprochable. Pour ce faire, il est préférable de disposer d'un alliage présentant une dureté supérieure ou égale à 90 HV, avantageusement supérieure ou égale à 100 HV. Cette dureté est communément considérée comme suffisante pour obtenir une excellente résistance de l'article aux rayures notamment.
  • La présente invention résout ce problème grâce à la mise au point d'un alliage à base d'or et de deux éléments d'alliage permettant la fabrication d'articles de haute qualité et présentant une grande durabilité. La présente invention est définie dans les revendications annexées.
  • EXPOSE DE L'INVENTION
  • Le Demandeur a découvert que l'alliage de l'or avec certains éléments spécifiques permet d'améliorer ses propriétés de dureté, suffisamment pour le rendre compatible pour fabriquer des objets d'horlogerie ou de joaillerie et ce, sans nécessiter un traitement de vieillissement spécifique.
  • Ainsi, l'invention concerne un alliage d'or présentant une dureté d'au moins 90 Hv, ledit alliage étant constitué de :
    • au moins 990 ‰ en poids d'or,
    • une quantité supérieure ou égale à 0,6 ‰ et inférieure ou égale à 10 ‰ de deux éléments d'alliage :
      • un premier élément d'alliage choisi parmi le silicium, l'yttrium, le titane, le germanium, et leurs mélanges, et
      • un deuxième élément d'alliage choisi parmi l'étain, le germanium, et leurs mélanges,
    • d'éventuelles impuretés représentant moins de 50 ppm en poids de l'alliage,
    le premier élément d'alliage et le deuxième élément d'alliage étant différents l'un de l'autre,
    l'alliage d'or comprenant une quantité de premier élément d'alliage plus importante que la quantité du deuxième élément d'alliage.
  • L'alliage d'or mis en œuvre correspond de l'or Chuk Kam ou 24 carats dont la définition varie en fonction de la règlementation nationale ou régionale. Dans le cadre de la présente invention, la définition adoptée pour un or 24 carats est celle de la Chine (or 24 carats comprenant au moins 990 ‰ en poids d'or), avantageusement celle de Taïwan (au moins 995 ‰ en poids d'or), plus avantageusement celle de l'Europe (au moins 999 ‰ en poids d'or).
  • Sauf indication contraire, les différentes quantités des constituants de l'alliage d'or sont exprimées en pourcentage en poids ou en dixième de pourcentage en poids (pour mille, ‰), par rapport au poids de l'alliage d'or.
  • Lorsque l'alliage d'or comprend 990 ‰ en poids d'or, cela signifie qu'il comprend 990 grammes de l'élément or pour 1000 grammes d'alliage d'or.
  • L'invention concerne également un procédé de fabrication de l'alliage d'or pour un article d'horlogerie ou de joaillerie, comprenant au moins les étapes successives suivantes :
    1. a) mise en alliage d'un mélange constitué de, en poids par rapport au poids total des métaux :
      • au moins 990 ‰ d'or,
      • une quantité Q1 d'un premier élément d'alliage choisi parmi le silicium, l'yttrium, le titane et le germanium et leurs mélanges,
      • une quantité Q2 d'un deuxième élément d'alliage choisi parmi l'étain et le germanium et leurs mélanges,
      avec 0,6 ≤ Q1 + Q2 ≤ 10 ‰ et Q1 > Q2,
      • d'éventuelles impuretés représentant moins de 50 ppm en poids de l'alliage,
    2. b) optionnellement, traitement thermique de l'alliage obtenu à l'étape a),
    3. c) mise en forme par écrouissage de l'alliage issu de l'étape a) ou b),
    4. d) optionnellement, vieillissement par traitement thermique de l'alliage de l'étape c).
