EP3632901B1 - Activateurs de l'histone acétyltransférase et leurs utilisations - Google Patents
Activateurs de l'histone acétyltransférase et leurs utilisations Download PDFInfo
- Publication number
- EP3632901B1 EP3632901B1 EP19205945.9A EP19205945A EP3632901B1 EP 3632901 B1 EP3632901 B1 EP 3632901B1 EP 19205945 A EP19205945 A EP 19205945A EP 3632901 B1 EP3632901 B1 EP 3632901B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- disease
- compound
- body weight
- mice
- hat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 102000003893 Histone acetyltransferases Human genes 0.000 title claims description 262
- 108090000246 Histone acetyltransferases Proteins 0.000 title claims description 260
- 239000012190 activator Substances 0.000 title claims description 123
- 150000001875 compounds Chemical class 0.000 claims description 311
- 230000037396 body weight Effects 0.000 claims description 261
- 230000000694 effects Effects 0.000 claims description 151
- 208000024827 Alzheimer disease Diseases 0.000 claims description 108
- 108010033040 Histones Proteins 0.000 claims description 108
- 230000015654 memory Effects 0.000 claims description 106
- 238000006640 acetylation reaction Methods 0.000 claims description 93
- 238000000034 method Methods 0.000 claims description 91
- 230000006195 histone acetylation Effects 0.000 claims description 89
- 230000021736 acetylation Effects 0.000 claims description 88
- 230000027928 long-term synaptic potentiation Effects 0.000 claims description 81
- 108090000623 proteins and genes Proteins 0.000 claims description 71
- 102000006947 Histones Human genes 0.000 claims description 52
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 45
- 102000013455 Amyloid beta-Peptides Human genes 0.000 claims description 44
- 108010090849 Amyloid beta-Peptides Proteins 0.000 claims description 44
- 230000004770 neurodegeneration Effects 0.000 claims description 44
- 102000004169 proteins and genes Human genes 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 39
- 230000008499 blood brain barrier function Effects 0.000 claims description 38
- 210000001218 blood-brain barrier Anatomy 0.000 claims description 38
- 230000013016 learning Effects 0.000 claims description 38
- 108010064539 amyloid beta-protein (1-42) Proteins 0.000 claims description 31
- 230000001225 therapeutic effect Effects 0.000 claims description 30
- 206010028980 Neoplasm Diseases 0.000 claims description 29
- 230000003956 synaptic plasticity Effects 0.000 claims description 29
- 230000001965 increasing effect Effects 0.000 claims description 28
- 201000011240 Frontotemporal dementia Diseases 0.000 claims description 25
- 208000031277 Amaurotic familial idiocy Diseases 0.000 claims description 24
- 208000002537 Neuronal Ceroid-Lipofuscinoses Diseases 0.000 claims description 24
- 208000017476 juvenile neuronal ceroid lipofuscinosis Diseases 0.000 claims description 24
- 201000007607 neuronal ceroid lipofuscinosis 3 Diseases 0.000 claims description 24
- 208000023105 Huntington disease Diseases 0.000 claims description 23
- 201000011510 cancer Diseases 0.000 claims description 21
- 238000000338 in vitro Methods 0.000 claims description 21
- 238000010171 animal model Methods 0.000 claims description 20
- 239000008194 pharmaceutical composition Substances 0.000 claims description 19
- 208000018737 Parkinson disease Diseases 0.000 claims description 18
- 102100040347 TAR DNA-binding protein 43 Human genes 0.000 claims description 16
- 102000013498 tau Proteins Human genes 0.000 claims description 16
- 108010026424 tau Proteins Proteins 0.000 claims description 16
- 210000003000 inclusion body Anatomy 0.000 claims description 15
- 101000891092 Homo sapiens TAR DNA-binding protein 43 Proteins 0.000 claims description 14
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 14
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 13
- 208000024891 symptom Diseases 0.000 claims description 13
- 102100024643 ATP-binding cassette sub-family D member 1 Human genes 0.000 claims description 12
- 201000011452 Adrenoleukodystrophy Diseases 0.000 claims description 12
- 208000004986 Diffuse Cerebral Sclerosis of Schilder Diseases 0.000 claims description 12
- 208000002569 Machado-Joseph Disease Diseases 0.000 claims description 12
- 108010049137 Member 1 Subfamily D ATP Binding Cassette Transporter Proteins 0.000 claims description 12
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 claims description 12
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 claims description 12
- 238000009825 accumulation Methods 0.000 claims description 12
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 claims description 12
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 12
- 201000002212 progressive supranuclear palsy Diseases 0.000 claims description 12
- 238000012216 screening Methods 0.000 claims description 12
- 101100477411 Dictyostelium discoideum set1 gene Proteins 0.000 claims description 11
- 208000009829 Lewy Body Disease Diseases 0.000 claims description 11
- 201000002832 Lewy body dementia Diseases 0.000 claims description 11
- 230000001771 impaired effect Effects 0.000 claims description 11
- 208000032839 leukemia Diseases 0.000 claims description 11
- 206010006187 Breast cancer Diseases 0.000 claims description 10
- 208000026310 Breast neoplasm Diseases 0.000 claims description 10
- 206010033128 Ovarian cancer Diseases 0.000 claims description 10
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 10
- 201000003076 Angiosarcoma Diseases 0.000 claims description 9
- 206010012289 Dementia Diseases 0.000 claims description 9
- 208000001258 Hemangiosarcoma Diseases 0.000 claims description 9
- 206010044221 Toxic encephalopathy Diseases 0.000 claims description 9
- 208000009956 adenocarcinoma Diseases 0.000 claims description 9
- 102000003802 alpha-Synuclein Human genes 0.000 claims description 9
- 108090000185 alpha-Synuclein Proteins 0.000 claims description 9
- 206010038389 Renal cancer Diseases 0.000 claims description 8
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 8
- 201000005296 lung carcinoma Diseases 0.000 claims description 8
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 claims description 7
- 208000001089 Multiple system atrophy Diseases 0.000 claims description 7
- 208000000609 Pick Disease of the Brain Diseases 0.000 claims description 7
- 208000002320 spinal muscular atrophy Diseases 0.000 claims description 7
- 208000007848 Alcoholism Diseases 0.000 claims description 6
- 208000011403 Alexander disease Diseases 0.000 claims description 6
- 206010003594 Ataxia telangiectasia Diseases 0.000 claims description 6
- 102000007371 Ataxin-3 Human genes 0.000 claims description 6
- 102000014461 Ataxins Human genes 0.000 claims description 6
- 108010078286 Ataxins Proteins 0.000 claims description 6
- 206010005003 Bladder cancer Diseases 0.000 claims description 6
- 206010068597 Bulbospinal muscular atrophy congenital Diseases 0.000 claims description 6
- 208000022526 Canavan disease Diseases 0.000 claims description 6
- 206010008025 Cerebellar ataxia Diseases 0.000 claims description 6
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 claims description 6
- 208000033647 Classic progressive supranuclear palsy syndrome Diseases 0.000 claims description 6
- 208000010200 Cockayne syndrome Diseases 0.000 claims description 6
- 206010009944 Colon cancer Diseases 0.000 claims description 6
- 208000011990 Corticobasal Degeneration Diseases 0.000 claims description 6
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 claims description 6
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 claims description 6
- 206010049020 Encephalitis periaxialis diffusa Diseases 0.000 claims description 6
- 208000002339 Frontotemporal Lobar Degeneration Diseases 0.000 claims description 6
- 208000010055 Globoid Cell Leukodystrophy Diseases 0.000 claims description 6
- 102100039869 Histone H2B type F-S Human genes 0.000 claims description 6
- 101001035372 Homo sapiens Histone H2B type F-S Proteins 0.000 claims description 6
- 208000027747 Kennedy disease Diseases 0.000 claims description 6
- 208000028226 Krabbe disease Diseases 0.000 claims description 6
- 208000016604 Lyme disease Diseases 0.000 claims description 6
- 206010025323 Lymphomas Diseases 0.000 claims description 6
- 102100026784 Myelin proteolipid protein Human genes 0.000 claims description 6
- 206010052057 Neuroborreliosis Diseases 0.000 claims description 6
- 208000007125 Neurotoxicity Syndromes Diseases 0.000 claims description 6
- 208000014060 Niemann-Pick disease Diseases 0.000 claims description 6
- 208000017493 Pelizaeus-Merzbacher disease Diseases 0.000 claims description 6
- 208000031845 Pernicious anaemia Diseases 0.000 claims description 6
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 6
- 208000032319 Primary lateral sclerosis Diseases 0.000 claims description 6
- 208000005587 Refsum Disease Diseases 0.000 claims description 6
- 208000006289 Rett Syndrome Diseases 0.000 claims description 6
- 208000021811 Sandhoff disease Diseases 0.000 claims description 6
- 206010039491 Sarcoma Diseases 0.000 claims description 6
- 208000021235 Schilder disease Diseases 0.000 claims description 6
- 208000021386 Sjogren Syndrome Diseases 0.000 claims description 6
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 claims description 6
- 208000005716 Subacute Combined Degeneration Diseases 0.000 claims description 6
- 231100000076 Toxic encephalopathy Toxicity 0.000 claims description 6
- 206010046298 Upper motor neurone lesion Diseases 0.000 claims description 6
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 claims description 6
- 208000030597 adult Refsum disease Diseases 0.000 claims description 6
- 201000007930 alcohol dependence Diseases 0.000 claims description 6
- 201000004562 autosomal dominant cerebellar ataxia Diseases 0.000 claims description 6
- 201000006061 fatal familial insomnia Diseases 0.000 claims description 6
- 201000010901 lateral sclerosis Diseases 0.000 claims description 6
- 201000007270 liver cancer Diseases 0.000 claims description 6
- 208000014018 liver neoplasm Diseases 0.000 claims description 6
- 201000005202 lung cancer Diseases 0.000 claims description 6
- 208000020816 lung neoplasm Diseases 0.000 claims description 6
- 208000005264 motor neuron disease Diseases 0.000 claims description 6
- 201000006417 multiple sclerosis Diseases 0.000 claims description 6
- 201000003631 narcolepsy Diseases 0.000 claims description 6
- 208000002040 neurosyphilis Diseases 0.000 claims description 6
- 208000032207 progressive 1 supranuclear palsy Diseases 0.000 claims description 6
- 210000000278 spinal cord Anatomy 0.000 claims description 6
- 208000002025 tabes dorsalis Diseases 0.000 claims description 6
- 206010004146 Basal cell carcinoma Diseases 0.000 claims description 5
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 5
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 5
- 206010060862 Prostate cancer Diseases 0.000 claims description 5
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 5
- 208000024313 Testicular Neoplasms Diseases 0.000 claims description 5
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 5
- 208000002495 Uterine Neoplasms Diseases 0.000 claims description 5
- 201000010881 cervical cancer Diseases 0.000 claims description 5
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 5
- 201000002528 pancreatic cancer Diseases 0.000 claims description 5
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 5
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 5
- 201000003120 testicular cancer Diseases 0.000 claims description 5
- 206010046766 uterine cancer Diseases 0.000 claims description 5
- 201000008319 inclusion body myositis Diseases 0.000 claims description 4
- 230000001144 postural effect Effects 0.000 claims description 4
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 3
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 3
- 206010003571 Astrocytoma Diseases 0.000 claims description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 3
- 208000003950 B-cell lymphoma Diseases 0.000 claims description 3
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 claims description 3
- 206010004593 Bile duct cancer Diseases 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 3
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 208000005243 Chondrosarcoma Diseases 0.000 claims description 3
- 201000009047 Chordoma Diseases 0.000 claims description 3
- 208000006332 Choriocarcinoma Diseases 0.000 claims description 3
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 claims description 3
- 208000009798 Craniopharyngioma Diseases 0.000 claims description 3
- 201000009051 Embryonal Carcinoma Diseases 0.000 claims description 3
- 206010014967 Ependymoma Diseases 0.000 claims description 3
- 208000006168 Ewing Sarcoma Diseases 0.000 claims description 3
- 201000008808 Fibrosarcoma Diseases 0.000 claims description 3
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 claims description 3
- 208000032612 Glial tumor Diseases 0.000 claims description 3
- 206010018338 Glioma Diseases 0.000 claims description 3
- 208000017604 Hodgkin disease Diseases 0.000 claims description 3
- 208000021519 Hodgkin lymphoma Diseases 0.000 claims description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- 208000018142 Leiomyosarcoma Diseases 0.000 claims description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 3
- 208000007054 Medullary Carcinoma Diseases 0.000 claims description 3
- 208000000172 Medulloblastoma Diseases 0.000 claims description 3
- 206010027406 Mesothelioma Diseases 0.000 claims description 3
- 206010027480 Metastatic malignant melanoma Diseases 0.000 claims description 3
- 208000034578 Multiple myelomas Diseases 0.000 claims description 3
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 claims description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 3
- 206010029260 Neuroblastoma Diseases 0.000 claims description 3
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 3
- 201000010133 Oligodendroglioma Diseases 0.000 claims description 3
- 208000007641 Pinealoma Diseases 0.000 claims description 3
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 3
- 201000000582 Retinoblastoma Diseases 0.000 claims description 3
- 201000010208 Seminoma Diseases 0.000 claims description 3
- 208000021712 Soft tissue sarcoma Diseases 0.000 claims description 3
- 206010042971 T-cell lymphoma Diseases 0.000 claims description 3
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 claims description 3
- 208000033781 Thyroid carcinoma Diseases 0.000 claims description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 3
- 208000014070 Vestibular schwannoma Diseases 0.000 claims description 3
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 claims description 3
- 208000008383 Wilms tumor Diseases 0.000 claims description 3
- 208000004064 acoustic neuroma Diseases 0.000 claims description 3
- 201000007180 bile duct carcinoma Diseases 0.000 claims description 3
- 201000001531 bladder carcinoma Diseases 0.000 claims description 3
- 206010006007 bone sarcoma Diseases 0.000 claims description 3
- 208000003362 bronchogenic carcinoma Diseases 0.000 claims description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 claims description 3
- 208000029742 colonic neoplasm Diseases 0.000 claims description 3
- 208000002445 cystadenocarcinoma Diseases 0.000 claims description 3
- 208000037828 epithelial carcinoma Diseases 0.000 claims description 3
- 230000003394 haemopoietic effect Effects 0.000 claims description 3
- 201000003911 head and neck carcinoma Diseases 0.000 claims description 3
- 201000002222 hemangioblastoma Diseases 0.000 claims description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 201000010982 kidney cancer Diseases 0.000 claims description 3
- 206010024627 liposarcoma Diseases 0.000 claims description 3
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 claims description 3
- 208000012804 lymphangiosarcoma Diseases 0.000 claims description 3
- 201000000564 macroglobulinemia Diseases 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 206010027191 meningioma Diseases 0.000 claims description 3
- 208000021039 metastatic melanoma Diseases 0.000 claims description 3
- 201000000050 myeloid neoplasm Diseases 0.000 claims description 3
- 208000001611 myxosarcoma Diseases 0.000 claims description 3
- 208000025189 neoplasm of testis Diseases 0.000 claims description 3
- 230000009826 neoplastic cell growth Effects 0.000 claims description 3
- 201000008968 osteosarcoma Diseases 0.000 claims description 3
- 208000004019 papillary adenocarcinoma Diseases 0.000 claims description 3
- 201000010198 papillary carcinoma Diseases 0.000 claims description 3
- 208000024724 pineal body neoplasm Diseases 0.000 claims description 3
- 201000004123 pineal gland cancer Diseases 0.000 claims description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 3
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 claims description 3
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 3
- 201000010965 sweat gland carcinoma Diseases 0.000 claims description 3
- 206010042863 synovial sarcoma Diseases 0.000 claims description 3
- 208000008732 thymoma Diseases 0.000 claims description 3
- 201000002510 thyroid cancer Diseases 0.000 claims description 3
- 208000013077 thyroid gland carcinoma Diseases 0.000 claims description 3
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 3
- 208000010570 urinary bladder carcinoma Diseases 0.000 claims description 3
- 206010001540 Akathisia Diseases 0.000 claims description 2
- 206010006100 Bradykinesia Diseases 0.000 claims description 2
- 208000012661 Dyskinesia Diseases 0.000 claims description 2
- 208000014094 Dystonic disease Diseases 0.000 claims description 2
- 208000006083 Hypokinesia Diseases 0.000 claims description 2
- 208000002740 Muscle Rigidity Diseases 0.000 claims description 2
- 208000001431 Psychomotor Agitation Diseases 0.000 claims description 2
- 206010044565 Tremor Diseases 0.000 claims description 2
- 108010064397 amyloid beta-protein (1-40) Proteins 0.000 claims description 2
- 208000010118 dystonia Diseases 0.000 claims description 2
- 208000018879 impaired coordination Diseases 0.000 claims description 2
- 230000004973 motor coordination Effects 0.000 claims description 2
- 208000024777 Prion disease Diseases 0.000 claims 1
- 230000002381 testicular Effects 0.000 claims 1
- 241000699670 Mus sp. Species 0.000 description 177
- 238000010175 APPswe/PSEN1dE9 Methods 0.000 description 110
- 108010040163 CREB-Binding Protein Proteins 0.000 description 101
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 description 99
- RTKIYFITIVXBLE-UHFFFAOYSA-N Trichostatin A Natural products ONC(=O)C=CC(C)=CC(C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-UHFFFAOYSA-N 0.000 description 97
- 102100021975 CREB-binding protein Human genes 0.000 description 87
- 210000004027 cell Anatomy 0.000 description 79
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 72
- 239000003981 vehicle Substances 0.000 description 68
- 102100022846 Histone acetyltransferase KAT2B Human genes 0.000 description 64
- 102000003964 Histone deacetylase Human genes 0.000 description 60
- 108090000353 Histone deacetylase Proteins 0.000 description 60
- 238000002474 experimental method Methods 0.000 description 60
- 230000014509 gene expression Effects 0.000 description 55
- 238000012360 testing method Methods 0.000 description 52
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 48
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 48
- 238000012549 training Methods 0.000 description 48
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 47
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 47
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 47
- 230000005764 inhibitory process Effects 0.000 description 46
- 230000003750 conditioning effect Effects 0.000 description 44
- 101001047006 Homo sapiens Histone acetyltransferase KAT2B Proteins 0.000 description 40
- 238000013518 transcription Methods 0.000 description 40
- 230000035897 transcription Effects 0.000 description 40
- 241001465754 Metazoa Species 0.000 description 39
- 235000018102 proteins Nutrition 0.000 description 39
- 108010036933 Presenilin-1 Proteins 0.000 description 38
- 102100022033 Presenilin-1 Human genes 0.000 description 38
- 210000001320 hippocampus Anatomy 0.000 description 37
- 238000011282 treatment Methods 0.000 description 37
- 230000009467 reduction Effects 0.000 description 33
- 230000008014 freezing Effects 0.000 description 32
- 238000007710 freezing Methods 0.000 description 32
- 150000003839 salts Chemical class 0.000 description 32
- 230000006735 deficit Effects 0.000 description 31
- 239000003814 drug Substances 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 26
- 230000007547 defect Effects 0.000 description 26
- 230000006390 fear memory Effects 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 25
- 241000282414 Homo sapiens Species 0.000 description 25
- 210000004556 brain Anatomy 0.000 description 25
- 230000007246 mechanism Effects 0.000 description 24
- 108090000765 processed proteins & peptides Proteins 0.000 description 24
- 102000005636 Cyclic AMP Response Element-Binding Protein Human genes 0.000 description 23
- 108010045171 Cyclic AMP Response Element-Binding Protein Proteins 0.000 description 23
- 101710083341 Histone acetyltransferase KAT2B Proteins 0.000 description 23
- 229940079593 drug Drugs 0.000 description 23
- 230000000971 hippocampal effect Effects 0.000 description 23
- 235000001014 amino acid Nutrition 0.000 description 22
- 238000007912 intraperitoneal administration Methods 0.000 description 22
- 238000001262 western blot Methods 0.000 description 22
- 101001046967 Homo sapiens Histone acetyltransferase KAT2A Proteins 0.000 description 21
- 230000007787 long-term memory Effects 0.000 description 21
- 102100021467 Histone acetyltransferase type B catalytic subunit Human genes 0.000 description 19
- 101000898976 Homo sapiens Histone acetyltransferase type B catalytic subunit Proteins 0.000 description 19
- 208000026139 Memory disease Diseases 0.000 description 19
- 150000001413 amino acids Chemical class 0.000 description 19
- 108010077544 Chromatin Proteins 0.000 description 18
- 239000000556 agonist Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 18
- 210000003483 chromatin Anatomy 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 18
- 108020004999 messenger RNA Proteins 0.000 description 18
- 229910001868 water Inorganic materials 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 230000002829 reductive effect Effects 0.000 description 17
- 230000035939 shock Effects 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 102000004196 processed proteins & peptides Human genes 0.000 description 16
- 230000000638 stimulation Effects 0.000 description 16
- 238000011830 transgenic mouse model Methods 0.000 description 16
- 230000006399 behavior Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 239000003112 inhibitor Substances 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 238000010172 mouse model Methods 0.000 description 15
- 241000699660 Mus musculus Species 0.000 description 14
- 230000001419 dependent effect Effects 0.000 description 14
- 230000026731 phosphorylation Effects 0.000 description 14
- 238000006366 phosphorylation reaction Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 230000003976 synaptic dysfunction Effects 0.000 description 14
- 238000003556 assay Methods 0.000 description 13
- 201000010099 disease Diseases 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 230000002018 overexpression Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 108700019146 Transgenes Proteins 0.000 description 11
- 230000009286 beneficial effect Effects 0.000 description 11
- 230000027455 binding Effects 0.000 description 11
- 206010027175 memory impairment Diseases 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000003977 synaptic function Effects 0.000 description 11
- 230000002103 transcriptional effect Effects 0.000 description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 10
- 102100038885 Histone acetyltransferase p300 Human genes 0.000 description 10
- 101000882390 Homo sapiens Histone acetyltransferase p300 Proteins 0.000 description 10
- 230000035508 accumulation Effects 0.000 description 10
- 230000003542 behavioural effect Effects 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 10
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 210000000225 synapse Anatomy 0.000 description 10
- 230000000946 synaptic effect Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 101000978776 Mus musculus Neurogenic locus notch homolog protein 1 Proteins 0.000 description 9
- 241000700159 Rattus Species 0.000 description 9
- 230000002708 enhancing effect Effects 0.000 description 9
- 230000008995 epigenetic change Effects 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 230000011987 methylation Effects 0.000 description 9
- 238000007069 methylation reaction Methods 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 230000004481 post-translational protein modification Effects 0.000 description 9
- 230000009261 transgenic effect Effects 0.000 description 9
- 208000000044 Amnesia Diseases 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 8
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 208000010877 cognitive disease Diseases 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000006698 induction Effects 0.000 description 8
- 238000001802 infusion Methods 0.000 description 8
- 230000006984 memory degeneration Effects 0.000 description 8
- 208000023060 memory loss Diseases 0.000 description 8
- 230000003955 neuronal function Effects 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 150000003384 small molecules Chemical class 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 208000037259 Amyloid Plaque Diseases 0.000 description 7
- 108010001515 Galectin 4 Proteins 0.000 description 7
- 102100039556 Galectin-4 Human genes 0.000 description 7
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 7
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 229960003048 vinblastine Drugs 0.000 description 7
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 7
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 6
- 241001631457 Cannula Species 0.000 description 6
- 230000004568 DNA-binding Effects 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108060001084 Luciferase Proteins 0.000 description 6
- YDXZSNHARVUYNM-UHFFFAOYSA-N N-[4-chloro-3-(trifluoromethyl)phenyl]-2-ethoxybenzamide Chemical compound CCOC1=CC=CC=C1C(=O)NC1=CC=C(Cl)C(C(F)(F)F)=C1 YDXZSNHARVUYNM-UHFFFAOYSA-N 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 102000012419 Presenilin-2 Human genes 0.000 description 6
- 108010036908 Presenilin-2 Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000009702 cancer cell proliferation Effects 0.000 description 6
- 230000001149 cognitive effect Effects 0.000 description 6
- ZOOGRGPOEVQQDX-UHFFFAOYSA-N cyclic GMP Natural products O1C2COP(O)(=O)OC2C(O)C1N1C=NC2=C1NC(N)=NC2=O ZOOGRGPOEVQQDX-UHFFFAOYSA-N 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 230000001973 epigenetic effect Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000007074 memory dysfunction Effects 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 230000007170 pathology Effects 0.000 description 6
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 6
- BNRNXUUZRGQAQC-UHFFFAOYSA-N sildenafil Chemical compound CCCC1=NN(C)C(C(N2)=O)=C1N=C2C(C(=CC=1)OCC)=CC=1S(=O)(=O)N1CCN(C)CC1 BNRNXUUZRGQAQC-UHFFFAOYSA-N 0.000 description 6
- 230000005062 synaptic transmission Effects 0.000 description 6
- 230000034512 ubiquitination Effects 0.000 description 6
- 238000010798 ubiquitination Methods 0.000 description 6
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 5
- 230000007082 Aβ accumulation Effects 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 102100020870 La-related protein 6 Human genes 0.000 description 5
- 108050008265 La-related protein 6 Proteins 0.000 description 5
- 239000005089 Luciferase Substances 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 102000029797 Prion Human genes 0.000 description 5
- 108091000054 Prion Proteins 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- 206010043376 Tetanus Diseases 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 230000003833 cell viability Effects 0.000 description 5
- 210000001638 cerebellum Anatomy 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000019771 cognition Effects 0.000 description 5
