EP3642473B1 - Vorrichtung zur zustandserfassung eines injektors - Google Patents

Vorrichtung zur zustandserfassung eines injektors Download PDF

Info

Publication number
EP3642473B1
EP3642473B1 EP18743508.6A EP18743508A EP3642473B1 EP 3642473 B1 EP3642473 B1 EP 3642473B1 EP 18743508 A EP18743508 A EP 18743508A EP 3642473 B1 EP3642473 B1 EP 3642473B1
Authority
EP
European Patent Office
Prior art keywords
injector
switch
state
current
current measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18743508.6A
Other languages
English (en)
French (fr)
Other versions
EP3642473A1 (de
Inventor
Norbert SCHÖFBÄNKER
Richard Pirkl
Lorand D'ouvenou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Components Deggendorf GmbH
Original Assignee
Liebherr Components Deggendorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Deggendorf GmbH filed Critical Liebherr Components Deggendorf GmbH
Publication of EP3642473A1 publication Critical patent/EP3642473A1/de
Application granted granted Critical
Publication of EP3642473B1 publication Critical patent/EP3642473B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing

Definitions

  • the present invention relates to a device for detecting the status of an injector or an injector with corresponding status detection and a method for determining an injector status.
  • Injection nozzles or injectors are typically used to inject fuel into a combustion chamber of an engine. It is advantageous for an engine in which such an injector is present if a control unit is informed about the exact opening time of the injector, so that, for example, there is a particularly narrow tolerance band for the injection quantity of the fuel delivered by the injector, which is also the overall product life of the injector is beneficial.
  • the switch is closed when the injector is not energized and the valve needle of the injector is not moves or ensures that no fuel escapes from the injector.
  • the electrical switch changes its state, ie it goes into an open or a closed state. The switch changes state again when the valve needle moves back into the valve seat.
  • the switch contacts are not directly accessible or are arranged in an isolated manner in the housing of the injector.
  • Such a representation is in 1 shown.
  • one pole of the switch is connected to a pin of the injector or to a solenoid valve that actuates the injector via a resistor.
  • the other pole of the switch is also connected to the housing of the injector.
  • the injector itself is normally connected to the ground, which can be the engine block when used in a vehicle, for example. In such an implementation, only two cables or lines lead out of the housing.
  • a voltage is applied to the injector or to the solenoid valve that actuates the injector, as a result of which a mechanical and/or hydraulic movement of the valve needle is triggered.
  • the movement of the valve needle in turn opens or closes the switch. For example be provided that the switch is closed by removing the voltage.
  • the problem with this type of status detection is that there can be an indefinite time delay between applying/removing the voltage to the injector or the solenoid valve and triggering the switch, i.e. moving the valve needle out of its seat or back into its seat, since the mechanical and/or hydraulic movement of the valve needle has a certain inertia. It can happen that the switch opens when the voltage is still present at the injector or solenoid valve or, in the case of a long delay, the switch only opens when the voltage has already been removed again. A similar behavior can also occur when the switch is closed. A voltage may or may not be present at the injector or the solenoid valve during the closing phase.
  • the current through the switch is measured for a detection of the switch state, which in turn allows conclusions to be drawn about an injection state or a closed state of the injector. It must be taken into account that the switch cannot be loaded with high currents and is limited to a few mA with the help of a resistor for reasons of efficiency.
  • the output voltage (usually the vehicle battery voltage of 12 or 48 volts) must be applied via the pin from the injector or the solenoid valve (coil) that is connected to the switch.
  • 2 shows the case in which the flow of current for the situation just described is detected with the aid of a measuring circuit (not shown). As an example, here in 2 assume a current of 10 mA flowing through the resistor and the switch. Accordingly, one recognizes the state that results when the injector is not energized, but the switch is closed.
  • a jump from 0 mA to 10 mA can be easily detected. However, the change from 10 A to 10.01 A is more difficult, since the relative current increase is only 0.1%. If the resolution of the detection circuit is not high enough, there is a risk that this small increase will be perceived as disturbance or noise in the current. In a digital system, for a 0.1 percent resolution, you need at least a 1Obit system as a minimum requirement. A 0.1 percent variation would represent the minimum uncertainty due to the system resolution. It is therefore not possible with such a high-resolution system to reliably distinguish between an actual change in the value and a disturbance or noise in the current intensity. A downstream filter is also necessary to increase detection reliability.
  • the object of the present invention is as above to overcome the listed disadvantages of the prior art and to provide a device for detecting the condition of an injector, which is advantageous over the known prior art.
  • the present invention enables a clear detection of the switch state even in noisy environments that lead to fluctuations in the current strength.
  • the device according to the invention for detecting the status of an injector comprises an injector for injecting fuel into an engine combustion chamber, a switch which is designed to change its switching status depending on a status of the injector, and an evaluation unit for detecting the switching status of the switch, wherein a first switch contact of the switch is connected to an electrical input line of the injector, and a second switch contact of the switch may be connected to ground.
  • the device according to the invention is further characterized in that the evaluation unit is designed to carry out a first current measurement for a current flowing into the injector and into the switch and a second current measurement for the current flowing into the injector.