  • Le procédé de préparation de l'article d'horlogerie ou de joaillerie comprend en outre une étape de mise en forme de cet alliage d'or.
  • L'invention concerne également l'alliage d'or utilisé pour préparer l'objet d'horlogerie ou de joaillerie. Cet alliage d'or présente une dureté supérieure ou égale à 90 HV, avantageusement supérieure ou égale à 100 HV et de manière encore plus avantageuse supérieure ou égale à 110 HV.
  • L'article d'horlogerie ou de joaillerie selon l'invention peut être un bijou, un article à base de cuir ou un accessoire vestimentaire. Il peut également être une montre, un accessoire d'écriture ou un article de décoration. Par exemple, il peut s'agir de l'un des articles suivants : bague, boucle d'oreille, collier, bracelet, pendentif, montre, boucle de ceinture ou de sac à main, épingle à cravate, boutons de manchettes, une pince à billet, une épingle à cheveux, un stylo ou encore un couteau à papier.
  • Conformément à l'invention, l'alliage d'or comprend au moins 990 ‰ en poids d'or, avantageusement au moins 995 ‰ en poids d'or, plus avantageusement au moins 999 ‰ en poids d'or. De manière avantageuse, l'alliage d'or comprend entre 999 ‰ et 999.4 ‰ en poids d'or, et de manière encore plus avantageuse entre 999 ‰ et 999.3 ‰ en poids d'or. Selon un mode de réalisation particulier, il peut comprendre 999,2 ‰ en poids d'or. En fonction de la quantité d'or, l'homme du métier saura compléter avec la quantité suffisante d'éléments d'alliage, des premier (Si, Y, Ti, Ge et leurs mélanges) et deuxième éléments d'alliage (Sn, Ge et leurs mélanges), pour atteindre 1000 ‰.
  • Lorsque l'alliage d'or comprend au moins 995 ‰ en poids d'or, il comprend une quantité totale supérieure ou égale à 0,6 ‰ et inférieure ou égale à 5 ‰ du premier élément d'alliage et du deuxième élément d'alliage.
  • Lorsque l'alliage d'or comprend entre au moins 999 ‰ en poids d'or, il comprend une quantité totale supérieure ou égale à 0,6 ‰ et inférieure ou égale à 1 ‰ du premier élément d'alliage et du deuxième élément d'alliage.
  • L'article d'horlogerie ou de joaillerie selon l'invention comporte avantageusement un alliage d'or comprenant entre 5.10 et 8.00 ‰ en poids du premier élément d'alliage, plus avantageusement entre 2.55 et 4.00 ‰, encore plus avantageusement entre 0.51 ‰ et 0.90 ‰, de préférence entre 0.51 ‰ et 0.80 ‰.
  • L'article d'horlogerie ou de joaillerie selon l'invention comporte avantageusement un alliage d'or comprenant entre 2.00 et 4.90 ‰ en poids du deuxième élément d'alliage, plus avantageusement entre 1.00 et 2.45 ‰, encore plus avantageusement entre 0.10 ‰ et 0.49 ‰, de préférence entre 0.20 ‰ et 0.49 ‰.
  • La quantité totale des éléments d'alliage (premier + deuxième) est inférieure ou égale à 10 ‰, avantageusement inférieure ou égale à 5 ‰, plus avantageusement inférieure ou égale à1 ‰, en poids par rapport au poids de l'alliage d'or. Elle est supérieure ou égale à 0.6 ‰, avantageusement supérieure ou égale à 0.7 ‰.
  • Quelles que soient les quantités du premier élément d'alliage et du deuxième élément d'alliage, l'alliage d'or présente un rapport en poids du premier élément d'alliage sur le deuxième élément d'alliage strictement supérieur à 1, de préférence supérieur à 1.5 et inférieur à 9, de manière plus préférée un rapport en poids égal à 2.
  • En d'autres termes, et comme déjà indiqué, la quantité en poids du premier élément d'alliage est toujours supérieure à la quantité en poids du deuxième élément d'alliage.