- 230000003831 deregulation Effects 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 230000007608 epigenetic mechanism Effects 0.000 description 5
- 230000030279 gene silencing Effects 0.000 description 5
- 208000005017 glioblastoma Diseases 0.000 description 5
- 230000006197 histone deacetylation Effects 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 201000010174 renal carcinoma Diseases 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 4
- 101800001718 Amyloid-beta protein Proteins 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 230000007067 DNA methylation Effects 0.000 description 4
- -1 Depsipeptide) Chemical class 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 4
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- 108010033276 Peptide Fragments Proteins 0.000 description 4
- 102000007079 Peptide Fragments Human genes 0.000 description 4
- 108010067902 Peptide Library Proteins 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 108020004459 Small interfering RNA Proteins 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000002490 cerebral effect Effects 0.000 description 4
- 230000002759 chromosomal effect Effects 0.000 description 4
- 230000003920 cognitive function Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000012226 gene silencing method Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000001151 other effect Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000014493 regulation of gene expression Effects 0.000 description 4
- HJORMJIFDVBMOB-UHFFFAOYSA-N rolipram Chemical compound COC1=CC=C(C2CC(=O)NC2)C=C1OC1CCCC1 HJORMJIFDVBMOB-UHFFFAOYSA-N 0.000 description 4
- 229950005741 rolipram Drugs 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- XHSQDZXAVJRBMX-DDHJBXDOSA-N 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=CC(Cl)=C(Cl)C=C2N=C1 XHSQDZXAVJRBMX-DDHJBXDOSA-N 0.000 description 3
- 238000010173 Alzheimer-disease mouse model Methods 0.000 description 3
- 108020005544 Antisense RNA Proteins 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 101710105094 Cyclic AMP-responsive element-binding protein Proteins 0.000 description 3
- 102100022901 Histone acetyltransferase KAT2A Human genes 0.000 description 3
- 102100022893 Histone acetyltransferase KAT5 Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 208000036626 Mental retardation Diseases 0.000 description 3
- 238000012347 Morris Water Maze Methods 0.000 description 3
- 206010029350 Neurotoxicity Diseases 0.000 description 3
- 206010039281 Rubinstein-Taybi syndrome Diseases 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 102000005421 acetyltransferase Human genes 0.000 description 3
- 108020002494 acetyltransferase Proteins 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 3
- 230000003109 amnesic effect Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 208000015114 central nervous system disease Diseases 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 230000003081 coactivator Effects 0.000 description 3
- 230000007278 cognition impairment Effects 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000009850 completed effect Effects 0.000 description 3
- 238000003381 deacetylation reaction Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 229940000406 drug candidate Drugs 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- INVTYAOGFAGBOE-UHFFFAOYSA-N entinostat Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC(=O)OCC1=CC=CN=C1 INVTYAOGFAGBOE-UHFFFAOYSA-N 0.000 description 3
- 230000004049 epigenetic modification Effects 0.000 description 3
- 238000013401 experimental design Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000003695 memory enhancer Substances 0.000 description 3
- 230000009456 molecular mechanism Effects 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 230000007171 neuropathology Effects 0.000 description 3
- 230000007135 neurotoxicity Effects 0.000 description 3
- 231100000228 neurotoxicity Toxicity 0.000 description 3
- 210000004940 nucleus Anatomy 0.000 description 3
- 108010006198 p300-CBP-associated factor Proteins 0.000 description 3
- 230000010412 perfusion Effects 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 230000007505 plaque formation Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 230000006886 spatial memory Effects 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000010741 sumoylation Effects 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 230000005730 ADP ribosylation Effects 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- 101100424834 Brugia malayi tsa-2 gene Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 102100032616 Caspase-2 Human genes 0.000 description 2
- 108090000552 Caspase-2 Proteins 0.000 description 2
- 108010002156 Depsipeptides Proteins 0.000 description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 102000041143 GNAT family Human genes 0.000 description 2
- 108091061015 GNAT family Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108091005772 HDAC11 Proteins 0.000 description 2
- 101710116149 Histone acetyltransferase KAT5 Proteins 0.000 description 2
- 102100033070 Histone acetyltransferase KAT6B Human genes 0.000 description 2
- 102100039996 Histone deacetylase 1 Human genes 0.000 description 2
- 102100039385 Histone deacetylase 11 Human genes 0.000 description 2
- 102100039999 Histone deacetylase 2 Human genes 0.000 description 2
- 102100021455 Histone deacetylase 3 Human genes 0.000 description 2
- 102100022537 Histone deacetylase 6 Human genes 0.000 description 2
- 102100038715 Histone deacetylase 8 Human genes 0.000 description 2
- 101001035024 Homo sapiens Histone deacetylase 1 Proteins 0.000 description 2
- 101001035011 Homo sapiens Histone deacetylase 2 Proteins 0.000 description 2
- 101000899282 Homo sapiens Histone deacetylase 3 Proteins 0.000 description 2
- 101000899330 Homo sapiens Histone deacetylase 6 Proteins 0.000 description 2
- 101001032118 Homo sapiens Histone deacetylase 8 Proteins 0.000 description 2
- 101000602930 Homo sapiens Nuclear receptor coactivator 2 Proteins 0.000 description 2
- 101000582254 Homo sapiens Nuclear receptor corepressor 2 Proteins 0.000 description 2
- 102100024022 Inactive heparanase-2 Human genes 0.000 description 2
- 101710133360 Inactive heparanase-2 Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 101150118523 LYS4 gene Proteins 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 102000043136 MAP kinase family Human genes 0.000 description 2
- 108091054455 MAP kinase family Proteins 0.000 description 2
- 101000654471 Mus musculus NAD-dependent protein deacetylase sirtuin-1 Proteins 0.000 description 2
- HRNLUBSXIHFDHP-UHFFFAOYSA-N N-(2-aminophenyl)-4-[[[4-(3-pyridinyl)-2-pyrimidinyl]amino]methyl]benzamide Chemical compound NC1=CC=CC=C1NC(=O)C(C=C1)=CC=C1CNC1=NC=CC(C=2C=NC=CC=2)=N1 HRNLUBSXIHFDHP-UHFFFAOYSA-N 0.000 description 2
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 2
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 2
- WWGBHDIHIVGYLZ-UHFFFAOYSA-N N-[4-[3-[[[7-(hydroxyamino)-7-oxoheptyl]amino]-oxomethyl]-5-isoxazolyl]phenyl]carbamic acid tert-butyl ester Chemical compound C1=CC(NC(=O)OC(C)(C)C)=CC=C1C1=CC(C(=O)NCCCCCCC(=O)NO)=NO1 WWGBHDIHIVGYLZ-UHFFFAOYSA-N 0.000 description 2
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 102000007999 Nuclear Proteins Human genes 0.000 description 2
- 108010089610 Nuclear Proteins Proteins 0.000 description 2
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 2
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 2
- 102100037226 Nuclear receptor coactivator 2 Human genes 0.000 description 2
- 102100030569 Nuclear receptor corepressor 2 Human genes 0.000 description 2
- 108010047956 Nucleosomes Proteins 0.000 description 2
- 108010043958 Peptoids Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102000014450 RNA Polymerase III Human genes 0.000 description 2
- 108010078067 RNA Polymerase III Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 101710150875 TAR DNA-binding protein 43 Proteins 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 2
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 108091006088 activator proteins Proteins 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000007792 alzheimer disease pathology Effects 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- 210000004727 amygdala Anatomy 0.000 description 2
- 230000006933 amyloid-beta aggregation Effects 0.000 description 2
- 230000003941 amyloidogenesis Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 230000035045 associative learning Effects 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- NCNRHFGMJRPRSK-MDZDMXLPSA-N belinostat Chemical compound ONC(=O)\C=C\C1=CC=CC(S(=O)(=O)NC=2C=CC=CC=2)=C1 NCNRHFGMJRPRSK-MDZDMXLPSA-N 0.000 description 2
- 229960003094 belinostat Drugs 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 208000029028 brain injury Diseases 0.000 description 2
- 230000011496 cAMP-mediated signaling Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000001713 cholinergic effect Effects 0.000 description 2
- 230000006329 citrullination Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 108010082861 cyclic GMP-binding protein Proteins 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 230000008482 dysregulation Effects 0.000 description 2
- 229950005837 entinostat Drugs 0.000 description 2
- 238000003304 gavage Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 108010030457 histone acetyltransferase type B complex Proteins 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000000126 in silico method Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- SANOUVWGPVYVAV-UHFFFAOYSA-N isovaleramide Chemical compound CC(C)CC(N)=O SANOUVWGPVYVAV-UHFFFAOYSA-N 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 150000002611 lead compounds Chemical class 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000008384 membrane barrier Effects 0.000 description 2
- 230000005056 memory consolidation Effects 0.000 description 2
- 230000006386 memory function Effects 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 210000000274 microglia Anatomy 0.000 description 2
- 208000027061 mild cognitive impairment Diseases 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 230000008450 motivation Effects 0.000 description 2
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000005949 negative regulation of histone deacetylation Effects 0.000 description 2
- 210000003061 neural cell Anatomy 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- 230000006764 neuronal dysfunction Effects 0.000 description 2
- 230000004112 neuroprotection Effects 0.000 description 2
- 230000000324 neuroprotective effect Effects 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- 230000008599 nitrosative stress Effects 0.000 description 2
- 108020004017 nuclear receptors Proteins 0.000 description 2
- 210000001623 nucleosome Anatomy 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 238000009521 phase II clinical trial Methods 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 238000007634 remodeling Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000021317 sensory perception Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 229960003310 sildenafil Drugs 0.000 description 2
- MFBOGIVSZKQAPD-UHFFFAOYSA-M sodium butyrate Chemical compound [Na+].CCCC([O-])=O MFBOGIVSZKQAPD-UHFFFAOYSA-M 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 230000007607 synaptic alteration Effects 0.000 description 2
- 230000007645 synaptic failure Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000007492 two-way ANOVA Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 2
- 229960000237 vorinostat Drugs 0.000 description 2
- 238000002424 x-ray crystallography Methods 0.000 description 2
- QLPXHECKUSZTMH-GSVOUGTGSA-N (2r)-2-amino-3-methyl-3-nitrososulfanylbutanoic acid Chemical compound O=NSC(C)(C)[C@H](N)C(O)=O QLPXHECKUSZTMH-GSVOUGTGSA-N 0.000 description 1
- BWDQBBCUWLSASG-MDZDMXLPSA-N (e)-n-hydroxy-3-[4-[[2-hydroxyethyl-[2-(1h-indol-3-yl)ethyl]amino]methyl]phenyl]prop-2-enamide Chemical compound C=1NC2=CC=CC=C2C=1CCN(CCO)CC1=CC=C(\C=C\C(=O)NO)C=C1 BWDQBBCUWLSASG-MDZDMXLPSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 description 1
- CFBILACNYSPRPM-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]acetic acid Chemical compound OCC(N)(CO)CO.OCC(CO)(CO)NCC(O)=O CFBILACNYSPRPM-UHFFFAOYSA-N 0.000 description 1
- XDZMPRGFOOFSBL-UHFFFAOYSA-N 2-ethoxybenzoic acid Chemical compound CCOC1=CC=CC=C1C(O)=O XDZMPRGFOOFSBL-UHFFFAOYSA-N 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- 238000011825 3xTg-AD mouse Methods 0.000 description 1
- BJNIHWSOVCDBHS-UHFFFAOYSA-N 4-aminohex-5-ynoic acid Chemical compound C#CC(N)CCC(O)=O BJNIHWSOVCDBHS-UHFFFAOYSA-N 0.000 description 1
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 1
- ASPDJZINBYYZRU-UHFFFAOYSA-N 5-amino-2-chlorobenzotrifluoride Chemical compound NC1=CC=C(Cl)C(C(F)(F)F)=C1 ASPDJZINBYYZRU-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 108010005094 Advanced Glycation End Products Proteins 0.000 description 1
- 102400000574 Amyloid-beta protein 42 Human genes 0.000 description 1
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 1
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 102000053640 Argininosuccinate synthases Human genes 0.000 description 1
- 108700024106 Argininosuccinate synthases Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 230000007134 Aβ oligomerisation Effects 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 1
- 208000020925 Bipolar disease Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101100026251 Caenorhabditis elegans atf-2 gene Proteins 0.000 description 1
- 101100042630 Caenorhabditis elegans sin-3 gene Proteins 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 108010060434 Co-Repressor Proteins Proteins 0.000 description 1
- 102000008169 Co-Repressor Proteins Human genes 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241001559589 Cullen Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 101100411591 Dictyostelium discoideum rab8B gene Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 101150046226 ELP3 gene Proteins 0.000 description 1
- 102100035074 Elongator complex protein 3 Human genes 0.000 description 1
- 241001492222 Epicoccum Species 0.000 description 1
- 108010022894 Euchromatin Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000041145 GCN5 family Human genes 0.000 description 1
- 108091061013 GCN5 family Proteins 0.000 description 1
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 101150029965 HAT gene Proteins 0.000 description 1
- 108010034791 Heterochromatin Proteins 0.000 description 1
- 102100033071 Histone acetyltransferase KAT6A Human genes 0.000 description 1
- 102100033068 Histone acetyltransferase KAT7 Human genes 0.000 description 1
- 102100033069 Histone acetyltransferase KAT8 Human genes 0.000 description 1
- 229940122597 Histone acetyltransferase inhibitor Drugs 0.000 description 1
- 102100038719 Histone deacetylase 7 Human genes 0.000 description 1
- 101000823051 Homo sapiens Amyloid-beta precursor protein Proteins 0.000 description 1
- 101000877382 Homo sapiens Elongator complex protein 3 Proteins 0.000 description 1
- 101000828609 Homo sapiens Flotillin-2 Proteins 0.000 description 1
- 101001051083 Homo sapiens Galectin-12 Proteins 0.000 description 1
- 101001034009 Homo sapiens Glutamate receptor-interacting protein 1 Proteins 0.000 description 1
- 101001046996 Homo sapiens Histone acetyltransferase KAT5 Proteins 0.000 description 1
- 101000944179 Homo sapiens Histone acetyltransferase KAT6A Proteins 0.000 description 1
- 101000944174 Homo sapiens Histone acetyltransferase KAT6B Proteins 0.000 description 1
- 101000944166 Homo sapiens Histone acetyltransferase KAT7 Proteins 0.000 description 1
- 101000944170 Homo sapiens Histone acetyltransferase KAT8 Proteins 0.000 description 1
- 101001032113 Homo sapiens Histone deacetylase 7 Proteins 0.000 description 1
- 101100019690 Homo sapiens KAT6B gene Proteins 0.000 description 1
- 101000602926 Homo sapiens Nuclear receptor coactivator 1 Proteins 0.000 description 1
- 101000974356 Homo sapiens Nuclear receptor coactivator 3 Proteins 0.000 description 1
- 101001035694 Homo sapiens Polyamine deacetylase HDAC10 Proteins 0.000 description 1
- 101000617536 Homo sapiens Presenilin-1 Proteins 0.000 description 1
- 101000651467 Homo sapiens Proto-oncogene tyrosine-protein kinase Src Proteins 0.000 description 1
- 101000589631 Homo sapiens Putative N-acetyltransferase 8B Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 108010068261 Mi-2 Nucleosome Remodeling and Deacetylase Complex Proteins 0.000 description 1
- 102000002499 Mi-2 Nucleosome Remodeling and Deacetylase Complex Human genes 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 208000019695 Migraine disease Diseases 0.000 description 1
- 208000019022 Mood disease Diseases 0.000 description 1
- KCWZGJVSDFYRIX-YFKPBYRVSA-N N(gamma)-nitro-L-arginine methyl ester Chemical compound COC(=O)[C@@H](N)CCCN=C(N)N[N+]([O-])=O KCWZGJVSDFYRIX-YFKPBYRVSA-N 0.000 description 1
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 description 1
- 101710202061 N-acetyltransferase Proteins 0.000 description 1
- 101710112216 NAD-dependent histone deacetylase SIR2 Proteins 0.000 description 1
- 102100031455 NAD-dependent protein deacetylase sirtuin-1 Human genes 0.000 description 1
- 102100022913 NAD-dependent protein deacetylase sirtuin-2 Human genes 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 101710138657 Neurotoxin Proteins 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 1
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 102100037223 Nuclear receptor coactivator 1 Human genes 0.000 description 1
- 102100022883 Nuclear receptor coactivator 3 Human genes 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101000785215 Papaver somniferum (13S,14R)-1,13-dihydroxy-N-methylcanadine 13-O-acetyltransferase AT1 Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 102100039388 Polyamine deacetylase HDAC10 Human genes 0.000 description 1
- 102000015499 Presenilins Human genes 0.000 description 1
- 108010050254 Presenilins Proteins 0.000 description 1
- RBQOQRRFDPXAGN-UHFFFAOYSA-N Propentofylline Chemical compound CN1C(=O)N(CCCCC(C)=O)C(=O)C2=C1N=CN2CCC RBQOQRRFDPXAGN-UHFFFAOYSA-N 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102000005765 Proto-Oncogene Proteins c-akt Human genes 0.000 description 1
- 108010045717 Proto-Oncogene Proteins c-akt Proteins 0.000 description 1
- 208000009144 Pure autonomic failure Diseases 0.000 description 1
- 102100032379 Putative N-acetyltransferase 8B Human genes 0.000 description 1
- 208000025535 REM sleep behavior disease Diseases 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 229910006124 SOCl2 Inorganic materials 0.000 description 1
- 101100148749 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SAS2 gene Proteins 0.000 description 1
- 101100148751 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SAS3 gene Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108010041191 Sirtuin 1 Proteins 0.000 description 1
- 108010041216 Sirtuin 2 Proteins 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 101150036909 TAF1 gene Proteins 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 201000004810 Vascular dementia Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 229930003537 Vitamin B3 Natural products 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000000397 acetylating effect Effects 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 210000001642 activated microglia Anatomy 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 102000047725 alpha7 Nicotinic Acetylcholine Receptor Human genes 0.000 description 1
- 108700006085 alpha7 Nicotinic Acetylcholine Receptor Proteins 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003942 amyloidogenic effect Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000003936 benzamides Chemical class 0.000 description 1
- 229940049706 benzodiazepine Drugs 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 108091007737 beta-secretases Proteins 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 230000037185 brain physiology Effects 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- GYKLFBYWXZYSOW-UHFFFAOYSA-N butanoyloxymethyl 2,2-dimethylpropanoate Chemical compound CCCC(=O)OCOC(=O)C(C)(C)C GYKLFBYWXZYSOW-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000001271 cGMP hydrolyzing effect Effects 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000012054 celltiter-glo Methods 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 210000003618 cortical neuron Anatomy 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000000850 deacetylating effect Effects 0.000 description 1
- 230000006196 deacetylation Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 210000003520 dendritic spine Anatomy 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QKSGNWJOQMSBEP-UHFFFAOYSA-N diethyl-[[6-[[4-(hydroxycarbamoyl)phenyl]carbamoyloxymethyl]naphthalen-2-yl]methyl]azanium;chloride Chemical compound [Cl-].C1=CC2=CC(C[NH+](CC)CC)=CC=C2C=C1COC(=O)NC1=CC=C(C(=O)NO)C=C1 QKSGNWJOQMSBEP-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 210000005110 dorsal hippocampus Anatomy 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000001516 effect on protein Effects 0.000 description 1
- 230000007831 electrophysiology Effects 0.000 description 1
- 238000002001 electrophysiology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 210000000632 euchromatin Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-M fusidate Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C([O-])=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-M 0.000 description 1
- 102000038383 gamma-secretases Human genes 0.000 description 1
- 108091007739 gamma-secretases Proteins 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000004458 heterochromatin Anatomy 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000008801 hippocampal function Effects 0.000 description 1
- 210000004295 hippocampal neuron Anatomy 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 102000055060 human PSEN1 Human genes 0.000 description 1
- 108091003098 human bone sialoprotein (35-62) Proteins 0.000 description 1
- 102000027012 human bone sialoprotein (35-62) Human genes 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000012750 in vivo screening Methods 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000012482 interaction analysis Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000028867 ischemia Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 201000003723 learning disability Diseases 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960001047 methyl salicylate Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 102000021160 microtubule binding proteins Human genes 0.000 description 1
- 108091011150 microtubule binding proteins Proteins 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 239000006218 nasal suppository Substances 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 231100000618 neurotoxin Toxicity 0.000 description 1
- 238000001683 neutron diffraction Methods 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N nicotinic acid amide Natural products NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- 230000005064 nitric oxide mediated signal transduction Effects 0.000 description 1
- 239000000236 nitric oxide synthase inhibitor Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009635 nitrosylation Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 108091008819 oncoproteins Proteins 0.000 description 1
- 102000027450 oncoproteins Human genes 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- FWZRWHZDXBDTFK-ZHACJKMWSA-N panobinostat Chemical compound CC1=NC2=CC=C[CH]C2=C1CCNCC1=CC=C(\C=C\C(=O)NO)C=C1 FWZRWHZDXBDTFK-ZHACJKMWSA-N 0.000 description 1
- 229960005184 panobinostat Drugs 0.000 description 1
- 208000002593 pantothenate kinase-associated neurodegeneration Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- CMFNMSMUKZHDEY-UHFFFAOYSA-N peroxynitrous acid Chemical compound OON=O CMFNMSMUKZHDEY-UHFFFAOYSA-N 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 229950009215 phenylbutanoic acid Drugs 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000007406 plaque accumulation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000008389 polyethoxylated castor oil Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 210000002729 polyribosome Anatomy 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960002934 propentofylline Drugs 0.000 description 1
- 229940076376 protein agonist Drugs 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- CSYSULGPHGCBQD-UHFFFAOYSA-N s-ethylisothiouronium diethylphosphate Chemical compound CCSC(N)=N.CCOP(O)(=O)OCC CSYSULGPHGCBQD-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000010332 selective attention Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 230000007617 synaptic impairment Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 238000012301 transgenic model Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229940094720 viagra Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 235000019160 vitamin B3 Nutrition 0.000 description 1
- 239000011708 vitamin B3 Substances 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/27—Esters, e.g. nitroglycerine, selenocyanates of carbamic or thiocarbamic acids, meprobamate, carbachol, neostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/42—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C235/44—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C235/58—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C235/64—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/23—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C323/39—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
- C07C323/40—Y being a hydrogen or a carbon atom
- C07C323/42—Y being a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/23—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C323/39—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton at least one of the nitrogen atoms being part of any of the groups, X being a hetero atom, Y being any atom
- C07C323/43—Y being a hetero atom
- C07C323/44—X or Y being nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/50—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
- C07C323/62—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C323/00—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
- C07C323/64—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon skeleton
- C07C323/67—Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon skeleton containing sulfur atoms of sulfonamide groups, bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/75—Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/78—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D213/81—Amides; Imides
- C07D213/82—Amides; Imides in position 3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/52—Two oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/26—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D333/38—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
Definitions
- Cognitive neurodegenerative disorders are characterized by synaptic dysfunction, cognitive abnormalities, and/or the presence of inclusion bodies throughout the CNS containing, for example, but not limited to native beta-amyloid fragments, native and phosphorylated Tau, native and phosphorylated alpha-synuclein, lipofuscin, cleaved TARDBP (TDB-43), in various percentages and in relation to the specific disease.
- native beta-amyloid fragments native and phosphorylated Tau
- native and phosphorylated alpha-synuclein native and phosphorylated alpha-synuclein
- lipofuscin cleaved TARDBP (TDB-43)
- AD Alzheimer's disease
- a ⁇ amyloid ⁇ -peptides
- a ⁇ 42 amyloid- ⁇ -peptide 1-42
- Histone Acetyltransferases are involved in histone acetylation (leading to gene activation), chromosome decondensation, DNA repair and non-histone substrate modification
- WO2004/053140 discloses different compounds as modulators of histone acetyltransferases.
- the compounds of the present application are the following compounds 6-9:
- An aspect of the invention provides a method for screening compounds selected from the compounds 6-9 to treat conditions associated with accumulated amyloid-beta peptide deposits.
- the method comprises (a) administering a HAT Activator compound selected from the compounds 6-9 to an animal model of amyloid-beta peptide deposit accumulation; and (b) selecting a HAT Activator compound selected from the compounds 6-9 that can modulate histone acetylation after administration of the HAT Activator compound in an animal model of amyloid-beta peptide deposit accumulation.