  • a current measurement is any measurement that allows conclusions to be drawn about the current flowing in a line. It is not absolutely necessary to measure the current directly.
  • the invention thus offers a solution for operating an injector with two cables and at the same time using them to detect the switch state without uncertainties due to signal noise and limited resolution.
  • the present invention uses a differential measurement. The current flowing into the injector (or into the housing accommodating the injector) and the current flowing back out of the injector are measured. With the help of an evaluation that takes into account the two measured values, it is possible to determine the state of the injector, in which case all interference factors superimposed on the flow of current are eliminated, so that a particularly precise determination of the switch state is possible.
  • the evaluation unit is also designed to determine the switching state of the switch on the basis of a difference in the measured values between the first current measurement and the second current measurement.
  • the difference between the two values automatically eliminates all superimposed signals. The result is then only the current flowing through the switch.
  • the advantage can be achieved that, compared to the asymmetrical measurement used in the prior art, all interference signals and offset currents are eliminated. Disturbances affect both current measurements to the same extent, so that the subsequent calculation of the difference does not affect the result. If the switch is closed, the difference is a very small signal, which can, however, be easily detected.
  • the way in which the state of the switch is detected is inventive compared to the prior art. Instead of measuring the absolute voltage with the assistance of a pull-up or pull-down resistor, or measuring the current in absolute terms trying to identify the slope for the switch's change of state, the current flowing towards the injector and measured symmetrically back from this. the The difference between these two measured values is used as an indicator for the state change of the switch. It is advantageous that the symmetrical measurement eliminates superimposed interference currents and noise. The result is a value that corresponds to the current through the switch. In an ideal case, a downstream filtering of this result can be dispensed with.
  • the injector is designed to switch between an injection state and a closed state, the switch also assuming a first switch state when the injector is in an injection state and a second switch state when the injector is closed.
  • the switch assumes a closed state. If, on the other hand, the nozzle needle returns to its originally reset position, in which no fuel is emitted by the injector, the switch changes to an open state.
  • the state of the switch thus depends on the state of the injector.
  • the first current measurement is made before the connection point of the line leading to the resistor. It must be ensured that the first current measurement measures both the current flowing through the switch and the current flowing through the injector.
  • the second switch contact is connected to the same ground as a circuit of the injector, preferably the ground is the body or an engine block of a vehicle.
  • the binding of The second switch contact to ground can also be made via a connection to a housing of the injector, which in turn is itself connected to ground.
  • an injector housing can be provided that has only two cables or contacts that lead to the outside, which allow particularly simple handling.
  • the evaluation unit also includes a filter in order to filter a difference between the two measured values obtained by the first current measurement and the second current measurement.
  • the injector and the switch are arranged in a common housing, which includes an input line, an output line and a ground connection. Since the ground connection of an injector is often also embodied with the aid of a receptacle of the claimed device or the housing, the housing may only have exactly two external contacts (such as lines, plug contacts or the like).
  • the first current measurement of the evaluation unit is arranged on the input line and the second current measurement of the evaluation unit is arranged on the output line of the housing.
  • the ground connection of the housing is preferably connected to the second contact of the switch.
  • the injector is a solenoid valve injector, in which a solenoid valve is preferably designed to bring about a change in the state of the injector, which in turn also causes a change in the state of the switch.
  • the switch changes its state as a result of a movement of an injector component, preferably as a result of a movement of a valve needle of the injector.
  • the injector is a common rail injector.
  • the invention also relates to a method for detecting the status of an injector according to the preamble of claim 1, wherein in the method the sum of a current flowing into the injector and a current flowing into the switch is measured by a first current measurement, and only the current flowing through the injector is measured and the current actually flowing through the switch is inferred from a difference between the first current measurement and the second current measurement.
  • the result of the difference between the first current measurement and the second current measurement is subjected to filtering.
  • the invention also relates to an internal combustion engine with a device according to one of the variants discussed above.
  • the reference number 2 shows an injector which closes or opens a switch 3 when its state changes.
  • a first contact of the switch 3 is connected via a resistor 6 to one of the two lines emanating from the injector 2 . This results in a current flowing through the resistor 6 when the switch 3 is in a closed state, which current flows via the housing 8 of the device to ground 5 .
  • the device 1 has an injector 2 which is suitable for metering fuel into a combustion chamber.
  • the injector 2 can assume a first state in which no fuel emerges and a second state in which at which fuel is dispensed. If the injector 2 is in the second state in which fuel is discharged, a switch 3 is closed. Since the first contact 31 of the switch 3 is connected to a power supply line 21 of the injector 2 via a resistor 6 , there is a current flow from the energy source of the device 1 in the direction of ground 5 , which runs through the switch 3 . The second contact 32 of the switch 3 is connected to ground 5 . The connection can be made via the housing 8 of the device 1, which is connected to the mass 5.