  • Conformément à l'invention le premier élément d'alliage est choisi parmi le silicium, l'yttrium, le titane, le germanium et leurs mélanges. Le deuxième élément d'alliage est quant à lui l'étain ou le germanium ou un mélange d'étain et de germanium.
  • Bien entendu, lorsque le premier élément d'alliage est le germanium, le deuxième élément d'alliage est l'étain, puisque le premier élément d'alliage et le deuxième élément d'alliage sont différents. Il en résulte que le seul cas où le germanium peut être l'élément d'alliage présent en plus grande quantité en poids est lorsqu'il est associé à l'étain. Dans tous les autres cas, le germanium est le deuxième élément d'alliage et est présent en une quantité en poids inférieure à l'autre élément d'alliage. En d'autres termes, lorsque le germanium est associé avec le silicium, l'yttrium ou le titane, la proportion en poids de germanium est la plus petite.
  • De manière avantageuse, le premier élément est le silicium, l'yttrium, ou le germanium. En effet, le titane peut engendrer des problèmes de mise en œuvre en raison de son affinité avec l'oxygène.
  • De manière avantageuse, le premier élément d'alliage est le silicium. En effet, l'alliage d'or comprenant le silicium comme premier élément d'alliage présente une dureté Vickers qui est avantageusement supérieure à 100 HV.
  • Ainsi, dans un mode de réalisation avantageux, l'alliage d'or est un alliage d'or, de silicium et de germanium (AuSiGe). Dans ce cas, le rapport en poids Si/Ge est avantageusement égal à 2.
  • De même, dans un autre mode de réalisation avantageux, l'alliage d'or est un alliage d'or, de silicium et d'étain (AuSiSn). Dans ce cas, le rapport en poids Si/Sn est avantageusement égal à 2.
  • L'invention concerne un alliage d'or constitué de :
    • au moins 990 ‰ en poids d'or,
    • une quantité supérieure ou égale à 0,6 ‰ et inférieure ou égale à 10 ‰ de deux éléments d'alliage :
      • un premier élément d'alliage choisi parmi le silicium, l'yttrium, le titane, le germanium, et leurs mélanges, et
      • un deuxième élément d'alliage choisi parmi l'étain, le germanium, et leurs mélanges,
    • d'éventuelles impuretés représentant moins de 50 ppm en poids de l'alliage d'or,
    le premier élément d'alliage et le deuxième élément d'alliage étant différents, et la quantité du premier élément d'alliage étant plus importante que la quantité du deuxième élément d'alliage,
    l'alliage d'or présentant une dureté d'au moins 90 Hv.
  • Cet alliage comprend avantageusement au moins 995 ‰ en poids d'or et une quantité totale supérieure ou égale à 0,6 ‰ et inférieure ou égale à 5 ‰ du premier élément d'alliage et du deuxième élément d'alliage. Plus avantageusement, il comprend au moins 999 ‰ en poids d'or et une quantité totale supérieure ou égale à 0,6 ‰ et inférieure ou égale à 1 ‰ du premier élément d'alliage et du deuxième élément d'alliage. De manière préférée, cet alliage comprend entre 999 ‰ et 999.4 ‰ en poids d'or, plus préférentiellement entre 999 ‰ et 999.3 ‰ en poids d'or. Les quantités et combinaisons respectives des éléments d'alliages sont telles qu'indiquées ci-dessus.
  • Comme déjà indiqué, l'invention concerne également un procédé de fabrication de l'alliage d'or pour un article d'horlogerie ou de joaillerie, comprenant au moins les étapes successives suivantes :
    1. a) mise en alliage d'un mélange constitué de, en poids par rapport au poids total des métaux :