- An aspect of the invention further provides a method for identifying a histone acetyltransferase (HAT) activator compound selected from the compounds 6-9 to treat conditions associated with accumulated amyloid-beta peptide deposits, wherein the method comprises selecting a HAT Activator compound selected from the compounds 6-9 having one or more of the following features: (a) the EC 50 of the compound is no more than about 1000 nM; (b) the histone acetylation activity in vitro targets histone protein H2, H3, and/or H4; (c) the compound penetrates the blood brain barrier; (d) or a combination thereof.
- the compound has a molecular mass less than about 500 Da, has a polar surface area less than about 90 ⁇ 2 , has less than 8 hydrogen bonds, or a combination thereof, in order to penetrate the blood brain barrier.
- An aspect of the invention provides the use of the compounds 6-9 in a method for reducing amyloid beta (A ⁇ ) protein deposits in a subject wherein the method comprises administering to the subject an effective amount of a composition comprising a HAT Activator compound selected from the compounds 6-9 thereby decreasing A ⁇ protein deposits in the subject.
- the subject exhibits abnormally elevated levels of amyloid beta plaques.
- the subject is afflicted with Alzheimer's disease, Lewy body dementia, inclusion body myositis, or cerebral amyloid angiopathy.
- the A ⁇ protein deposit comprises an A ⁇ 40 isomer, an A ⁇ 42 isomer, or a combination of isomers. .
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention further provides the use of the compounds 6-9 in a method for treating Alzheimer's Disease in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a HAT activator compound.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention further provides the use of the compounds 6-9 in a method for treating Alzheimer's Disease in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a compound selected from the compounds 6-9.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- Another aspect of the invention provides the use of the compounds 6-9 in a method for increasing memory retention in a subject afflicted with a neurodegenerative disease, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a compound selected from the compounds 6-9. .
- the neurodegenerative disease comprises Adrenoleukodystrophy (ALD), Alcoholism, Alexander's disease, Alper's disease, Alzheimer's disease, Amyotrophic lateral sclerosis (Lou Gehrig's Disease), Ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjögren-Batten disease), Bovine spongiform encephalopathy (BSE), Canavan disease, Cockayne syndrome, Corticobasal degeneration, Creutzfeldt-Jakob disease, Familial fatal insomnia, Frontotemporal lobar degeneration, Huntington's disease, HIV-associated dementia, Kennedy's disease, Krabbe's disease, Lewy body dementia, Neuroborreliosis, Machado-Joseph disease (Spinocerebellar ataxia type 3), Multiple System Atrophy, Multiple sclerosis, Narcolepsy, Niemann Pick disease, Parkinson's disease, Pelizaeus-Merzbacher Disease
- the compound is YF2.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention further provides the use of the compounds 6-9 in a method for increasing synaptic plasticity in a subject afflicted with a neurodegenerative disease, the method comprising administering to a subject a therapeutic amount of a composition that increases histone acetylation in the subject, wherein the composition comprises a compound selected from the compounds 6-9.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the neurodegenerative disease comprises Adrenoleukodystrophy (ALD), Alcoholism, Alexander's disease, Alper's disease, Alzheimer's disease, Amyotrophic lateral sclerosis (Lou Gehrig's Disease), Ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjögren-Batten disease), Bovine spongiform encephalopathy (BSE), Canavan disease, Cockayne syndrome, Corticobasal degeneration, Creutzfeldt-Jakob disease, Familial fatal insomnia, Frontotemporal lobar degeneration, Huntington's disease, HIV-associated dementia, Kennedy's disease, Krabbe's disease, Lewy body dementia, Neuroborreliosis, Machado-Joseph disease (Spinocerebellar ataxia type 3), Multiple System Atrophy, Multiple sclerosis, Narcolepsy, Niemann Pick disease, Parkinson's
- ALD Adren
- synaptic plasticity comprises learning, memory, or a combination thereof.
- synaptic plasticity comprises long term potentiation (LTP).
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention further provides the use of the compounds 6-9 in a method for treating Alzheimer's Disease in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a compound selected from the compounds 6-9.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention provides the use of the compounds 6-9 in a method for ameliorating symptoms of Parkinson's Disease in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a HAT activator compound.
- the HAT activator compound can be a compound selected from the compounds 6-9.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier. .
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- the symptoms of Parkinson's Disease comprise tremor, bradykinesia, dyskinesia, rigidity, postural instability, dystonia, akathisia, dementia, impaired gross motor coordination, or a combination of the listed symptoms.
- the postural instability comprises impaired imbalance, impaired coordination, or a combination thereof.
- An aspect of the invention also provides the use of the compounds 6-9 in a method for treating cancer in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a compound selected from the compounds 6-9.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the cancer comprises B cell lymphoma, colon cancer, lung cancer, renal cancer, bladder cancer, T cell lymphoma, myeloma, leukemia, chronic myeloid leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, acute lymphocytic leukemia, hematopoietic neoplasias, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkins lymphoma, Hodgkins lymphoma, uterine cancer, renal cell carcinoma, hepatoma, adenocarcinoma, breast cancer, pancreatic cancer, liver cancer, prostate cancer, head and neck carcinoma, thyroid carcinoma, soft tissue sarcoma, ovarian cancer, primary or metastatic melanoma, squamous cell carcinoma, basal cell carcinoma, brain cancer, angiosarcoma, hemangiosarcoma,
- An aspect of the invention provides the use of the compounds 6-9 in a method for treating Huntington's Disease in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a HAT activator compound.
- the HAT activator compound can be a compound selected from the compounds 6-9.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention provides the use of the compounds 6-9 in for a method of treating a neurodegenerative disease in a subject, the method comprising administering to a subject a therapeutic amount of a pharmaceutical composition comprising a compound selected from the compounds 6-9, thereby treating the neurodegenerative disease in the subject.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the neurodegenerative disease comprises Adrenoleukodystrophy (ALD), Alcoholism, Alexander's disease, Alper's disease, Alzheimer's disease, Amyotrophic lateral sclerosis (Lou Gehrig's Disease), Ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjögren-Batten disease), Bovine spongiform encephalopathy (BSE), Canavan disease, Cockayne syndrome, Corticobasal degeneration, Creutzfeldt-Jakob disease, Familial fatal insomnia, Frontotemporal lobar degeneration, Huntington's disease, HIV-associated dementia, Kennedy's disease, Krabbe's disease, Lewy body dementia, Neuroborreliosis, Machado-Joseph disease (Spinocerebellar ataxia type 3), Multiple System Atrophy, Multiple sclerosis, Narcolepsy, Niemann Pick disease, Parkinson's
- ALD Adren
- synaptic plasticity comprises learning, memory, or a combination thereof.
- synaptic plasticity comprises long term potentiation (LTP).
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- An aspect of the invention provides the use of the compounds 6-9 in a method of decreasing inclusion bodies in a subject afflicted with a neurodegenerative disorder, the method comprising administering to the subject an effective amount of a composition comprising a HAT Activator compound selected from the compounds 6-9, thereby decreasing inclusion bodies in the subject.
- the inclusion bodies comprise beta-amyloid peptides, native and phosphorylated Tau proteins, native and phosphorylated alpha-synuclein, lipofuscin, cleaved TARDBP (TDB-43), or a combination thereof.
- the subject exhibits abnormally elevated levels of amyloid beta plaques.
- the beta-amyloid peptides comprises an A ⁇ 40 isomer, an A ⁇ 42 isomer, or a combination of isomers.
- the effective amount is at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, or at least about 100 mg/kg body weight.
- the composition crosses the blood brain barrier.
- the neurodegenerative disease comprises Adrenoleukodystrophy (ALD), Alcoholism, Alexander's disease, Alper's disease, Alzheimer's disease, Amyotrophic lateral sclerosis (Lou Gehrig's Disease), Ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjögren-Batten disease), Bovine spongiform encephalopathy (BSE), Canavan disease, Cockayne syndrome, Corticobasal degeneration, Creutzfeldt-Jakob disease, Familial fatal insomnia, Frontotemporal lobar degeneration, Huntington's disease, HIV-associated dementia, Kennedy's disease, Krabbe's disease, Lewy body dementia, Neuroborreliosis, Machado-Joseph disease (Spinocerebellar ataxia type 3), Multiple System Atrophy, Multiple sclerosis, Narcolepsy, Niemann Pick disease, Parkinson's
- ALD Adren
- synaptic plasticity comprises learning, memory, or a combination thereof.
- synaptic plasticity comprises long term potentiation (LTP).
- the compound increases histone acetylation.
- histone acetylation comprises acetylation of histones H2B, H3, H4, or a combination thereof.
- histone acetylation comprises acetylation of histone lysine residues H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, or a combination thereof.
- AD Alzheimer's disease
- a ⁇ ⁇ -amyloid
- LTP long-term potentiation
- Memory is known to be modulated by epigenetics through regulation of gene expression.
- Epigenetics is defined as the mechanism that changes gene expression by 'marking' DNA or its associated proteins, through processes such as DNA methylation and histone (H) modification, without changing the DNA sequence itself [P9] .
- Modification of histones by, for example, the addition or removal of acetyl or methyl functional groups causes the chromatin structure to open or close, so that the information contained within the DNA is made more or less accessible to transcription factors.
- deregulation of one of the epigenetic mechanisms might lead to memory disruption. For instance, reduction of histone acetylation causes the chromatin structure to close, so that the information contained within the DNA might be less accessible to transcription factors and memory formation [P9] .
- HDACs histone deacetylases
- HATs share a highly conserved motif containing an acetyl-CoA binding site. HATs can be involved in the pathology of cancer, asthma, neurodegenerative diseases and viral infection. This indicates that specific HAT activators are potential tools for pharmacological research and might find therapeutic applications. So far only one group has reported HAT activators. However, their compounds are neither soluble, nor membrane permeant, which makes them not good drug candidates for the treatment for the diseases described above.
- This invention is about the synthesis of a new class of HAT activators, which have good potency, excellent solubility, reasonable pharmacokinetic profiles and good membrane and Blood-brain-Barrier (BBB) permeability, hence can be used as a new medicine with minimum amount of side effect for patients with neurodegenerative diseases and cancers.
- BBB Blood-brain-Barrier
- the invention provides for compounds with histone acetyltransferase activity, HAT activation potency, high selectivity, reasonable pharmacokinetics and good permeability across the blood-brain-barrier (BBB). These compounds may be used to minimize the side effects for AD patients, the third most costly disease in the U.S., such as improving cognition or memory in AD and Alzheimer's-like pathologies, as well as minimize the side effects for subjects afflicted with other neurodegenerative diseases.
- the compounds of the invention may also be developed as anti-cancer drugs.
- the invention provides methods for identifying HAT activators that can acetylate histone proteins thus increasing gene expression in a subject resulting in enhanced memory and cognition.
- the invention provides for the utilization of HAT agonists as memory enhancers in normal subjects (for example, a subject not afflicted with a neurodegenerative disease). In further embodiments, the invention provides for the utilization of HAT agonists as memory enhancers in aging subjects (for example, a subject who is >55 years old). In further embodiments, the invention provides for the utilization of HAT agonists as memory enhancers for other conditions associated with cognitive decrease/impairment.
- Non-limiting examples of conditions associated with cognitive decrease/impairment include a variety of syndromes associated with mental retardation and syndromes associated with learning disabilities, Parkinson's disease, Pick's disease, a Lewy body disease, amyotrophic lateral sclerosis, Huntington's disease, Creutzfeld-Jakob disease, Down syndrome, multiple system atrophy, neuronal degeneration with brain iron accumulation type I (Hallervorden-Spatz disease), pure autonomic failure, REM sleep behavior disorder, mild cognitive impairment (MCI), cerebral amyloid angiopathy (CAA), mild cognitive deficits, aging, vascular dementias mixed with Alzheimer's disease, a neurodegenerative disease characterized by abnormal amyloid deposition, and any combination thereof.
- MCI mild cognitive impairment
- CAA cerebral amyloid angiopathy
- HAT activators can first be screened or selected based on their possession of certain characteristics, such as having one or more of: an EC 50 no greater than about 100 nM; a histone acetylation activity in vitro; and the ability to penetrate the BBB.
- the candidate pool of HAT activators to be tested in animal models of neurodegenerative diseases such as, but not limited to, animals that exhibit elevated levels of inclusion bodies, for example A ⁇ accumulation animal models (e.g., animal models of AD), or, for example, a mouse model for Huntington's disease
- animal models of neurodegenerative diseases such as, but not limited to, animals that exhibit elevated levels of inclusion bodies, for example A ⁇ accumulation animal models (e.g., animal models of AD), or, for example, a mouse model for Huntington's disease
- a ⁇ accumulation animal models e.g., animal models of AD
- a mouse model for Huntington's disease can first be screened or selected based on "medicinal chemistry" strategies.
- a class of structurally related, but nevertheless formally independent scaffolds can be generated to be deemed as HAT activator candidates.
- Compounds derived from these scaffolds can first be screened and optimized on computational models. Compounds with highest score will be synthesized and tested for potency.
- a HAT activator compound does not necessarily preclude the possibility that the compound may also be able to inhibit other HATs.
- Eukaryotic DNA is highly organized and packaged into the nucleus.
- the organization and packaging are achieved through the addition of proteins, including core histones H2A, H2B, H3 and H4, which form a complex structure, the chromatin, together with DNA (see FIG. 28 ).
- the modification of core histones is of fundamental importance to conformational changes of the chromatin.
- the level of acetylation is related to transcription activity, and then the acetylation induces an open chromatin confirmation that allows the transcription machinery access to promoters.
- Histone deacetylase HDAC
- histone acetyltransferase HAT
- Chromatin acetylation correlates with transcriptional activity (euchromatin)
- deacetylation correlates with gene silencing.
- acetylation of H3 in area CA1 of the hippocampus an area in the brain that plays an important role in long-tem memory
- Histone acetylation and deacetylation are increasingly recognized for their contribution to the tight regulation of gene activation and silencing, respectively. Hence, it is not surprising that deregulation of these mechanisms might lead to the disruption of memoryassociated gene expression, resulting in a number of syndromes associated with mental retardation.
- Histones The DNA is firstly wrapped around an octamer complex of histones (H) to form nucleosomal units, giving the appearance of beads on a string [B31]. In turn, these nucleosomal units, fold into a higher-order chromatin fiber [B32].
- H histones
- Each histoneoctamer complex contains two copies of histones H3 and H4 bordered by two copies of histones 2A and 2B [B32].
- H1 and its avian variant H5 are linker histones that bind the nucleosome and both the entry and exit sites of the DNA, thus locking the DNA into place and allowing the formation of higher order structure.
- histone cores and in particular their tails are targets for a considerable number of covalent modifications, such as acetylation, ubiquitination, sumoylation, phosphorylation, citrullination, ADP-ribosylation, and methylation [B33].
- Histone modifications associated with active gene transcription such as H3 Lys4 methylation and H3 Lys56 acetylation, were found to lead to gene expression.
- histone modifications associated with the inactivation of gene transcription such as H3 Lys27 methylation and H2A Lys119 ubiquitination were found to cause gene silencing.
- histone 2B, 3 and 4 because they have been shown to be involved in memory processes [B19, B25].
- HATs and HDACs Histone modifications and their combinations have been proposed to be involved in gene regulation by modifying the chromatin accessibility and by acting as docking sites for transcription factors and modifying enzymes [B34, B35].
- One of the most studied histone modifications is the acetylation of the evolutionary-conserved lysine residues on the histone N-termini by histone acetyltransferase (HAT).
- HAT histone acetyltransferase
- HDAC histone deacetylation, catalyzed by histone deacetylase
- the HATs involved in the regulation of gene expression include at least three groups of enzymes [B37] .
- the general control non-derepressible 5 (Gcn5) is the founding member of the Gcn5 N-acetyltransferases (GNATs).
- GNATs Gcn5 N-acetyltransferases
- the GNAT family members include Gcn5, PCAF, Elp3, HAT1m Hpa2 and Nut1.
- the MYST family is named after the founding members of the family: Morf, Ybf2, Sas2 and Tip60 [B37].
- other proteins including CBP/p300, Taf1 and a number of nuclear receptor co-activators have been shown to possess intrinsic HAT activity. However, these proteins do not contain a consensus domain and therefore represent an 'orphan class' of HAT enzymes [B37].
- HDACs form repressor complexes with transcription activators and with other HDACs [B38].
- Mammalian HDACs can be divided into the classical and the silent information regulator 2 (Sir2)-related protein (sirtruin) families [B39].
- members of the classical family have another subdivision, which include class I, II and IV, that share sequence similarity and require Zn+ for deacetylase activity.
- Class I HDACs HDAC 1-3, HDAC8 are related to the yeast gene repressor Rpd3p, and are subunits of at least two distinct co-repressor complexes, the Sin3 complex and the NuRD complex.
- Class II HDACs are similar to the yeast Hdalp HDAC, they act as gene repressors and have been implicated in various roles in cell differentiation and development.
- Class IV comprises HDAC11, which has some features of both class I and II HDACs.
- the sirtruin family includes class III HDACs (SIRT1-7), which are similar to yeast Sir2.
- Class III HDACs are biochemically and structurally distinct from the classical family and require NAD + as a cofactor. HDACs appear to be involved in gene silencing and heterochromatin formation at centromeres and telomeres (for a review see [B40]).
- HATs Histone Acetyltransferases
- HDAC Histone Deacytylases
- HATs include, but are not limited to GCN5, GCN5L, PCAF, HAT1, ELP3, HPA2, ESA1, SAS2, SAS3, TIP60, HBO1, MOZ, MORF, MOF, SRC1, SRC3, TIF2, GRIP1, ATF-2 [see Lee and Workman (2007) Nat Rev Mol Cell Biol., 8(4):284-95 , Marmorstein (2001) J Molec Biol. 311: 433-444 ; and Kimura et al., (2005) J Biochem. 138(6): 647-662 , which are each hereby incorporated by reference in their entireties].
- the HAT activator compound of the invention is directed to GCN5, GCN5L, HAT1, PCAF, or a combination thereof.
- the HAT activator compound of the invention is directed to proteins that possess intrinsic HAT activity, such as nuclear receptor co-activators (for example, CBP/p300 and Tafl).
- nuclear receptor co-activators for example, CBP/p300 and Tafl.
- the acetylation of H2, H3, and/or H4 histones is increased.
- the HAT Activator compound is YF2, depicted in FIG. 3 .
- HAT activators can be a useful drug candidate with a role similar to HDACi. However, previously available HAT activators had little solubility and membrane permeability, making them unsuitable as drugs.
- HDACi are in trials for cancer some of which are, for example, 4SC-202 (Nycomed, Germany), which is in a Preclinical stage; AR-42 (Arno therapeutics, Parsippany, NJ) which is in a Preclinical stage; Belinostat (TopoTarget, Rockaway, NJ) which is in Phase II clinical trials; and Entinostat (Bayer Schering) which is in Phase II clinical trials.
- HDAC inhibitors include Vorinostat, Depsipeptide, and MGCD0103.
- HDAC inhibitors in clinical use or development are discussed, which include hydroxamic acid compounds (e.g., Vorinostat, Trichostatin A, LAQ824, Panobinostat, Belinostat, and ITF2357), cyclic tetrapeptide compounds (e.g., Depsipeptide), benzamide compounds (e.g., Entinostat and MGCD0103), and short-chain aliphatic acid compounds (e.g., valproic acid, phenyl butyrate, and pivanex).
- hydroxamic acid compounds e.g., Vorinostat, Trichostatin A, LAQ824, Panobinostat, Belinostat, and ITF235
- cyclic tetrapeptide compounds e.g., Depsipeptide
- benzamide compounds e.g., Entinostat and MGCD0103
- short-chain aliphatic acid compounds e.g., valproic acid, phenyl buty
- HDACi are or were being developed for neurological diseases, such as an HDACi from Merck (Whitehouse Station, NJ) that is being used for the treatment of neurodegenerative diseases; and HDACi from TopoTarget (Rockaway, NJ) that was being used for the treatment of Huntington's disease, now discontinued; isovaleramide NPS-1776 (NPS Pharmaceutical, Bedminster, New Jersey) that was being used for bipolar disorder, epilepsy, and migraines, now discontinued; and a histone acetyltransferase inhibitor for cancer from TopoTarget A/S (K ⁇ benhavn, Denmark), which was discontinued in the preclinical stage.
- HAT activator compound of the invention YF2
- FIG. 3 can be used as adjuvant therapy in several cancers, psychiatric and neurodegenerative diseases and may improve efficacy and safety of treatment for these disorders.
- the HAT activator compound, YF2 has a moiety which was not mentioned in the abovereferenced patent applications that significantly improves the solubility and membrane and Blood-brain-Barrier (BBB) permeability. See Abel and Zukin (2008) Current Opinion in Pharmacology 8:57-64 ; and Lee and Workman (2007) Nat Rev Mol Cell Biol 8:284-295 .
- a HAT activator compound can be used to treat a cancer in a subject in need thereof.
- cancers include B cell lymphoma, colon cancer, lung cancer, renal cancer, bladder cancer, T cell lymphoma, myeloma, leukemia, chronic myeloid leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, acute lymphocytic leukemia, hematopoietic neoplasias, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkins lymphoma, Hodgkins lymphoma, uterine cancer, renal cell carcinoma, hepatoma, adenocarcinoma, breast cancer, pancreatic cancer, liver cancer, prostate cancer, head and neck carcinoma, thyroid carcinoma, soft tissue sarcoma, ovarian cancer, primary or metastatic melanoma, squamous cell carcinoma, basal cell carcinoma, brain cancer, an
- a HAT activator compound can be used to treat a neurodegenerative disease in a subject in need thereof.
- neurodegenerative diseases include Adrenoleukodystrophy (ALD), Alcoholism, Alexander's disease, Alper's disease, Alzheimer's disease, Amyotrophic lateral sclerosis (Lou Gehrig's Disease), Ataxia telangiectasia, Batten disease (also known as Spielmeyer-Vogt-Sjögren-Batten disease), Bovine spongiform encephalopathy (BSE), Canavan disease, Cockayne syndrome, Corticobasal degeneration, Creutzfeldt-Jakob disease, Familial fatal insomnia, Frontotemporal lobar degeneration, Huntington's disease, HIV-associated dementia, Kennedy's disease, Krabbe's disease, Lewy body dementia, Neuroborreliosis, Machado-Joseph disease (Spinocerebellar ataxia type 3), Multiple System Atrophy, Multiple
- FIG. 23 A schematic representation of the processes involved in gene transcription and memory is shown in FIG. 23 .
- CBP functions as a co-activator that facilitates interactions with the basal transcription machinery and through its HAT activity catalyzes acetylation of the histones, causing a loss in chromosomal repression and increase in the transcription of memory associated genes.
- mutations in HAT domain CBP were found to cause LTM impairment. For instance, Korzus et a l . demonstrated that inducible dominant-negative CBP mice, with no CBP HAT activity, exhibited normal short-tem memory while LTM was impaired [B8]. Moreover, the impaired LTM was rescued by suppression of the transgene expression and by HDAC inhibitor administration [B8].
- HDAC inhibition may be beneficial in certain neurodegenerative disorders, such as Huntington's disease, spinal muscular atrophy, amyotrophic lateral sclerosis, ischemia and Rubinstein-Taybi syndrome [B19, B25, B41, B42].
- HDAC inhibition may provide a therapeutic avenue for memory impairment in neurodegenerative diseases characterized by cognitive disorders such as AD.
- WT PS1 wild-type PS1 stimulates the transcriptional ability of CBP and p300, whereas the AD associated mutant of PS1 (M146L) does not have this effect [B18, B47].
- WT PS1 a response to WT PS1 was observed with a construct containing the 721-1679 region of CBP, which contains the CBP acetyltransferase domain [B18].
- CBP loss and histone deacetylation takes place during neuronal death, which was induced by an APP-directed antibody in primary cortical neurons [B48].
- Alzheimer's Disease An example of a Neurodegenerative Disease
- LTM and synaptic plasticity rely on gene expression after an early induction phase characterized by the activation of a number of pathways (for a review, see [B30]). More recently, a fine regulation of memory-related genes and long-term synaptic plasticity has been discovered to involve epigenetic factors [B6]. Indeed, epigenetic modifications, such as DNA methylation and histone post-translational modifications, profoundly affect the ability of polymerases to interact with the open reading frame of DNA without changing the DNA sequence itself. Hence, it would not be surprising that deregulation of epigenetic mechanisms might lead to the disruption of memoryassociated gene expression and synaptic plasticity [B6], contributing to the pathogenesis of diseases characterized by cognitive disorders, such as AD.
- LTM long-term memory
- B4 synthesis of new proteins
- B5 structural changes of the synapse
- B6 epigenetics
- N-terminal tails of histone proteins are known to undergo posttranslational modifications, such as histone acetylation, ubiquitination, sumoylation, phosphorylation, citrullination, ADP-ribosylation, and methylation that can dictate the transitions between transcriptionally active or transcriptionally silent chromatin states [B7].
