EP3591166B1 - Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen - Google Patents

Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen Download PDF

Info

Publication number
EP3591166B1
EP3591166B1 EP18181230.6A EP18181230A EP3591166B1 EP 3591166 B1 EP3591166 B1 EP 3591166B1 EP 18181230 A EP18181230 A EP 18181230A EP 3591166 B1 EP3591166 B1 EP 3591166B1
Authority
EP
European Patent Office
Prior art keywords
concrete
protective
seal
tunnel lining
protective element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18181230.6A
Other languages
English (en)
French (fr)
Other versions
EP3591166A1 (de
Inventor
Jörg Riechers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herrenknecht AG
Original Assignee
Herrenknecht AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK18181230.6T priority Critical patent/DK3591166T3/da
Application filed by Herrenknecht AG filed Critical Herrenknecht AG
Priority to ES18181230T priority patent/ES2880101T3/es
Priority to EP18181230.6A priority patent/EP3591166B1/de
Priority to PCT/EP2019/066630 priority patent/WO2020007631A1/de
Priority to CN201980044529.4A priority patent/CN112368462B/zh
Priority to US17/255,766 priority patent/US11834950B2/en
Priority to CA3105498A priority patent/CA3105498C/en
Publication of EP3591166A1 publication Critical patent/EP3591166A1/de
Application granted granted Critical
Publication of EP3591166B1 publication Critical patent/EP3591166B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • E21D11/385Sealing means positioned between adjacent lining members