      • au moins 990 ‰ d'or,
      • une quantité Q1 d'un premier élément d'alliage choisi parmi le silicium, l'yttrium, le titane et le germanium et leurs mélanges,
      • une quantité Q2 d'un deuxième élément d'alliage choisi parmi l'étain et le germanium et leurs mélanges,
        avec 0,6 ≤ Q1 + Q2 ≤ 10 ‰ et Q1 > Q2,
      • d'éventuelles impuretés représentant moins de 50 ppm en poids du mélange,
    2. b) optionnellement, traitement thermique de l'alliage obtenu à l'étape a),
    3. c) mise en forme par écrouissage de l'alliage issu de l'étape a) ou b),
    4. d) optionnellement, vieillissement par traitement thermique de l'alliage de l'étape c). De manière avantageuse, 0,6 ≤ Q1 + Q2 ≤ 5 ‰, et plus avantageusement, 0.6 < Q1 + Q2 ≤ 1 ‰.
  • Lors de l'étape a), les proportions respectives des métaux correspondent aux proportions de l'alliage final. Cette étape est réalisée conventionnellement, selon les techniques connues de l'homme du métier.
  • L'étape a) consiste à mélanger et à fondre les différents métaux de manière à former un mélange homogène. Cette étape est avantageusement réalisée en chauffant le mélange jusqu'à atteindre la température souhaitée.
  • La cinétique de montée en température (°C/minute) n'ayant généralement pas d'importance, la mise en alliage est avantageusement réalisée par four à induction par exemple.
  • De manière avantageuse, l'étape a) est réalisée à une température comprise entre 850°C et 1500°C, avantageusement entre 900°C et 1450°C.
  • Le traitement thermique optionnel de l'étape b) correspond à un traitement d'homogénéisation qui implique une remise en solution de l'alliage.
  • Le traitement d'homogénéisation de l'étape b) et l'écrouissage de l'étape c) permettent d'augmenter la dureté de l'alliage. Ces étapes sont réalisées conventionnellement, selon les techniques connues de l'homme du métier.
  • L'étape optionnelle b) est avantageusement réalisée à une température comprise entre 600 et 800°C, plus avantageusement entre 700 et 800°C.
  • La durée de l'étape b) est comprise entre 45 et 120 minutes, plus avantageusement entre 45 et 60 minutes.
  • En fonction des éléments d'alliage et de leurs quantités, l'étape b) peut permettre d'uniformiser la composition en éléments d'alliage et d'assurer une homogénéité des propriétés mécaniques de l'alliage grâce à la mise en solution et à la diffusion des éléments d'alliage dans l'or. Elle permet en outre de diminuer ou de supprimer les éventuelles contraintes internes pouvant résulter d'une solidification hétérogène. Finalement, elle permet de figer la microstructure et de garder une solution sursaturée, ce qui peut s'avérer utile lorsque l'étape d) de vieillissement est mise en œuvre.
  • L'étape b) peut être suivie d'une étape de refroidissement permettant de figer la structure de l'alliage, préalablement à l'étape c). Elle consiste avantageusement à réaliser une trempe thermique à l'air ou à l'eau. Quand bien même la trempe à l'air est beaucoup plus lente que la trempe à l'eau, les alliages obtenus selon ces deux voies présentent des propriétés de dureté similaires.
  • La trempe thermique, avantageusement à l'eau, permet de sursaturer l'alliage en éléments d'alliage, notamment lorsqu'un ou plusieurs éléments d'alliage sont peu ou pas soluble à la température ambiante.