  • the second contact 32 of the switch 3 is only connected to the outer housing 8 of the device 1 .
  • Two lines 81 , 82 run out of the housing 8 , the first line 81 having a branch to the resistor 6 between the housing 8 and the current input of the injector 2 .
  • the second line 82 running out of the housing 8 connects the ground 5 to the current output of the injector 2.
  • a current measurement 41, 42 is provided on each of these two lines 81, 82.
  • the results of the two current measurements 41, 42 are fed to a difference module 43, which outputs the amount of the difference between the two measured values as the result. This allows the relatively small current flowing through the switch 3 to be easily detected in the presence of noise or other interference in the current.
  • FIG. 5 shows a concrete implementation of the present invention.
  • the current is output from a control logic 9 in the direction of the injector, which is shown here as an injector coil 23 for the sake of simplicity, and a resistor 6 .
  • the current strength is measured using a shunt resistor 411 and an operational amplifier 412.
  • This first current measurement 41 measures both the current I CT flowing through the resistor 6 and the current I HS flowing through the injector.
  • the second current measurement 42 is also carried out with the aid of a shunt resistor 421, in which the current flowing through it is determined with a further operational amplifier 422.
  • the two operational amplifiers 412 and 422 have the same amplification factors k.
  • the two outputs of the operational amplifiers (OPV) 412 and 422 are given to a differential module 43 . This makes it possible to determine the voltage difference between the voltage drop across the two shunt resistors 411 and 421 and to pass their difference on to a filter 7 .
  • FIG. 6 shows a further embodiment of the invention with a transformer.
  • a transformer 423 can also be used. This only works with alternating current, but is also able to detect the time at which the switch 3 is actuated. The polarity of the pulse from the transformer 423 would indicate the opening or closing of the switch 3.
  • the injector If the injector is not energized, the detection does not work. For example, when all currents have already subsided, but the injector is still open due to inertia. In such a case, you would not be able to record the closing time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Road Repair (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Zustandserfassung eines Injektors bzw. einen Injektor mit entsprechender Zustandserfassung sowie ein Verfahren zum Bestimmen eines Injektorzustands.
  • Einspritzdüsen oder Injektoren dienen typischerweise dazu, einen Kraftstoff in einen Brennraum eines Motors einzuspritzen. Dabei ist es für einen Motor, in dem ein solcher Injektor vorhanden ist, von Vorteil, wenn ein Steuergerät über die genaue Öffnungszeit des Injektors informiert ist, sodass beispielsweise ein besonders enges Toleranzband für die Einspritzmenge des durch den Injektor abgegebenen Kraftstoffs vorliegt, was auch hinsichtlich der Gesamtproduktlebensdauer des Injektors vorteilhaft ist.
  • Zudem ist es für eine Vielzahl von Steuer- oder Kontrollfunktionen des Motors von Vorteil, wenn die exakte Einspritzzeit, bei der der Injektor einen Kraftstoff abgibt, bekannt ist.
  • Aus dem Stand der Technik ist es bekannt, für eine Zustandsdetektion des Injektors einen elektrischen Schalter zu verwenden. Beispiele dafür sind die WO 2015/071132 A1 , EP 3 124 777 A1 oder DE 103 33 358 B3 .
  • Dabei ist der Schalter geschlossen, wenn der Injektor nicht bestromt ist und sich die Ventilnadel des Injektors nicht bewegt bzw. dafür sorgt, dass kein Kraftstoff aus dem Injektor austritt. Sobald sich die Ventilnadel aus ihrem Ventilsitz bewegt, ändert der elektrische Schalter seinen Zustand, geht also in einen offenen oder in einen geschlossenen Zustand über. Der Schalter ändert erneut seinen Zustand, wenn sich die Ventilnadel wieder in den Ventilsitz bewegt.
  • In der einfachsten Form der Zustandserfassung eines Injektors führen insgesamt vier Leitungen in das Gehäuse des Injektors, in dem auch der Schalter angeordnet ist. Zwei Leitungen wären für den Injektor selbst vorgesehen, wohingegen die anderen beiden Leitungen dem Schalter zugeordnet wären. Nachteilhaft hieran ist aber der hohe Verkabelungsaufwand mit einer so gestalteten Einheit.
  • Wenn ein 3-poliger oder 4-poliger Stecker verwendet wird, also 3 bzw. 4 Leitungen zu dem Injektor mit Schalter verlaufen, ist kein zusätzlicher Aufwand am Detektionsschaltkreis erforderlich. Andererseits bedeutet dies einen Zusatzaufwand am Injektor aufgrund der mehreren Bauteile und der größer zu dimensionierenden Verbindungskomponenten.
  • In einer ebenfalls aus dem Stand der Technik bekannten Modifikation dieser Form sind die Schalterkontakte nicht direkt zugänglich oder isoliert in dem Gehäuse des Injektors angeordnet. Eine solche Darstellung ist in Fig. 1 dargestellt. Hierbei ist ein Pol des Schalters mit einem Pin des Injektors oder eines den Injektor betätigenden Magnetventils über einen Widerstand verbunden. Der andere Pol des Schalters ist ferner mit dem Gehäuse des Injektors verbunden. Dabei ist der Injektor selber im Normalfall mit der Masse verbunden, die bei einem Einsatz im Fahrzeug beispielsweise der Motorblock sein kann. In einer solchen Umsetzung führen nur zwei Kabel bzw. Leitungen aus dem Gehäuse.
  • In einem Normalbetrieb wird eine Spannung an den Injektor bzw. das den Injektor betätigende Magnetventil angelegt, wodurch eine mechanische und/oder hydraulische Bewegung der Ventilnadel ausgelöst wird. Die Bewegung der Ventilnadel wiederum öffnet bzw. schließt den Schalter. So kann beispielsweise vorgesehen sein, dass durch Wegnahme der Spannung der Schalter geschlossen wird.
  • Problematisch bei dieser Art der Zustandserfassung ist, dass zwischen einem Anlegen / Wegnehmen der Spannung an dem Injektor bzw. dem Magnetventil und der Schalterauslösung, also dem Bewegen der Ventilnadel aus ihrem Sitz oder in ihren Sitz zurück, ein unbestimmter Zeitverzug liegen kann, da die mechanische und/oder hydraulische Bewegung der Ventilnadel eine gewisse Trägheit aufweist. So kann es unter Umständen dazu kommen, dass der Schalter öffnet, wenn die Spannung am Injektor bzw. Magnetventil noch anliegt oder, im Falle einer langen Verzögerung, der Schalter erst öffnet, wenn die Spannung schon wieder weggenommen wurde. Ein analoges Verhalten kann sich auch beim Schließen des Schalters einstellen. So kann während der Schließphase eine Spannung an dem Injektor bzw. dem Magnetventil anliegen oder auch nicht.