- posttranslational modifications such as histone acetylation, ubiquitination, sumoylation, phosphorylation, citrullination, ADP-ribosylation, and methylation that can dictate the transitions between transcriptionally active or transcriptionally silent chromatin states [B7].
- AD Alzheimer's disease
- a ⁇ Selkoe, D.J. Alzheimer's disease is a synaptic failure. Science (New York, N.Y298, 789-791 (2002 )).
- a ⁇ -induced reduction in long-term-potentiation (LTP) a physiological correlate of synaptic plasticity that is thought to underlie learning and memory, and phosphorylation of the memory transcription factor CREB, are ameliorated by nitric oxide (NO) donors and cGMP-analogs ( Puzzo, D., et al.
- Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive element-binding protein pathway during hippocampal synaptic plasticity. JNeurosci 25, 6887-6897 (2005 )). Vice-versa, genetic ablation of NO-synthase 2 (NOS2) results in worsening of the AD phenotype in mice expressing mutated amyloid precursor protein (APP) ( Colton, C.A., et al. NO synthase 2 (NOS2 ) deletion promotes multiple pathologies in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America 103, 12867-12872 (2006 )). These findings show that up-regulation of the NO pathway can be protective in AD.
- NOS2 mutated amyloid precursor protein
- AD Alzheimer's disease
- a ⁇ ⁇ -amyloid
- LTP long-term potentiation
- a ⁇ is the proteolytic product of a larger precursor protein, the amyloid precursor protein (APP), which in its mutant form has been found to be implicated in familial AD (FAD) [A9] .
- PS1 presenilin 1
- PS2 presenilin 2
- AD is characterized neuropathologically by neuronal loss, extracellular senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs). SPs are chiefly comprised of A ⁇ aggregates. The major component of NFTs is the microtubule binding protein tau.
- SPs extracellular senile plaques
- NFTs neurofibrillary tangles
- Clinically, AD is characterized by cognitive dysfunction and begins as a synaptic disorder that involves progressively larger areas of the brain over time [S1].
- An emerging view of the processes involved in synaptic impairment shows that the subtlety and variability of the earliest amnesic symptoms, occurring in the absence of any other clinical signs of brain injury, can be due to discrete changes in the function of a single synapse, produced at least in part, by A ⁇ [S5, S7, S10, S11].
- synapses An important target for developing a causal therapy for Alzheimer's disease is represented by synapses. Synaptic alterations are highly correlated with the severity of clinical dementia [S1, S2], whereas other important variables such as senile plaques and neurofibrillary tangles are involved to a lesser extent [S1].
- the importance of synaptic alterations in AD has been confirmed by studies of transgenic (Tg) mouse models of AD [S3] as well as of long-term potentiation (LTP), a widely studied cellular model of learning and memory (L&M) [S4], which is impaired following application of amyloid- ⁇ (A ⁇ ) both in slices and in vivo [S3, S5-S12]. A ⁇ has been found to markedly inhibit LTP. Electrophysiological studies using Tg, human A ⁇ producing mice have often revealed significant deficits in basal synaptic transmission and/or LTP in the hippocampus [S23-S30].
- Epigenetics is defined as the mechanism that changes gene expression by 'marking' DNA or its associated proteins, through processes such as DNA methylation and histone modification, without changing the DNA sequence itself [A14] . Modification of histones by, for example, the addition or removal of acetyl or methyl functional groups causes the chromatin structure to open or close, so that the information contained within the DNA is made more or less accessible to transcription factors. Hence, it is not surprising that deregulation of one of the epigenetic mechanisms might lead to disruption of memory associated gene expression.
- Studies of the mechanisms underlying synaptic and memory dysfunction in AD have indicated central roles for the transcription factor CREB (CRE binding protein) and the coactivator CREB binding protein (CBP).
- AD Alzheimer's disease
- CRE binding protein transcription factor CREB
- CBP coactivator CREB binding protein
- LTP long-term potentiation
- NO is a central molecule in cellular biochemical processes.
- the gas has been established as an important messenger molecule in various steps of brain physiology, from development to synaptic plasticity and learning and memory.
- NO has been found to have a protective effect on A ⁇ -induced damage of the nervous system [S38-S40].
- a ⁇ has been found to impair NO generation by decreasing NMDA receptor signal transduction [S38], by subtracting NADPH availability to NO-synthase (NOS) [S41], or by inhibiting the phosphorylation of the serine-threonine kinase Akt [S42].
- NOS NO-synthase
- Akt serine-threonine kinase
- the invention provides methods for identifying an agent or compound for the treatment of neurodegenerative diseases (such as AD, Huntington's Disease, Parkinson's Disease, other A ⁇ -accumulation related neurodegenerative disorders or diseases characterized by elevated levels of inclusion bodies) that comprise selecting the agent or compound on the basis of having one or more characteristics that make the compound optimized for treating CNS diseases.
- neurodegenerative diseases such as AD, Huntington's Disease, Parkinson's Disease, other A ⁇ -accumulation related neurodegenerative disorders or diseases characterized by elevated levels of inclusion bodies
- the characteristics can comprise: an EC 50 no greater than about 100 nM; histone acetylation activity in vitro; the ability to penetrate the BBB; or a combination thereof.
- the HAT Activator compound is YF2, depicted in FIG. 3 .
- the invention provides methods for identifying or designing agents or compounds for the treatment of neurodegenerative diseases, treatment of conditions associated with, but not limited to, elevated inclusion bodies, (e.g., conditions associated with A ⁇ , alpha-synuclein, lipofuscin, cleaved TARDBP-TDP-43, and/or Tau protein accumulation), where computer aided-medicinal chemistry methods are used to identify and/or design agents or compounds tailored to satisfy one or more of the characteristics mentioned above and/or to suit the strengths of various bioassays described herein.
- elevated inclusion bodies e.g., conditions associated with A ⁇ , alpha-synuclein, lipofuscin, cleaved TARDBP-TDP-43, and/or Tau protein accumulation
- computer aided-medicinal chemistry methods are used to identify and/or design agents or compounds tailored to satisfy one or more of the characteristics mentioned above and/or to suit the strengths of various bioassays described herein.
- the invention generally provides methods for identifying compounds which can be used for treating a neurodegenerative disease in a subject.
- the invention provides methods for identifying compounds which can be used for treating subjects that exhibit abnormally elevated amyloid beta plaques, or elevated Tau protein levels, or elevated alpha-synuclein levels, or inclusions, or lipofuscin level or inclusions, or cleaved TARDBP-TDP-43 level or inclusion, or accumulation of cleaved TARDBP / TDP-43 inclusions.
- the invention provides methods for identifying compounds which can be used for the treatment of Alzheimer's disease, Lewy body dementia, inclusion body myositis, cerebral amyloid angiopathy, Huntington's Disease, Parkinson's Disease, and cancer.
- the methods can comprise the identification of test compounds or agents (e.g., peptides (such as antibodies or fragments thereof), small molecules, nucleic acids (such as siRNA or antisense RNA), or other agents) that can bind to a HAT polypeptide molecule and/or activate or enhance the biological activity of a HAT polypeptide or its expression.
- the compound is a HAT activator (for example a HAT activator compound having Formula (I), (II), (III), (IV), (V), or (VI).
- the HAT Activator compound is YF2, depicted in FIG. 3 .
- modulate refers to a change in the activity or expression of a protein molecule. For example, modulation can cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of a secretase protein molecule.
- a HAT activator compound can be a peptide fragment of a HAT protein that binds to a histone acetyltransferase protein.
- the HAT activator molecule can encompass any portion of at least about 8 consecutive amino acids of SEQ ID NO: 1, 3, or 5.
- the fragment can comprise at least about 10 amino acids, a least about 20 amino acids, at least about 30 amino acids, at least about 40 amino acids, a least about 50 amino acids, at least about 60 amino acids, or at least about 75 amino acids of SEQ ID NO: 1, 3, or 5.
- the peptide fragment is directed to a HAT protein, such as GCN5, GCN5L, HAT1, or PCAF.
- HAT1 The polypeptide sequence of a HAT protein, human HAT1, is depicted in SEQ ID NO: 1.
- the nucleotide sequence of human HAT1 is shown in SEQ ID NO: 2.
- Sequence information related to HAT1 is accessible in public databases by GenBank Accession numbers NM_003642 (for mRNA) and NP 003633 (for protein).
- HAT1 is also known as KAT1 (K(lysine) acetyltransferase 1).
- the protein encoded by this gene is a type B histone acetyltransferase (HAT) that is involved in the rapid acetylation of newly synthesized cytoplasmic histones, which are in turn imported into the nucleus for de novo deposition onto nascent DNA chains.
- Histone acetylation, particularly of histone H4 plays an important role in replication-dependent chromatin assembly.
- SEQ ID NO: 1 is the human wild type amino acid sequence corresponding to the HAT protein, the HAT1 enzyme (residues 1-419):
- SEQ ID NO: 2 is the human wild type nucleotide sequence corresponding to HAT protein, the HAT1 enzyme (residues 1-1682), wherein the underscored ATG denotes the beginning of the open reading frame:
- the polypeptide sequence of a HAT protein, human PCAF is depicted in SEQ ID NO: 3.
- the nucleotide sequence of human PCAF is shown in SEQ ID NO: 4.
- Sequence information related to PCAF is accessible in public databases by GenBank Accession numbers NM_003884 (for mRNA) and NP 003875 (for protein).
- PCAF is also known as KAT2B (K(lysine) acetyltransferase 2B).
- CBP and p300 are large nuclear proteins that bind to many sequence-specific factors involved in cell growth and/or differentiation, including c-jun and the adenoviral oncoprotein E1A. The protein encoded by this gene associates with p300/CBP.
- SEQ ID NO: 3 is the human wild type amino acid sequence corresponding to the HAT protein, the PCAF enzyme (residues 1-832):
- SEQ ID NO: 4 is the human wild type nucleotide sequence corresponding to HAT protein, the PCAF enzyme (residues 1-4824), wherein the underscored ATG denotes the beginning of the open reading frame:
- the polypeptide sequence of a HAT protein, human GCN5L is depicted in SEQ ID NO: 5.
- the nucleotide sequence of human GCN5L is shown in SEQ ID NO: 6.
- Sequence information related to GCN5L is accessible in public databases by GenBank Accession numbers NM_021078 (for mRNA) and NP_066564.2 (for protein).
- GCN5L is also known as KAT2A (K(lysine) acetyltransferase 2A).
- KAT2A, or GCN5 is a histone acetyltransferase (HAT) that functions primarily as a transcriptional activator.
- SEQ ID NO: 5 is the human wild type amino acid sequence corresponding to the HAT protein, the GCN5L enzyme (residues 1-837):
- SEQ ID NO: 6 is the human wild type nucleotide sequence corresponding to HAT protein, the GCN5L enzyme (residues 1-3127), wherein the underscored ATG denotes the beginning of the open reading frame:
- Fragments include all possible amino acid lengths between and including about 8 and 100 about amino acids, for example, lengths between about 10 and 100 amino acids, between about 15 and 100 amino acids, between about 20 and 100 amino acids, between about 35 and 100 amino acids, between about 40 and 100 amino acids, between about 50 and 100 amino acids, between about 70 and 100 amino acids, between about 75 and 100 amino acids, or between about 80 and 100 amino acids.
- These peptide fragments can be obtained commercially or synthesized via liquid phase or solid phase synthesis methods ( Atherton et al., (1989) Solid Phase Peptide Synthesis: a Practical Approach. IRL Press, Oxford, Engl and).
- the HAT peptide fragments can be isolated from a natural source, genetically engineered, or chemically prepared. These methods are well known in the art.
- a HAT Activator compound can also be a protein, such as an antibody (monoclonal, polyclonal, humanized, and the like), or a binding fragment thereof, directed against a histone acetyltransferase enzyme, such as GCN5, GCN5L, PCAF, or HAT1.
- An antibody fragment can be a form of an antibody other than the full-length form and includes portions or components that exist within full-length antibodies, in addition to antibody fragments that have been engineered.
- Antibody fragments can include, but are not limited to, single chain Fv (scFv), diabodies, Fv, and (Fab') 2 , triabodies, Fc, Fab, CDR1, CDR2, CDR3, combinations of CDR's, variable regions, tetrabodies, bifunctional hybrid antibodies, framework regions, constant regions, and the like (see, Maynard et al., (2000) Ann. Rev. Biomed. Eng. 2:339-76 ; Hudson (1998) Curr. Opin. Biotechnol. 9:395-402 ).
- Antibodies can be obtained commercially, custom generated, or synthesized against an antigen of interest according to methods established in the art ( Janeway et al., (2001) Immunobiology, 5th ed., Garland Publishing ).
- RNA encoding a HAT protein can effectively modulate the expression of a HAT gene (e.g., GCN5, GCN5L, PCAF, or HAT1) from which the RNA is transcribed.
- Inhibitors are selected from the group comprising: siRNA, interfering RNA or RNAi; dsRNA; RNA Polymerase III transcribed DNAs; ribozymes; and antisense nucleic acid, which can be RNA, DNA, or artificial nucleic acid.
- Antisense oligonucleotides act to directly block the translation of mRNA by binding to targeted mRNA and preventing protein translation.
- antisense oligonucleotides of at least about 15 bases and complementary to unique regions of the DNA sequence encoding a HAT polypeptide can be synthesized, e.g., by conventional phosphodiester techniques ( Dallas et al., (2006) Med. Sci. Monit. 12(4):RA67-74 ; Kalota et al., (2006) Handb. Exp. Pharmacol. 173:173-96 ; Lutzelburger et al., (2006) Handb. Exp. Pharmacol. 173:243-59 ).
- siRNA comprises a double stranded structure containing from about 15 to about 50 base pairs, for example from about 21 to about 25 base pairs, and having a nucleotide sequence identical or nearly identical to an expressed target gene or RNA within the cell.
- Antisense nucleotide sequences include, but are not limited to: morpholinos, 2'-O-methyl polynucleotides, DNA, RNA and the like.
- RNA polymerase III transcribed DNAs contain promoters, such as the U6 promoter. These DNAs can be transcribed to produce small hairpin RNAs in the cell that can function as siRNA or linear RNAs that can function as antisense RNA.
- the HAT activator compound can contain ribonucleotides, deoxyribonucleotides, synthetic nucleotides, or any suitable combination such that the target RNA and/or gene is inhibited.
- these forms of nucleic acid can be single, double, triple, or quadruple stranded, (see for example Bass (2001) Nature, 411, 428 429 ; Elbashir et al., (2001) Nature, 411, 494 498 ; and PCT Publication Nos. WO 00/44895 , WO 01/36646 , WO 99/32619 , WO 00/01846 , WO 01/29058 , WO 99/07409 , WO 00/44914 ).
- a HAT Activator compound can be a small molecule that binds to a histone acetyltransferase enzyme, such as GCN5, GCN5L, PCAF, or HAT1, and disrupts its function.
- Small molecules are a diverse group of synthetic and natural substances generally having low molecular weights. They can be isolated from natural sources (for example, plants, fungi, microbes and the like), are obtained commercially and/or available as libraries or collections, or synthesized.
- Candidate small molecules that interact with a HAT protein can be identified via in silico screening or high-through-put (HTP) screening of combinatorial libraries.
- Identification and screening antagonists can be further facilitated by determining structural features of the protein, e.g., using X-ray crystallography, neutron diffraction, nuclear magnetic resonance spectrometry, and other techniques for structure determination. These techniques provide for the rational design or identification of antagonists, in addition to protein agonists.
- the invention provides methods for screening and identifying compounds useful for treating a neurodegenerative disease in a subject.
- the invention provides methods for identifying compounds which can be used for treating subjects that exhibit, for example, abnormally elevated amyloid beta plaques, or elevated Tau protein levels, or elevated alpha-synuclein levels, or inclusions, or lipofuscin level or inclusions, or cleaved TARDBP-TDP-43 level or inclusion, or accumulation of cleaved TARDBP / TDP-43 inclusions, or a combination thereof.
- the method comprises selecting a HAT Activator compound that comprises one or both of the following features: (a) the EC 50 of the compound is no more than about 1000 nM; (b) the compound penetrates the blood brain barrier; (c) the compound enhances histone acetylation (for example acetylates histone protein H3 or H4), or a combination thereof.
- the compound for example the HAT Activator, has an EC 50 of at least about 0.1 nM, at least about 1 nM, at least about 5 nM, at least about 10 nM, at least about 25 nM, at least about 50 nM, at least about 100 nM, at least about 200 nM, at least about 300 nM, at least about 400 nM, at least about 500 nM, at least about 600 nM, at least about 700 nM, at least about 800 nM, or at least about 900 nM.
- the HAT Activator compound can have a molecular mass less than about 500 Da in order to penetrate the blood brain barrier.
- the HAT Activator compound can have a polar surface area less than about 90 ⁇ 2 and should have 8 or fewer hydrogen bonds in order to penetrate the blood brain barrier.
- the screening and identifying of the compound can comprise in silico screening, molecular docking, in vivo screening, in vitro screening, or a combination thereof.
- Test compounds such as HAT Activator compounds
- HAT Activator compounds can be screened from large libraries of synthetic or natural compounds (see Wang et al., (2007) Curr Med Chem, 14(2):133-55 ; Mannhold (2006) Curr Top Med Chem, 6 (10):1031-47 ; and Hensen (2006) Curr Med Chem 13(4):361-76 ).
- Numerous means are currently used for random and directed synthesis of saccharide, peptide, and nucleic acid based compounds.
- Synthetic compound libraries are commercially available from Maybridge Chemical Co. (Trevillet, Cornwall, UK), Comgenex (Princeton, N.J.), Brandon Associates (Merrimack, N.H.), and Microsource (New Milford, Conn.).
- a rare chemical library is available from Aldrich (Milwaukee, Wis.).
- libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available from e.g. Pan Laboratories (Bothell, Wash.) or MycoSearch (N.C.), or are readily producible.
- natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means ( Blondelle et al., (1996) Tib Tech 14:60 ).
- Libraries of interest in the invention include peptide libraries, randomized oligonucleotide libraries, synthetic organic combinatorial libraries, and the like.
- Degenerate peptide libraries can be readily prepared in solution, in immobilized form as bacterial flagella peptide display libraries or as phage display libraries.
- Peptide ligands can be selected from combinatorial libraries of peptides containing at least one amino acid.
- Libraries can be synthesized of peptoids and non-peptide synthetic moieties. Such libraries can further be synthesized which contain non-peptide synthetic moieties, which are less subject to enzymatic degradation compared to their naturally-occurring counterparts.
- Libraries are also meant to include for example but are not limited to peptide-on-plasmid libraries, polysome libraries, aptamer libraries, synthetic peptide libraries, synthetic small molecule libraries, neurotransmitter libraries, and chemical libraries.
- the libraries can also comprise cyclic carbon or heterocyclic structure and/or aromatic or polyaromatic structures substituted with one or more of the functional groups described herein.
- a combinatorial library of small organic compounds is a collection of closely related analogs that differ from each other in one or more points of diversity and are synthesized by organic techniques using multi-step processes.
- Combinatorial libraries include a vast number of small organic compounds.
- One type of combinatorial library is prepared by means of parallel synthesis methods to produce a compound array.
- a compound array can be a collection of compounds identifiable by their spatial addresses in Cartesian coordinates and arranged such that each compound has a common molecular core and one or more variable structural diversity elements. The compounds in such a compound array are produced in parallel in separate reaction vessels, with each compound identified and tracked by its spatial address. Examples of parallel synthesis mixtures and parallel synthesis methods are provided in U.S. Ser. No.
- phage display libraries are described in Scott et al., (1990) Science 249:386-390 ; Devlin et al., (1990) Science, 249:404-406 ; Christian, et al., (1992) J. Mol. Biol. 227:711-718 ; Lenstra, (1992) J. Immunol. Meth. 152:149-157 ; Kay et al., (1993) Gene 128:59-65 ; and PCT Publication No. WO 94/18318 .
- In vitro translation-based libraries include but are not limited to those described in PCT Publication No. WO 91/05058 ; and Mattheakis et al., (1994) Proc. Natl. Acad. Sci. USA 91:9022-9026 .
- non-peptide libraries such as a benzodiazepine library (see e.g., Bunin et al., (1994) Proc. Natl. Acad. Sci. USA 91:4708-4712 ), can be screened.
- Peptoid libraries such as that described by Simon et al., (1992) Proc. Natl. Acad. Sci. USA 89:9367-9371 , can also be used.
- Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994), Proc. Natl. Acad. Sci. USA 91:11138-11142 .
- the three dimensional geometric structure of an active site for example that of a HAT polypeptide can be determined by known methods in the art, such as X-ray crystallography, which can determine a complete molecular structure. Solid or liquid phase NMR can be used to determine certain intramolecular distances. Any other experimental method of structure determination can be used to obtain partial or complete geometric structures.
- the geometric structures can be measured with a complexed ligand, natural or artificial, which can increase the accuracy of the active site structure determined.
- a compound that binds to a HAT protein such as GCN5, GCN5L, PCAF, or HAT1
- GCN5L complexed ligand
- 1YGH or 2RC4 for at least 20 amino acid residues for the acetyltransferase active site of the HAT protein (the HAT domain), wherein the coordinates have a root mean square deviation therefrom, with respect to at least 50% of C ⁇ atoms, of not greater than about 2 ⁇ , in a computer readable format; (3) converting the atomic coordinates into electrical signals readable by a computer processor to generate a three dimensional model of the HAT protein; (4) performing a data processing method, wherein electronic test compounds from the library are docked onto the three dimensional model of the HAT protein; and determining which test compound fits into the active site of the three dimensional model of the HAT protein, thereby identifying which compound would bind to a HAT protein.
- the method can further comprise: synthesizing or obtaining the compound determined to dock to the active site of the HAT protein; contacting the HAT protein with the compound under a condition suitable for binding; and determining whether the compound modulates HAT protein expression or mRNA expression, or HAT protein activity using a diagnostic assay.
- Molecular imprinting for instance, can be used for the de novo construction of macromolecular structures such as peptides that bind to a molecule. See, for example, Kenneth J. Shea, Molecular Imprinting of Synthetic Network Polymers: The De Novo synthesis of Macromolecular Binding and Catalytic Sites, TRIP Vol. 2, No. 5, May 1994 ; Mosbach, (1994) Trends in Biochem. Sci., 19(9 ); and Wulff, G., in Polymeric Reagents and Catalysts (Ford, W. T., Ed.) ACS Symposium Series No.
- One method for preparing mimics of a HAT protein involves the steps of: (i) polymerization of functional monomers around a known substrate (the template) that exhibits a desired activity; (ii) removal of the template molecule; and then (iii) polymerization of a second class of monomers in, the void left by the template, to provide a new molecule which exhibits one or more desired properties which are similar to that of the template.
- Other binding molecules such as polysaccharides, nucleosides, drugs, nucleoproteins, lipoproteins, carbohydrates, glycoproteins, steroids, lipids, and other biologically active materials can also be prepared.
- This method is useful for designing various biological mimics that are more stable than their natural counterparts, because they are prepared by the free radical polymerization of functional monomers, resulting in a compound with a nonbiodegradable backbone.
- Other methods for designing such molecules include , e.g., drug design based on structure activity relationships, which require the synthesis and evaluation of a number of compounds and molecular modeling.
- the invention also provides in vivo and in vitro methods for identifying a compound that binds to a HAT protein.
- the method comprises: (a) obtaining a tissue and/or cells that express a HAT protein (such as GCN5, GCN5L, PCAF, or HAT1); (b) contacting the tissue and/or cell with a ligand source for an effective period of time; (c) measuring a secondary messenger response, wherein the response is indicative of a ligand binding to a HAT protein; (d) isolating the ligand from the ligand source; and (e) identifying the structure of the ligand that binds a HAT protein, thereby identifying which compound would bind to a HAT protein.
- a HAT protein such as GCN5, GCN5L, PCAF, or HAT1
- ligand source can be any compound library described herein, or a library of neurotransmitters that can be used to screen for compounds that would act as an agonist of a HAT protein (such as GCN5, GCN5L, PCAF, or HAT1). Screening compound libraries listed herein [also see U.S. Patent Application Publication No. 2005/0009163 ,), , in combination with in vivo animal studies and functional assays can be used to identify HAT Activator compounds that can be used to treat subjects afflicted with abnormal A ⁇ deposits, such as AD or to treat cancer.
- a HAT Activator compound can be a compound that increases the activity and/or expression of a HAT molecule (e.g., GCN5, GCN5L, PCAF, or HAT1) in vivo and/or in vitro.
- HAT Activator compounds can be compounds that exert their effect on the activity of a HAT protein via the expression, via post-translational modifications, or by other means.
- a HAT Activator compound can increase HAT protein or mRNA expression, or acetyltransferase activity by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 99%, or 100%.
- Test compounds or agents which bind to a HAT molecule can be identified by various assays.