  • L'écrouissage de l'étape c) correspond à un durcissement par déformation, par exemple par laminage. Il est avantageusement réalisé entre 50 et 99 % de réduction de l'épaisseur, plus avantageusement entre 60 et 95 %. En d'autres termes, l'alliage subit une déformation avantageusement comprise entre 65 et 90 %.
  • Les modes de réalisations dans lesquels le premier élément d'alliage est le silicium sont particulièrement avantageux car il est possible d'obtenir une dureté Vickers supérieure à 100 HV avec un écrouissage de 75 % et supérieure à 110 HV avec un écrouissage de 90 %. Dans les autres modes de réalisations, un écrouissage à 90 % est préféré.
  • L'alliage obtenu à la suite de l'étape c) peut optionnellement être soumis à une étape de vieillissement, notamment par chauffage. Cependant, le procédé est avantageusement exempt d'étape d) de vieillissement.
  • L'étape optionnelle d) de vieillissement correspond à un durcissement structural par précipitation. Comme déjà indiqué, le durcissement structural se manifeste par la formation de précipités d'origines diverses au sein de l'alliage, soit aux joints de grains, soit au sein des grains.
  • L'étape d) de vieillissement est optionnelle. Elle peut être réalisée à une température comprise entre 150°C et 300°C. Sa durée est avantageusement comprise entre 0.5 et 3 heures.
  • Le vieillissement peut être réalisé sous air ou, lorsque la composition de l'alliage d'or est sensible à l'oxydation, sous atmosphère inerte, par exemple sous argon.
  • L'alliage obtenu à l'issue de l'écrouissage, ou du vieillissement, peut ensuite être mis en forme selon les techniques conventionnelles pour former l'article d'horlogerie ou de joaillerie selon l'invention.
  • De manière avantageuse, la mise en forme est réalisée par déformation à froid ou à chaud, puis par étampage, découpage, usinage, par exemple au moyen d'un outil coupant ou par électro érosion ou au moyen d'un laser.
  • Selon un autre mode de réalisation, la mise en forme peut être réalisée par fabrication additive. Pour cela, l'alliage est préalablement transformé sous forme de poudre.
  • La fabrication d'un article d'horlogerie ou de joaillerie à partir de l'alliage d'or présentement décrit se déroule selon les étapes conventionnelles.
  • L'invention et les avantages qui en découlent ressortiront mieux des figures et exemples suivants donnés afin d'illustrer l'invention et non de manière limitative.
  • DESCRIPTION DES FIGURES
    • La figure 1 illustre la dureté de l'or ou d'alliages à base d'or.
    • La figure 2 illustre la stabilité dans le temps d'un alliage d'or selon l'invention.
    EXEMPLES DE RÉALISATION DE L'INVENTION
  • Plusieurs alliages d'or comprenant 999 ‰ en poids d'or ont été préparés selon l'invention (INV) ou non (CE) et comparés à l'or pur (CE-1).
  • Les alliages d'or des exemples 1 à 14 ont été préparés selon les étapes suivantes :
    1. a) mise en alliage d'un mélange comportant les constituants d'un alliage d'or,
    2. b) traitement thermique (homogénéisation),
    3. c) mise en forme (écrouissage par laminage),
    4. d) optionnellement, vieillissement par traitement thermique (Post T° dans le tableau 1).
    Tableau 1 : Compositions et propriétés de l'or et d'alliages d'or (en ‰ en poids)
    Exemple Or Pd Zr Y Ti Sn Ge Si Ca Post T° Dureté (HV)
    CE-1 1000 - 67
    CE-2 999 1 - 80
    CE-3 999 1 - 84
    CE-4 999 0,335 0,665 - 85
    CE-5 999 1 - 91
    CE-6 999 0,335 0,665 - 95
    INV-7 999 0,665 0,335 - 100
    CE-8 999 1 150 102
    INV-9 999 0,335 0,665 - 103
    INV-10 999 0,665 0,335 - 107