Definitions

  • the invention relates to a tunnel lining composed of at least two concrete elements, each with at least one protective element connected to the concrete element, the protective element having a protective section which has a first side facing the concrete element, on which at least one connecting element for establishing a holding connection of the protective section with the Concrete element is provided, the protective section consists of at least one plastic, the protective element having at least one protective element seal connected to the protective section, the connection to the protective section being gas-tight and liquid-tight, with a joint between the at least two concrete elements arranged for tunnel lining is present, wherein the joint is sealed gas-tight and liquid-tight to the tunnel interior by at least one protective element seal with a first sealing effect.
  • Such tunnel construction with concrete elements with protective elements are among other things WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 and from WO 2017/008913 A1 known.
  • Alternative embodiments are from JP 2004132002 , DE 3800630 A1 and US 6328501 B1 known.
  • tunnel lining is used, for example, in connection with tunnel boring machines which comprise a boring head, behind which a cylindrical shield with a shield jacket and a shield tail is arranged.
  • the shield has a smaller outer diameter than the drill head, so that there is no direct contact between the tunnel wall and the shield.
  • the concrete elements are positioned in the shield tail at the edge of the shield. They are pressed against the direction of advance against the adjacent concrete elements attached last and, if necessary, connected to them.
  • Several concrete elements together form a tunnel extension in the form of a ring over the entire circumference of the tunnel. The tunnel expansion will then be gradually built ring by ring.
  • the gap between a ring and tunnel wall is possibly filled with mortar, e.g. B. to prevent subsidence.
  • mortar e.g. B. to prevent subsidence.
  • an injection hole which is designed as a hole connecting the outer surface of the concrete element to the inner surface of the concrete element.
  • This type of tunnel lining is also used, among other things, for the construction of sewer pipes, in particular of larger collecting pipes.
  • increased demands are placed on the tightness of the tunnel cladding.
  • the inside of the tubbing is sealed with a cladding so that no gases rising from the wastewater or possibly even the wastewater itself can get into the concrete via the tunnel walls and damage it (corrosion).
  • the protective layer of protective elements protects the concrete of the concrete elements from the effects of aggressive (eg corrosive) gases or liquids. Together with seals, the protective elements of the concrete elements of the cladding thus seal the tunnel lining or its concrete elements from the inside.
  • the concrete element is prefabricated with the protective element, which means that sealing the cladding as a separate work step in tunnel construction, for example welding the joints between the protective elements / protective layers of adjacent concrete elements, is no longer necessary.
  • a protective layer is provided on the concrete element, which covers an inner surface of the tubbing opposite a convex outer surface.
  • This protective layer exists according to DE 3800630 A1 made of metal.
  • This protective layer exists according to WO 2005/024183 A1 made of fiberglass or polyethylene (PE), according to WO 2011/085734 A1 from polydicyclopentadiene (pDCPD), according to WO 2015/139807 A2 from a mixture of PE and pDCPD, or according to JP2004132002 made of a synthetic resin and in particular made of polyethylene (PE), polypropylene (PP), PVC, polyester or vinyl ester and is firmly anchored in the concrete by means of mechanical anchoring, so that an inseparable connection between the protective layer and the concrete is created.
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinylene
  • the protective layer is designed so that only the inside of the segment element is covered ( JP2004132002 ) or side surfaces of the concrete element are also partially included ( WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 ).
  • JP2004132002 JP2004132002
  • side surfaces of the concrete element are also partially included ( WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 ).
  • a choice of material from the options mentioned above is also given for the protective elements according to the invention.
  • a seal which protrudes beyond the protective layer, is then provided on the side surface.
  • the seal is made of an elastic material so that when the individual tubbings are put together for tunnel lining, the joints between the adjacent concrete elements are closed by the seal.
  • a protective element seal with the function described above is also provided for the protective elements according to the invention.
  • the joints can be closed by welding the individual protective layers provided on the inside of the concrete elements.
  • the concrete element itself is according to US 6328501 B1 and WO 2005/024183 A1 produced by means of formwork.
  • a protective layer is placed on the bottom of the formwork in the formwork.
  • protective layer elements are also placed on the side walls of the formwork.
  • the formwork has a recess into which the seal is inserted. Then the concrete is poured into the formwork in conjunction with the reinforcement. After the concrete has hardened, the segment is used as a tunnel lining.
  • the entire ring may not be covered with a protective layer, but in the sole area the protective layer or the welding of the protective layer is left out in the area that does not dry out.
  • the water that is present can then flow down to the sole on the side of the protective elements facing the concrete elements and then enter the tunnel there and flow off over it. This is possible if this area does not dry out so that the concrete does not corrode due to gases.
  • Such a structure is not possible if the wastewater alone cannot be diluted, or if the wastewater alone is already so aggressive that the concrete is impaired.
  • the protective section has at least one drainage element, for example an opening in the protective element or also a sleeve / an erector plug with openings, possibly with a closure element, through which a liquid from the first side of the protective section can pass through to the opposite side of the protective section facing away from the concrete element.
  • the existing groundwater is instead purposefully discharged through the protective element, thereby preventing pressure-related detachment. In this case, however, the gas tightness of the protective element must be guaranteed despite the drainage element.
  • the solution according to the invention provides that at least one concrete element has at least one concrete element seal arranged separately from the protective element with a second sealing effect, which seals the joint gas- and liquid-tight against the rock, that the protective element seal has a lower sealing effect than the concrete element seal, that the tunnel lining there is drainage from a mountain surrounding the tunnel lining into a tunnel formed by the tunnel lining, that between the protective element seal and the concrete element seal there is water permeability from the concrete element into the joint, and that the drainage through the joint between the at least two concrete elements in the section takes place between the concrete element seal and the protective element seal (30) and through the protective element seal.
  • Another teaching of the invention provides that the concrete element seal is provided on the protective element at a distance from the protective element seal. This enables safe drainage out of the concrete element in a simple manner.
  • Another teaching of the invention provides that the concrete element seal is arranged in a recess in the concrete element. This enables a secure arrangement of the concrete element seal on the concrete element in a simple manner.
  • the protective section has at least one floor section or at least one floor section and at least one wall section. In this way, a sufficient protective element is provided in a simple manner.
  • the connecting element is an anchor structure, a honeycomb structure, a web, a pin and / or a surface element with openings.
  • the connecting element is projections which preferably consist of the same plastic as the bottom section and / or wall section.
  • the protective section is connected in one piece to the at least one connecting element, the one-piece connection preferably being produced by injection molding of the plastic.
  • surface elements such as honeycomb structures or surface sections with through openings, allow the protective element to be anchored particularly well to the concrete element over the entire surface of the protective element.
  • the additional provision of pins or the like, which, if necessary, extend further into the concrete of the concrete element, an increased punctual increase in the holding force can be achieved.
  • the gas-tight and liquid-tight connection between the protective section and the protective element seal is injection molded.
  • the protective element seal with the protective section is produced by injection molding with at least one plastic. This makes it possible to limit the injection molding essentially to the direct connection of the base section to the protective element seal.
  • Injection molding ensures that the protective elements are manufactured with a consistently high quality, so that the protective effect of the protective element in relation to the finished concrete element is particularly high and of consistently high quality, regardless of the manufacturing process of the concrete element.
  • the protective element is shaped in such a way that, in relation to the seal, an enclosure of the sealing material with the injection molding material, which is provided on at least three sides, is provided.
  • Injection molding is understood here to mean all processes that can be subsumed under injection molding, i.e. processes in which one or more thermoplastics / thermosets / elastomers, for example as polymers or monomers, are introduced into a mold alone, individually, one after the other or at the same time (for example Overmolding / overmolding or multi-component injection molding), or in which monomers are processed that only become polymers in the injection mold (e.g. reaction overmolding).
  • the plastic is a polydicyclopentadiene (pDCPD), preferably high temperature resistant, a resin into which glass fibers are preferably introduced, or a thermoplastic, preferably PE.
  • pDCPD polydicyclopentadiene
  • PE thermoplastic
  • Another teaching of the invention provides that the at least two concrete elements are gas-tight with respect to the inside of the tunnel through the provision of the one protective element in each case. In this way, a high corrosion resistance of the tunnel lining is achieved in a simple manner.
  • the tunnel lining is constructed in two parts, with an inner concrete element on which the protective element is arranged, and an outer concrete element on which the concrete element seal is arranged. It is advantageous that between the Concrete elements a joint, preferably concentric, is provided through which a fluid flow can take place. Another teaching of the invention provides that the joint is filled with a liquid-permeable filler material. It has been shown that in this way, in a particularly simple manner, should a two-part tunnel lining be necessary, a simple drainage option is provided, with a high level of corrosion resistance being achieved at the same time in a simple manner.
  • the bottom and / or the wall section essentially consists of a film, a plate or a sheet, which is preferably connected with connecting elements, and / or is formed from a further plastic, for example PE .
  • PE polyethylene
  • Another teaching of the invention provides that additional drainage elements can be provided in the flat sections of the protective elements. This is advantageous if the drainage according to the invention should not be considered sufficient when dimensioning the tunnel lining.
  • Another teaching of the invention provides in this context that a ceiling element is also provided, so that a hollow body is produced, into which the concrete and, if necessary, reinforcement is then introduced during injection molding. This is particularly advantageous if the outside of the concrete element must also be protected against aggressive water in the mountains.
  • a lining ring made of concrete elements 10 (tubbings) ( Fig. 1 ) intended.
  • the concrete element has a convex upper side 11 and an opposite underside 12 (in Fig. 1 covered by a protective element 20).
  • the protective element 20 is arranged on the underside 12 of the concrete element 10.
  • the concrete element 10 has recesses 14 on its wall sections 13, which are not covered by the protective element 20, for example.
  • Concrete element seals 50 are arranged in the recesses 14. These have a sealing surface 51 which, when the individual concrete elements 10 are assembled, either meets another wall section 13 or another sealing surface 51 of a concrete element seal 50.
  • the concrete element seal 50 has chambers 52, for example.
  • the elastic plastic of the concrete element seal 50 is deformed and the chambers 52 are compressed.
  • holding projections can optionally be arranged which engage in the concrete 16 after it has been poured.
  • the protective element 20 has a bottom section 21 and wall sections 22, 23.
  • the connection between seal 30 and protective element 20 is made, for example, by injection molding.
  • a spacing 15 is provided which is not covered by the protective element 20.
  • the concrete element 10 can also have only one protective element 20 with a bottom section 21 (not shown) on which the protective element seal 30 is arranged in a gas- and liquid-tight manner, for example by injection molding.
  • the protective element 20 has a bottom section 21, on the outer sides of which wall sections 22, 23 are arranged essentially at right angles, but also in any other arrangement.
  • the inside of the floor section 21 has holding elements 17, for example pins.
  • webs can also be arranged parallel to an outer wall and webs to the outer wall arranged at right angles thereto.
  • the webs can, for example, be provided with openings through which concrete 16 can pass and thus produce a particularly good holding connection after hardening.
  • the bottom section 21 has a second flat section 28, which can consist of a PE film, for example.
  • This second section can extend over the entire base section 21 or only parts thereof. It is preferably connected to the rest of the protective element 20, in particular the first section 25, which can form part or the entire wall section 22, 23, by means of injection molding.
  • the protective element seal 30 consists of an elastic plastic.
  • the seal 30 has a sealing surface 31 which, when the individual concrete elements are assembled, meets either another concrete surface or another sealing surface 31 of a protective element seal 30.
  • the protective element seal 30 has chambers 32.
  • the elastic plastic of the protective element seal 30 is deformed and the chambers 32 are compressed.
  • the sealing surface 31 holding projections 33 are arranged, which in the plastic Wall sections 22, 23 of the protective element 20 engage. This and the adjacent side walls of the protective element seal 30 combine with the plastic of the protective element during injection molding or are enclosed by this in a gas-tight manner.
  • the protective element seal 30 has a sealing effect that is smaller than the sealing effect of the concrete element seal 50 but is sufficiently great that no gases or liquids can pass from the tunnel interior 100 through the protective element seal 30 and, for example, can get into the joint and then with the Concrete 16 can come into contact.
  • a protective element 20 as shown in Fig. 1 is shown can be made, for example, by injection molding. Alternative embodiments are in Fig. 1 and 3a to 3d shown.
  • Figures 3a to 3d show alternative embodiments of the protective element 20 with a view to the fact that the protective element 20 or the floor section and / or the wall section are at least partially made of a flat section 28 from prefabricated semi-finished products such as webs with projections arranged thereon.
  • Figures 3a to 3d show various exemplary ways of connecting the second section 28 to a first section 25, which was produced, for example, by injection molding. This connection can be made abruptly ( Figures 3a, 3d and 3c ) or the second section 28 is joined by the first section 25 on one side (not shown) or on both sides ( Fig. 3d ) encompassed.
  • the flat element forming the second section 28 is provided not only as a component of the bottom section 21, but also as a wall section 22, 23.
  • the intermittent joining, as in Figures 3a, 3d and 3c shown, has surprisingly proven to be sufficient in particular in the connection of PE as a flat element and pDCPD as an injection-mouldable plastic of the first section 25.
  • PE as a flat element
  • pDCPD as an injection-mouldable plastic of the first section 25.
  • the tunnel lining 300 is formed by assembling the concrete elements 10 to form a ring on the rock 200 and arranging several rings to form an expansion. Joints 40 are present between the concrete elements 10 as a result of the assembly. These joints are closed by the concrete element seals 50 on the mountain side in such a way that their sealing effect is greater than the groundwater pressure, so that no groundwater or other pending liquids can enter the joints 40 behind the concrete element seal 50.
  • the concrete element seal 50 is designed in such a way that its sealing effect prevents the groundwater from penetrating into the joint 40 behind the concrete element seal 50. If there are cracks in the concrete 16 in the event of damage or if the groundwater penetrates through the concrete 16 in the event of damage, this may be present on the underside 12 of the concrete element 10 on the inside of the protective element 20.
  • the sealing effect of the protective element seal is smaller than the existing groundwater pressure / liquid pressure, the water / liquid passes through the protective element seal 30 in the direction of arrow C and reaches the tunnel interior 100.
  • a tunnel lining 300 In a first embodiment of a tunnel lining 300 according to the invention, two concentrically constructed lining rings made of concrete elements 10a, 10b (tubbings) ( Fig. 2 ) intended.
  • the first expansion ring is composed of the concrete elements 10a. On their wall sections 13a, these have a recess 14 in which a concrete element seal 50 is arranged. There are joints 40a between the concrete elements 10a.
  • the second extension ring is then erected from concrete elements 10b, either after the construction of the first extension ring has been completed or only with a time delay, which have protective elements 20 with a protective element seal 30 as described above on their underside 12. There are joints 40b between the concrete elements 10b.
  • a concentric joint 41 is provided after assembly, which is filled with a filling material 42, preferably water-permeable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