- the assay can be a binding assay comprising direct or indirect measurement of the binding of a test compound or a known HAT ligand to the active site of a HAT protein.
- the assay can also be an activity assay comprising direct or indirect measurement of the activity of a HAT molecule.
- the assay can also be an expression assay comprising direct or indirect measurement of the expression of a HAT mRNA or protein.
- the various screening assays can be combined with an in vivo assay comprising measuring the effect of the test compound on cognitive and synaptic function in an animal model for neurodegenerative disorders, such as, but not imited to, AD or Huntington's Disease.
- the diagnostic assay of the screening methods of the invention can also involve monitoring the expression of a HAT molecule.
- inhibitors of the expression of a HAT molecule can be identified via contacting a HAT-positive cell or tissue with a test compound and determining the expression of a HAT protein or HAT mRNA in the cell.
- the protein or mRNA expression level of a HAT molecule in the presence of the test compound is compared to the protein or mRNA expression level of a HAT protein in the absence of the test compound.
- the test compound can then be identified as an inhibitor of expression of a HAT protein (such as GCN5, GCN5L, PCAF, or HAT1) based on this comparison.
- Acivators of the expression of a HAT molecule can also be identified via contacting a HAT-positive cell or tissue with a test compound and determining the expression of a HAT protein or HAT mRNA in the cell.
- the protein or mRNA expression level of a HAT molecule in the presence of the test compound is compared to the protein or mRNA expression level of a HAT protein in the absence of the test compound.
- the test compound can then be identified as an activator of expression of a HAT protein (such as GCN5, GCN5L, PCAF, or HAT1) based on this comparison.
- the compound when expression of HAT protein or mRNA is statistically or significantly more in the presence of the test compound than in its absence, the compound is identified as an activator of the expression of a HAT protein or mRNA.
- the test compound can also be said to be a HAT Activator compound (such as an agonist).
- the expression level of a HAT protein or mRNA in cells can be determined by methods described herein.
- BIA Bimolecular Interaction Analysis
- the invention provides for compounds that bind to a HAT activator protein, such as GCN5, GCN5L, PCAF, or HAT1. These compounds can be identified by the screening methods and assays described herein, and enhance the activity or expression of HAT activator proteins.
- the HAT Activator reference compound, YF2 can be synthesized according to the scheme depicted in FIG. 29 .
- Other analogs of HAT Activator compounds having Formula I can be similarly synthesized. However, only compounds with the formula 6-9 are according to this invention. The rest of the compounds mentioned in those figures are reference compounds.
- the HAT Activator compound, 10 can be synthesized according to the scheme depicted in FIG. 37 .
- the HAT Activator compound, 11, can be synthesized according to the scheme depicted in FIG. 39 .
- the HAT Activator compound, 12 can be synthesized according to the scheme depicted in FIG. 40 .
- the HAT Activator compound, 13, can be synthesized according to the scheme depicted in FIG. 42 .
- the HAT Activator compound, 14 can be synthesized according to the scheme depicted in FIG. 41 .
- the HAT Activator compound, 15, can be synthesized according to the scheme depicted in FIG. 43 .
- the HAT Activator compound, 16 can be synthesized according to the scheme depicted in FIG. 44 .
- the HAT Activator compound, 17, can be synthesized according to the scheme depicted in FIG. 45 .
- the HAT Activator compound, 18, can be synthesized according to the scheme depicted in FIG. 46 .
- the HAT Activator compound, 19, can be synthesized according to the scheme depicted in FIG. 51 .
- the HAT Activator compound, 20 can be synthesized according to the scheme depicted in FIG. 38 .
- the compounds of the invention can be generally synthesized according to the scheme based on the diagram depicted in FIG. 29 .
- a pharmaceutically acceptable salt of a compound of Formula (I) is an acid addition salt, for example a hydrochloride, sulfate, or phosphate salt.
- a pharmaceutically acceptable salt of a compound of Formula (I) is a base addition salt, for example a sodium, potassium, calcium, or ammonium salt.
- the base addition salt is a tetrafluoroboro salt.
- a pharmaceutically acceptable salt of a compound of Formula (II) is an acid addition salt, for example a hydrochloride, sulfate, or phosphate salt.
- a pharmaceutically acceptable salt of a compound of Formula (II) is a base addition salt, for example a sodium, potassium, calcium, or ammonium salt.
- the base addition salt is a tetrafluoroboro salt.
- a pharmaceutically acceptable salt of a compound of Formula (III) is an acid addition salt, for example a hydrochloride, sulfate, or phosphate salt.
- a pharmaceutically acceptable salt of a compound of Formula (III) is a base addition salt, for example a sodium, potassium, calcium, or ammonium salt.
- the base addition salt is a tetrafluoroboro salt.
- a pharmaceutically acceptable salt of a compound of Formula (IV) is an acid addition salt, for example a hydrochloride, sulfate, or phosphate salt.
- a pharmaceutically acceptable salt of a compound of Formula (IV) is a base addition salt, for example a sodium, potassium, calcium, or ammonium salt.
- the base addition salt is a tetrafluoroboro salt.
- a pharmaceutically acceptable salt of a compound of Formula (V) is an acid addition salt, for example a hydrochloride, sulfate, or phosphate salt.
- a pharmaceutically acceptable salt of a compound of Formula (V) is a base addition salt, for example a sodium, potassium, calcium, or ammonium salt.
- the base addition salt is a tetrafluoroboro salt.
- the invention provides the use of the compounds 6-9 in methods for reducing inclusion bodies (e.g., amyloid beta (A ⁇ ) protein deposits, native and phosphorylated Tau proteins, native and phosphorylated alpha-synuclein, lipofuscin, cleaved TARDBP (TDB-43), or a combination thereof) in a subject afflicted with a neurodegenerative disease (e.g., a AD, Huntington's Disease, or Parkinson's Disease) by administering any one of the HAT Activator compounds 6-9.
- a neurodegenerative disease e.g., a AD, Huntington's Disease, or Parkinson's Disease
- the invention also provides the use of the compounds 6-9 in methods for treating a neurodegenerative disease in a subject by administering any one of the HAT Activator compounds 6-9.
- the invention further provides the use of the compounds 6-9 in methods for treating cancer in a subject by administering any one of the HAT Activator compounds 6-9.
- the HAT Activator compounds
- HAT activator compounds selected from the compounds 6-9 are first screened for their ability to satisfy one or more of the following characteristics: an EC 50 no greater than about 100 nM; a histone acetylation activity in vitro; the ability to penetrate the BBB; or a combination thereof.
- the method comprises administering to the subject an effective amount of a composition comprising a HAT Activator compound.
- the subject exhibits abnormally elevated amyloid beta plaques, or elevated Tau protein levels, or accumulations of alpha-synuclein, or accumulations of lipofuscin, or accumulation of cleaved TARDBP (TDB-43) levels, or a combination thereof.
- the A ⁇ protein deposit comprises an A ⁇ 40 isomer, an A ⁇ 42 isomer, or a combination thereof.
- the subject is afflicted with Alzheimer's disease, Lewy body dementia, inclusion body myositis, Huntington's Disease, Parkinson's Disease, or cerebral amyloid angiopathy.
- the subject is afflicted with cancer.
- the dosage administered can be a therapeutically effective amount of the composition sufficient to result in amelioration of symptoms of a neurogenerative disease such as, but not limited to reducing inclusion bodies (e.g., amyloid beta (A ⁇ ) protein deposits, native and phosphorylated Tau proteins, native and phosphorylated alpha-synuclein, lipofuscin, cleaved TARDBP (TDB-43), or a combination thereof), or reducing memory loss in a subject.
- reducing inclusion bodies e.g., amyloid beta (A ⁇ ) protein deposits, native and phosphorylated Tau proteins, native and phosphorylated alpha-synuclein, lipofuscin, cleaved TARDBP (TDB-43), or a combination thereof
- reducing inclusion bodies e.g., amyloid beta (A ⁇ ) protein deposits, native and phosphorylated Tau proteins, native and phosphorylated alpha-synuclein, lipofuscin, cleaved TARDBP (TD
- observing at least, about a 25% reduction, at least about a 30% reduction, at least about a 40% reduction, at least about a 50% reduction, at least about a 60% reduction, at least about a 70% reduction, at least about a 80% reduction, at least about a 85% reduction, at least about a 90% reduction, at least about a 95% reduction, at least about a 97% reduction, at least about a 98% reduction, or a 100% reduction in inclusion bodies or memory loss in a subject is indicative of amelioration of symptoms of a neurogenerative disease (for example, including, but not limited to, AD, Huntington's Disease, Parkinson's Disease).
- This efficacy in reducing inclusion occurrence can be, for example, a meaure of ameliorating symptoms of a neurogenerative disease.
- the therapeutically effective amount is at least about 0.1 mg/kg body weight, at least about 0.25 mg/kg body weight, at least about 0.5 mg/kg body weight, at least about 0.75 mg/kg body weight, at least about 1 mg/kg body weight, at least about 2 mg/kg body weight, at least about 3 mg/kg body weight, at least about 4 mg/kg body weight, at least about 5 mg/kg body weight, at least about 6 mg/kg body weight, at least about 7 mg/kg body weight, at least about 8 mg/kg body weight, at least about 9 mg/kg body weight, at least about 10 mg/kg body weight, at least about 15 mg/kg body weight, at least about 20 mg/kg body weight, at least about 25 mg/kg body weight, at least about 30 mg/kg body weight, at least about 40 mg/kg body weight, at least about 50 mg/kg body weight, at least about 75 mg/kg body weight, at least about 100 mg/kg body weight, at least about 200 mg/kg body weight, at least about 250 mg/kg body weight, at
- a HAT activator compound can be administered to the subject one time (e.g., as a single injection or deposition).
- a HAT activator compound of the invention can be administered once or twice daily to a subject in need thereof for a period of from about 2 to about 28 days, or from about 7 to about 10 days, or from about 7 to about 15 days. It can also be administered once or twice daily to a subject for a period of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 times per year, or a combination thereof.
- the dosage administered can vary depending upon known factors such as the pharmacodynamic characteristics of the active ingredient and its mode and route of administration; time of administration of active ingredient; age, sex, health and weight of the recipient; nature and extent of symptoms; kind of concurrent treatment, frequency of treatment and the effect desired; and rate of excretion.
- Toxicity and therapeutic efficacy of therapeutic compositions of the present invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD 50 (the dose lethal to 50% of the population) and the ED 50 (the dose therapeutically effective in 50% of the population).
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD 50 /ED 50 .
- Therapeutic agents that exhibit large therapeutic indices are useful.
- Therapeutic compositions that exhibit some toxic side effects can be used.
- a therapeutically effective dose of a HAT activator compound can depend upon a number of factors known to those of ordinary skill in the art.
- the dose(s) of a HAT activator compound for example a compound selected from the compounds 6-9, can vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the HAT activator compound to have upon a HAT protein or a protein exhibiting intrinsic HAT activity. These amounts can be readily determined by a skilled artisan.
- HAT activator compounds of the invention can be incorporated into pharmaceutical compositions suitable for administration.
- Such compositions can comprise a HAT activator compound (e.g., a compound of HAT activator compounds selected from the compounds 6-9, and a pharmaceutically acceptable carrier.
- the compositions can be administered alone or in combination with at least one other agent, such as a stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water.
- the compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.
- a pharmaceutically acceptable carrier can comprise any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration.
- the use of such media and agents for pharmaceutically active substances is well known in the art. Any conventional media or agent that is compatible with the active compound can be used. Supplementary active compounds can also be incorporated into the compositions.
- any of the therapeutic applications described herein can be applied to any subject in need of such therapy, including, for example, a mammal such as a dog, a cat, a cow, a horse, a rabbit, a monkey, a pig, a sheep, a goat, or a human.
- a mammal such as a dog, a cat, a cow, a horse, a rabbit, a monkey, a pig, a sheep, a goat, or a human.
- a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor EM TM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
- the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, a pharmaceutically acceptable polyol like glycerol, propylene glycol, liquid polyetheylene glycol, and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, and thimerosal.
- isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the HAT Activator compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated herein, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated herein.
- examples of useful preparation methods are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
- compositions can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or sterotes
- a glidant such as colloidal silicon dioxide
- a sweetening agent such as sucrose or saccharin
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- Example 1 A HAT Activator compound.
- Reference compound YF2 a Histone Acetyltransferase (HAT) Activator of the invention ( FIG. 3 ) , is a good drug candidate to ameliorate memory in neurodegenerative diseases (i.e. Alzheimer's disease and Huntington's disease) and treatment for a variety of cancers.
- neurodegenerative diseases i.e. Alzheimer's disease and Huntington's disease
- the western blot showed that it not only crosses the BBB, but also increases histone 3 acetylation levels of the hippocampus ( FIG. 1 ).
- the title compound ameliorates the contextual fear memory deficit in A ⁇ 42 - infused mice ( FIG. 2 ).
- a ⁇ 42 is a protein that is produced in high amount in AD and is responsible for the impairment of synaptic functions and memory.
- MOM has medium solubility (DMSO 10% in H 2 O). MOM was administered 25mg/kg to WT mice (i.p.). The mice liver and hippocampus were extracted 1hr after treatment. The liver showed a very slight increase of AcH3, indicating that the drug has either very little efficacy OR very little membrane permeability ( FIG. 6 ). The hippocampus had no increase in AcH3 levels, indicating the drug is either ineffective OR does not cross the blood brain barrier (BBB) ( FIG. 6 ). Although MOM failed to increase AcH3 levels in the hippocampus and liver, the experiment was repeated with a new administration (gavage and i.p. 25mg/kg).
- BBB blood brain barrier
- mice fear conditioning treatment of the mice was subsequently carried out to see if the drug is active after induction of learning.
- the mouse cortex was also extracted. Hippocampus, cortex, and liver samples again showed no increase of AcH3 levels, indicating the drug is either ineffective OR does not cross the BBB OR does not cross the cell membrane ( FIG. 7 ).
- a reference compound YF2 ( FIG. 3 ), was synthesized. The preparation of YF2 was without a column and 2 phases were visible: clear and oily. YF2 (50 mg/kg, i.p.) was subsequently administered to mice. Two and four hrs after its administration, the mice were sacrificed and hippocampi were extracted. Interestingly, YF2 was able to cross the BBB, penetrate the cells and increase AcH3 (lane 1 vs. lanes 9, 10) ( FIG. 8 ). Given that the compound was not 100% clean and needed to be further purified/verified, we synthesized more YF2 and purified it. Purity was verified through Nuclear Magnetic Resonance (NMR). Mice were administered with YF2 (i.p.
- Contextual and cued fear conditioning was performed to assess whether the compound is capable of ameliorating amyloid-beta (A ⁇ ) induced memory defect.
- a ⁇ is a peptide which is elevated in Alzheimer's disease.
- the hippocampus plays a key role in contextual memory and in Alzheimer's Disease. This type of cognitive test is much faster than other behavioral tasks that require multiple days of training and testing [Q1, Q2].
- Our conditioning chamber was in a sound-attenuating box. A clear Plexiglas window allowed the experimenter to film the mouse performance with a camera placed on a tripod and connected to the Freezeframe software (MED Ass. Inc.). To provide background white noise (72 dB), a single computer fan was installed in one of the sides of the sound-attenuating chamber.
- the conditioning chamber had a 36-bar insulated shock grid floor. The floor was removable, and after each experimental subject, we cleaned it with 75% ethanol and then with water. Only one animal at a time was present in the experimentation room.
- mice were placed in the conditioning chamber for 2 min before the onset of a discrete tone (CS) (a sound that lasted 30 sec at 2800 Hz and 85 dB).
- CS discrete tone
- US foot shock
- mice were given a foot shock (US) of 0.8 mA for 2 sec through the bars of the floor.
- the mice were left in the conditioning chamber for another 30 sec and were then placed back in their home cages. Freezing behavior, defined as the absence of all movement except for that necessitated by breathing, was scored using the Freezeview software.
- the shock intensity was increased by 0.1 mV to 0.7 mV and then returned to 0 mV in 0.1 mV increments at 30 sec intervals. Threshold to vocalization, flinching, and then jumping was quantified for each animal by averaging the shock intensity at which each animal manifests a behavioral response to the foot shock.
- YF2 was i.p. administered to mice (one group of mice was administered with 20 mg/kg, 2hrs before the electric shock, whereas another group was administered with 5 mg/kg, 30 minutes before the electric shock). YF2 at both doses was capable of dramatically increasing the freezing time demonstrating that the compound rescues the defect in contextual memory.
- the compound alone at the highest concentration (20 mg/kg) did not affect contextual memory ( FIG. 10 ) indicating that the compound per se is not toxic with respect to memory.
- Cued memory was not changed in the different groups indicating that YF2 does not affect amygdala function ( FIG. 11 ).
- no difference was observed among different groups of mice in different sets of experiments in which we assessed sensory threshold in the presence of vehicle, YF2 alone, A ⁇ alone, or YF2 plus A ⁇ ( FIG. 12 ).
- the task is a hybrid of the Morris Water Maze (MWM) and the radial arm land maze. This task is altered in A ⁇ -infused mice.
- the motivation for the animals is the immersion in water.
- the mouse needed to swim in 6 alleys (arms) radiating from a central area until it found a hidden (submerged) platform at the end of one of the arms, based on visual cues placed in the room.
- the goal arm was kept constant for all trials, with a different start arm on successive trials, such that the learning criterion was reached in 2 days.
- the first day of the protocol was a training day.
- Mice were trained to identify the platform location by alternating between a visible and a hidden platform in a goal arm.
- the final 3 trials on day 1 and all 15 trials on day 2 used a hidden escape platform to force mice to use spatial cues to identify the location of the goal arm.
- the mouse was guided gently through the water by placing a hand behind it to direct it towards the platform. The mouse rested on the platform for 15 sec. After completing the trial, the mouse was removed from the pool, gently towel dried and placed back into its cage under a heat lamp. The goal platform location was different for each mouse.
- mice from cohort 1 After all the mice in the first cohort have had a trial to locate a visible platform, the platform was switched from visible to hidden. After each mouse from cohort 1 completed six alternating trials between visible and hidden platforms, the mice was left to rest under a heating source, and mice from the second cohort were tested in the same way. After completing the six alternating trials, mice from cohort 2 returned to their cages to rest.
- mice from the first cohort completed trials 7-12 again using the alternating visible-hidden platform location.
- mice from the second cohort completed trials 7-12.
- all mice had performed 3 hidden platform trials.
- the same procedure was repeated as on day 1 for all 15 trials using only the hidden platform.
- averages for each mouse were calculated using blocks of 3 trials.
- vehicle-treated mice exhibit ⁇ 1 error over three trials near the end of the second day.
- a ⁇ -infused mice failed to learn, making 3-4 errors throughout the training session, with no improvement over trials.
- Treatment with YF2 [(i.p., 5 mg/kg, 30 min prior to the 1 st trial (for the 1 st group of tests) and 30 min prior to the 7 th trial (for the 2 nd group of tests)] rescued the A ⁇ -induced memory impairment.
- TSA histone de-acetylation through trichostatin A
- FC contextual fear conditioning
- CBP functions as a co-activator that facilitates interactions with the basal transcription machinery by working as an acetyltransferase (HAT) that catalyzes acetylation of the histones, causing a loss in chromosomal repression and increase in the transcription of memory associated genes.
- HAT acetyltransferase
- HDACs were found to remove an acetyl group from histones, thus restricting access of the transcriptional machinery to the DNA.
- HDAC inhibitors have been shown to enhance LTP and contextual fear memory, a form of associative memory in which animals must associate a neutral stimulus with an aversive one[A25].
- HDAC inhibitor an HDAC III inhibitor
- RTS Rubinstein-Taybi syndrome
- Nicotinamide an HDAC III inhibitor
- SAHA was found to restore cognition in the triple Tg mouse model of AD via a mechanism involving reduction of Thr231-phosphotau [A26].
- HDAC inhibitors induced sprouting of dendrites, an increased number of synapses, and reinstated learning and access to long-term memories in the CK-p25 Tg mouse model of neuronal loss [A23].
- HDAC inhibitors could affect neuronal function through a variety of mechanisms including epigenetic and non-epigenetic changes [A27]. Whether cognitive deficits following A ⁇ elevation may be induced by epigenetic modification on histone acetylation (via chromatin remodeling) has not been determined.
- WT-PS1 stimulates the transcriptional activity ability of CBP whereas its AD M146L mutant did not produce such an effect [A20] indicating that CBP and its HAT activity in AD may be involved.
- a CBP mutant lacking HAT activity is not capable of responding to WT-PS1 in terms of increased transcription activating ability.
- CBP and its HAT region appear to be essential for enhancing transcription in vitro following PS1 stimulation.
- the inventors find that histone acetylation level of APP/PS1 mice is different than in WT mice, thus identifying AD as a disease of epigenetic etiology.
- AD Alzheimer's disease
- AD is thought to begin as a synaptic disorder that progressively leads to greater neuronal dysfunction, leading to memory loss [A28].
- TSA HDAC inhibitor
- mice 4 month-old mice were divided into 4 groups: APP/PS1 with TSA, APP/PS1 with vehicle, WT with TSA and WT with vehicle. TSA and vehicle control solution were administered i.p. at a concentration of 2 ⁇ g/g body weight. We found a similar shock threshold among the various groups of mice. Then, mice were trained to associate neutral stimuli with an aversive one. They were placed in a novel context (FC box), exposed to a white noise cue paired with a mild foot shock, and injected with TSA 2hrs before training.
- FC box novel context
- the APP and PS1 transgenes could affect neuronal function through different mechanisms [A30, A31], including direct effects by A ⁇ .
- the trafficking and signaling properties of full-length APP and its cleavage products are likely different, which could impact aspects of synaptic function differently.
- a ⁇ per se is responsible for the deficits observed in our studies on Tg mice. Since it has already been described that natural oligomers of human A ⁇ , in the absence of monomers and fibrils, markedly inhibit LTP in vivo [A6], we will apply 200 nM oligomeric A ⁇ 42 concurrently with TSA (1.65 ⁇ M) for 30 minutes to WT slices prior to inducing LTP.
- oligomeric A ⁇ 42 should inhibit LTP and fear memory, and demonstrate that TSA reestablishes normal LTP and contextual fear memory following A ⁇ 42 treatment. TSA alone should not have any effect.
- Controls will be performed using a latent inhibition training paradigm to exclude that changes in CBP HAT activity are due to novel context alone or the electric shock instead of the association between them [A25].
- animals will be pre-exposed to a novel context prior to receiving the electric shock so that the animal will form a spatial memory that blocks the formation of an associative contextual fear memory.
- HDAC activity using a new fluorimetric assay on hippocampi using the experimental paradigm as in the HAT assay. Without being bound by theory, these experiments will establish if CBP and/or HDACs are altered following overexpression of the APP and PS1transgenes.
- HDAC inhibition might rescue the histone 4 acetylation levels defect observed in APP/PS1 mice was also tested. Injection of TSA (2 ⁇ g/g body weight; i.p) 2 hours prior to contextual fear conditioning enhanced H4 acetylation of APP/PS1 mice ( FIG. 22 ). Without being bound by theory, AD is likely to be a disease with an epigenetic motif and HDAC inhibitors can elevate decreased levels of histone 4 in an AD mouse model.
- mice Double Tg mice will be obtained by crossing APP and PS1 animals (genotyped by PCR) [A29] .
- APP proliferative protein
- PS1 proliferative protein
- Oligomeric A ⁇ 42 will be prepared from commercially available synthetic peptides (American Peptides Co), as described [A33,A34] .
- CA1 fEPSPs will be recorded by placing stimulating and the recording electrodes in CA1 stratum radiatum. Following BST assessment, a 15min baseline will be recorded every min at an intensity that evokes a response ⁇ 35% of the maximum evoked response. LTP will be induced using ⁇ -burst stimulation (4 pulses at 100Hz, with the bursts repeated at 5Hz and each tetanus including 3 ten-burst trains separated by 15sec).
- mice For contextual and cued conditioning , mice will be placed in the conditioning chamber for 2min before the onset of a discrete tone (CS) (a 30s, 85dB sound at 2800Hz), as described [A17] . In the last 2s of the CS, mice will be given a 2s, 0.60mA foot shock (US) through the bars of the floor. After the CS/US pairing, mice will be left in the conditioning chamber for 30s and will then be placed back in their home cages. Freezing behavior will be scored using the Freezeview software (MED Ass). To evaluate contextual fear learning, freezing will be measured for 5min in the chamber in which the mice will be trained 24hr after training. To evaluate cued fear learning, 24hr after contextual testing, mice will be placed in a novel context for 2min (pre-CS test), after which they will be exposed to the CS for 3min (CS test), and freezing will be measured.
- pre-CS test pre-CS test
- CS test a novel context for 2min
- CS test a novel
- CBP levels will be measured with western blot using specific CBP antibodies.