    CE-11 999 0,335 0.665 250 112
    INV-12 999 0,335 0,665 - 120,3
    INV-13 999 0,335 0,665 - 122
    CE-14 999 1 250 129
  • La mise en forme par laminage de l'étape c) correspond à l'écrouissage. Elle a été réalisée grâce à un laminoir de banc. Une lamelle d'épaisseur inférieure à 7 mm est passée plusieurs fois entre les deux rouleaux du laminoir dont l'espacement est contrôlé par un volant à main. Deux niveaux de déformation théorique ont été appliqués à hauteur de 75 % et 90 %. Pour assurer une meilleure reproductibilité durant cette étape, l'ensemble des échantillons sont déformées à hauteur de 0.35 mm par passe avec une vitesse de laminage constante des rouleaux de 3,95 m/minute.
  • L'étape d) de vieillissement a été réalisée sur les alliages selon les exemples CE-8, CE-11 et CE-14, ce qui a permis d'améliorer la dureté de ces alliages (figure 1). Elle a été réalisée dans un four de traitement thermique, sous air ou sous argon pour les échantillons sensibles à l'oxydation, dans les conditions suivantes :
    • CE-8 : 150°C pendant 1 heure,
    • CE-11 : 250°C pendant 1 heure,
    • CE-14 : 250°C pendant 1 heure.
  • Les exemples 2 à 14 concernent différentes compositions d'alliages d'or comprenant au moins un élément d'alliage parmi le calcium, l'yttrium, le titane, le germanium, l'étain et le silicium. La figure 1 illustre les duretés brutes de coulée, après écrouissage, éventuellement après vieillissement, de ces compositions et de l'or pur (CE-1).
  • La figure 1 montre que l'effet d'un durcissement par solution solide (brut de coulée) reste insuffisant pour ces compositions d'alliage d'or. Cependant la malléabilité de ces compositions permet des taux de déformation de 90 % sans fissuration.
  • Les compositions AuPd (CE-2) et AuZr (CE-3) ne sont pas satisfaisants dans la mesure où le gain en dureté est inférieur à 100 HV (80-85 HV) et reste trop limité par rapport à l'or pur (CE-1, 65 HV).
  • Il en est de même pour les compositions AuTiY (CE-4) et AuSnTi (CE-6) pour lesquelles le titane n'apporte pas l'effet durcissant escompté.
  • Théoriquement, la composition AuCa (CE-14) pourrait convenir pour disposer d'un alliage d'or suffisamment dur. Cependant, cette composition nécessite une étape de vieillissement. D'autre part, elle est difficile à mettre en œuvre car le calcium est peu soluble dans l'or (1,8 % atomique à 800°C) et s'oxyde facilement lors des traitements thermiques, ce qui crée une phase fragilisante. C'est également le cas pour AuCaSi (CE-11).
  • En ce qui concerne le germanium, les compositions (AuTiGe (INV-7), AuGeSn (INV-9), AuYGe (INV-10) et AuSiGe (INV-12) présentent une dureté supérieure à 100 HV après un écrouissage à 90 %.
  • En revanche, la composition Au999Ge0,665Si0,335 (non illustrée) n'a pas pu être mise en œuvre en raison de la fissuration complète de l'échantillon après écrouissage de quelques pourcents. D'autre part, la composition Au999Ge1 (non illustrée) présente une dureté brute de coulée relativement faible et comparable à celle de l'or fin (30 HV). Après 75 % d'écrouissage, elle n'est que de 50 HV, ce qui est insuffisant.
  • Le silicium permet d'augmenter la dureté après écrouissage lorsqu'il est présent en tant qu'élément d'alliage principal (INV-12 et INV-13).
  • La stabilité du système ternaire AuSiGe (INV-12) a été suivie dans le temps à 37°C (figure 2). Dans ces conditions, cet alliage présente une dureté stable d'environ 105 HV sur une durée d'au moins 120 jours.