  • Die Erfindung betrifft einen Tunnelausbau zusammengesetzt aus wenigstens zwei Betonelementen mit jeweils wenigstens einem mit dem Betonelement verbundenen Schutzelement, wobei das Schutzelement einen Schutzabschnitt aufweist, der eine erste dem Betonelement zugewandte Seite aufweist, an der wenigstens ein Verbindungselement zum Herstellen einer haltenden Verbindung des Schutzabschnitts mit dem Betonelement vorgesehen ist, wobei der Schutzabschnitt aus wenigstens einem Kunststoff besteht, wobei das Schutzelement wenigstens eine Schutzelementdichtung aufweist, die mit dem Schutzabschnitt verbunden ist, wobei die Verbindung mit dem Schutzabschnitt gasdicht und flüssigkeitsdicht ist, wobei zwischen den wenigstens zwei zum Tunnelausbau angeordneten Betonelementen eine Fuge vorhanden ist, wobei die Fuge durch wenigstens eine Schutzelementdichtung mit einer ersten Dichtwirkung gasdicht und flüssigkeitsdicht zum Tunnelinneren abgedichtet ist.
  • Derartiger Tunnelausbau mit Betonelementen mit Schutzelementen sind unter anderem aus WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 und aus WO 2017/008913 A1 bekannt. Alternative Ausführungsformen sind aus der JP 2004132002 , DE 3800630 A1 und US 6328501 B1 bekannt.
  • Die hierbei verwendeten Betonelemente werden in der Fachsprache auch als "Tübbings" bezeichnet und werden z. B. als Bestandteil von Tunnelausbau beim maschinellen Tunnelbau mittels Schildvortrieb eingesetzt. Solcher Tunnelausbau wird beispielsweise in Verbindung mit Tunnelbohrmaschinen eingesetzt, die einen Bohrkopf umfassen, hinter dem ein zylindrischer Schild mit einem Schildmantel und einem Schildschwanz angeordnet ist. Der Schild weist einen kleineren äußeren Durchmesser als der Bohrkopf auf, so dass kein direkter Kontakt zwischen Tunnelwand und Schild besteht. Wenn die Tunnelbohrmaschine ein bestimmtes Stück vorangetrieben ist, werden im Schildschwanz die Betonelemente am Schildrand positioniert. Sie werden entgegen der Vortriebsrichtung an die benachbarten zuletzt angebrachten Betonelemente gepresst und ggf. mit diesen verbunden. Mehrere Betonelemente zusammen bilden einen Tunnelausbau in Form eines Rings über den gesamten Umfang des Tunnels. Sukzessive wird dann der Tunnelausbau Ring an Ring gebildet.
  • Der Spalt zwischen einem Ring und Tunnelwand wird ggf. mit Mörtel gefüllt, z. B. um Setzungen vorzubeugen. Hierfür offenbart beispielsweise WO 2005/0241863 A1 im Zentrum des Betonelements ein Injektionsloch, welches als ein die äußere Oberfläche des Betonelements mit der inneren Oberfläche des Betonelements verbindendes Loch ausgestaltet ist. Nachdem das einzelne Betonelement positioniert und mit seinen benachbarten Betonelementen verbunden ist, wird über das Injektionsloch Mörtel zwischen Betonelement und Tunnelwand injiziert. Damit wird Setzungen im Boden, der die Betonelemente umgibt, vorgebeugt. Zusätzlich kann das Betonelement mittels des Injektionslochs durch Eingreifen eines geeigneten Werkzeugs versetzt und positioniert werden.
  • Dieser Art von Tunnelausbau wird u. a. auch für den Bau von Abwasserleitungen eingesetzt, insbesondere von größeren Sammelleitungen. Dabei werden, wie bei anderen möglichen Einsatzzwecken auch, erhöhte Anforderungen an die Dichtigkeit der Verkleidung des Tunnels gestellt. Die Innenseite der Tübbings wird mit einer Verkleidung abgedichtet, so dass keine aus dem Abwasser aufsteigenden Gase oder ggf. sogar die Abwässer selber über die Tunnelwände in den Beton gelangen können und diesen beschädigen können (Korrosion).
  • Bei einem mit Betonelementen gemäß WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 oder WO 2017/008913 A1 verkleideten Tunneln schützt die Schutzschicht aus Schutzelementen den Beton der Betonelemente vor der Einwirkung von aggressiven (z.B. korrosiven) Gasen oder Flüssigkeiten. Zusammen mit Dichtungen dichten die Schutzelemente der Betonelemente der Verkleidung den Tunnelausbau bzw. dessen Betonelemente somit von innen her ab. Das Betonelement wird vorgefertigt mit dem Schutzelement hergestellt, wodurch ein Abdichten der Verkleidung als separater Arbeitsschritt im Tunnelbau, beispielsweise das Verschweißen der Fugen zwischen den Schutzelementen/Schutzschichten benachbarter Betonelemente, entfällt.
  • Aus DE 3800630A1 , US6328501B1 , WO2005/024183A1 , WO 2011/085734 A1 , WO 2015/139807 A2 , WO 2017/008913 A1 und ebenfalls aus JP2004132002 ist bekannt, dass die für den Tunnelausbau verwendeten Tübbings vorproduziert werden, und dass bereits bei der Produktion der Tübbings eine Verkleidung auf der Innenseite der Tübbings angeordnet wird, durch die im zusammengesetzten Zustand der einzelnen Tübbings zu Ringen eine Abdichtung der Tunnelwand gegen Wasser, Abwässer und Gase erfolgt.
  • Dabei ist auf dem Betonelement eine Schutzschicht vorgesehen, welche eine einer konvexen äußeren Oberfläche gegenüberliegende innere Oberfläche des Tübbings abdeckt. Diese Schutzschicht besteht gemäß DE 3800630 A1 aus Metall. Diese Schutzschicht besteht gemäß WO 2005/024183 A1 aus Glasfaserkunststoff oder Polyethylen (PE), gemäß WO 2011/085734 A1 aus Polydicyclopentadiene (pDCPD), gemäß WO 2015/139807 A2 aus einer Mischung aus PE und pDCPD, bzw. gemäß JP2004132002 aus einem synthetischen Harz und hierbei insbesondere aus Polyethylen (PE), Polypropylen (PP), PVC, Polyester oder Vinylester und wird mittels mechanischer Verankerung fest im Beton verankert, so dass eine untrennbare Verbindung der Schutzschicht mit dem Beton entsteht. Die Schutzschicht ist dabei so ausgelegt, dass nur die Innenseite des Tübbingelementes abgedeckt wird ( JP2004132002 ) oder auch Seitenflächen des Betonelements teilweise ebenfalls miteingeschlossen werden ( WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 ). Eine Materialwahl aus den zuvor genannten Möglichkeiten ist auch für die erfindungsgemäßen Schutzelemente gegeben.
  • Gemäß WO 2005/024183 A1 , WO 2011/085734 A1 , WO 2015/139807 A2 und WO 2017/008913 A1 wird anschließend an der Seitenfläche eine Dichtung, die über der Schutzschicht hinaussteht, vorgesehen. Die Dichtung ist aus einem elastischen Material hergestellt, so dass bei Zusammensetzen der einzelnen Tübbings zum Tunnelausbau die Fugen zwischen den benachbarten Betonelementen durch die Dichtung verschlossen werden. Eine derartige Schutzelementdichtung mit der zuvor beschriebenen Funktion ist auch für die erfindungsgemäßen Schutzelemente vorgesehen. Alternativ kann das Verschließen der Fugen durch ein Verschweißen der einzelnen auf der Innenseite der Betonelemente vorgesehenen Schutzschichten erfolgen.
  • Das Betonelement selbst wird gemäß US 6328501 B1 und WO 2005/024183 A1 mittels einer Schalung hergestellt. In die Schalung wird eine Schutzschicht auf den Schalungsboden aufgelegt. Des Weiteren werden, sofern vorgesehen, an die Seitenwände der Schalung ebenfalls Schutzschichtelemente gestellt. Des Weiteren weist die Schalung, sofern vorgesehen, eine Aussparung auf, in die die Dichtung eingesetzt wird. Anschließend wird in Verbindung mit Bewehrung der Beton in die Schalung eingebracht. Nach Aushärten des Betons wird der Tübbing als Tunnelausbau eingesetzt.