  • Ungeachtet der oben aufgeführten Nachteile wird für eine Detektion des Schalterzustands, die wiederum einen Rückschluss auf einen Einspritzzustand oder einen geschlossenen Zustand des Injektors zulässt, der Strom durch den Schalter gemessen. Dabei muss man berücksichtigen, dass der Schalter nicht mit hohen Strömen belastet werden kann und aus Effizienzgründen mit Hilfe eines Widerstands auf ein paarwenige mA begrenzt wird.
  • Solange der Injektor bzw. das Magnetventil nicht aktiviert wird, muss die Ausgangsspannung (meist die Fahrzeugbatteriespannung von 12 oder 48 Volt) über den Pin von dem Injektor oder dem Magnetventil (Spule), der mit dem Schalter verbunden ist, angelegt sein. Fig. 2 zeigt den Fall, dass mit Hilfe eines Messschaltkreises (nicht dargestellt) der Stromfluss für die eben beschriebene Situation detektiert wird. Beispielhaft wurde hier in Fig. 2 eine Stromstärke von 10 mA, die durch den Widerstand und den Schalter fließt, angenommen. Man erkennt demnach den Zustand, der sich ergibt, wenn der Injektor nicht bestromt ist, der Schalter aber geschlossen ist.
  • Sobald der Injektor bzw. das Magnetventil zum gleichen Zeitpunkt wie der Schalter betrieben wird, muss ein zusätzlicher Strom mit einigen Ampere in den Injektor bzw. das Magnetventil eingespeist werden. Fig. 3 zeigt eine solche Situation. Beispielhaft wurde hier für den durch den Injektor bzw. das Magnetventil fließenden Strom ein typischer Wert von 10A angenommen.
  • Aus dem Stand der Technik ist es bekannt, an der Eingangsleitung der Anordnung eine Strommessung durchzuführen. Dabei ist es relativ einfach zwischen den Zuständen "stromlos" und "Schalter geschlossen bei nicht bestromten Injektor/Magnetventil" zu unterscheiden. Jedoch ist es sehr herausfordernd, wenn hohe Ströme (z.B. 10 A) durch den Injektor bzw. die Magnetspule fließen und sich nur um ein paar wenige mA erhöhen, sobald sich der Schalter schließt. Durch die nur geringe Stromänderung muss der Detektor sehr sensibel sein.
  • Ein Sprung von 0 mA auf 10 mA kann einfach detektiert werden. Schwieriger ist jedoch die Veränderung von 10 A auf 10,01 A, da hierbei der relative Stromanstieg nur 0,1% beträgt. Ist nun die Auflösung des Detektionsschaltkreises nicht hoch genug, läuft man Gefahr, dass dieser kleine Anstieg als Störung bzw. als Rauschen in der Stromstärke wahrgenommen wird. So braucht man in einem Digitalsystem für eine 0,1 prozentige Auflösung mindestens ein 1Obit-System als Minimalvoraussetzung. Dabei würde eine 0,1-prozentige Variation die minimale Unsicherheit aufgrund der Systemauflösung bedeuten. Somit ist es mit einem solchen hochauflösenden System nicht möglich, dass fehlerfrei zwischen einer wirklichen Änderung des Wertes und einer Störung bzw. einem Rauschen in der Stromstärke verlässlich unterschieden werden kann. Zudem ist ein nachgeschaltetes Filter notwendig, um die Detektionssicherheit zu erhöhen.
  • Hieraus ergibt sich, dass für die Strommessung ein besonders hochauflösendes System mit einer Signalfilterung verwendet werden muss, das aufgrund der Filterung einen störenden Zeitverzug als ungewünschten Nebeneffekt verursacht. Es ist daher die Aufgabe der vorliegenden Erfindung die vorstehend aufgeführten Nachteile aus dem Stand der Technik zu überwinden und eine Vorrichtung zur Zustandserfassung eines Injektors vorzusehen, welche gegenüber dem bekannten Stand der Technik vorteilhaft ist.
  • Dies gelingt mit einer Vorrichtung nach dem Anspruch 1, mit der eine Signalfilterung nicht nötig ist und auch eine teure hochauflösende Strommessung nicht mehr erforderlich ist. Weiter ermöglicht die vorliegende Erfindung eine klare Detektion des Schalterzustands auch in verrauschten Umgebungen, die zu Schwankungen in der Stromstärke führen. Zudem ist es mit der Erfindung weiterhin möglich, einen Injektor mit lediglich zwei aus dem den Injektor aufnehmenden Gehäuse geführten Leitungskabeln zu betreiben. Das Vorhandensein eines dritten oder gar eines vierten Leitungskabels ist trotz der Zustandserfassung mit einem niedrig auflösenden Strommesser nicht mehr erforderlich.
  • Die erfindungsgemäße Vorrichtung zur Zustandserfassung eines Injektors umfasst dabei einen Injektor zum Einspritzen von Kraftstoff in einen Motorbrennraum, einen Schalter, der dazu ausgelegt ist, in Abhängigkeit von einem Zustand des Injektors seinen Schaltzustand zu verändern, und eine Auswerteeinheit zum Erfassen des Schaltzustands des Schalters, wobei ein erster Schalterkontakt des Schalters mit einer elektrischen Eingangsleitung des Injektors verbunden ist, und ein zweiter Schalterkontakt des Schalters mit Masse verbunden sein kann. Die erfindungsgemäße Vorrichtung zeichnet sich ferner dadurch aus, dass die Auswerteeinheit dazu ausgelegt ist, eine erste Strommessung für einen in den Injektor und in den Schalter einströmenden Strom und eine zweite Strommessung für den in den Injektor einströmenden Strom vorzunehmen.
  • Unter einer Strommessung versteht man dabei eine jede Messung, die einen Rückschluss auf den in einer Leitung fließenden Strom zulässt. Es ist dabei nicht zwangsläufig erforderlich den Strom direkt zu messen.
  • Dadurch bietet die Erfindung eine Lösung, wie man einen Injektor mit zwei Kabel betreiben kann und dabei gleichzeitig diese dazu verwendet werden können, um den Schalterzustand ohne Unsicherheiten durch Signalverrauschung und eingeschränkter Auflösung zu detektieren. Im Gegensatz zum vorbekannten Stand der Technik, bei dem der Strom oder die Spannung absolut gemessen wird und dieser gemessene Wert mit einem vorbestimmten Niveau (10A oder 10,01A) verglichen wird, nutzt die vorliegende Erfindung eine Differenzmessung. Dabei werden der in den Injektor (bzw. in das den Injektor aufnehmende Gehäuse) einströmende Strom und der aus dem Injektor zurückfließende Strom gemessen. Mit Hilfe einer die beiden Messwerte berücksichtigenden Auswertung ist eine Zustandserfassung des Injektors möglich, bei der sämtliche den Stromfluss überlagernden Störfaktoren eliminiert werden, so dass eine besonders genaue Erfassung des Schalterzustands möglich ist.