- the nuclear fraction will be contained in the pellet obtained from homogenated tissue, centrifuged at 7,700xg for 1min.
- CBP HAT activity will be measured by immunoprecipitation from the lysis of hippocampal extracts using CBP antibodies. After isolation, HAT activity will be assessed using indirect enzyme-linked immunosorbent assay kit to detect acetyl residues according to the manufacturer's instruction (Upstate).
- HDAC activity assay I will use a fluorimetric kit from Biovision (CA), according to the manufacturer instruction.
- Western blot will be performed from snap-frozen in liquid nitrogen hippocampi. Nuclear proteins will be acid-extracted and separated onto a denaturing, 7%-12% acrylamide gel followed by electroblotting onto nitrocellulose. Acetylated histones (H3, H2A and H2B) will be detected using antibodies purchased from Upstate and the Amersham ECF Kit accordingly to the manufacturer protocol.
- AD Alzheimer's disease
- Hippocampal levels of acetylated histone 4 an acetylation important in memory formation [B19] were markedly reduced in an amyloid-depositing animal model after fear conditioning training. Without being bound by theory, changes in histone acetylation play an important role in AD.
- Nicotinamide an HDAC III inhibitor
- Nicotinamide was found to restore cognition in the triple transgenic mouse model of AD via a non-epigenetic mechanism involving reduction of cytosolic Thr231-phosphotau [B49].
- histones H2B and 3 which are also known to play a key role in transcription and memory [B19, B25, B26], abnormally acetylated during memory processes in AD?
- histone acetylation affected following A ⁇ elevation is histone acetylation affected following A ⁇ elevation?
- histone acetyl-transferase CBP play a role in the reduction of histone acetylation in APP/PS1 mice and following A ⁇ elevation?
- the therapies for AD include augmentation of the cholinergic system by usage of acetylcholinesterase inhibitors, or blockage of glutamate neurotoxicity through NMDA antagonists. These agents have a limited efficacy.
- Major efforts are underway to inhibit tangle formation, to combat inflammation and oxidative damage, and to decrease A ⁇ load in the brain either by the use of agents that inhibit ⁇ and ⁇ secretases or increase ⁇ secretase, by the use of drugs that inhibit A ⁇ oligomerization, or by the use of treatments such as immunization with A ⁇ that appear to augment the removal of A ⁇ from the brain.
- HDAC inhibition ameliorates deficits in hippocampal long-term potentiation in APP/PS1 mice.
- TSA HDAC inhibitor
- TSA was capable of rescuing the defect in LTP shown by slices from 3-4 month-old APP/PS1 mice (for a detailed description of the experiments showing the characterization of these mice [B50]).
- the transgenic mice just start showing the synaptic plasticity and memory impairments [B14, B50]).
- basal synaptic transmission (BST) was similar between APP/PS1 and WT mice.
- HDAC inhibition is capable of rescuing the defect in LTP in the APP/PS1 animal model of A ⁇ deposition.
- HDAC inhibition rescues the defect in associative memory by A ⁇ elevation.
- the APP and PS1transgenes could affect neuronal function through different mechanisms [B23, B24], including direct effects by A ⁇ .
- Full-length APP and its cleavage products could differently impact H4 acetylation.
- a ⁇ per se is responsible for the deficit in H4 acetylation observed in our studies on transgenic mice.
- APP/PS1 mice display a reduced endogenous level of histone 4 acetylation in response to a learning task.
- HDAC inhibitors are known to acetylate other molecules besides histones [B49]
- our next goal was to determine whether the effect of TSA on the defect in fear memory of APP/PS1 mice was linked, at least in part, to chromatin changes at the level of histone acetylation.
- Acetylation of H4 was shown to play a key role in transcription and memory [B19].
- CBP CRE-dependent gene expression
- CREB transcription factor CREB
- CBP coactivator-dependent gene expression
- Histone acetylation induces chromosomal changes resulting in loss of chromosomal repression (see FIG. 23 ). This allows successful transcription of the underlying genes needed for synthesis of proteins underlying memory formation.
- APP/PS1 mice display reduced CBP levels.
- Western blot analysis from the hippocampus of 4 month old APP/PS1 mice revealed a significant decrease in CBP levels compared to WT controls ( FIG. 21 ) consistent with the observation that cerebral CBP levels are reduced in mice lacking functional PSs [B15].
- AD is thought to begin as a synaptic disorder that progressively leads to greater neuronal dysfunction, leading to memory loss [B57].
- HDAC inhibition counteracts the impairment of synaptic plasticity and memory following amyloid elevation.
- NaB an additional and structurally dissimilar inhibitor
- APP and PS1 transgenes could affect neuronal function through different mechanisms [B23, B24], we will determine whether A ⁇ per se is responsible for the deficit in histone acetylation observed in our studies on transgenic mice.
- mice were divided into 4 groups: APP/PS1 with NaB, APP/PS1 with vehicle, WT with NaB and WT with vehicle.
- Controls will be also performed using a latent inhibition training paradigm to exclude that HDAC inhibitors act through an effect on novel context alone or the electric shock instead of the association between them [B26].
- animals will be pre-exposed to a novel context prior to receiving the electric shock so that the animal will form a spatial memory that blocks the formation of an associative contextual fear memory [B26].
- TSA rescues the defect of contextual fear memory induced by a preparation containing oligomeric A ⁇ 42 see FIG. 24 .
- TSA rescues the defect in LTP induced by 200 nM oligomeric A ⁇ 42 Since it has already been described that natural oligomers of human A ⁇ , in the absence of monomers and fibrils, markedly inhibit LTP in vivo [B29], we will apply 200 nM oligomeric A ⁇ 42 concurrently with TSA (1.65 ⁇ M) for 30 minutes to WT slices prior to inducing LTP. In interleaved control experiments we will apply oligomeric A ⁇ 42 alone, or TSA alone, or vehicle.
- the method is a hybrid of the Morris water maze and the radial arm land maze.
- the motivation for the animals is the immersion in water.
- the mouse needs to swim in 6 alleys (arms) radiating from a central area until it finds a hidden (submerged) platform at the end of one of the arms.
- the goal arm is kept constant for all trials, with a different start arm on successive trials, such that the learning criterion will be reached in 2 days. The number of incorrect arm entries will be.
- the mice will perform visible platform testing to exclude the possibility that visual, motor and motivational deficits affect the outcome of the experiments.
- mice will be injected with TSA or NaB, 2 hrs prior to performing the task. Vehicle will be used in control experiments. Similar experiments assessing reference memory will be also performed in A ⁇ 42 -infused mice (for these experiments mice will be divided into the following groups: A ⁇ 42 -infused animals + TSA or NaB or vehicle, vehicle-infused animals + TSA or NaB or vehicle).
- HDAC inhibition rescues the deficits of LTP and memory. If not, as an alternative strategy, we will try higher concentrations of the HDAC inhibitors, or a structurally dissimilar HDAC inhibitor such as MS-275 which has also been shown to cross the blood-brain-barrier [B59]. Then, the rodent will undergo electrophysiological and behavioral testing as described herein. Without being bound by theory, oligomeric A ⁇ 42 will inhibits LTP and fear memory, and demonstrate that TSA ameliorates LTP and contextual fear memory following A ⁇ 42 treatment. TSA alone should not have any effect. Findings from young mice or A ⁇ -infused animals should be confirmed in 7 month old transgenics.
- TSA and other HDAC inhibitors represent a new approach to AD treatment that appears to make the synapse more robust and resistant to the effects of A ⁇ .
- HDAC inhibitors it has been criticized that inhibition of HDACs might alter gene expression globally and thus affect memory processes in a nonspecific manner.
- Vecsey et al [B53] showed that TSA does not globally alter gene expression but instead increases the expression of specific genes during memory consolidation. They were able to show that HDAC inhibitors, including TSA, enhance memory and synaptic plasticity mainly by the activation of key genes that are dependent on CREB transcriptional activation [B53].
- TSA may be capable of stopping memory degradation in the presence of A ⁇ accumulation as well as improving brain functions that have already deteriorated, as in the case of the 3-month-old APP/PS1 mouse.
- HDAC inhibitors could be capable of reestablishing neural networks in the AD brain. This indicates that using small molecules to target HDACs in AD patients could facilitate access to long-term memories.
- HDAC inhibitors with minimized side-effects are currently being developed by the pharmaceutical industry. It remains to be seen if these newer inhibitors can readily enter the brain and if they are as effective as TSA.
- HDAC inhibitors could affect neuronal function through a variety of mechanisms including epigenetic and non-epigenetic changes [B19, B60].
- the block of HDACs class I/II may increase the acetylation of non-histone substrates that, in turn, can contribute to the amplification of cellular processes associated with memory.
- Green et al. [B49] showed that inhibition of class III NAD+-dependent HDACs using vitamin B3 restored cognitive deficits in the triple transgenic AD mice, via a mechanism involving the reduction of Thr231-phosphotau in the cytoplasm.
- H4 acetylated histone 4
- Example 6 Findings in Example 6 will be confirmed with the structurally dissimilar NaB.
- NaB 1.2 g/Kg
- controls will be performed on vehicle-infused mice and using a latent inhibition training paradigm, as well as cerebellum.
- oligomeric A ⁇ 42 will affect H4 acetylation levels and oligomeric A ⁇ 42 will produce the same effects on acetylation levels of histones 2B and 3 as in transgenic mice. If not, we will try more prolonged applications of 200 nM oligomeric A ⁇ 42 through Alzet osmotic mini-pumps (1 day, 1 week, 1 month). Problems related to the use of a synthetic preparation containing A ⁇ 42 are greatly alleviated by the use of transgenic animals which produce natural forms of A ⁇ . Studies on H2B and 3 will provide a more complete picture of the type of epigenetic changes occurring at the level of histone acetylation. Finally, research in older mice will help understanding whether HDAC inhibitors might be used at older disease stages. Taken all together, the studies described herein will help establishing epigenetic changes as events occurring following A ⁇ elevation.
- PTMs histone posttranslational modifications
- H3 Lys4 methylation and H3 Lys56 acetylation were found to lead to gene expression.
- histone modifications associated with the inactivation of gene transcription such as H3 Lys27 methylation and H2A Lys119 ubiquitination were found to cause gene silencing.
- PTMs that are modified as a consequence of chronic neuronal exposure to oligomeric forms of A ⁇ 42 in mice. As described (see FIG.
- oligomeric A ⁇ 42 will be infused into dorsal hippocampi of WT mice.
- the hippocampi of A ⁇ 42-infused mice will be removed and compared to those of vehicle-infused mice.
- mice will be sacrificed at 1 month (prior to plaque formation), 2 months (as plaques start to form), 3-4 months (at early stages of plaque formation), and 7 months (at late stages of plaque formation) of age to test when this histone PTMs occur.
- epigenetic changes such as reduced histone acetylation, are likely to play an important role in the A ⁇ -induced damage of synaptic function and memory associated with AD.
- CBP HAT activity is essential for enhancing transcription in vitro following PS1 stimulation. Furthermore, CBP levels in 3-4 month old APP/PS1 mice were found to be lower than in WT mice. In future experiments, we will extend this observation to older transgenic mice and following hippocampal A ⁇ infusion. In addition, we will determine if CBP HAT activity is affected both in young and older APP/PS1 mice as well as after A ⁇ infusion. Finally, we will determine whether stimulation of HAT activity through a recently synthesized HAT agonist, MOM, rescues the deficits in LTP, memory, and histone acetylation following A ⁇ elevation.
- MOM recently synthesized HAT agonist
- a HAT agonist such as N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxybenzamide (CTB or also referred to as compound 6J) [B61] was synthesized.
- CTB N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxybenzamide
- MOM benzamide HAT agonist
- MOM (10 ⁇ M) or vehicle will be applied for 30 min prior to inducing LTP with the ⁇ -burst. WT littermate slices treated with MOM or vehicle will be used as controls.
- MOM re-establishes normal reference memory.
- cannulas will be implanted into the dorsal hippocampi of APP/PS 1 mice and WT littermates to deliver it directly into the hippocampi.
- We will infuse 100 ⁇ g in 1 ⁇ l, slowly over 1 min. The infusion will occur 2 hrs prior to applying the foot shock for fear conditioning.
- we will measure the amount of freezing at 24 hrs to assess contextual fear memory followed by cued fear memory at 48 hrs.
- hippocampi and cerebella will be removed at 1 hr after training for fear conditioning and histone acetylation levels will be measured.
- HAT agonists might ameliorate the defect in LTP, memory and histone acetylation following overexpression of APP and PS1 transgenes.
- the protocol will also be carried out for testing the effect of the HAT activator, CTB.
- HDAC activity through a new fluorimetric assay on hippocampi using the experimental paradigm as in the HAT assay (basal, 1 min, 5 min, 20 min and 1 hour after foot shock).
- HAT assay basic, 1 min, 5 min, 20 min and 1 hour after foot shock.
- HATs are involved in the reduction of histone acetylation. These include GNATs family, MYST family, p300, and ACTR/SRC-1. We will measure levels and activity of these HATs.
- Double transgenic mice will be obtained by crossing APP and PS1 animals (genotyped by PCR) [B20, B21, B50].
- APP and PS1 animals geneotyped by PCR
- For A ⁇ experiments we will use C57B16 mice which will be obtained from a breeding colony. All the mice will be maintained on a 12 h light/dark cycle (with lights on at 6:00 A.M.) in temperature- and humidity-controlled rooms. Food and water will be available ad libitum.
- Electrophysiological studies We will cut 400 ⁇ m hippocampal slices from C57B16 mice and maintain them in an interface chamber at 29° C for 90 min prior to recording, as previously reported [B11].
- the bath solution will consist of 124.0 mM NaCl, 4.4 mM KC1, 1.0 mM Na 2 HPO4, 25.0 mM NaHCO 3 , 2.0 mM CaCl 2 , 2.0 mM MgSO 4 , and 10.0 mM glucose, continuously bubbled with 95% O 2 and 5% CO 2 .
- a stimulating electrode we will use a bipolar tungsten electrode, placed at the level of the Schaeffer collateral fibers.
- Contextual fear conditioning will be assessed as previously described [B14, B21]. Mice will be placed in a conditioning chamber for 2 min before the onset of a tone (CS) (a 30 s, 85 dB sound at 2800 Hz). In the last 2 s of the CS, mice will be given a 2 s, 0.45 mA foot shock (US) through the bars of the floor. Then, the mice will be left in the conditioning chamber for another 30 s. Freezing behavior, defined as the absence of movement except for that needed for breathing, will be scored using the Freezeview software. Contextual fear learning, a type of memory for which hippocampal function is indispensable, will be evaluated 24 hrs after training by measuring freezing for 5 min in the chamber in which the mice will be trained.
- CS tone
- US foot shock
- Cued fear learning a type of memory that depends upon amygdala function, will be evaluated 24 hrs after contextual testing by placing mice in a novel context for 2 min (pre-CS test), after which they will be exposed to the CS for 3min (CS test), and freezing will be measured.
- Sensory perception of the shock will be determined through threshold assessment. Briefly, the electric current (0.1 mA for 1 s) will be increased at 30 s intervals by 0.1 mA to 0.7 mA. Threshold to flinching (first visible response to shock), jumping (first extreme motor response), and screaming (first vocalized distress) will be quantified for each animal by averaging of the shock intensity at which each animal manifest a behavioral response of that type to the foot shock. No difference in the sensory threshold assessment should be observed among different groups of mice in experiments in which fear conditioning is tested if the experimental procedure does not affect the sensory threshold of the animals.
- mice will be checked with the open-field test.
- the open field will be an arena made of white acrylic with internal dimensions of 72 X 72 X 33 cm (An area measuring 36 X 36 cm in the centre of the open field will be defined as the 'central zone').
- Mice will be placed in the center of a standard open field and their behavior monitored for 1 hr and scored for proportion of time in the center compartment vs. periphery, and number of entries into the center compartment. Mice will be returned for a second hour block after 24 hr. No difference in exploratory behavior as demonstrated by a similar percentage of time spent in the center compartment and the number of entries into the center compartment should be observed if the manipulation does not affect exploratory capabilities of the mice.
- the first day of the protocol will be a training day. Mice will be trained to identify the platform location by alternating between a visible and a hidden platform in a goal arm. The final 3 trials on day 1 and all 15 trials on day 2 will use a hidden escape platform to force mice to use spatial cues to identify the location of the goal arm. To avoid learning limitations imposed by exhausting practice and to avoid fatigue that may result from consecutive trials, spaced practice training will be established by running the mice in cohorts of 4 and alternating different cohorts through the 15 training trials over 3 hours testing periods each day. On day 1, a visible platform will be placed in a goal location.
- Mouse 1 of cohort 1 will be gently placed in the pool near the perimeter of the wall of the first start arm (specified on a score sheet) and facing the center of the pool. The number of incorrect arm entries (entries in arms with no platform) will be counted. If the animal enters the incorrect arm it is gently pulled back to the start arm. Each trial will last up to 1 minute. Failure to select an arm after 15 seconds will be counted as an error and the mouse will be returned to the start arm. After 1 minute, if the platform has not been located, the mouse will be guided gently through the water by placing a hand behind it to direct it towards the platform. The mouse will rest on the platform for 15 seconds. After completing the trial, the mouse will be removed from the pool, gently towel dried and placed back into its cage under a heat lamp.
- mice from the first cohort After all the mice in the first cohort have had a trial to locate a visible platform, the platform will be switched from visible to hidden. After each mouse from cohort 1 completes six alternating trials between visible and hidden platforms, the mice will be left to rest under a heating source, and mice from the second cohort will be tested in the same way. After completing the six alternating trials, mice from cohort 2 will return to their cages to rest. Next, mice from the first cohort will complete trials 7-12 again using the alternating visible-hidden platform location. During resting time for mice from the first cohort, mice from the second cohort will complete trials 7-12. At this point, all mice will have to perform 3 hidden platform trials.
- the cannulas will be fixed to the skull with acrylic dental cement (Paladur).
- mice For Morris water maze, mice will be injected 20 min prior to performing each session and the probe trial, whereas for fear conditioning mice will receive a single injection 20 min before the training. Mice will be handled once a day for 3 days before behavioral experiments. During infusion animals will be handled gently to minimize stress. After infusion, the needle will be left in place for another minute to allow diffusion. After behavioural testing, a solution of 4% methylene blue will be infused into the cannulas. Animals will be sacrificed and their brains removed, frozen, and then cut at -20° with cryostat for histological localization of infusion cannulas.
- Oligomeric A ⁇ 42 will be prepared from commercially available synthetic peptides (American Peptides Co), as described [B63, B64]. Briefly, the lyophilized peptide will be resuspended in cold 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Sigma) and aliquoted in polypropylene vials. After 24 hrs the HFIP solution will be allowed to evaporate in a fume hood until a thin film of peptide is formed on the bottom of the vials. Peptide films will be dried under gentle vacuum and stored in sealed vials at -20°C.
- HFIP 1,1,1,3,3,3-hexafluoro-2-propanol
- anhydrous DMSO (Sigma) will be added to obtain a pure monomeric A ⁇ /DMSO solution that will be sonicated for 10 min [B63].
- Oligomeric A ⁇ 42 will be obtained by incubating an aliquot of monomeric A ⁇ /DMSO solution in sterile PBS at 4°C overnight.
- the quality of these A ⁇ preparations will be routinely controlled using Western blot analysis in which A ⁇ samples will be resolved by Tris-Tricine PAGE under non-denaturing/nonreducing conditions, and then transferred on nitrocellulose membrane. Subsequent Western blotting will be carried out after membrane incubation with the anti-human A ⁇ monoclonal antibody 6E10 (Signet Lab). The immunostaining will be revealed by horseradish peroxidase chemi-luminescence.
- Histone acetylation assay Western blot will be performed from snap-frozen in liquid nitrogen hippocampi and cerebella. Tissue will be homogenized in lysis buffer (62.5 mM Tris-HCl pH 6.8, 3% SDS, 1 mM DTT) and incubated at 4 °C for 10 min, then sonicated before centrifugation at 2,000 rpm for 5 min. Whole cell extracts will be electrophoresed on 10-20% gradient PAGE gel (Invitrogen) and then immunoblotted. Antibodies will be used at a 1:1,000 concentration for immunoblotting. All anti-histone antibodies will be purchased from Millipore. ⁇ -III-Tubulin antibody will be purchased from Promega.
- Immunoblot data will be quantified by measuring the band intensity using imaging software (NIH ImageJ). For quantitative immunoblot analysis, equal amounts of proteins will be loaded into each lane. To confirm equal loading, blots will be reprobed with corresponding pan-antibodies or antibodies for house-keeping proteins such as ⁇ -III-Tubulin. For quantification, we always use a signal in the linear range.
- Immunoprecipitated histones will be purified by reverse-phase HPLC in the PSR or by SDS-PAGE, then subjected to enzymatic digestion. Resulting peptides will be analyzed by LC-MS/MS on a Waters Qtof mass spectrometer equipped with a Dionex nanflow LC. The standard digestion protocol using trypsin is not feasible due to the number of Lys residues in the N-terminal portion of histones, resulting in peptides too small to be analyzed.
- CBP levels will be measured with western blot using specific CBP antibodies.
- the nuclear fraction will be contained in the pellet obtained from homogenated tissue, centrifuged at 7,700xg for 1min.
- CBP HAT activity will be measured by immunoprecipitation from the lysis of hippocampal extracts using CBP antibodies. After isolation, HAT activity will be assessed using indirect enzyme-linked immunosorbent assay kit to detect acetyl residues according to the manufacturer's instruction (Upstate).
- HDAC activity will be measured using a fluorimetric kit from Biovision (CA), according to the manufacturer instruction.
- Example 7 Cell Viability Assays for ACHN, U251, NCI-ADR-RES, A549, Hs578T, CCRF-CEM
- Cells and culture medium All cell lines were purchased from the ATCC and were expanded and archived under liquid nitrogen at CDAS as low passage aliquots. Cells were maintained and passaged in recommended and optimal culture medium (ACHN: EMEM, 2 mM L-Gln, 10% FBS; A549: Ham's F12, 10% FBS; U251: RPMI 1640,2 mM L-Gln, 10% FBS; Hs578T: DMEM, 4 mM L-Gln, 1 U/mL of Bovine Insulin, 10% FBS; CCRF-CEM: ATCC RPMI, 2 mM L-Gln, 10% FBS; NCI-ADR-RES: RPMI 1640, 2 mM L-Gln, 10% FBS). All experiments were carried out with cells which had undergone less than 20 passages. Optimal seed densities were determined for all cell lines. All cells were plated at 1500 cells per well except CCRF-CEM which was plated at 6000 cells per
- YF2 was supplied as a 80 mM stock solution in 100% DMSO.
- Vinblastine was purchased from Sigma (Catalogue Number V-1377) and resuspended at 1 X 10 -2 M in 100% DMSO. All dilutions for both drugs were carried out in culture medium containing 0.2% DMSO such that the final solvent concentration never exceeded 0.1 %.
- Drug treatment YF2 tested at 10 concentrations (0.03, 0.1, 0.25, 0.5, 1,2.5, 5, 15,40 and 80 ⁇ M) in triplicate wells. Vinblastine was used as a reference control and tested at 10 concentrations in a half-log series (0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3,1,3, and 10 ⁇ M). Cells were resuspended in medium at the appropriate concentration and 180 ⁇ l (1500 or 6000 cells) was added to each well following which 20 ⁇ l of drug at 10x of the final concentration was added to attain the desired drug concentration in every well. The drug treatment plates were incubated at 37°C for 72 hours, following which cell viability was assayed by the Cell Titer Glo or Cyquant method as described below.
- Cell Titer Glo Assay Following the 72 hour drug treatment period, the assay plates were centrifuged, and 100 ⁇ L of the medium was aspirated and replaced with 100 J.1L of Cell Titer Glo reagent (Promega) according to the manufacturer's recommended protocol. The reagent was mixed with the cells and the luminescence measured using a Perkin Elmer Envision instrument. The average luminescence signal obtained from wells containing untreated cells which had been incubated for the entire length of the assay period was used to set the 100% viability value. The percent proliferation was calculated as (Test signal)/(Avg. plate background signal) x 100. The % viability was graphed against drug concentration to calculate an IC 50 for each drug.
- Cyquant Assay Following the 72 hour drug treatment period the assay plates were centrifuged, the medium discarded, and frozen overnight. The plates were assayed using the Cyquant TM reagent (Invitrogen) according to the manufacturer's recommended protocol. The average fluorescence signal obtained from wells containing untreated cells which had been incubated for the entire length of the assay period was used to set the 100% proliferation value. The percent proliferation was calculated as (Test signal)/(Avg. plate background signal) x 100. The % proliferation was graphed against drug concentration to calculate an IC 50 for each drug.
- Example 8 YF2 Increases Histone Acetylation by HAT Activation, Not HDAC Inhibition
- HDAC inhibition causes an increase in histone acetylation.