Claims (15)

  1. Alliage d'or constitué de :
    - au moins 990 ‰ en poids d'or,
    - une quantité supérieure ou égale à 0.6 ‰ et inférieure ou égale à 10 ‰ de deux éléments d'alliage :
    un premier élément d'alliage choisi parmi le silicium, l'yttrium, le titane et le germanium, et leurs mélanges, et
    un deuxième élément d'alliage choisi parmi l'étain, le germanium, et leurs mélanges,
    - d'éventuelles impuretés représentant moins de 50 ppm en poids de l'alliage, le premier élément d'alliage et le deuxième élément d'alliage étant différents, et la quantité du premier élément d'alliage étant plus importante que la quantité du deuxième élément d'alliage,
    l'alliage d'or présentant une dureté d'au moins 90 Hv.
  2. Alliage selon la revendication 1, caractérisé en ce qu'il comprend au moins 999 ‰ en poids d'or et une quantité totale du premier élément d'alliage et du deuxième élément d'alliage inférieure ou égale à 1 ‰.
  3. Article d'horlogerie ou de joaillerie comprenant un alliage d'or 2. selon la revendication 1.
  4. Article d'horlogerie ou de joaillerie selon la revendication 3, caractérisé en ce que l'alliage d'or comprend au moins 995 ‰ en poids d'or et une quantité totale supérieure ou égale à 0.6 ‰ en poids et inférieure ou égale à 5 ‰ en poids du premier élément d'alliage et du deuxième élément d'alliage.
  5. Article d'horlogerie ou de joaillerie selon la revendication 3 ou 4, caractérisé en ce que l'alliage d'or comprend entre au moins 999 ‰ en poids d'or et une quantité totale supérieure ou égale à 0.6 ‰ en poids et inférieure ou égale à 1 ‰ en poids du premier élément d'alliage et du deuxième élément d'alliage.
  6. Article d'horlogerie ou de joaillerie selon l'une des revendications 3 à 5, caractérisé en ce que l'alliage d'or comprend entre 0.51 ‰ et 0.90 ‰ en poids du premier élément d'alliage, de préférence entre 0.51 ‰ et 0.80 ‰ en poids.
  7. Article d'horlogerie ou de joaillerie selon l'une des revendications 3 à 6, caractérisé en ce que l'alliage d'or comprend entre 0.10 ‰ et 0.49 ‰ en poids du deuxième élément d'alliage, de préférence entre 0.20 ‰ et 0.49 ‰ en poids.
  8. Article d'horlogerie ou de joaillerie selon l'une des revendications 3 à 7, caractérisé en ce que l'alliage d'or présente un rapport en poids du premier élément d'alliage sur le deuxième élément d'alliage strictement supérieur à 1.5 et inférieur à 9, avantageusement égal à 2.
  9. Article d'horlogerie ou de joaillerie selon l'une des revendications 3 à 8, caractérisé en ce que le premier élément d'alliage est le silicium.
  10. Article d'horlogerie ou de joaillerie selon l'une des revendications 3 à 9, caractérisé en ce que l'alliage d'or est un alliage d'or, de silicium et de germanium.
  11. Article d'horlogerie ou de joaillerie selon l'une des revendications 3 à 9, caractérisé en ce que l'alliage d'or est un alliage d'or, de silicium et d'étain.
  12. Procédé de fabrication d'un alliage d'or, comprenant au moins les étapes successives suivantes :
    a) mise en alliage d'un mélange constitué de, en poids par rapport au poids total des métaux :
    - au moins 990 ‰ d'or,
    - une quantité Q1 d'un premier élément d'alliage choisi parmi le silicium, l'yttrium, le titane, le germanium, et leurs mélanges,
    - une quantité Q2 d'un deuxième élément d'alliage choisi parmi l'étain, le germanium, et leurs mélanges,
    avec 0.6 ≤ Q1 + Q2 ≤ 10 ‰ et Q1 >Q2,
    - d'éventuelles impuretés représentant moins de 50 ppm en poids du mélange,
    b) optionnellement, traitement thermique de l'alliage obtenu à l'étape a),
    c) mise en forme par écrouissage de l'alliage issu de l'étape a) ou b),
    d) optionnellement, vieillissement par traitement thermique de l'alliage de l'étape c).
  13. Procédé selon la revendication 12, caractérisé en ce que l'étape b) est réalisée à une température comprise entre 850°C et 1500°C, avantageusement entre 900°C et 1450°C.
  14. Procédé selon l'une des revendications 12 à 13, caractérisé en ce que l'étape b) est réalisée à une température comprise entre 700°C et 800°C pendant une durée comprise entre 45 et 120 minutes.
  15. Procédé selon l'une des revendications 12 à 14, caractérisé en ce que l'écrouissage de l'étape c) est réalisé entre 75 % et 90 %.
EP18208376.6A 2018-11-26 2018-11-26 Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage Active EP3656245B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18208376.6A EP3656245B1 (fr) 2018-11-26 2018-11-26 Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18208376.6A EP3656245B1 (fr) 2018-11-26 2018-11-26 Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage

Publications (2)

Publication Number Publication Date
EP3656245A1 EP3656245A1 (fr) 2020-05-27
EP3656245B1 true EP3656245B1 (fr) 2022-04-06

Family

ID=64477056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18208376.6A Active EP3656245B1 (fr) 2018-11-26 2018-11-26 Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage

Country Status (1)

Country Link
EP (1) EP3656245B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351002B (zh) * 2022-01-11 2023-11-14 云南先导新材料有限公司 一种高硬高纯黄金首饰材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030158A (ja) * 1983-07-29 1985-02-15 Sumitomo Metal Mining Co Ltd ボンデイングワイヤ−
JPS63145729A (ja) * 1986-03-28 1988-06-17 Nittetsu Micro Metal:Kk 半導体素子ボンデイング用金線
JP2780611B2 (ja) 1993-09-06 1998-07-30 三菱マテリアル株式会社 少量成分の合金化で硬質化した金装飾品材
JPH093570A (ja) * 1995-06-23 1997-01-07 Mitsubishi Materials Corp Au含有量の高い硬質金合金製装飾部材
JP2003328059A (ja) * 2002-05-10 2003-11-19 Matsuda Sangyo Co Ltd 硬化型金合金

Also Published As

Publication number Publication date
EP3656245A1 (fr) 2020-05-27

Similar Documents

Publication Publication Date Title
EP3165622B1 (fr) Procédé de fabrication d&#39;un fil en alliage d&#39;or
EP2450460B1 (fr) Alliage d&#39;or gris sans nickel et sans cuivre
BE1006333A3 (fr) Nouvel alliage ternaire a base d&#39;argent.
EP3315620B1 (fr) Alliage précieux amagnétique pour applications horlogères
EP2402467B1 (fr) Alliage d&#39;or à dureté améliorée
EP3656245B1 (fr) Alliage d&#39;or comprenant au moins 990 pour mille en poids d&#39;or, article d&#39;horlogerie ou de joaillerie a base d&#39;un alliage d&#39;or comprenant au moins 990 pour mille en poids d&#39;or, et procédé de fabrication dudit alliage
EP2546371B1 (fr) Or gris 18 carats
EP3121297B1 (fr) Procédé d&#39;obtention d&#39;un composant d&#39;ornement en alliage de platine
EP3249060A1 (fr) Procédé de traitement thermique d&#39;aciers austénitiques et aciers austénitiques ainsi obtenus
EP3808865B1 (fr) Alliage d&#39;or blanc et son procede de fabrication
EP3527678B1 (fr) Alliage a base d&#39;or et de cuivre, son procede de preparation et son utilisation
EP3575421B1 (fr) Piece d&#39;horlogerie ou de bijouterie ou de joaillerie en alliage a base d&#39;or
WO1999037827A1 (fr) Piece de montre en alliage de titane
Pezzato et al. Microstructure and Mechanical Properties of a 18Kt 5N Gold Alloy After Different Heat Treatments
EP3020835A1 (fr) Alliage à base de palladium
RU2791311C1 (ru) Ювелирный сплав, легирующий сплав для его производства и способ получения ювелирного сплава
JP2923932B2 (ja) 装身具用高純度白金及び装身具用高純度白金の製造方法
EP3943630A1 (fr) Composant pour pièce d&#39;horlogerie ou de bijouterie en cermet
WO2006042846A1 (fr) Alliage d&#39;or
EP4273287A1 (fr) Composant horloger en alliage de titane poli
WO2023232938A1 (fr) Procede de fabrication d&#39;un composant horloger ou de bijouterie et ledit composant horloger ou de bijouterie
WO2024102022A1 (fr) Alliage de joaillerie et procédé de production d&#39;alliage de joaillerie
CH703143B1 (fr) Alliage à base de palladium.
CH711842B1 (fr) Procédé de traitement thermique d&#39;aciers austénitiques et aciers austénitiques ainsi obtenus.
JPS61270349A (ja) 装飾品用白金合金

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201124

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40029465

Country of ref document: HK

17Q First examination report despatched

Effective date: 20210216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602018033286

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A44C0027000000

Ipc: C22C0001020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A44C 27/00 20060101ALN20211206BHEP

Ipc: C22F 1/14 20060101ALI20211206BHEP

Ipc: C22C 5/02 20060101ALI20211206BHEP

Ipc: C22C 1/02 20060101AFI20211206BHEP

INTG Intention to grant announced

Effective date: 20220107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1481404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018033286

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220406

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1481404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018033286

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 6

Ref country code: DE

Payment date: 20231121

Year of fee payment: 6

Ref country code: CH

Payment date: 20231201

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220406