  • Vorzugsweise gelingt dies dann, wenn die Auswerteeinheit ferner dazu ausgelegt ist, den Schaltzustand des Schalters auf Grundlage einer Differenz der Messwerte zwischen der ersten Strommessung und der zweiten Strommessung zu bestimmen. Durch die Differenz der beiden Werte werden automatisch alle überlagerten Signale eliminiert. Das Ergebnis ist dann nur der durch den Schalter fließende Strom. So lässt sich der Vorteil erreichen, dass gegenüber der im Stand der Technik verwendeten asymmetrischen Messung alle Störsignale und Offset-Ströme eliminiert werden. Störungen beeinflussen beide Strommessungen in gleichem Maße, so dass durch eine anschließende Differenzbildung diese im Ergebnis nicht ins Gewicht fallen. Ist der Schalter geschlossen, ergibt sich nach der Differenzbildung ein sehr kleines Signal, dass sich jedoch einfach detektieren lässt.
  • Erfinderisch gegenüber dem Stand der Technik ist dabei die Art und Weise wie der Zustand des Schalters erfasst wird. Anstatt die absolute Spannung mit der Unterstützung eins Pull-Up- oder Pull-Down-Widerstands zu messen oder den Strom absolut zu messen und dabei zu versuchen, den Anstieg für die Zustandsänderung des Schalters zu identifizieren, wird der Strom der in Richtung Injektor fließt und aus diesem wieder zurückströmt symmetrisch gemessen. Die Differenz dieser beiden Messwerte wird als Indikator für die Zustandsänderung des Schalters verwendet. Dabei ist es von Vorteil, dass die symmetrische Messung überlagerte Störströme und Geräusche eliminiert. Dabei erhält man als Ergebnis einen Wert, der dem Strom durch den Schalter entspricht. Auf eine nachgeschaltete Filterung dieses Ergebnisses kann im Idealfall verzichtet werden.
  • Nach einer optionalen Fortbildung der Erfindung ist der Injektor dazu ausgelegt, zwischen einem Einspritzzustand und einem geschlossenen Zustand zu wechseln, wobei ferner der Schalter bei einem Einspritzzustand des Injektors einen ersten Schalterzustand und bei einem geschlossenen Zustand des Injektors einen zweiten Schalterzustand einnimmt. So kann bspw. vorgesehen sein, dass bei einem Einspritzzustand des Injektors, bei dem die Düsennadel in einem ausgefahrenen Zustand übergeht oder übergegangen ist, der Schalter einen geschlossenen Zustand einnimmt. Geht hingegen die Düsennadel wieder in ihre ursprünglich zurückversetzte Stellung zurück, bei dem durch den Injektor kein Kraftstoff ausgegeben wird, geht der Schalter in einen geöffneten Zustand über.
  • DerZustand des Schalters hängt demnach vom Zustand des Injektors ab.
  • Vorzugsweise kann dabei vorgesehen sein, dass der erste Schalterkontakt über einen Widerstand mit der Eingangsleitung des Injektors verbunden ist.
  • So wird sichergestellt, dass der in einem geschlossenen Zustand des Schalters fließende Strom auf einen geringen Wert einstellbar ist, so dass die Gesamtenergieeffizienz nicht über Maßen darunter leidet. Zu beachten ist dabei, dass die erste Strommessung vor dem Anknüpfungspunkt der zu dem Widerstand führenden Leitung vorgenommen wird. Dabei ist sicherzustellen, dass mit der ersten Strommessung sowohl der durch den Schalter als auch der durch den Injektorfließende Strom gemessen wird.
  • Weiter kann vorgesehen sein, dass der zweite Schalterkontakt mit der derselben Masse wie ein Stromkreislauf des Injektors verbunden ist, vorzugsweise ist dabei die Masse die Karosserie oder ein Motorblock eines Fahrzeugs. Das Anbinden des zweiten Schalterkontakts an die Masse kann dabei auch über eine Verbindung mit einem Gehäuse des Injektors erfolgen, das wiederum selbst mit der Masse verbunden ist. So kann ein Injektorgehäuse vorgesehen sein, das lediglich zwei nach außen geführte Kabel oder Kontakte besitzt, die eine besonders einfache Handhabung erlauben.
  • Darüber hinaus kann vorgesehen sein, dass die Auswerteeinheit ferner einen Filter umfasst, um eine Differenz der beiden durch die erste Strommessung und die zweite Strommessung erhaltenen Messwerte zu filtern.
  • Dies ermöglicht ein leichteres Bestimmen, ob der Schalter in einem bestimmten Zustand ist oder nicht.
  • Nach einer optionalen Fortbildung der Erfindung sind der Injektor und der Schalter in einem gemeinsamen Gehäuse angeordnet, das eine Eingangsleitung, eine Ausgangsleitung und einen Masseanschluss umfasst. Da der Masseanschluss eines Injektors oftmals auch mit Hilfe einer Aufnahme der beanspruchten Vorrichtung oder des Gehäuses verkörpert ist, weist das Gehäuse unter Umständen lediglich genau zwei nach außen geführte Kontakte (wie Leitungen, Steckerkontakte oder dergleichen) auf.
  • Nach einer vorteilhaften Ausführung der Erfindung ist die erste Strommessung der Auswerteeinheit an der Eingangsleitung und die zweite Strommessung der Auswerteeinheit an der Ausgangsleitung des Gehäuses angeordnet.
  • Dadurch wird sichergestellt, dass mit den gemessenen Stromwerten die erreichbaren Vorteile der vorliegenden Erfindung erhalten werden können.
  • Vorzugsweise ist dabei der Masseanschluss des Gehäuses mit dem zweiten Kontakt des Schalters verbunden.
  • Zudem kann vorgesehen sein, dass der Injektor ein Magnetventilinjektor ist, bei dem vorzugsweise ein Magnetventil dazu ausgelegt ist, eine Zustandsänderung des Injektors hervorzurufen, die wiederum auch eine Zustandsänderung des Schalters bewirkt.
  • Nach einer bevorzugten Ausführungsform der Erfindung ändert der Schalter seinen Zustand aufgrund einer Bewegung einer Injektorkomponente, vorzugsweise aufgrund einer Bewegung einer Ventilnadel des Injektors.
  • Ferner kann nach einer Fortbildung der Erfindung vorgesehen sein, dass der Injektor ein Common-Rail-Injektor ist.
  • Die Erfindung betrifft zudem ein Verfahren zur Zustandserfassung eines Injektors nach dem Oberbegriff des Anspruchs 1, wobei in dem Verfahren durch eine erste Strommessung die Summe von einem in den Injektor fließenden Strom und einem in den Schalter fließenden Strom gemessen wird, durch eine zweiten Messung nur der durch den Injektor fließende Strom gemessen wird und durch eine Differenz der ersten Strommessung zu der zweiten Strommessung auf die tatsächlich durch den Schalter fließenden Strom geschlossen wird.
  • Ferner kann vorgesehen sein, dass das Ergebnis der Differenz der ersten Strommessung zu der zweiten Strommessung einer Filterung unterzogen wird.
  • Die Erfindung betrifft ferner eine Brennkraftmaschine mit einer Vorrichtung nach einem dervorhergehend diskutierten Varianten.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung werden aufgrund der nachfolgenden Figurenbeschreibung ersichtlich. Dabeizeigen:
  • Fig. 1-3:
    Schematische Darstellungen zum Erläutern des vorbekannten Stands derTechnik,
    Fig. 4:
    eine schematische Darstellung dererfindungsgemäßen Vorrichtung,
    Fig.5:
    ein erstes konkretes Ausführungsbeispiel der vorliegenden Erfindung in einer schematischen Darstellung, und
    Fig. 6:
    ein zweites konkretes Ausführungsbeispiel der vorliegenden Erfindung in einer schematischen Darstellung.