- the inventors examined whether histone acetylation occurred via HDAC inhibition.
- Assay Conditions A series of dilution of the test compounds were prepared with 10% DMSO in assay buffer and 5 ⁇ l of the dilution was added to a 50 ⁇ l reaction so that the final concentration of DMSO is 1% in all of reactions. All of the enzymatic reactions were conducted in duplicate at 37°C for 30 minutes except of HDAC11 at room temperature for 3 hours.
- the 50 ⁇ l reaction mixture contains HDAC assay buffer, 5 ⁇ g BSA, an HDAC substrate, an HDAC enzyme and a test compound. After enzymatic reactions, 50 ⁇ l of HDAC Developer was added to each well and the plate was incubated at room temperature for an additional 20 minutes. Fluorescence intensity was measured at an excitation of 360 nm and an emission of 460 nm using a Tecan Infinite M1000 microplate reader.
- HDAC activity assays were performed in duplicates at each concentration.
- the fluorescent intensity data were analyzed using the computer software, Graphpad Prism.
- the fluorescent intensity (F t ) in each data set was defined as 100% activity.
- the fluorescent intensity (F b ) in each data set was defined as 0% activity.
- Compound OA2 has fluorescence at assay condition; therefore the fluorescent intensity at different concentration of OA2 was defined as background (Fb).
- the IC 50 value was determined by the concentration causing a half-maximal percent activity.
- FIG. 52 corresponds to the results shown in Table 4.
- Table 5 HDAC3/NCOR2 Assay - Data for the Effect of OA2 on HDAC3/NCOR2 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat1 Repeat2 Repeat1 Repeat2 Repeat1 Repeat2 No CPD 10787 10452 805 828 101.71 98.29 0.5 10928 9694 813 976 102.35 89.76 1.0 10423 10379 812 818 98.01 97.56 1.5 10752 10231 813 803 101.44 96.12 2.0 10827 10078 809 798 102.25 94.61 2.5 10718 10173 818 803 101.07 95.51 3.0 10587 10073 831 811 99.62 94.38 3.5 10362 10080 854 824 97.14 94.27 4.0 11530 10216 927 898 108.31 94.90
- FIG. 53 corresponds to the results shown in Table 5.
- Table 6 HDAC5FL Assay - Data for the Effect of OA2 on HDAC5FL Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat 1 Repeat2 Repeat 1 Repeat2 No CPD 4492 4892 345 348 95.40 104.60 0.5 4686 4386 355 343 99.80 92.90 1.0 4802 4581 341 347 102.59 97.50 1.5 4835 4874 359 342 103.20 104.10 2.0 5071 4991 344 356 108.64 106.80 2.5 5068 5006 344 108.60 107.17 3.0 4944 4685 342 354 105.76 99.80 3.5 4773 4686 353 101.30 99.30 4.0 4987 4983 449 407 104.91 104.82 4.5 4570 4514 451 398 95.40 94.11 5.3
- FIG. 54 corresponds to the results shown in Table 6.
- Table 7. HDAC7 Assay - Data for the Effect of OA2 on HDAC7 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat 1 Repeat2 Repeat 1 Repeat2 No CPD 7528 7176 382 377 102.52 97.48 0.5 7578 7200 394 383 103.11 97.69 1.0 6756 6763 385 386 91.37 91.47 1.5 7471 7705 389 381 101.63 104.98 2.0 7679 7196 390 380 104.61 97.68 2.5 7071 7068 385 398 95.80 95.75 3.0 7083 7269 384 392 96.02 98.69 3.5 7453 6898 397 462 100.73 92.77 4.0 6801 7568 416 534 90.73 101.73 4.5 7238 7518 554 565 95
- FIG. 55 corresponds to the results shown in Table 7.
- Table 8. HDAC8 Assay - Data for the Effect of OA2 on HDAC8 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat1 Repeat2 Repeat1 Repeat2 Repeat1 Repeat2 No CPD 3492 3483 346 346 100.14 99.86 0.5 3541 3581 339 342 101.88 103.15 1.0 3519 3391 349 342 101.02 96.94 1.5 3539 3456 336 331 102.04 99.40 2.0 3757 3425 338 340 108.80 98.23 2.5 3451 3428 335 341 99.09 98.36 3.0 3398 2995 337 347 97.28 84.45 3.5 3808 3407 346 366 109.88 97.12 4.0 3361 3365 433 374 94.14 94.27 4.5 3045 3090 375 364 85.17 86.60 5.3
- FIG. 56 corresponds to the results shown in Table 8.
- Table 9. HDAC10 Assay - Data for the Effect of OA2 on HDAC10 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat 1 Repeat2 Repeat 1 Repeat2 No CPD 11695 12141 497 507 98.05 101.95 0.5 10894 12032 492 501 91.08 101.05 1.0 12341 12402 497 492 103.77 104.31 1.5 12564 12368 525 500 105.57 103.85 2.0 12262 12573 500 497 103.04 105.77 2.5 12472 12556 500 493 104.90 105.64 3.0 11935 12471 530 521 99.94 104.64 3.5 11622 12684 501 607 96.95 106.25 4.0 11588 12318 597 547 96.50 102.89 4.5
- FIG. 57 corresponds to the results shown in Table 9.
- Table 10 HDAC11 Assay - Data for the Effect of OA2 on HDAC11 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat 1 Repeat2 Repeat 1 Repeat2 No CPD 2840 2860 426 406 99.59 100.41 0.5 2761 2530 411 423 96.30 86.81 1.0 2828 2898 425 415 98.93 101.81 1.5 2765 2851 411 406 96.82 100.35 2.0 2812 2864 408 409 98.75 100.88 2.5 2672 2655 412 408 92.93 92.24 3.0 2829 2806 417 424 98.95 98.01 3.5 2719 2712 427 463 93.43 93.14 4.0 2835 2860 467 524 96.12 97.14 4.5 3289 3064 699 617 108.09 98.
- FIG. 58 corresponds to the results shown in Table 10.
- Table 11 Sirtuin 1 Assay - Data for the Effect of OA2 on Sirtuin 1 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat 1 Repeat2 Repeat 1 Repeat2 No CPD 5823 5974 412 410 97.91 100.64 0.5 5627 5940 414 420 94.26 99.92 1.0 5240 5913 422 413 87.25 99.42 1.5 5980 5273 418 457 100.27 87.48 2.0 5827 5527 411 411 97.98 92.56 2.5 6028 5987 413 416 101.56 100.81 3.0 6454 5681 422 452 108.86 94.87 3.5 5782 5964 422 426 96.93 100.23 4.0 5786 5408 442 441 96.69 89.85 4.5 5976
- FIG. 59 corresponds to the results shown in Table 11.
- Table 12. Sirtuin 2 Assay - Data for the Effect of OA2 on Sirtuin 2 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat1 Repeat2 Repeat2 No CPD 3910 3919 413 419 99.87 100.13 0.5 3835 3981 420 413 97.71 101.89 1,0 3780 3821 406 422 96.21 97.38 1.5 3858 3954 408 410 98.59 101.33 2.0 3712 3912 420 413 94.20 99.91 2.5 3729 3788 409 420 94.74 96.43 3.0 3714 3861 405 409 94.53 98.73 3.5 3806 3856 422 417 96.80 98.23 4.0 3844 3883 425 426 97.71 98.83 4.5 3717 3811 485 480 92.45 95
- FIG. 60 corresponds to the results shown in Table 12.
- Table 13 HDAC6 Assay - Data for the Effect of OA2 on HDAC6 Activity OA2 (Log [nM]) HDAC Activity (Fluorescence count) Background (Fluorescence count) % Activity Repeat 1 Repeat2 Repeat 1 Repeat2 Repeat 1 Repeat2 No CPD 5844 5616 773 733 102.29 97.71 0.5 5998 6074 832 737 104.75 106.28 1.0 6006 5728 747 704 106.10 100.51 1.5 5541 6126 746 706 96.75 108.50 2.0 5733 5981 748 731 100.33 105.31 2.5 5678 5677 763 709 99.30 99.28 3.0 5717 5446 758 716 100.06 94.62 3.5 5575 5616 781 735 96.79 97.61 4.0 5516 5789 828 786 94.62 100.10 4.5 4994 5418 1081 1030 79
- FIG. 74 corresponds to the results shown in Table 13.
- SAHA is an HDAC inhibitor (HDACi). It serves as a positive control for HDACs.
- FIGS. 61-63 show the inhibitory effect of SAHA on the HDACs HDAC1, HDAC3/NCOR2, and HDAC6. SAHA also inhibited HDAC5FL, HDAC7, HDAC8, HDAC10, Sirtuin 1, and Sirtuin 2 (scc Table 1).
- AD Alzheimer's disease
- AP ⁇ -amyloid
- LTP long-term potentiation
- memory is modulated by epigenetics through regulation of gene expression, deregulation of one of the epigenetic mechanisms such as histone (H) acetylation, might lead to memory disruption. Reduction of histone acetylation causes the chromatin structure to close, so that the information contained within the DNA might be less amenable to transcription factors and memory formation [9] .
- HDAC inhibitors The main strategy that is currently used to up-regulate histone acetylation involves HDAC inhibitors.
- the pleiotropic effect of nonspecific HDAC inhibition may hamper their therapeutic potential [10-13] .
- CBP and PCAF hippocampal levels of two HATs, CBP and PCAF, are reduced following A ⁇ elevation.
- HAT activator YF2.
- HDAC inhibitors have been shown to enhance LTP and contextual fear memory, a form of associative memory in which animals must associate a neutral stimulus with an aversive one [P17] . Also, memory and LTP deficits of CBP +/- mice were reversed by HDAC inhibition [P15] .
- HDAC inhibition The potential of inhibiting HDACs to counteract neurodegenerative disorders has been widely explored [14] . For instance, in a set of experiments, Tsai et al.
- HDAC inhibitors induced sprouting of dendrites, increased number of synapses, and reinstated learning and access to long-term memories in the CK-p25 Tg mouse model of neurodegeneration [15,16] .
- HDAC inhibitor TSA ameliorates LTP and contextual fear conditioning (FC) in the double Tg APP(K670M:N671L)/PS1(M146L, line 6.2) (APP/PS1) mouse model of amyloid deposition [17] .
- FC LTP and contextual fear conditioning
- HATs can be divided in two main groups, the nuclear HATs and cytoplasmic HATs [18] .
- Nuclear A-type HATs can be grouped into at least 4 different families based on sequence conservation within the HAT domain: Gcn5 and p300/CBP associated factor (PCAF), MYST (MOZ, Ybf2/ Sas3, Sas2 and Tip60), p300 and CBP (named for the two human paralogs p300 and CBP) and Rtt109. While the Gcn5/PCAF and MYST families have homologs from yeast to man, p300/CBP is metazoan-specific, and Rtt109 is fungal-specific.
- PCAF Gcn5 and p300/CBP associated factor
- MYST MOZ, Ybf2/ Sas3, Sas2 and Tip60
- p300 and CBP named for the two human paralogs p300 and CBP
- Rtt109 is fungal-specific.
- Cytoplasmic B-type HATs such as HAT1 are involved in histone deposition [P22] .
- Marmorstein and Roth 2001, Curr Opin in Genet and Develop., 11:155-161 ) list in Table 1 the HAT families and their transcriptional-related functions, the reference which is incorporated by reference in its entirety.
- HAT families have been described, such as the steroid receptor coactivators, TAF250, ATF-2, and CLOCK, their HAT activities have not been investigated as extensively as the major HAT classes [18] . These 4 families show high sequence similarity within families but poor to no sequence similarity between families. Furthermore, the size of the HAT domain of the different families is different [P22] . Interestingly, HATs are highly conserved in mammals [P22] . Of all these HATs, three were shown to be involved in memory: CBP, p300 [19,20] , and PCAF [21] . Interestingly, both CBP and PCAF levels are reduced by A ⁇ elevation.
- HAT activators are a viable approach to enhance histone acetylation.
- Two scaffolds for HAT activators have been identified. The first one includes CTPB and its derivative CTB [22,23] . The second one includes only one compound, nemorosone [24] .
- CTPB/CTB were found to be insoluble and membrane-impermeable [22,23] .
- CTPB has unfavorable characteristics to be used in CNS diseases (MW equal to 553,29, clogP equal to 12.70) and the clogP of CTB is 5.13.
- Nemorosone has a MW of 502 and a clogP of 8.42.
- AD therapies have limited efficacy. Major efforts are underway to inhibit tangle formation, to combat inflammation and oxidative damage, and to decrease A ⁇ load in the brain [26-28] .
- APP, A ⁇ , and the secretases in normal physiological function [29-31] might present a problem in providing effective and safe approaches to AD therapy.
- Developing agents that interact with A ⁇ targets that lead to neuronal dysfunction is another approach that is currently tested by many laboratories.
- HAT activators represent a new class of compounds that might effectively counteract the disease progression.
- CBP CREB binding protein
- PCAF p300/CBP associated factor
- HATs histone acetyltransferases
- YF2 HAT Activator compound
- YF2 for CBP, PCAF, and GCN5 are 2.75 ⁇ M, 29.04 ⁇ M and 49.31 ⁇ M, respectively. Additionally, YF2 did not interfere with p300 and HDAC activity (HDAC 1, 3, 5, 6, 7, 8, 10, 11, and sirt1-2). YF2 also increases p300 activity as shown in FIG. 72 .
- the amount of YF2 in the brain was higher than that in the plasma with an AUC 0-t ratio of 8.2 and 10.8 for i.p. and i.v. administration, respectively.
- the elimination half-lives of YF2 in the brain and plasma were ⁇ 40 min.
- the T max values in the brain and plasma were similar, indicating that the distribution of YF2 to the brain is also fast. Additionally, in acute toxicity experiments YF2 did not induce any adverse effects up to 300mg/kg (i.p.).
- YF2 increases histone acetylation in mouse hippocampus.
- the compound was i.p. administered at 20 mg/Kg, mice were sacrificed 30 min later, and hippocampi were removed and quickly frozen for WB analysis.
- YF2 increased acetylation of histone lysines that were shown to be involved in memory formation (H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16, and H2B) [P15, P33] .
- mice have been well characterized with respect to AD pathology [P34-38] . They start to show synaptic and memory impairment as early as 3 months of age [P34] .
- Transgenic mice with a double mutation APP (K670M:N671L)/ PS1(M146L) (line 6.2) start to develop large plaques in cortex and hippocampus at the age of 8-10 weeks. They have a reduction in LTP by 3 months of age together with impairment of contextual fear memory and spatial working memory.
- Histone 3 and 4 acetylation is decreased following A ⁇ 42 elevation.
- HATs levels CBP and PCAF
- HDAC inhibition is beneficial against damage of synaptic function and memory following A ⁇ 42 elevation.
- HAT activation is beneficial against memory loss following A ⁇ 42 elevation.
- Example 11 HAT ACTIVATORS WITH HIGH AFFINITY AND GOOD SELECTIVITY FOR CBP AND/OR PCAF AND/OR P300
- HAT Assay kit from Active Motif (USA, CA).
- HAT Assay kit from Active Motif (USA, CA).
- the catalytic domains for the remaining HATs will be produced using New England Biolabs K. lactis Protein Expression Kit.
- the candidate compounds In addition to being potent activators of CBP and/or PCAF (EC 50 ⁇ 100nM), the candidate compounds must also be selective. When assayed against all other HATs, they must show at least a 50 fold greater potency towards CBP and/or PCAF.
- blood samples will be obtained from test animals following a single acute administration (collected at 5min, 15min, 30 min, 1hr, 2hrs, 4hrs, and 24hrs). Blood will be harvested by retro-orbital puncture, collected in heparanized tubes, and plasma obtained by centrifugation. Samples will be analyzed by LC-MS to measure the amounts of the candidate compound and possible metabolites. An indication of brain uptake and BBB penetration will be obtained by tissue extraction of the candidate compound from brain. Briefly, brain homogenates will be centrifuged 11,000rpm for 10 min.
- brain uptake reflects concentration of the blood.
- a peak brain/blood concentration ratio >1 will indicate that brain uptake for our compound is comparable with that of known CNS drugs in clinical use.
- the brain/blood ratio for minaprine, a 6-phenylaminopyridazine CNS drug is >2 [P48] .
- Synaptic dysfunction is a major hallmark of AD [P50] .
- a qualifying aspect of our drug screening protocol will include a measurement of the effect of the newly-synthesized compounds onto synaptic function.
- the APP/PS1 mouse presents an impairment of LTP by the age of 3 months [P34] and therefore permits a relatively fast assessment of synaptic function without waiting a long time for mice aging.
- LTP because it is a type of synaptic plasticity that is thought to underlie learning and memory.
- YF2 rescues the A ⁇ -induced reduction of LTP we will screen the compounds indicated by our MedChem studies to select those that can re-establish normal LTP. The compounds will be applied for 30 min using the same experimental protocol as in FIG. 66A.
- Controls will be performed on slices from APP/PS1 mice treated with vehicle, and WT mice treated with compound or vehicle. If the compounds re-establish normal LTP in APP/PS1 slices, we will conclude that the compounds can rescue impairment of synaptic plasticity in APP/PS1 mice. We will also investigate another important aspect of the disease, the cognitive impairment (see Example 14).
- mice will be obtained by crossing APP(K670M:N671L) with PS1(M146L) (line 6.2) animals.
- the genotype will be identified by PCR on tail samples [P51-P53] .
- Electrophysiology will be performed on males (see description in Gong et al [P54] ).
- Example 14 FURTHER SCREENING OF HAT ACTIVATORS TO EXAMINE IF THEY AMELIORATE COGNITIVE ABNORMALITIES IN APP/PS1 MICE
- treatment with a novel HAT activator indicated by Example 13 can rescue the cognitive deficits in 3 and 6 month old APP/PS1 mice.
- the treatment will be performed with the same timing (i.e. 30min before training for fear conditioning or before the 1 st and 2 nd group of tests for the RAWM).
- Conditions to be tested include: APP/PS1 and WT treated with HAT activators, APP/PS1 and WT treated with vehicle.
- mice After behavioral testing mice will be sacrificed and their blood and brains used for A ⁇ level, Tau protein, TARDBP and TDB levels, and alpha-synuclein measurements.
- we will measure hippocampal acetyl-H4 levels after administration of the compounds 30 min prior to training for fear conditioning and removal of the hippocampi 1hr after the electric shock (APP/PS1 mice have been shown to have a reduction of acetylated H4 after the electric shock [P21] ).
- APP/PS1 mice have been shown to have a reduction of acetylated H4 after the electric shock [P21] ).
- we will screen them with a battery of assays focusing on two areas that have resulted in the withdrawal of many drugs from the market: drug-drug interactions, hERG channel blockage (see Example 12).
- Histone acetylation assay Western blot will be performed from snap-frozen in liquid nitrogen hippocampi. Tissue will be homogenized in RIPA buffer, then sonicated before centrifugation at 10,000 rpm for 5 min. Whole cell extracts will be electrophoresed on 10-20% gradient PAGE gel (Invitrogen) and then immunoblotted. Antibodies will be used at a 1:1,000 concentration for immunoblotting. All anti-histone antibodies will be purchased from Millipore. Immunoblot data will be quantified by measuring the band intensity using imaging software (NIH ImageJ).
- a ⁇ levels will be performed on homogenates of frozen hemi-brains and plasma as previously described [P34] .
- alpha-synuclein levels will be performed on homogenates of frozen hemi-brains using an ⁇ -Synuclein ELISA Kit (Catalog # NS400; Millipore, Billerica, MA) according to manufacturer's instructions.
- TARDBP/TDP-43 levels will be performed on homogenates of frozen hemi-brains using a Human TAR DNA binding protein 43, TARDBP/TDP-43 ELISA Kit (Catalog # E1951h; Wuhan EIAab Science Co, Wuhan, China) according to manufacturer's instructions.
- Determination of total Tau and phosphorylated Tau (Thr 231) levels will be performed on homogenates of frozen hemi-brains and plasma using assay and kits according to manufacturer's instructions available from MesoScale Discovery (Gaithersburg, MD) (see http://www.mesoscale.com/catalogsystemweb/webroot/products/assays/alzheimers.aspx).
- mice will be performed in blind. Results will be expressed as Standard Error Mean (SEM). Level of significance will be set for p ⁇ 0.05. Results will be analyzed with ANOVA with post-hoc correction with drug or genotype as main effect.
- Example 15 FURTHER SCREENING OF HAT ACTIVATORS TO EXAMINE IF THEY AMELIORATE COGNITIVE ABNORMALITIES IN MOUSE MODELS FOR HUNTINGTON'S DISEASE
- Example 13 We will examine whether treatment with a HAT activator compound indicated by Example 13 can rescue the cognitive deficits in a mouse model of Huntington's Disease (e.g., FVB-Tg(YAC128)53Hay/J and FVB/NJ-Tg(YAC72)2511Hay/J mice, available from the Jackson Laboratory, Bar Harbor ME).
- Huntington's Disease e.g., FVB-Tg(YAC128)53Hay/J and FVB/NJ-Tg(YAC72)2511Hay/J mice, available from the Jackson Laboratory, Bar Harbor ME.
- RAWM and contextual FC two types of tests assessing different types of memory (reference ad associative). The treatment will be performed with the same timing (i.e. 30min before training for fear conditioning or before the 1 st and 2 nd group of tests for the RAWM).
- Conditions to be tested include: Huntington's Disease mice and WT treated with HAT activators, Huntington's Disease mice and WT treated with vehicle. After behavioral testing mice will be sacrificed and their blood and brains used for Huntingtin protein level measurement. As a control for effectiveness of HAT activation, we will measure hippocampal acetyl-H4 levels after administration of the compounds 30 min prior to training for fear conditioning and removal of the hippocampi 1hr after the electric shock. Finally, we will screen them with a battery of assays focusing on two areas that have resulted in the withdrawal of many drugs from the market: drug-drug interactions, hERG channel blockage (see Example 12).
- Histone acetylation assay Western blot will be performed from snap-frozen in liquid nitrogen hippocampi. Tissue will be homogenized in RIPA buffer, then sonicated before centrifugation at 10,000 rpm for 5 min. Whole cell extracts will be electrophoresed on 10-20% gradient PAGE gel (Invitrogen) and then immunoblotted. Antibodies will be used at a 1:1,000 concentration for immunoblotting. All anti-histone antibodies will be purchased from Millipore. Immunoblot data will be quantified by measuring the band intensity using imaging software (NIH ImageJ).
- Htt Huntingtin
- mice will be performed in blind. Results will be expressed as Standard Error Mean (SEM). Level of significance will be set for p ⁇ 0.05. Results will be analyzed with ANOVA with post-hoc correction with drug or genotype as main effect.
- Example 16 FURTHER SCREENING OF HAT ACTIVATORS TO EXAMINE IF THEY AMELIORATE MOTOR ACTIVITY ABNORMALITIES IN MOUSE MODELS FOR PARKINSON'S DISEASE
- PD is a degenerative disease with a neuronal death up to 75-95% of the dopamine neurons in the substantia nigra nucleus.
- PD Parkinson's Disease
- mice and WT treated with HAT activators PD mice and WT treated with vehicle.
- mice will be sacrificed and their brains used for aggregated alpha-synuclein protein measurement.
- HAT activation we will measure hippocampal acetyl-H4 levels.
- Histone acetylation assay Western blot will be performed from snap-frozen in liquid nitrogen hippocampi. Tissue will be homogenized in RIPA buffer, then sonicated before centrifugation at 10,000 rpm for 5 min. Whole cell extracts will be electrophoresed on 10-20% gradient PAGE gel (Invitrogen) and then immunoblotted. Antibodies will be used at a 1:1,000 concentration for immunoblotting. All anti-histone antibodies will be purchased from Millipore. Immunoblot data will be quantified by measuring the band intensity using imaging software (NIH ImageJ).
- alpha-synuclein levels will be performed on homogenates of frozen hemi-brains using an ⁇ -Synuclein ELISA Kit (Catalog # NS400; Millipore, Billerica, MA) according to manufacturer's instructions or via standard neuropathological methods (brain tissue histology).
- mice will be performed in blind. Results will be expressed as Standard Error Mean (SEM). Level of significance will be set for p ⁇ 0.05. Results will be analyzed with ANOVA with post-hoc correction with drug or genotype as main effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Emergency Medicine (AREA)
- Epidemiology (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Pyridine Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Enzymes And Modification Thereof (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Claims (12)
- Procédé pour le criblage de composés selon la revendication 1 pour traiter des affections associées à des dépôts accumulés de peptide bêta-amyloïde, le procédé comprenant :a) l'administration d'un composé activateur de HAT selon la revendication 1 à un modèle animal d'accumulation de dépôts de peptide bêta-amyloïde ; etb) la sélection d'un composé activateur de HAT selon la revendication 1 qui peut moduler l'acétylation d'histones après administration du composé activateur de HAT dans un modèle animal d'accumulation de dépôts de peptide bêta-amyloïde.
