EP3568345B1 - Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten - Google Patents

Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten Download PDF

Info

Publication number
EP3568345B1
EP3568345B1 EP17818505.4A EP17818505A EP3568345B1 EP 3568345 B1 EP3568345 B1 EP 3568345B1 EP 17818505 A EP17818505 A EP 17818505A EP 3568345 B1 EP3568345 B1 EP 3568345B1
Authority
EP
European Patent Office
Prior art keywords
trim
speed
acceleration
hydroplane
keel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17818505.4A
Other languages
English (en)
French (fr)
Other versions
EP3568345A1 (de
Inventor
Hans Jürgen Bohlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp AG
Publication of EP3568345A1 publication Critical patent/EP3568345A1/de
Application granted granted Critical
Publication of EP3568345B1 publication Critical patent/EP3568345B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels

Definitions

  • the invention relates to a method for determining hydrodynamic coefficients in submarines.
  • the z-direction is the direction perpendicular to the longitudinal axis of the submarine, with positive values pointing downwards.
  • the y direction is the direction transverse to the longitudinal axis of the submarine, with positive values pointing to starboard.
  • ⁇ s is the aft depth rudder angle
  • ⁇ b is the forward depth rudder angle
  • is the angle of attack of the submarine
  • is the drift angle of the submarine
  • f x a factor for rudder
  • X rudder f x 4
  • cross rudder f x 1
  • W is the weight of the submarine including flooded clearances
  • W. ′ W. ⁇ 2 ⁇ L. 2 ⁇ U ⁇ 2 a dimensionless value
  • B is the buoyancy of the submarine
  • B. ′ B. ⁇ 2 ⁇ L.
  • C is the origin of the boat-based coordinate system
  • L is the length of the submarine
  • is the density of the surrounding water
  • g is the acceleration due to gravity
  • U the speed of the submarine when traveling through the water
  • u is the speed component in the x direction
  • U the speed of the submarine during stationary travel through the water for a freely selectable reference travel state
  • u c is the propulsion speed, which corresponds to the speed u that the boat would achieve at the current propeller speed when traveling ahead on a level keel with zero rudder angles
  • u c ′ u U ⁇ a dimensionless value
  • v is the speed component in the y direction across the submarine
  • v ′ v U ⁇ a dimensionless value
  • w is the speed component in the z direction normal to the submarine
  • w ′ w U ⁇ a dimensionless value
  • Z is the hydrodynamic force in the z direction
  • Z * is the coefficient describing the normal force Z as a function of
  • Z w is the coefficient describing the normal force Z as a function of the product u w
  • Z w ′ Z w ⁇ 2 L. 2 a dimensionless value, Z
  • , Z w ′ Z w ⁇ 2 L. 2 a dimensionless value, Z w
  • the coefficient describing the normal force Z as a function of w ⁇ v 2 + w 2 , Z w w ′ Z w w ⁇ 2 L.
  • Z ww is the coefficient describing the normal force Z as a function of
  • Z ww ′ Z ww ⁇ 2 L. 2 a dimensionless value
  • is the coefficient to describe the normal force Z as a function of w v 2 + w 2 ⁇ ⁇ ⁇ C. - 1
  • Z w w ⁇ ′ Z w w ⁇ ⁇ 2 L. 2 a dimensionless value
  • Z ⁇ s is the coefficient describing the normal force Z as a function of u 2 ⁇ s
  • Z ⁇ s ′ Z ⁇ s ′ ⁇ 2 L.
  • Z ⁇ b is the coefficient describing the normal force Z as a function of u 2 ⁇ b
  • Z ⁇ b ′ Z ⁇ b ′ ⁇ 2 L. 2 a dimensionless value
  • Z ⁇ s ⁇ is the coefficient describing the normal force Z as a function of u 2 ⁇ s ( ⁇ C - 1)
  • Z ⁇ s ⁇ ′ Z ⁇ s ⁇ ′ ⁇ 2 L. 2 a dimensionless value
  • M is the hydrodynamic torque around the y- axis, also called pitching torque
  • M * is the coefficient describing the pitching moment M