  • Figs. 1 bis 3 wurden bereits im einleitenden Teil der Beschreibung erläutert. Dabei zeigt das Bezugszeichen 2 einen Injektor, der bei einem Ändern seines Zustandes einen Schalter 3 schließt oder öffnet. Ein erster Kontakt des Schalters 3 ist dabei über einen Widerstand 6 mit einer der beiden von dem Injektor 2 ausgehenden Leitungen verbunden. Dies führt dazu, dass bei einem geschlossenen Zustand des Schalters 3 ein Strom durch den Widerstand 6 fließt, der über das Gehäuse 8 der Vorrichtung zur Masse 5 fließt.
  • In Fig. 2 und Fig. 3 sind exemplarische Werte für den fließenden Strom eingezeichnet. So stellt Fig. 2 den Zustand dar, bei dem der Injektor 2 unbestromt ist, der Schalter 3 sich jedoch in einem geschlossenen Zustand befindet. Durch entsprechende Auslegung des Widerstandes 6 fließt demnach ein Strom von 10 mA durch den Schalter 3.
  • Fig. 3 zeigt hingegen den Zustand, in dem der Injektor 2 bestromt ist und auch der Schalter 3 geschlossen ist. Man erkennt, dass neben den 10 mA, die durch den Widerstand 6 und den Schalter 3 zur Masse 5 fließen, auch 10 A durch den Injektor 2 fließen. Möchte man nun über den Schalterzustand informiert werden, so war es aus dem Stand der Technik üblich, den einströmenden Strom, der eine Kombination von durch den Schalter fließendem Strom und durch den Injektor 2 fließendem Strom ist, zu bestimmen. Dabei ergeben sich die im einleitenden Teil der Beschreibungen näher diskutierten Nachteile.
  • Fig. 4 zeigt eine schematische Darstellung der vorliegenden Erfindung. Die Vorrichtung 1 weist dabei einen Injektor 2 auf, der dazu geeignet ist Kraftstoff in einen Brennraum dosiert abzugeben. Dazu kann der Injektor 2 einen ersten Zustand, bei dem kein Kraftstoff austritt, und einen zweiten Zustand einnehmen, bei dem Kraftstoff ausgegeben wird. Befindet sich der Injektor 2 in dem zweiten Zustand, bei dem Kraftstoff ausgegeben wird, wird ein Schalter 3 geschlossen. Da der Schalter 3 mit seinem ersten Kontakt 31 über einen Widerstand 6 an einer Stromzuführleitung 21 des Injektors 2 angebunden ist, ergibt sich ein Stromfluss von der Energiequelle der Vorrichtung 1 in Richtung Masse 5, der durch den Schalter 3 verläuft. Der zweite Kontakt 32 des Schalters 3 ist mit Masse 5 verbunden. Dabei kann die Verbindung über das Gehäuse 8 der Vorrichtung 1 erfolgen, das mit der Masse 5 in Verbindung steht. So ist es nicht erforderlich, dass eine weitere aus dem Gehäuse 8 geführte Leitung vorgesehen sein muss. Dies verbessert das Handling der Vorrichtung 1 und vermindert die Anzahl der fehleranfälligen Komponenten. Dabei ist der zweite Kontakt 32 des Schalters 3 lediglich mit dem Außengehäuse 8 der Vorrichtung 1 verbunden.
  • Aus dem Gehäuse 8 verlaufen zwei Leitungen 81, 82, wobei die erste Leitung 81 zwischen dem Gehäuse 8 und dem Stromeingang des Injektors 2 eine Abzweigung zu dem Widerstand 6 aufweist. Die aus dem Gehäuse 8 verlaufende zweite Leitung 82 verbindet dabei die Masse 5 mit dem Stromausgang des Injektors 2.
  • Ferner ist an diesen beiden Leitungen 81, 82 jeweils eine Strommessung 41, 42 vorgesehen. Die Ergebnisse der beiden Strommessungen 41, 42 werden einem Differenzbaustein 43 zugeführt, der als Ergebnis den Betrag der Differenz der beiden Messwerte ausgibt. Dadurch ist es möglich, dass der relativ kleine Strom, der durch den Schalter 3 fließt, bei einem Vorhandensein von Rauschen oder anderen Überlagerungen des Stroms einfach zu detektieren ist.
  • Auch kann vorgesehen sein, dass die Auswerteeinheit 4 in das Gehäuse 8 integriert ist.
  • Fig. 5 zeigt eine konkrete Umsetzung der vorliegenden Erfindung. Dabei wird der Strom ausgehend von einer Ansteuerlogik 9 in Richtung Injektor, der vorliegend der Einfachheit halber als Injektorspule 23 dargestellt ist, und Widerstand 6 ausgegeben. Bevor eine Aufteilung des Stroms auf den durch den Widerstand Richtung Masse 5 und den durch die Injektorspule 23 Richtung Masse 5 erfolgt, wird die Stromstärke mit Hilfe eines Shunt-Widerstandes 411 sowie einem Operationsverstärker 412 gemessen. Diese erste Strommessung 41 misst dabei sowohl den durch den Widerstand 6 strömenden Strom ICT als auch den durch den Injektor strömenden Strom IHS.
  • Die zweite Strommessung 42 erfolgt dabei ebenfalls mit Hilfe eines Shunt-Widerstandes 421, bei dem der dadurch fließende Strom mit einem weiteren Operationsverstärker 422 bestimmt wird. Die beiden Operationsverstärker 412 und 422 besitzen dabei die gleichen Verstärkungsfaktoren k. Zudem werden die beiden Ausgänge der Operationsverstärker (OPV) 412 und 422 an einen Differenzbaustein 43 gegeben. Damit ist es möglich die Spannungsdifferenz der über die beiden Shunt-Widerstände 411 und 421 abfallenden Spannung zu ermitteln und deren Differenz an ein Filter 7 weiterzugeben. Da die über den Shunt-Widerständen 411 und 421 abfallende Spannung, die durch die beiden OPVs 412 und 422 mit dem Faktor k verstärkt wird, im Wesentlichen proportional zu dem durch den Shunt- Widerstand strömenden Strom ist, ergibt sich damit ein Maß für den Stromfluss in dem der jeweilige Shunt-Widerstand 412 und 422 platziert ist.
  • Fig. 6 zeigt eine weitere Ausführungsform der Erfindung mit einem Trafo. Als Alternative zu der Messung mit Operationsverstärkern 412 und 422 kann auch ein Trafo 423 verwendet werden. Dieser funktioniert nur mit Wechselstrom, ist jedoch auch in der Lage den Zeitpunkt der Schalterbetätigung des Schalters 3 zu detektieren. Dabei würde die Polarität des Impulses von dem Trafo 423 das Öffnen oder das Schließen des Schalters 3 anzeigen.
  • Das grundsätzliche Funktionsprinzip der in Fig. 6 dargestellten schematischen Umsetzung unterscheidet sich dabei nicht von den vorstehend näher beschriebenen Lösungen, so dass auf eine ausführliche Beschreibung verzichtet werden kann.
  • Dem Fachmann ist zudem klar, dass eine Detektion mit einer Vielzahl von unterschiedlichen Schaltkreisen ausgeführt werden kann, von denen nur wenige ganz bestimmte dargestellt worden sind.
  • Wenn der Injektor nicht bestromt wird, funktioniert die Detektion nicht. Beispielsweise, wenn alle Ströme bereits abgeklungen sind, aber der Injektor noch aufgrund der Trägheit noch offen steht. In so einem Fall würde man den Schließzeitpunkt nichterfassen können.
  • Das lässt sich dadurch lösen, indem auf die Injektorleitung, an die der Widerstand angeschlossen ist, von der Bordnetzspannung, über einen Widerstand einen kleinen Strom in den Injektor einspeist wird. Dabei reicht ebenfalls ein Strom von wenigen mA, der permanent als "Offsetstrom" fließt und somit auch eine Detektion zu jeder Zeit ermöglicht, auch wenn der Injektor gar nicht angesteuert wird.