  • In der Praxis hat sich ergeben, dass im Übergang zwischen Schutzschicht und Dichtung gemäß WO 2005/024183 A1 immer dann Undichtigkeiten auftreten können, wenn die hinreichende Sorgfalt bei der Herstellung des Betonelements beim Einsetzen der Dichtung in die Schalung nicht aufgewendet wurde und/oder beim Anordnen der Dichtung in Bezug auf die Schutzschicht. Hiergegen schlägt WO 2011/085734 A1 vor, dass das Schutzelement aus einem spritzgussfähigen Kunststoff hergestellt wird und dass eine einstückige gasdichte Verbindung zwischen Dichtung und Schutzelement bereitgestellt wird, indem die Dichtung beim Herstellen des Schutzelements durch Umspritzen mit diesem verbunden wird. In WO 2015/139807 A2 wird ein Teil des PDCPD des Schutzelements durch wenigstens ein flächiges PE-Element ersetzt. Dieses ist auch für die erfindungsgemäßen Betonelemente bzw. deren Schutzelemente vorgesehen.
  • Steht beispielsweise im Bereich des Tunnels Grundwasser an, besteht die Gefahr, dass dieses unter Druck steht oder sich ein entsprechender Druck gemäß der Teufe des Tunnels ergibt. Liegen Risse im Beton vor bzw. dringt das Grundwasser durch den Beton hindurch, steht dieses an der Innenseite der Schutzschicht/der Schutzelemente an, so dass diese/dieses druckbeaufschlagt ist und entsprechend dimensioniert werden muss, um einem Versagen der Schutzschicht entgegenzuwirken. Dieses trat insbesondere bei Tunneln mit Tübbings gemäß WO 2005/024183 A1 auf, bei dem sich die Verankerungen des Schutzelements aus dem Beton lösten. Hier gegen sah WO 2011/085734 A1 eine andere Dimensionierung der Anker vor. Dieses ist sicher, führt aber ggf. zu einem erhöhten Aufwand bei der Herstellung der Schutzelemente bzw. der fertigen Betonelemente.
  • Werden die Schutzelemente miteinander verschweißt, was meistens händisch geschieht, muss auf eine entsprechende Güte der Schweißnähte geachtet werden. Auch hier kann es aber zu Ablösungen kommen.
  • Bei einer zweischaligen Bauweise, bei der auf die Tübbings eine Innenschale vor Ort aufgebracht wird, oder auch bei verschweißten Schutzelementen wird ggf. nicht der gesamte Ring mit einer Schutzschicht verkleidet, sondern im Sohlenbereich wird die Schutzschicht bzw. das Verschweißen der Schutzschicht in dem Bereich ausgespart, der nicht trockenfällt. Das anstehende Wasser kann dann an der den Betonelementen zugewandten Seite der Schutzelemente zur Sohle hinabfließen und dort dann in den Tunnel eintreten und über diesen abfließen. Dieses ist möglich, wenn dieser Bereich nicht trockenfällt, so dass keine Korrosion des Betons durch Gase entsteht. Ein solcher Aufbau ist nicht möglich, wenn die Abwässer für sich genommen nicht verdünnt werden dürfen, oder wenn die Abwässer für sich genommen bereits so aggressiv sind, dass der Beton beeinträchtigt wird.
  • Eine alternative Lösung bei Druckwasser sieht WO 2017/008913 A1 vor. Dabei weist der Schutzabschnitt wenigstens ein Drainageelement, beispielsweise eine Öffnung im Schutzelement oder auch eine Hülse/ein Erektordübel mit Öffnungen, ggf. mit Verschlusselement, auf, durch das eine Flüssigkeit von der ersten Seite des Schutzabschnitts hin zur gegenüberliegenden dem Betonelement abgewandten Seite des Schutzabschnitts hindurchtreten kann. Statt die Verankerung des Schutzelements gegenüber dem Betonelement zu verstärken wird stattdessen gezielt das anstehende Grundwasser durch das Schutzelement abgeführt und dadurch das druckbedingte Ablösen verhindert. Hierbei muss allerdings die Gasdichtigkeit des Schutzelements trotz des Drainageelements gewährleistet sein.
  • Erfindungsgemäß wird eine alternative Möglichkeit des Entwässerns der Betonelemente vorgeschlagen. Dabei sieht die erfindungsgemäße Lösung vor, dass wenigstens ein Betonelement wenigstens eine separat vom Schutzelement angeordnete Betonelementdichtung mit einer zweiten Dichtwirkung aufweist, die die Fuge gas- und flüssigkeitsdicht gegenüber dem Gebirge abdichtet, dass die Schutzelementdichtung eine geringere Dichtwirkung als die Betonelementdichtung aufweist, dass der Tunnelausbau eine Entwässerung aus einem den Tunnelausbau umgebenden Gebirge in einen vom Tunnelausbau gebildeten Tunnel hinein gegeben ist, dass zwischen der Schutzelementdichtung und der Betonelementdichtung eine Wasserdurchlässigkeit aus dem Betonelement in die Fuge hinein besteht, und dass die Entwässerung durch die Fuge zwischen den wenigstens zwei Betonelementen im Abschnitt zwischen der Betonelementdichtung und der Schutzelementdichtung (30) und durch die Schutzelementdichtung hindurch erfolgt.
  • Überraschenderweise hat sich gezeigt, dass hierdurch eine hinreichende Entwässerungsmöglichkeit als Schutz gegen das Abreißen von Schutzelementen von den Betonelementen bereitgestellt werden kann. Gleichzeitig ist es hierdurch möglich, einen hinreichenden Korrosionsschutz bereitzustellen, falls Öffnungen in den Schutzelementen nicht möglich sind.
  • Eine weitere Lehre der Erfindung sieht vor, dass die Betonelementdichtung beabstandet von der Schutzelementdichtung am Schutzelement vorgesehen ist. Hierdurch wird auf einfache Weise eine sichere Entwässerung aus den Betonelement heraus ermöglicht.
  • Eine weitere Lehre der Erfindung sieht vor, dass die Betonelementdichtung in einer Vertiefung in dem Betonelement angeordnet ist. Hierdurch wird auf einfache Weise eine sichere Anordnung der Betonelementdichtung am Betonelement ermöglicht.
  • Eine weitere Lehre der Erfindung sieht vor, dass der Schutzabschnitt wenigstens einen Bodenabschnitt aufweist oder wenigstens einen Bodenabschnitt und wenigstens einen Wandabschnitt aufweist. Hierdurch wird auf einfache Weise ein hinreichendes Schutzelement bereitgestellt.
  • Eine weitere Lehre der Erfindung sieht vor, dass es sich bei dem Verbindungselement um eine Ankerstruktur, eine Wabenstruktur, einen Steg, einen Stift und/oder ein Flächenelement mit Öffnungen handelt. Eine weitere Lehre der Erfindung sieht vor, dass es sich bei dem Verbindungselement um Vorsprünge handelt, die bevorzugt aus dem gleichen Kunststoff bestehen wie der Bodenabschnitt und/oder Wandabschnitt. Weiterhin ist vorteilhaft, dass der Schutzabschnitt einstückig mit dem wenigstens einen Verbindungselement verbunden ist, wobei bevorzugt die einstückige Verbindung durch Spritzgießen des Kunststoffs hergestellt ist. Insbesondere Flächenelemente, wie Wabenstrukturen oder Flächenabschnitte mit durchgehenden Öffnungen, erlauben eine besonders gute Verankerung des Schutzelements mit dem Betonelement über die gesamte Fläche des Schutzelements hinweg. Das zusätzliche Vorsehen von Stiften oder dgl., die ggf. weiter in den Beton des Betonelements hineinreichen, kann eine erhöhte punktuelle Haltekrafterhöhung erreicht werden.
  • Eine weitere Lehre der Erfindung sieht vor, dass das die gasdichte und flüssigkeitsdichte Verbindung zwischen dem Schutzabschnitt und der Schutzelementdichtung spritzgegossen ist. Eine weitere Lehre der Erfindung sieht vor, dass die Schutzelementdichtung mit dem Schutzabschnitt durch Spritzgießen mit wenigstens einem Kunststoff hergestellt ist. Hierdurch wird es möglich das Spritzgießen im Wesentlichen auf das direkte Verbinden des Bodenabschnitts mit der Schutzelementdichtung zu beschränken. Durch das Verbinden der Dichtung und der Verbindungselemente mit dem Schutzabschnitt wird auf besonders einfache Weise eine flüssigkeitsdichte und gasdichte Verbindung hergestellt. Durch das Spritzgießen kann gewährleistet werden, dass die Schutzelemente mit gleichbleibend hoher Qualität hergestellt werden, so dass in Bezug auf das fertige Betonelement die Schutzwirkung des Schutzelements besonders hoch und von gleichbleibend hoher Qualität, unabhängig vom Herstellungsprozess des Betonelements, ist. Das Schutzelement ist dabei so ausgeformt, dass, bezogen auf die Dichtung, eine zumindest auf drei Seiten vorgesehene Umschließung des Dichtungsmaterials mit dem Spritzgussmaterial vorgesehen ist.