- Procédé pour l'identification d'un composé activateur d'histone acétyltransférase (HAT) selon la revendication 1 pour traiter des affections associées à des dépôts accumulés de peptide bêta-amyloïde, dans lequel le procédé comprend la sélection d'un composé activateur de HAT selon la revendication 1 présentant une ou plusieurs des caractéristiques suivantes :a. la CE50 du composé est inférieure ou égale à environ 1 000 nM ;b. l'activité d'acétylation d'histones in vitro cible la protéine d'histone H2, H3, et/ou H4 ; etc. le composé passe à travers la barrière hématoencéphalique ; ou une combinaison de celles-ci.
- Procédé selon la revendication 3, dans lequel le composé présente une masse moléculaire inférieure à environ 500 Da, présente une surface polaire inférieure à environ 90 Â2, présente moins de 8 liaisons hydrogène, ou une combinaison de cela, afin de passer à travers la barrière hématoencéphalique.
- Composé selon la revendication 1 destiné à être utilisé en réduction de dépôts de protéine bêta-amyloïde (Aβ) chez un sujet par administration au sujet d'une quantité efficace d'une composition comprenant un composé activateur de HAT selon la revendication 1, ce qui diminue ainsi les dépôts de protéine Aβ chez le sujet.
- Composé selon la revendication 5 destiné à être utilisé, dans lequel le sujet présente des taux anormalement élevés de plaques de bêta-amyloïde oudans lequel le sujet est atteint de maladie d'Alzheimer, de démence à corps de Lewy, de myosite à corps d'inclusion ou d'angiopathie amyloïde cérébrale, oudans lequel le dépôt de protéine Aβ comprend un isomère Aβ40, un isomère Aβ42 ou une combinaison de ceux-ci.
- Composé selon la revendication 1 destiné à être utilisé en traitement de la maladie d'Alzheimer chez un sujet par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant un composé selon la revendication 1, de préférence un composé activateur de HAT selon la revendication 1.
- Composé selon la revendication 1 destiné à être utilisé en augmentation de la fixation mnémonique chez un sujet atteint d'une maladie neurodégénérative par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant le composé selon la revendication 1, oucomposé selon la revendication 1 destiné à être utilisé en augmentation de la plasticité synaptique chez un sujet atteint d'une maladie neurodégénérative par administration à un sujet d'une quantité thérapeutique d'une composition qui augmente l'acétylation d'histones chez le sujet, dans lequel la composition comprend le composé selon la revendication 1, oucomposé selon la revendication 1 destiné à être utilisé en traitement d'une maladie neurodégénérative chez un sujet par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant le composé selon la revendication 1, ce qui traite ainsi la maladie neurodégénérative chez le sujet, oucomposé selon la revendication 1 destiné à être utilisé en diminution de corps d'inclusion chez un sujet atteint d'un trouble neurodégénératif par administration au sujet d'une quantité efficace d'une composition comprenant un composé activateur de HAT selon la revendication 1, ce qui diminue ainsi les corps d'inclusion chez le sujet, oucomposé selon la revendication 1 destiné à être utilisé en traitement d'un cancer chez un sujet par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant le composé selon la revendication 1, oucomposé selon la revendication 1 destiné à être utilisé en amélioration de symptômes de la maladie de Parkinson chez un sujet par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant le composé selon la revendication 1 ; oucomposé selon la revendication 1 destiné à être utilisé en amélioration de symptômes de la maladie de Parkinson par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant un composé activateur de Hat selon la revendication 1, oucomposé selon la revendication 1 destiné à être utilisé en traitement de la maladie de Huntington chez un sujet par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant un composé selon la revendication 1 ; oucomposé selon la revendication 1 destiné à être utilisé en traitement de la maladie de Huntington par administration à un sujet d'une quantité thérapeutique d'une composition pharmaceutique comprenant un composé activateur de HAT selon la revendication 1.
- Composé selon la revendication 1 destiné à être utilisé selon la revendication 5, 7, ou 8,dans lequel la quantité efficace est d'au moins environ 1 mg/kg de poids corporel, d'au moins environ 2 mg/kg de poids corporel, d'au moins environ 3 mg/kg de poids corporel, d'au moins environ 4 mg/kg de poids corporel, d'au moins environ 5 mg/kg de poids corporel, d'au moins environ 6 mg/kg de poids corporel, d'au moins environ 7 mg/kg de poids corporel, d'au moins environ 8 mg/kg de poids corporel, d'au moins environ 9 mg/kg de poids corporel, d'au moins environ 10 mg/kg de poids corporel, d'au moins environ 15 mg/kg de poids corporel, d'au moins environ 20 mg/kg de poids corporel, d'au moins environ 25 mg/kg de poids corporel, d'au moins environ 30 mg/kg de poids corporel, d'au moins environ 40 mg/kg de poids corporel, d'au moins environ 50 mg/kg de poids corporel, d'au moins environ 75 mg/kg de poids corporel, ou d'au moins environ 100 mg/kg de poids corporel, oudans lequel la composition traverse la barrière hématoencéphalique, oudans lequel la maladie neurodégénérative comprend l'adrénoleucodystrophie (ALD), l'alcoolisme, la maladie d'Alexander, la maladie d'Alper, la maladie d'Alzheimer, la sclérose latérale amyotrophique (la maladie de Lou Gehrig), l'ataxie télangiectasie, la maladie de Batten (également appelée maladie de Spielmeyer-Vogt-Sjögren-Batten), l'encéphalopathie spongiforme bovine (ESB), la maladie de Canavan, le syndrome de Cockayne, la dégénérescence cortico-basale, la maladie de Creutzfeldt-Jakob, l'insomnie fatale familiale, la dégénérescence lobaire frontotemporale, la maladie de Huntington, la démence associée au VIH, la maladie de Kennedy, la maladie de Krabbe, la démence à corps de Lewy, la neuroborréliose, la maladie de Machado-Joseph (l'ataxie spinocérébelleuse de type 3), l'atrophie multisystématisée, la sclérose en plaques, la narcolepsie, la maladie de Niemann-Pick, la maladie de Parkinson, la maladie de Pelizaeus-Merzbacher, la maladie de Pick, la sclérose latérale primitive, les maladies à prion, la paralysie supranucléaire progressive, le syndrome de Rett, la démence frontotemporale tau-positive, la démence frontotemporale tau-négative, la maladie de Refsum, la maladie de Sandhoff, la maladie de Schilder, la dégénérescence subaiguë combinée de la moelle épinière consécutive à une anémie pernicieuse, la maladie de Spielmeyer-Vogt-Sjögren-Batten, la maladie de Batten, l'ataxie spinocérébelleuse, l'amyotrophie spinale, la maladie de Steele-Richardson-Olszewski, le tabes dorsalis ou l'encéphalopathie toxique, oudans lequel la plasticité synaptique comprend l'apprentissage, la mémoire ou une combinaison de ceux-ci, oudans lequel la plasticité synaptique comprend la potentialisation à long terme (PLT), oudans lequel le cancer comprend un lymphome B, un cancer du côlon, un cancer des poumons, un cancer du rein, un cancer de la vessie, un lymphome T, un myélome, une leucémie, une leucémie myéloïde chronique, une leucémie myéloïde aiguë, une leucémie lymphoïde chronique, une leucémie lymphoïde aiguë, une néoplasie hématopoïétique, un thymome, un lymphome, un sarcome, un cancer des poumons, un cancer du foie, un lymphome non hodgkinien, un lymphome hodgkinien, un cancer de l'utérus, un carcinome à cellules rénales, un hépatome, un adénocarcinome, un cancer du sein, un cancer pancréatique, un cancer du foie, un cancer de la prostate, un carcinome de la tête et du cou, un carcinome thyroïdien, un sarcome des tissus mous, un cancer des ovaires, un mélanome primaire ou métastatique, un carcinome squameux, un carcinome basocellulaire, un cancer du cerveau, un angiosarcome, un hémangiosarcome, un ostéosarcome, un fibrosarcome, un myxosarcome, un liposarcome, un chondrosarcome, un sarcome ostéogénique, un chordome, un angiosarcome, un endothéliosarcome, un lymphangiosarcome, un lymphangioendothéliosarcome, un synoviome, un cancer des testicules, un cancer du col de l'utérus, un cancer gastrointestinal, un mésothéliome, une tumeur d'Ewing, un léiomyosarcome, un rhabdomyosarcome, un cancer du côlon, un adénocarcinome, un carcinome des glandes sudoripares, un carcinome des glandes sébacées, un carcinome papillaire, une macroglobulinémie de Waldenström, un adénocarcinome papillaire, un cystadénocarcinome, un cancer bronchique, un carcinome de la voie biliaire, un choriocarcinome, un séminome, un carcinome embryonnaire, une tumeur de Wilms, un carcinome pulmonaire, un carcinome épithéliale, un cancer du col de l'utérus, une tumeur des testicules, un gliome, un astrocytome, un médulloblastome, un craniopharyngiome, un épendymome, un pinéalome, un hémangioblastome, un neurinome de l'acoustique, un oligodendrogliome, un méningiome, un rétinoblastome, une leucémie, un mélanome, un neuroblastome, un carcinome pulmonaire à petites cellules, un carcinome de la vessie, un lymphome, un myélome multiple, ou un carcinome médullaire.
- Composé selon la revendication 1 destiné à être utilisé selon la revendication 5, 7, ou 8, dans lequel le composé augmente l'acétylation d'histones.
- Composé selon la revendication 1 destiné à être utilisé selon la revendication 10, dans lequel l'acétylation d'histones comprend l'acétylation des histones H2B, H3, H4, ou d'une combinaison de celles-ci, oudans lequel l'acétylation d'histones comprend l'acétylation de résidus de lysine d'histones H3K4, H3K9, H3K14, H4K5, H4K8, H4K12, H4K16 ou d'une combinaison de ceux-ci, oudans lequel les corps d'inclusion comprennent des peptides bêta-amyloïdes, des protéines Tau natives et phosphorylées, l'alpha-synucléine native et phosphorylée, la lipofuscine, la TARDBP coupée (TDB-43) ou une combinaison de ceux-ci.
- Composé selon la revendication 1 destiné à être utilisé selon la revendication 8, dans lequel les symptômes de la maladie de Parkinson comprennent des tremblements, la bradykinésie, la dyskinésie, la rigidité, l'instabilité posturale, la dystonie, l'akathisie, la démence, la mauvaise coordination motrice globale ou une combinaison de ceux-ci, éventuellement
dans lequel l'instabilité posturale comprend un mauvais équilibre, une mauvaise coordination ou une combinaison de ceux-ci.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28528709P | 2009-12-10 | 2009-12-10 | |
US31776510P | 2010-03-26 | 2010-03-26 | |
US35496410P | 2010-06-15 | 2010-06-15 | |
US35511010P | 2010-06-15 | 2010-06-15 | |
US36300910P | 2010-07-09 | 2010-07-09 | |
PCT/US2010/059925 WO2011072243A1 (fr) | 2009-12-10 | 2010-12-10 | Activateurs d'histone acétyltransférase et utilisation de ceux-ci |
EP10836767.3A EP2509590B1 (fr) | 2009-12-10 | 2010-12-10 | Activateurs d'histone acétyltransférase et utilisation de ceux-ci |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10836767.3A Division EP2509590B1 (fr) | 2009-12-10 | 2010-12-10 | Activateurs d'histone acétyltransférase et utilisation de ceux-ci |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3632901A1 EP3632901A1 (fr) | 2020-04-08 |
EP3632901B1 true EP3632901B1 (fr) | 2022-02-02 |
Family
ID=44145939
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19205945.9A Active EP3632901B1 (fr) | 2009-12-10 | 2010-12-10 | Activateurs de l'histone acétyltransférase et leurs utilisations |
EP10836767.3A Active EP2509590B1 (fr) | 2009-12-10 | 2010-12-10 | Activateurs d'histone acétyltransférase et utilisation de ceux-ci |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10836767.3A Active EP2509590B1 (fr) | 2009-12-10 | 2010-12-10 | Activateurs d'histone acétyltransférase et utilisation de ceux-ci |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP3632901B1 (fr) |
JP (4) | JP6093180B2 (fr) |
ES (2) | ES2764999T3 (fr) |
WO (1) | WO2011072243A1 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10640457B2 (en) | 2009-12-10 | 2020-05-05 | The Trustees Of Columbia University In The City Of New York | Histone acetyltransferase activators and uses thereof |
WO2012088420A1 (fr) * | 2010-12-22 | 2012-06-28 | The Trustees Of Columbia University In The City Of New York | Modulateurs de l'histone acétyltransférase et leurs utilisations |
CA2838844A1 (fr) | 2011-06-10 | 2012-12-13 | The Trustees Of Columbia University In The City Of New York | Utilisations d'activateurs d'histone acetyl tansferase |
JP6175078B2 (ja) | 2012-02-01 | 2017-08-02 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | 新規のシステインプロテアーゼ阻害剤及びその使用 |
JP5991837B2 (ja) * | 2012-03-30 | 2016-09-14 | 日清食品ホールディングス株式会社 | 薬物代謝酵素の活性誘導方法及び薬物代謝酵素の活性が誘導されたヒト培養細胞 |
WO2014145485A2 (fr) | 2013-03-15 | 2014-09-18 | The Trustees Of Columbia University In The City Of New York | Modulateurs de map kinase et utilisations de ceux-ci |
EP3022205B1 (fr) | 2013-07-17 | 2020-02-05 | The Trustees of Columbia University in the City of New York | Nouveaux inhibiteurs de la phosphodiestérase et utilisations de ceux-ci |
CA2944613A1 (fr) | 2014-03-31 | 2015-10-08 | The Trustees Of Columbia University In The City Of New York | Activateurs d'histone acetyltransferase et utilisation desdits activateurs |
WO2018017858A1 (fr) * | 2016-07-20 | 2018-01-25 | The Trustees Of Columbia University In The City Of New York | Activateurs d'histone acétyltransférase et compositions et utilisations associées |
JP2022520945A (ja) * | 2019-02-08 | 2022-04-04 | ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク | ヒストンアセチルトランスフェラーゼ(hat)レギュレーターおよびその使用 |
CA3129246A1 (fr) * | 2019-02-08 | 2020-08-13 | The Trustees Of Columbia University In The City Of New York | Modulateurs d'histone acetyltransferase et compositions et utilisations associees |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE639158A (fr) * | 1961-12-05 | |||
DE1303920C2 (de) * | 1966-01-15 | 1975-06-26 | Farbwerke Hoechst AG vormals Meister Lucius & Biüning, 6000 Frankfurt | Gamma-resorcylsaeure-anilide und verfahren zu ihrer herstellung |
DE1642224B2 (de) * | 1967-04-28 | 1976-04-29 | Basf Ag, 6700 Ludwigshafen | Verwendung von substituierten benzoesaeureaniliden zur bekaempfung von pilzen aus der klasse der basidiomyceten |
US4088770A (en) * | 1971-05-04 | 1978-05-09 | Eli Lilly And Company | Substituted 2-anilinobenzoxazoles used as immunosuppressive agents |
JPS5842812B2 (ja) * | 1976-05-14 | 1983-09-22 | 三共株式会社 | 木材防腐剤 |
JPS5459325A (en) * | 1977-10-14 | 1979-05-12 | Nippon Nohyaku Co Ltd | Agent for controlling attached aquatic life |
US4218438A (en) * | 1979-02-14 | 1980-08-19 | Eli Lilly And Company | Anticoccidial combinations comprising nicarbazin and the polyether antibiotics |
JPS57139053A (en) * | 1981-02-24 | 1982-08-27 | Showa Denko Kk | Preparation of benzanilide compound |
DK0494955T3 (da) | 1989-10-05 | 1998-10-26 | Optein Inc | Cellefri syntese og isolering af hidtil ukendte gener og polypeptider |
US5747334A (en) | 1990-02-15 | 1998-05-05 | The University Of North Carolina At Chapel Hill | Random peptide library |
US5573905A (en) | 1992-03-30 | 1996-11-12 | The Scripps Research Institute | Encoded combinatorial chemical libraries |
US5565325A (en) | 1992-10-30 | 1996-10-15 | Bristol-Myers Squibb Company | Iterative methods for screening peptide libraries |
US5484926A (en) * | 1993-10-07 | 1996-01-16 | Agouron Pharmaceuticals, Inc. | HIV protease inhibitors |
DK41193D0 (da) * | 1993-04-07 | 1993-04-07 | Neurosearch As | Ionkanalaabnere |
CA2180526A1 (fr) | 1994-01-05 | 1995-07-13 | Joseph C. Hogan, Jr. | Methode d'identification de composes chimiques ayant des proprietes selectionnees pour des applications particulieres |
US5712171A (en) | 1995-01-20 | 1998-01-27 | Arqule, Inc. | Method of generating a plurality of chemical compounds in a spatially arranged array |
JP3160882B2 (ja) * | 1996-02-02 | 2001-04-25 | 日本製紙株式会社 | 感熱記録シート |
TW589189B (en) | 1997-08-04 | 2004-06-01 | Scras | Kit containing at least one double-stranded RNA combined with at least one anti-viral agent for therapeutic use in the treatment of a viral disease, notably of viral hepatitis |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
AU3665199A (en) * | 1998-04-29 | 1999-11-16 | Vertex Pharmaceuticals Incorporated | Inhibitors of impdh enzyme |
GB9827152D0 (en) | 1998-07-03 | 1999-02-03 | Devgen Nv | Characterisation of gene function using double stranded rna inhibition |
WO2000044914A1 (fr) | 1999-01-28 | 2000-08-03 | Medical College Of Georgia Research Institute, Inc. | Composition et methode destinees a l'attenuation in vivo et in vitro de l'expression genique utilisant de l'arn double brin |
DE19956568A1 (de) | 1999-01-30 | 2000-08-17 | Roland Kreutzer | Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens |
WO2001029058A1 (fr) | 1999-10-15 | 2001-04-26 | University Of Massachusetts | Genes de voies d'interference d'arn en tant qu'outils d'interference genetique ciblee |
GB9927444D0 (en) | 1999-11-19 | 2000-01-19 | Cancer Res Campaign Tech | Inhibiting gene expression |
JP2001151742A (ja) * | 1999-11-26 | 2001-06-05 | Mitsui Chemicals Inc | アニリド誘導体及びそれを含有する抗不整脈剤 |
US20050227915A1 (en) * | 2001-05-02 | 2005-10-13 | Steffan Joan S | Methods and reagents for treating neurodegenerative diseases and motor deficit disorders |
US7429593B2 (en) * | 2001-09-14 | 2008-09-30 | Shionogi & Co., Ltd. | Utilities of amide compounds |
US8829198B2 (en) | 2007-10-31 | 2014-09-09 | Proteotech Inc | Compounds, compositions and methods for the treatment of beta-amyloid diseases and synucleinopathies |
JPWO2004052871A1 (ja) * | 2002-12-06 | 2006-04-13 | 東レ株式会社 | ベンゾモルホリン誘導体 |
WO2004053140A2 (fr) | 2002-12-12 | 2004-06-24 | Jawaharlal Nehru Centre For Advanced Scientific Research | Modulateurs (inhibiteurs/activateurs) d'histone acetyltransferases |
AU2003288705A1 (en) | 2002-12-12 | 2004-06-30 | Jawaharlal Nehru Centre For Advanced Scientific Research | Modulators (inhibitors/activators) of histone acetyltransferases |
US7884189B2 (en) | 2003-01-10 | 2011-02-08 | The Trustees Of Columbia University In The City Of New York | Carboxyltransferase domain of acetyl-CoA carboxylase |
JP4629657B2 (ja) * | 2003-04-11 | 2011-02-09 | ハイ・ポイント・ファーマスーティカルズ、エルエルシー | 11β−ヒドロキシステロイドデヒドロゲナーゼ1型化活性化合物 |
CA2532313A1 (fr) * | 2003-07-16 | 2005-01-27 | Institute Of Medicinal Molecular Design. Inc. | Medicament pour le traitement de pigmentation de la peau |
US8158828B2 (en) * | 2005-11-28 | 2012-04-17 | Gtx, Inc. | Nuclear receptor binding agents |
US8338638B2 (en) * | 2006-08-25 | 2012-12-25 | Unichem Laboratories Ltd. | Antimicrobial derivatives of anacardic acid and process for preparing the same |
BRPI0815038A2 (pt) * | 2007-08-02 | 2015-03-17 | Hoffmann La Roche | Uso de derivados de benzamida para o tratamento de transtornos do cns |
EP2205225A4 (fr) * | 2007-10-03 | 2013-09-18 | Jncasr Bangalore | Nanosphères de carbone à fluorescence intrinsèque et son procédé de fabrication |
WO2009048152A2 (fr) * | 2007-10-11 | 2009-04-16 | Sumitomo Chemical Company, Limited | Composé imine insaturée et son utilisation pour la protection phytosanitaire |
JP2016081709A (ja) * | 2014-10-16 | 2016-05-16 | Tdk株式会社 | リチウムイオン二次電池用負極活物質、およびそれを含む負極並びにリチウムイオン二次電池 |
-
2010
- 2010-12-10 WO PCT/US2010/059925 patent/WO2011072243A1/fr active Application Filing
- 2010-12-10 JP JP2012543311A patent/JP6093180B2/ja active Active
- 2010-12-10 ES ES10836767T patent/ES2764999T3/es active Active
- 2010-12-10 EP EP19205945.9A patent/EP3632901B1/fr active Active
- 2010-12-10 EP EP10836767.3A patent/EP2509590B1/fr active Active
- 2010-12-10 ES ES19205945T patent/ES2907862T3/es active Active
-
2016
- 2016-04-15 JP JP2016081709A patent/JP2016196459A/ja active Pending
-
2017
- 2017-09-14 JP JP2017176487A patent/JP2018027960A/ja active Pending
-
2019
- 2019-12-09 JP JP2019221825A patent/JP2020059733A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2013513618A (ja) | 2013-04-22 |
EP2509590B1 (fr) | 2019-10-30 |
WO2011072243A1 (fr) | 2011-06-16 |
JP2020059733A (ja) | 2020-04-16 |
JP2016196459A (ja) | 2016-11-24 |
JP2018027960A (ja) | 2018-02-22 |
EP2509590A1 (fr) | 2012-10-17 |
EP2509590A4 (fr) | 2013-05-29 |
EP3632901A1 (fr) | 2020-04-08 |
ES2764999T3 (es) | 2020-06-05 |
JP6093180B2 (ja) | 2017-03-08 |
ES2907862T3 (es) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3632901B1 (fr) | Activateurs de l'histone acétyltransférase et leurs utilisations | |
US11034647B2 (en) | Histone acetyltransferase activators and uses thereof | |
Kumar et al. | Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: current targets and future perspective | |
Selenica et al. | Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition | |
Vashi et al. | Treating Rett syndrome: from mouse models to human therapies | |
JP6629797B2 (ja) | ヒストンアセチル基転移酵素モジュレーターおよびその使用 | |
Habibi et al. | Emerging roles of epigenetic mechanisms in Parkinson’s disease | |
Helquist et al. | Treatment of Niemann–pick type C disease by histone deacetylase inhibitors | |
Cuadrado-Tejedor et al. | Defining the mechanism of action of 4-phenylbutyrate to develop a small-molecule-based therapy for Alzheimer's disease | |
Zhao et al. | Class I histone deacetylase inhibition by tianeptinaline modulates neuroplasticity and enhances memory | |
D’Mello | Histone deacetylases as targets for the treatment of human neurodegenerative diseases | |
Paris et al. | Amelioration of experimental autoimmune encephalomyelitis by anatabine | |
Narayan et al. | Alzheimer’s disease and histone code alterations | |
CN103763921B (zh) | 组蛋白乙酰转移酶激活剂的用途 | |
Pao et al. | Histone deacetylases 1 and 2 in memory function | |
Henry et al. | Quantitative measurement of histone tail acetylation reveals stage-specific regulation and response to environmental changes during Drosophila development | |
Rosenstock | Lysine (K)-deacetylase inhibitors: the real next step to neuropsychiatric and neurodegenerative disorders | |
US20190070174A1 (en) | Methods of treating neurodegenerative diseases | |
Labrie | Histone Deacetylase Inhibitors: A Novel Therapeutic Approach for Cognitive Disorders | |
Basso et al. | Designing Novel Dual Transglutaminase 2/Histone Deacetylase Inhibitors Effective in Halting Neuronal Death |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2509590 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201008 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210803 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2509590 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1466547 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010068042 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2907862 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220426 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1466547 Country of ref document: AT Kind code of ref document: T Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220502 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220503 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010068042 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231227 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231227 Year of fee payment: 14 Ref country code: NL Payment date: 20231226 Year of fee payment: 14 Ref country code: IT Payment date: 20231220 Year of fee payment: 14 Ref country code: FR Payment date: 20231227 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231227 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240102 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 14 Ref country code: CH Payment date: 20240102 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220202 |