Claims (14)

  1. Vorrichtung (1) zur Zustandserfassung eines Injektors (2), umfassend:
    einen Injektor (2) zum Einspritzen von Kraftstoff in einen Motorbrennraum,
    einen Schalter (3), der dazu ausgelegt ist, in Abhängigkeit von einem Zustand des Injektors (2) seinen Schaltzustand zu verändern, und
    eine Auswerteeinheit (4) zum Erfassen des Schaltzustands des Schalters (3), wobei
    ein erster Schalterkontakt (31) des Schalters (3) mit einer elektrischen Eingangsleitung (21) des Injektors (2) verbunden ist, und
    ein zweiter Schalterkontakt (32) des Schalters (3) mit Masse (5) verbunden ist,
    dadurch gekennzeichnet, dass
    die Auswerteeinheit (4) dazu ausgelegt ist, eine erste Strommessung (41) für einen in den Injektor (2) und in den Schalter (3) einströmenden Strom (IHS, ICT) und eine zweite Strommessung (42) für den nur durch den Injektor (2) fließenden Strom (ILS) vorzunehmen, wobei die Auswerteeinheit (4) ferner dazu ausgelegt ist, den Schaltzustand des Schalters (3) auf Grundlage einer Differenz der Messwerte zwischen der ersten Strommessung (41) und der zweiten Strommessung (42) zu bestimmen.
  2. Vorrichtung (1) nach Anspruch 1, wobei
    der Injektor (2) dazu ausgelegt ist, zwischen einem Einspritzzustand und einem geschlossenen Zustand zu wechseln, und
    der Schalter (3) bei einem Einspritzzustand des Injektors (2) einen ersten Schalterzustand und bei einen geschlossenen Zustand des Injektors (2) einen zweiten Schalterzustand einnimmt.
  3. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der erste Schalterkontakt (31) über einen Widerstand (6) mit der Eingangsleitung (21) des Injektors (2) verbunden ist.
  4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der zweite Schalterkontakt (32) mit derselben Masse (5) wie ein Stromkreislauf des Injektors (2) verbunden ist, vorzugsweise ist die Masse (5) die Karosserie oder ein Motorblock eines Fahrzeugs.
  5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Auswerteeinheit (4) ferner ein Filter (7) umfasst, um eine Differenz der beiden durch die erste Strommessung (41) und die zweite Strommessung (42) erhaltenen Messwerte zu filtern.
  6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Injektor (2) und der Schalter (3) in einem gemeinsamen Gehäuse (8) angeordnet sind, das eine Eingangsleitung (81), eine Ausgangsleitung (82) und einen Masseanschluss (83) umfasst.
  7. Vorrichtung (1) nach Anspruch 6, wobei die erste Strommessung (41) der Auswerteeinheit (4) an der Eingangsleitung (81) und die zweite Strommessung (42) der Auswerteeinheit (4) an der Ausgangsleitung (82) des Gehäuses (8) angeordnet ist.
  8. Vorrichtung (1) nach einem der Ansprüche 6 oder 7, wobei der Masseanschluss (83) mit dem zweiten Kontakt (32) des Schalters (3) verbunden ist.
  9. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Injektor (2) ein Magnetventil-Injektor (2) ist, bei dem vorzugsweise ein Magnetventil dazu ausgelegt ist, eine Zustandsänderung des Injektors (2) hervorzurufen, die wiederum auch eine Zustandsänderung des Schalters (3) bewirkt.
  10. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Schalter (3) seinen Zustand aufgrund einer Bewegung einer Injektorkomponente ändert, vorzugsweise aufgrund einer Bewegung einer Ventilnadel des Injektors (2).
  11. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Injektor (2) ein Common-Rail-Injektor ist.
  12. Verfahren zur Zustandserfassung eines Injektors (2) nach dem Oberbegriff des Anspruchs 1, wobei in dem Verfahren:
    durch eine erste Strommessung (41) die Summe von einem in den Injektor (2) fließenden Strom (IHS) und einem in den Schalter (3) fließenden Strom (ICT) gemessen wird,
    durch eine zweite Strommessung (42) nur der durch den Injektor (2) fließende Strom (ILS) gemessen wird, und
    durch eine Differenz der ersten Strommessung (41) zu der zweiten Strommessung (42) auf den tatsächlich durch den Schalter (3) fließenden Strom (ICT) geschlossen wird.
  13. Verfahren nach Anspruch 12, wobei das Ergebnis der Differenz der ersten Strommessung (41) zu der zweiten Strommessung (42) einer Filterung (7) unterzogen wird.
  14. Brennkraftmaschine mit einer Vorrichtung (1) nach einem der vorhergehenden Ansprüche 1 bis 11.
EP18743508.6A 2017-07-20 2018-07-20 Vorrichtung zur zustandserfassung eines injektors Active EP3642473B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017116379.4A DE102017116379A1 (de) 2017-07-20 2017-07-20 Vorrichtung zur Zustandserfassung eines Injektors
PCT/EP2018/069796 WO2019016380A1 (de) 2017-07-20 2018-07-20 Vorrichtung zur zustandserfassung eines injektors