  • Unter Spritzgießen werden hier sämtliche Verfahren verstanden die sich unter das Spritzgießen subsummieren lassen, also Verfahren, bei denen direkt ein oder mehrere Thermoplaste/Duroplaste/Elastomere beispielsweise als Polymere oder auch Monomere in eine Form alleine, einzeln, nacheinander oder gleichzeitig eingebracht werden, (beispielweise Overmolding/Überspritzen oder Mehrkomponentenspritzgießen), oder bei denen Monomere verarbeitet werden, die erst in der Spritzgussform zu Polymeren werden (beispielsweise reaction overmolding).
  • Eine weitere Lehre der Erfindung sieht vor, dass es sich bei dem Kunststoff um ein Polydicyclopentadiene (pDCPD), bevorzugt hoch temperaturfest, ein Harz, in das bevorzugt Glasfasern eingebracht werden, oder um einem Thermoplast, bevorzugt PE, handelt. Mit diesem Kunststoff lässt sich eine hohe Produktgeschwindigkeit aufgrund der schnellen Verarbeitungseigenschaften erreichen. Gleichzeitig ist eine besonders hohe Widerstandsfähigkeit im Einsatz gegeben.
  • Eine weitere Lehre der Erfindung sieht vor, dass die wenigstens zwei Betonelemente durch das Vorsehen des jeweils einen Schutzelements gasdicht gegenüber dem Tunnelinneren sind. Hierdurch wird auf einfache Weise eine hohe Korrosionsfestigkeit des Tunnelausbaus erreicht.
  • Eine weitere Lehre der Erfindung sieht vor, dass der Tunnelausbau zweiteilig aufgebaut ist, mit einem inneren Betonelement, an dem das Schutzelement angeordnet ist, und einem äußeren Betonelement, an dem die Betonelementdichtung angeordnet ist. Dabei ist vorteilhaft, dass zwischen den Betonelementen eine Fuge, bevorzugt konzentrisch, vorgesehen ist, durch die ein für Flüssigkeitsfluss erfolgen kann. Eine weitere Lehre der Erfindung sieht dabei vor, dass die Fuge mit einem flüssigkeitsdurchlässigen Füllmaterial gefüllt ist. Es hat sich gezeigt, dass hierdurch auf besonders einfache Weise, sollte ein zweiteiliger Tunnelausbau notwendig sein, eine einfache Entwässerungsmöglichkeit bereitgestellt wird, wobei gleichzeitig auf einfache Weise eine hohe Korrosionsbeständigkeit erreicht wird.
  • Eine weitere Lehre der Erfindung sieht vor, dass beispielsweise der Boden- und/der Wandabschnitt im Wesentlichen aus einer Folie, einer Platte oder einer Bahn besteht, die bevorzugt mit Verbindungselementen verbunden ist, und/oder aus einem weiteren Kunststoff, beispielsweise PE, gebildet ist. Hierbei handelt es sich um besonders kostengünstige Kunststoffe. Bauteile aus diesen, wie beispielsweise Platten, Bahnen oder Folien lassen sich dezentral vor Ort direkt herstellen, so dass erheblicher Transportaufwand und ggf. auch Lageraufwand der fertigen Produkte entfällt.
  • Zusätzlich sieht eine weitere Lehre der Erfindung vor, dass zusätzliche Entwässerungselemente in den flächigen Abschnitten der Schutzelemente vorgesehen sein können. Dieses ist vorteilhaft, wenn die erfindungsgemäße Entwässerung bei der Dimensionierung des Tunnelausbaus für nicht ausreichend erachtet werden sollte.
  • Eine weitere Lehre der Erfindung sieht in diesem Zusammenhang vor, dass des Weiteren auch ein Deckenelement vorgesehen ist, so dass ein Hohlkörper erzeugt wird, in den dann anschließend der Beton und ggf. bereits beim Spritzgießen Bewehrung eingebracht wird. Dieses ist insbesondere vorteilhaft, wenn das Betonelement auch auf seinen Außenseiten gegen aggressive Wässer im Gebirge geschützt werden muss.
  • Nachfolgend wird die Erfindung an Hand von Zeichnungen näher erläutert.
  • Dabei zeigen:
  • Fig. 1
    eine geschnittene Darstellung einer ersten Ausführungsform eines erfindungsgemäßen Tunnelausbaus mit Betonelementen mit Schutzelement,
    Fig. 2
    eine geschnittene Darstellung einer zweiten Ausführungsform eines erfindungsgemäßen Tunnelausbaus mit Betonelementen mit Schutzelement, und
    Fig.3a - 3d
    Prinzipskizzen in Schnittansichten alternativer Ausführungsformen des Schutzelements,
  • Bei einer ersten Ausführungsform eines erfindungsgemäßen Tunnelausbaus 300 wird ein Ausbauring aus Betonelementen 10 (Tübbings) (Fig. 1) vorgesehen. Das Betonelement weist eine konvexe Oberseite 11 auf und eine dazu gegenüberliegend angeordnete Unterseite 12 (in Fig. 1 verdeckt durch ein Schutzelement 20). An der Unterseite 12 des Betonelements 10 ist das Schutzelement 20 angeordnet.
  • Das Betonelement 10 weist an seinen beispielsweise nicht mit dem Schutzelement 20 abgedeckten Wandabschnitten 13 Vertiefungen 14 auf. In den Vertiefungen 14 sind Betonelementdichtungen 50 angeordnet. Diese weisen eine Dichtfläche 51 auf, die beim Zusammensetzen der einzelnen Betonelemente 10 entweder auf einen anderen Wandabschnitt 13 oder eine andere Dichtfläche 51 einer Betonelementdichtung 50 trifft. Im Inneren weist die Betonelementdichtung 50 beispielsweise Kammern 52 auf. Beim Zusammensetzen der Betonelemente 10 wird der elastische Kunststoff der Betonelementdichtung 50 verformt und die Kammern 52 werden zusammengedrückt. Gegenüberliegend zur Dichtfläche 51 können optional Haltevorsprünge (nicht dargestellt) angeordnet sein, die in den Beton 16 nach dessen Gießen eingreifen.
  • Das Schutzelement 20 weist in dieser Ausführungsform einen Bodenabschnitt 21 und Wandabschnitte 22, 23 auf. An diesen Wandabschnitten 22, 23 ist ein Aufnahmebereich 29 vorgesehen, in dem eine Schutzelementdichtung 30 angeordnet ist. Die Verbindung zwischen Dichtung 30 und Schutzelement 20 erfolgt beispielsweise durch Spritzgießen.
  • Zwischen Schutzelementdichtung 30 und Betonelement Dichtung 50 ist ein Abstand 15 vorgesehen, der nicht vom Schutzelement 20 abgedeckt ist.
  • Alternativ kann das Betonelement 10 auch nur ein Schutzelement 20 mit einem Bodenabschnitt 21 aufweisen (nicht dargestellt), an dem die Schutzelementdichtung 30 gas- und flüssigkeitsdicht angeordnet ist, beispielsweise durch Spritzgießen.
  • Das Schutzelement 20 weist einen Bodenabschnitt 21 auf, an dessen Außenseiten Wandabschnitte 22, 23 im Wesentlichen rechtwinklig, allerdings auch in beliebiger anderer Anordnung, angeordnet sind. Zur Herstellung einer haltenden Verbindung zwischen dem Schutzelement 20 und dem Betonelement 10 weist die Innenseite des Bodenabschnitts 21 Halteelemente 17, beispielsweise Stifte, auf. Alternativ und nicht dargestellt können auch Stege parallel zur einen Außenwand und Stege zur rechtwinklig dazu angeordneten Außenwand angeordnet sein. Die Stege können beispielsweise mit Öffnungen versehen sein, durch die Beton 16 hindurchtreten kann und damit nach Aushärtung eine besonders gut haltende Verbindung erzeugt.
  • Der Bodenabschnitt 21 weist einen zweiten flächigen Abschnitt 28 auf, der beispielsweise aus einer PE-Folie bestehen kann. Dieser zweite Abschnitt kann sich über den gesamten Bodenabschnitt 21 oder nur Teile davon erstrecken. Er ist bevorzugt mit dem restlichen Schutzelement 20, insbesondere dem ersten Abschnitt 25, der einen Teil des oder den gesamten Wandabschnitt 22, 23 ausbilden kann, mittels Spritzgießen verbunden.
  • Die Schutzelementdichtung 30 besteht aus einem elastischen Kunststoff. Die Dichtung 30 weist eine Dichtfläche 31 auf, die beim Zusammensetzen der einzelnen Betonelemente entweder auf eine andere Betonfläche oder eine andere Dichtfläche 31 einer Schutzelementdichtung 30 trifft. Im Inneren weist die Schutzelementdichtung 30 Kammern 32 auf. Beim Zusammensetzen der Betonelemente 10 wird der elastische Kunststoff der Schutzelementdichtung 30 verformt und die Kammern 32 werden zusammengedrückt. Gegenüberliegend zur Dichtfläche 31 sind Haltevorsprünge 33 angeordnet, die in den Kunststoff der Wandabschnitte 22, 23 des Schutzelements 20 eingreifen. Diese und die naheliegenden Seitenwände der Schutzelementdichtung 30 verbinden sich beim Spritzgießen mit dem Kunststoff des Schutzelements bzw. werden von diesem gasdicht umschlossen. Die Schutzelementdichtung 30 weist erfindungsgemäß eine Dichtwirkung auf, die kleiner ist als die Dichtwirkung der Betonelementdichtung 50 aber hinreichend groß ist, dass aus dem Tunnelinneren 100 keine Gase oder Flüssigkeiten durch die Schutzelementdichtung 30 hindurchtreten kann und beispielsweise in die Fuge gelangen kann und dort dann mit dem Beton 16 in Berührung kommen kann.
  • Ein Schutzelement 20, wie es in Fig. 1 dargestellt ist, kann beispielsweise durch Spritzgießen hergestellt werden. Alternative Ausführungsformen sind in Fig. 1 und 3a bis 3d dargestellt.
  • Fig. 3a bis Fig. 3d zeigen alternative Ausführungsformen des Schutzelements 20 im Hinblick darauf, dass das Schutzelement 20 bzw. der Bodenabschnitt und/oder der Wandabschnitt wenigstens teilweise einen flächigen Abschnitt 28 aus vorgefertigten Halbzeugen wie Bahnen mit daran angeordneten Vorsprüngen hergestellt sind. Fig. 3a bis 3d zeigen dabei verschiedene beispielhafte Arten der Verbindung des zweiten Abschnitts 28 mit einem ersten Abschnitt 25, der beispielsweise im Spritzgussverfahren hergestellt wurde. Diese Verbindung kann stoßartig erfolgen (Fig. 3a, 3d und 3c) oder der zweite Abschnitte 28 wird von ersten Abschnitt 25 einseitig (nicht dargestellt) oder beidseitig (Fig. 3d) umgriffen. In Fig. 3b ist das den zweiten Abschnitt 28 bildende flächige Element nicht nur als Bestandteil des Bodenabschnitts 21, sondern auch als Wandabschnitt 22, 23 vorgesehen. Das stoßartige Verbinden, wie in Fig. 3a, 3d und 3c dargestellt, hat sich überraschender Weise als hinreichend insbesondere bei der Verbindung von PE als flächigem Element und pDCPD als spritzgussfähigem Kunststoff des ersten Abschnitts 25 erwiesen. Es ist je nach Anforderung an das Schutzelement auch möglich, mehrere flächige Abschnitte ggf. aus unterschiedlichen Materialien vorzusehen, die dann über mehrere erste Abschnitt 25 miteinander über den oder mehrere unterschiedliche spritzgussfähige/n Kunstsoff/e verbunden werden. Dieses gilt sowohl für Bodenabschnitt 21, Wandabschnitt 22, 23 als auch Deckenabschnitte.
  • Nicht dargestellt ist die Möglichkeit an den ersten und oder zweiten Abschnitten 25, 28 weitere Entwässerungsöffnungen vorzusehen und in diesen Drainageelementen vorzusehen.
  • Der erfindungsgemäße Tunnelausbau 300 wird durch Zusammensetzen der Betonelemente 10 zu einem Ring am Gebirge 200 und einem Anordnen mehrerer Ringe zu einem Ausbau gebildet. Zwischen den Betonelementen 10 sind Fugen 40 durch das Zusammensetzen vorhanden. Diese Fugen werden durch die Betonelementdichtungen 50 gebirgsseitig so verschlossen, da deren Dichtwirkung größer als der Grundwasserdruck ist, so dass kein Grundwasser oder andere anstehende Flüssigkeiten in die Fugen 40 hinter der Betonelementdichtung 50 eintreten kann.
  • An der Oberseite 11 des Betonelements 10 steht im Gebirge 200 gespannten Grundwasser oder Grundwasser unter Druck in Abhängigkeit der Tiefe des Tunnels im Boden an. Dieses wirkt in Pfeilrichtung A auf den erfindungsgemäßen Tunnelausbau 300. Die Betonelementdichtung 50 ist dabei so ausgelegt, dass ihre Dichtwirkung verhindert, dass das Grundwasser in die Fuge 40 hinter der Betonelementdichtung 50 eindringen kann. Liegen im Schadensfall Risse im Beton 16 vor bzw. dringt im Schadensfall das Grundwasser durch den Beton 16 hindurch, steht dieses ggf. an der Unterseite 12 des Betonelements 10 auf der Innenseite des Schutzelements 20 an. Es kann sich dabei zwischen dem Schutzelement 20 und dem Betonelement 10 bewegen und gelangt je nach Ausführung in Pfeilrichtung B durch den nicht vom Schutzelement 20 abgedeckten Abstand 15 gelangen und durch ihn in die Fuge 40 hineintreten und zur Rückseite der Schutzelementdichtung 30 gelangen. Ein Erreichen der Innenseite des Schutzelements 20 ist aber nicht notwendig. Das Wasser kann auch direkt in Pfeilrichtung B in die Fuge 40 und zur Rückseite der Schutzelementdichtung 30 gelangen.
  • Da die Dichtwirkung der Schutzelementdichtung erfindungsgemäß kleiner ist, als der anstehende Grundwasserdruck/Flüssigkeitsdruck tritt das Wasser/die Flüssigkeit durch die Schutzelementdichtung 30 in Pfeilrichtung C hindurch und gelangt in den Tunnelinnenraum 100.
  • Bei einer ersten Ausführungsform eines erfindungsgemäßen Tunnelausbaus 300 werden zwei konzentrisch aufgebaute Ausbauring aus Betonelementen 10a, 10b (Tübbings) (Fig. 2) vorgesehen. Der erste Ausbauring setzt sich aus den Betonelementen 10a zusammen. Diese weisen an ihren Wandabschnitten 13a eine Vertiefung 14 auf, in die eine Betonelementdichtung 50 angeordnet ist. Zwischen den Betonelementen 10a sind Fugen 40a vorhanden. Der zweite Ausbauring wird anschließend, entweder nach Abschluss der Errichtung des ersten Ausbaurings oder lediglich mit einer zeitlichen Verzögerung, aus Betonelementen 10b errichtet, die an ihrer Unterseite 12 Schutzelemente 20 mit einer Schutzelementdichtung 30 wie zuvor beschrieben aufweisen. Zwischen den Betonelementen 10b sind Fugen 40b vorhanden.
  • Zwischen den Betonelementen 10a und 10b ist nach der Montage eine konzentrische Fuge 41 vorgesehen, die mit einem Füllmaterial 42, bevorzugt wasserdurchlässig, verfüllt wird.
  • Die Entwässerung erfolgt ebenfalls wie zuvor beschrieben. Es ergibt sich lediglich eine weitere Fließmöglichkeit für das Grundwasser/die Flüssigkeit in Pfeilrichtung D in der Fuge 41 durch das Füllmaterial 42 hin zu Fuge 40b. Bezugszeichenliste
    32 Kammer
    10 Betonelement 33 Haltevorsprung
    10a äußeres Betonelement 40 Fuge
    10b inneres Betonelement 40a äußerer Fugenteil
    11 Oberseite 40b innerer Fugenteil
    12 Unterseite 41 Fuge
    13 Wandabschnitt 42 Füllmaterial
    13a äußerer Wandabschnitt 50 Betonelementdichtung
    13b innerer Wandabschnitt 51 Dichtfläche
    14 Vertiefung 52 Kammer
    15 Abstand
    16 Beton 100 Tunnelinneres
    17 Halteelement 200 Gebirge
    20 Schutzelement 300 Tunnelausbau
    21 Bodenabschnitt
    22 Wandabschnitt A Anstehendes Grundwasser
    23 Wandabschnitt B Fließrichtung im Betonelement
    25 erster Abschnitt C Abflussrichtung ins Tunnelinnere
    28 zweiter Abschnitt D Fließrichtung in der Fuge 41
    29 Aufnahmebereich
    30 Schutzelementdichtung
    31 Dichtfläche