Publications (2)

Publication Number Publication Date
EP3642473A1 EP3642473A1 (de) 2020-04-29
EP3642473B1 true EP3642473B1 (de) 2022-11-30

Family

ID=62981247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18743508.6A Active EP3642473B1 (de) 2017-07-20 2018-07-20 Vorrichtung zur zustandserfassung eines injektors

Country Status (6)

Country Link
US (1) US11111892B2 (de)
EP (1) EP3642473B1 (de)
CN (1) CN111051682B (de)
DE (1) DE102017116379A1 (de)
ES (1) ES2939061T3 (de)
WO (1) WO2019016380A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083883B1 (fr) * 2018-07-10 2020-06-12 Continental Automotive France Procede de controle d'un convertisseur de tension continu-continu
DE102018125803A1 (de) * 2018-10-17 2020-04-23 Liebherr-Components Deggendorf Gmbh Injektor
GB2585196B (en) * 2019-07-01 2021-10-27 Delphi Tech Ip Ltd Method and system to determine the state of needle valve of a fuel injector
DE102020111787A1 (de) 2020-04-30 2021-11-04 Liebherr-Components Deggendorf Gmbh Vorrichtung zur Zustandserfassung eines Kraftstoffinjektors

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292948A (en) * 1979-10-09 1981-10-06 Ford Motor Company Method for extending the range of operation of an electromagnetic fuel injector
DE3135805A1 (de) * 1981-09-10 1983-03-24 Robert Bosch Gmbh, 7000 Stuttgart Elektrische schaltungsanordnung in verbindung mit einem kfz-steuergeraet
US4631628A (en) * 1983-06-08 1986-12-23 Chrysler Motors Corporation Electronic fuel injector driver circuit
US4612597A (en) * 1984-12-19 1986-09-16 General Motors Corporation Circuit for controlling and indicating fuel injector operation
US4736267A (en) * 1986-11-14 1988-04-05 Motorola, Inc. Fault detection circuit
DE4433209C2 (de) * 1994-09-17 2000-02-03 Mtu Friedrichshafen Gmbh Einrichtung zur Erkennung des Ankeraufprallzeitpunktes bei Entstromung eines Magnetventils
US5687050A (en) * 1995-07-25 1997-11-11 Ficht Gmbh Electronic control circuit for an internal combustion engine
US6120005A (en) * 1998-09-22 2000-09-19 Siemens Automotive Corporation Dual coil fuel injector having smart electronic switch
US6367719B1 (en) * 1998-10-22 2002-04-09 Siemens Automotive Corporation Electromechanical valve driver circuit and method
US6122158A (en) * 1998-11-06 2000-09-19 Siemens Automotive Corporation Wide voltage range driver circuit for a fuel injector
DE10256456A1 (de) * 2002-12-03 2004-07-15 Siemens Ag Überwachungsverfahren für einen Aktor und zugehörige Treiberschaltung
CN100420842C (zh) * 2003-02-03 2008-09-24 株式会社三国 燃料喷射控制方法及控制装置
DE10313623A1 (de) 2003-03-26 2004-10-21 Siemens Ag Kontaktiervorrichtung für einen Injektor eines Einspritzsystems für die Kraftstoffeinspritzung sowie Injektor mit einer Kontaktiervorrichtung
DE10333358B3 (de) 2003-07-23 2005-05-25 Siemens Ag Schaltungsanordnung und Verfahren zum Betreiben einer Injektoranordnung sowie Injektor
DE102004021366A1 (de) * 2004-04-30 2005-11-17 Robert Bosch Gmbh Verfahren zum Beurteilen des Öffnungs- und Schließverhaltens eines Magnet-Einspritzventils
DE102005007327B4 (de) * 2005-02-17 2010-06-17 Continental Automotive Gmbh Schaltungsanordnung und Verfahren zum Betreiben einer Injektoranordnung
JP4577331B2 (ja) * 2007-06-22 2010-11-10 株式会社デンソー 電圧生成装置
GB0807854D0 (en) * 2008-04-30 2008-06-04 Delphi Tech Inc Detection of faults in an injector arrangement
JP2010133347A (ja) * 2008-12-05 2010-06-17 Nikki Co Ltd インジェクタ制御方法及びインジェクタ制御装置
DE102009050127B4 (de) * 2009-10-21 2019-06-13 Continental Automotive Gmbh Vorrichtung zur Ansteuerung des Aktuators eines Einspritzventils einer Verbrennungskraftmaschine
JP5058239B2 (ja) * 2009-10-30 2012-10-24 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
AT510600B1 (de) * 2011-06-07 2012-05-15 Ge Jenbacher Gmbh & Co Ohg Endlageüberwachung eines gaseinblaseventils
DE102011078159A1 (de) 2011-06-28 2013-01-03 Robert Bosch Gmbh Kraftstoffeinspritzventil
EP2912300B1 (de) * 2012-10-25 2018-05-30 Picospray, Inc. Kraftstoffeinspritzsystem
JP5924238B2 (ja) * 2012-11-08 2016-05-25 株式会社デンソー 噴射遅れ検出装置
US9097225B2 (en) * 2013-01-10 2015-08-04 Continental Automotive Systems, Inc. Method to detect partial failure of direct-injection boost voltage
FR3013080A1 (fr) 2013-11-12 2015-05-15 Delphi Technologies Holding Injecteur de carburant
FR3024183B1 (fr) * 2014-07-22 2019-07-26 Delphi Technologies Ip Limited Injecteur de carburant
US10060374B2 (en) * 2015-04-29 2018-08-28 General Electric Company Engine system and method
GB201513222D0 (en) 2015-07-28 2015-09-09 Delphi Int Operations Lux Srl Method to determine the coking of a fuel injector
DE102015219673A1 (de) * 2015-10-12 2017-04-13 Continental Automotive Gmbh Erkennen eines vorbestimmten Öffnungszustandes eines einen Magnetspulenantrieb aufweisenden Kraftstoffinjektors
KR101806354B1 (ko) * 2015-12-07 2018-01-10 현대오트론 주식회사 오프닝 듀레이션을 이용한 인젝터 제어 방법
DE102015225733A1 (de) 2015-12-17 2017-06-22 Robert Bosch Gmbh Kraftstoffeinspritzdüse
US9853543B2 (en) * 2016-04-27 2017-12-26 Delphi Technologies, Inc. Switched mode power supply control
JP6717176B2 (ja) * 2016-12-07 2020-07-01 株式会社デンソー 噴射制御装置
US11008988B2 (en) * 2017-02-21 2021-05-18 Hitachi Automotive Systems, Ltd. Electronic control device and abnormality/normality determination method of electronic control device
FR3083931B1 (fr) * 2018-07-10 2020-06-19 Continental Automotive France Procede de controle d'un module de pilotage d'un transistor

Also Published As

Publication number Publication date
ES2939061T3 (es) 2023-04-18
US11111892B2 (en) 2021-09-07
CN111051682A (zh) 2020-04-21
CN111051682B (zh) 2022-08-02
WO2019016380A1 (de) 2019-01-24
US20200256297A1 (en) 2020-08-13
EP3642473A1 (de) 2020-04-29
DE102017116379A1 (de) 2019-01-24

Similar Documents

Publication Publication Date Title
EP3642473B1 (de) Vorrichtung zur zustandserfassung eines injektors
DE3730523C2 (de)
DE19917268A1 (de) Verfahren zum Überprüfen eines elektromagnetischen Durchflußmessers und elektromagnetische Durchflußmesseranordnung
DE102015209195A1 (de) Einrastventilanordnung mit Positionserkennung
DE102011002756A1 (de) Strommessvorrichtung zum Erfassen eines Stroms, Solarinverter und Verfahren zum Erfassen eines Stroms
DE202008010423U1 (de) Kraftfahrzeugtürverschluss mit einer Schaltungsanordnung
DE2805876A1 (de) Elektrische ueberwachungseinrichtung fuer scheinwiderstandsbehaftete sensoren und verbraucher, insbesondere im bereich der kraftstoffzumessung bei brennkraftmaschinen
DE19839073C2 (de) Verfahren und Vorrichtung zur Diagnose einer Zündanlage für eine Brennkraftmaschine
DE19733904C2 (de) Magnetische Erfassungsvorichtung
DE102006033705B3 (de) Schaltungsanordnung und Verfahren zur Überprüfung einer Schalterstellung und Verwendung der Schaltungsanordnung
EP0573437B1 (de) Einrichtung zur erfassung des einspritzbeginnzeitpunks bei einem einspritzventil
DE102014111416A1 (de) Absicherung einer Leitung
DE102016002865A1 (de) Interlock-Schaltungsanordnung, elektrische Komponente, HV-Bordnetz für ein Kraftfahrzeug und Verfahren zur Detektion eines vorbestimmten Zustands einer Interlock-Schaltungsanordnung
WO2008090047A1 (de) Vorrichtung und verfahren zur steuerung eines elektromagnetischen ventils
EP1186479B1 (de) Schaltungsanordnung, bestehend aus einem Zündelement für einen Gurtstraffer und einem Gurtbetriebssensor
DE1065461B (de) Elektrischer Impuls - Verzögerungskreis
DE202018100337U1 (de) Injektor und Vorrichtung zur Zustandserfassung eines solchen Injektors
EP1230558B1 (de) Hall-sensor-bauelement
DE102020110000A1 (de) Elektrische Schaltungsanordnung und Verfahren zur galvanisch getrennten, allstromsensitiven Differenzstrom-Messung mit hoher Auflösung
DE102008037831B4 (de) Verfahren zum Betreiben eines Fehlerstromschutzschalters sowie Fehlerstromschutzschalter
DE10037495B4 (de) Verfahren und Vorrichtung zum Erkennen einer Fehlfunktion eines Sensors oder eines Leitungsbruchs
EP1384976A1 (de) Positionsermittlungsverfahren für einen induktiven Positionssensor
WO2022233820A1 (de) Diagnosefähige schaltungsanordnung, sensorvorrichtung mit einer schaltungsanordnung und verfahren zur diagnose einer schaltungsanordnung und/oder sensorvorrichtung
DE4334844C1 (de) Schaltung zur Feststellung des Weges eines in einer Spule verschiebbaren Kerns durch Messung der Induktivität
DE10136975A1 (de) Schaltungsanordnung zur Erzeugung von Rechteckimpulsen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1534876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011158

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2939061

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011158

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230727

Year of fee payment: 6

Ref country code: ES

Payment date: 20230801

Year of fee payment: 6

Ref country code: CH

Payment date: 20230801

Year of fee payment: 6

Ref country code: AT

Payment date: 20230719

Year of fee payment: 6

26N No opposition filed

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230720

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240724

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 7