Claims (10)

  1. Tunnelausbau zusammengesetzt aus wenigstens zwei Betonelementen (10) mit jeweils wenigstens einem mit dem Betonelement verbundenen Schutzelement (20), wobei das Schutzelement (20) einen Schutzabschnitt aufweist, der eine erste dem Betonelement (10) zugewande Seite aufweist, an der wenigstens ein Verbindungselement (17) zum Herstellen einer haltenden Verbindung des Schutzabschnitts mit dem Betonelement (10) vorgesehen ist, wobei der Schutzabschnitt aus wenigstens einem Kunststoff besteht, wobei das Schutzelement (20) wenigstens eine Schutzelementdichtung (30) aufweist, die mit dem Schutzabschnitt (20) verbunden ist, wobei die Verbindung mit dem Schutzabschnitt (20) gasdicht und flüssigkeitsdicht ist, wobei zwischen den wenigstens zwei zum Tunnelausbau (300) angeordneten Betonelementen (10) eine Fuge (40) vorhanden ist, wobei die Fuge (40) durch wenigstens eine Schutzelementdichtung (30) mit einer ersten Dichtwirkung gasdicht und flüssigkeitsdicht zum Tunnelinneren (100) abgedichtet ist, dadurch gekennzeichnet, dass wenigstens ein Betonelement (10) wenigstens eine separat vom Schutzelement (20) angeordnete Betonelementdichtung (50) mit einer zweiten Dichtwirkung aufweist, die die Fuge (40) gas- und flüssigkeitsdicht gegenüber dem Gebirge (200) abdichtet, dass die Schutzelementdichtung (30) eine geringere Dichtwirkung als die Betonelementdichtung (50) aufweist, dass der Tunnelausbau eine Entwässerung aus einem den Tunnelausbau umgebenden Gebirge in einen vom Tunnelausbau gebildeten Tunnel hinein gegeben ist, dass zwischen der Schutzelementdichtung (30) und der Betonelementdichtung (50) eine Wasserdurchlässigkeit aus dem Betonelement in die Fuge (40) hinein besteht, und dass die Entwässerung durch die Fuge (40) zwischen den wenigstens zwei Betonelementen (10) im Abschnitt zwischen der Betonelementdichtung (50) und der Schutzelementdichtung (30) und durch die Schutzelementdichtung (30) hindurch erfolgt.
  2. Tunnelausbau nach Anspruch 1, dadurch gekennzeichnet, dass die Betonelementdichtung (50) beabstandet von der Schutzelementdichtung (30) am Schutzelement vorgesehen ist.
  3. Tunnelausbau nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Betonelementdichtung (50) in einer Vertiefung (14) in dem Betonelement (10) angeordnet ist.
  4. Tunnelausbau nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Schutzabschnitt wenigstens einen Bodenabschnitt (21) aufweist oder wenigstens einen Bodenabschnitt (21) und wenigstens einen Wandabschnitt (22, 23) aufweist.
  5. Tunnelausbau nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das die gasdichte und flüssigkeitsdichte Verbindung zwischen dem Schutzabschnitt und der Schutzelementdichtung spritzgegossen ist.
  6. Tunnelausbau nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei dem Kunststoff um ein Polydicyclopentadiene (pDCPD), bevorzugt hoch temperaturfest, ein Harz, in das bevorzugt Glasfasern eingebracht werden, oder um ein Thermoplast, bevorzugt PE, handelt.
  7. Tunnelausbau nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die wenigstens zwei Betonelemente (10) durch das Vorsehen des jeweils einen Schutzelements (20) gasdicht gegenüber dem Tunnelinneren (100) sind.
  8. Tunnelausbau nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Tunnelausbau (300) zweiteilig aufgebaut ist, mit einem inneren Betonelement (10b), an dem das Schutzelement (20) angeordnet ist, und einem äußeren Betonelement (10a), an dem die Betonelementdichtung (50) angeordnet ist.
  9. Tunnelausbau nach Anspruch 8, dadurch gekennzeichnet, dass zwischen den Betonelementen (10a, 10b) eine Fuge (41) vorgesehen ist, durch die ein Flüssigkeitsfluss erfolgen kann.
  10. Tunnelausbau nach Anspruch 9, dadurch gekennzeichnet, dass die Fuge (41) mit einem flüssigkeitsdurchlässigen Füllmaterial gefüllt ist.
EP18181230.6A 2018-07-02 2018-07-02 Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen Active EP3591166B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES18181230T ES2880101T3 (es) 2018-07-02 2018-07-02 Sostenimiento de túnel compuesto de al menos dos elementos de hormigón
EP18181230.6A EP3591166B1 (de) 2018-07-02 2018-07-02 Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen
DK18181230.6T DK3591166T3 (da) 2018-07-02 2018-07-02 Tunneludmuring sammensat af mindst to betonelementer
CN201980044529.4A CN112368462B (zh) 2018-07-02 2019-06-24 由至少两个混凝土元件组装的隧道衬砌
PCT/EP2019/066630 WO2020007631A1 (de) 2018-07-02 2019-06-24 Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen
US17/255,766 US11834950B2 (en) 2018-07-02 2019-06-24 Tunnel lining composed of at least two concrete elements
CA3105498A CA3105498C (en) 2018-07-02 2019-06-24 Tunnel lining composed of at least two concrete elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18181230.6A EP3591166B1 (de) 2018-07-02 2018-07-02 Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen

Publications (2)

Publication Number Publication Date
EP3591166A1 EP3591166A1 (de) 2020-01-08
EP3591166B1 true EP3591166B1 (de) 2021-06-02

Family

ID=62842004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18181230.6A Active EP3591166B1 (de) 2018-07-02 2018-07-02 Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen

Country Status (7)

Country Link
US (1) US11834950B2 (de)
EP (1) EP3591166B1 (de)
CN (1) CN112368462B (de)
CA (1) CA3105498C (de)
DK (1) DK3591166T3 (de)
ES (1) ES2880101T3 (de)
WO (1) WO2020007631A1 (de)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1588873A (de) * 1968-08-27 1970-03-16
GB1385197A (en) * 1971-07-03 1975-02-26 Spiroll Corp Ltd Tunnels
US3816370A (en) 1972-03-27 1974-06-11 Lubrizol Corp Acrylonitrile polymerization method and products
GB2093505B (en) * 1981-02-24 1984-09-12 Brien Peter Martin O Improvements in or relating to tunnels
DE3407381C3 (de) * 1984-02-29 1995-11-09 Zueblin Ag Verfahren zur Verlegung einer unterirdischen Rohrleitung und Vorrichtung zur Durchführung eines solchen Verfahrens
DE3800630A1 (de) * 1988-01-12 1989-07-20 Thyssen Industrie Tunnelausbau aus segmenten
CH679061A5 (de) * 1989-09-01 1991-12-13 Daetwyler Ag
US5439319A (en) * 1993-08-12 1995-08-08 Carlisle Coatings & Water Proofing, Incorporated Tunnel barrier system and method of installing the same
US5470178A (en) * 1994-02-17 1995-11-28 Weholt; Raymond L. Insulating tunnel liner system
GB2330156A (en) * 1997-10-07 1999-04-14 Tarmac Uk Ltd Reinforced shaft, tunnel or pipeline segment
JP2004132002A (ja) 2002-10-09 2004-04-30 Nippon Steel Corp シールドトンネル用二次覆工省略型セグメント
CH696445A5 (de) 2003-09-09 2007-06-15 Aldo Ceresola Betonelement zum Verkleiden eines Tunnels.
MXPA06004558A (es) * 2003-10-28 2006-09-04 Daniel Warren Metodo para reparar estructuras de tunel bajo el suelo.
US7211746B2 (en) 2004-05-03 2007-05-01 Diversified Textile Machinery Corporation Weigh-pan metering and blending method and apparatus
CA2786640C (en) 2010-01-12 2017-05-23 Herrenknecht Ag Protective element, concrete element, and method for producing a concrete element
DE102011008258A1 (de) * 2011-01-11 2012-07-12 Otto Zwick Beratender Ingenieur Unternehmergesellschaft (haftungsbeschränkt) Verbundtübbingring
EP2568113A1 (de) * 2011-09-12 2013-03-13 Sika Technology AG Tübbing mit thermoplastischer Schottschicht
CN103306689A (zh) * 2013-06-24 2013-09-18 中铁第一勘察设计院集团有限公司 高压富水地层盾构法隧道衬砌接缝防水结构及其构建方法
EP2921643B1 (de) 2014-03-21 2020-07-22 Herrenknecht AG Schutzelement, Betonelement und Verfahren zur Herstellung eines Betonelements
WO2017008913A1 (de) 2015-07-16 2017-01-19 Herrenknecht Ag Schutzelement zum verbinden mit einem betonelement eines tunnelausbaus mit drainage
CN105649649B (zh) * 2016-02-04 2018-11-27 广州市市政工程设计研究总院 一种带内衬pvc片材盾构隧道管片内防腐系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN112368462A (zh) 2021-02-12
US11834950B2 (en) 2023-12-05
CA3105498A1 (en) 2020-01-09
US20210355827A1 (en) 2021-11-18
CN112368462B (zh) 2022-12-23
EP3591166A1 (de) 2020-01-08
ES2880101T3 (es) 2021-11-23
CA3105498C (en) 2023-08-22
DK3591166T3 (da) 2021-08-16
WO2020007631A1 (de) 2020-01-09

Similar Documents

Publication Publication Date Title
EP2419606B1 (de) Schutzelement, betonelement und verfahren zur herstellung eines betonelements
EP2921643B1 (de) Schutzelement, Betonelement und Verfahren zur Herstellung eines Betonelements
DE3430789C2 (de)
DE3632951A1 (de) Flexible abdichtungsbahn
WO2005024183A1 (de) Betonelement zum verkleiden eines tunnels
EP3146156B1 (de) Schutzelement zum verbinden mit einem betonelement eines tunnelausbaus mit drainage
EP3591166B1 (de) Tunnelausbau zusammengesetzt aus wenigstens zwei betonelementen
EP0652330B1 (de) Betonhaltiger Formkörper für Abflussringen, Sinkkästen od. dgl. und Verfahren zu dessen Herstellung
DE102012012522A1 (de) Ausbau im Hoch- und Tiefbau
AT387835B (de) Rohrdurchfuehrung
DE102004010678B4 (de) Betontübbing für den Tunnelbau mit einer Kunststoff-Schicht am zur Innenseite des Tunnels ausgerichteten Wandabschnitt
DE102010003785A1 (de) Betonformteilverbindung
WO2007062871A1 (de) Korrosionsschutz für anker im gebirge
DE9421920U1 (de) Zwei- oder mehrlagige Kunststoffdichtungsbahn für Bauabdichtungen oder Abdichtungen im Druckwasserbereich
EP0200816B1 (de) Nachträgliche Abdichtung von Deponien und kontaminierten Flächen
EP3832188B1 (de) Anschlusssystem mit einem ansatzelement
EP3832186B1 (de) Anschlusssystem mit einer trennkennzeichnung
DE4105902A1 (de) Rinnenbauteil fuer eine extrem dichte abflussrinne
DE4119125C1 (de)
EP0294539B1 (de) Verfahren und Vorrichtung zur Verschweissung von Fugenband
DE3516822A1 (de) Nachtraegliche abdichtung von deponien und kontaminierten flaechen
DE3203026A1 (de) Abdichtung von wandungen gegen druck und/oder sickerwasser mittels dichtungsschicht
EP2514919B1 (de) Betonformteilverbindung
DE2541999A1 (de) Fugenabdichtung zwischen aneinanderstossenden bauteilen aus mineralischen stoffen mittels eines fugenbandes aus thermoplastischem kunststoff
DE202010006962U1 (de) Entwässerungsrinne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200707

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200831

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIECHERS, JOERG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210304

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398596

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005493

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210811

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2880101

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005493

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210702

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 6

Ref country code: IT

Payment date: 20230724

Year of fee payment: 6

Ref country code: IE

Payment date: 20230719

Year of fee payment: 6

Ref country code: GB

Payment date: 20230721

Year of fee payment: 6

Ref country code: ES

Payment date: 20230927

Year of fee payment: 6

Ref country code: CH

Payment date: 20230801

Year of fee payment: 6

Ref country code: AT

Payment date: 20230720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 6

Ref country code: FR

Payment date: 20230726

Year of fee payment: 6

Ref country code: DK

Payment date: 20230721

Year of fee payment: 6

Ref country code: DE

Payment date: 20230626

Year of fee payment: 6

Ref country code: BE

Payment date: 20230719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602