  • M. ⁇ ′ M. ⁇ ⁇ 2 L.
  • M w is the coefficient for describing the pitching moment M as a function of u w
  • M. w ′ M. w ⁇ 2 L. 3 a dimensionless value
  • , M. w ′ M. w ⁇ 2 L. 3 a dimensionless value
  • M. w w ′ M. w w ⁇ 2 L. 3 a dimensionless value
  • M ww is the coefficient describing the pitching moment M as a function of
  • M. ww ′ M. ww ⁇ 2 L. 3 a dimensionless value
  • is the coefficient to describe the pitching moment M as a function of w v 2 + w 2 ⁇ ⁇ ⁇ C. - 1
  • M. w w ⁇ ′ M. w w ⁇ ⁇ 2 L. 3 a dimensionless value
  • M ⁇ s is the coefficient for describing the pitching moment M as a function of u 2 ⁇ s
  • M. ⁇ s ′ M. ⁇ s ⁇ 2 L. 3 a dimensionless value
  • M ⁇ b is the coefficient for describing the pitching moment M as a function of u 2 ⁇ b , M.
  • M ⁇ b ′ M. ⁇ b ⁇ 2 L. 3 a dimensionless value
  • M ⁇ S ⁇ is the coefficient to describe the pitching moment M as a function of u 2 ⁇ s ( ⁇ C - 1)
  • M. ⁇ s ⁇ ′ M. ⁇ s ⁇ ⁇ 2 L. 3 a dimensionless value.
  • the JP S63 43896 A has the purpose of automatically adjusting weighting and trimming. For this purpose, data is recorded with sensors.
  • the object of the invention is to provide a method with which these hydrodynamic coefficients can be recorded or determined simply and precisely by measuring technology on a real submarine.
  • the submarine is free-swimming in this procedure.
  • Free floating means that the submarine is not towed or has some other form of connection, for example a submarine model that is attached to a rod. So none work external forces on the submarine, for example a force via a tow rope.
  • the submarine is therefore force-free, i.e. all forces, acceleration from the propeller, friction, buoyancy from the hull, buoyancy from the rudder, etc., balance each other out.
  • Free swimming thus enables direct and simple determination on a specific submarine and not on a model. As a result, the parameters determined are exact and can be determined individually depending on the state, for example different loads.
  • a pitch angle ⁇ of the submarine of ⁇ 1 ° ⁇ ⁇ ⁇ + 1 °, preferably of ⁇ 0.2 ° ⁇ ⁇ + 0.2 °, particularly preferably of ⁇ 0.05 ° ⁇ ⁇ ⁇ + 0.05 ° to be understood.
  • the pitch angle is the angle between the longitudinal axis of the submarine and the projection of the longitudinal axis of the submarine into the plane and thus reflects the inclination in the z-direction.
  • a particular pitch angle ⁇ of the submarine is
  • Acceleration-free travel is understood to mean an operating mode in which the boat moves at a constant speed, with constant being regarded as constant within the scope of the detection accuracy and control accuracy.
  • the measured values are evaluated separately for journeys with a flat keel and with a sloping keel.
  • the measured values obtained in steps a) to d) are shown as a function of 1 u ki 2 evaluated by calculating best-fit straight lines.
  • the best-fit straight lines result as limit values for u ⁇ ⁇ the rear depth rudder angle ⁇ sn and front depth rudder angle ⁇ bn for the so-called lift and torque-free ride. Only the limit values are evaluated here.
  • ⁇ ski ⁇ sn - G ⁇ L.
  • x CT is the x coordinate of the center of gravity of the control cell
  • x CT ′ x CT L.
  • ⁇ x TT is the positive distance of the center of gravity from the front to the rear trim cell volume
  • ⁇ x TT ′ ⁇ x TT L.
  • x ⁇ s the x -coordinate of the forward depth rudder
  • x ⁇ s ′ x ⁇ s L.
  • x ⁇ b the x -coordinate of the rear depth rudder
  • x ⁇ b ′ x ⁇ b L.
  • V CT is the filling volume of the control cell
  • V CT ′ V CT 1 2 L. 3
  • the rudder angles are about 1 u ki 2 applied.
  • the slope of this straight line is not relevant, it is decisive for zero and thus for u ki 2 towards infinitely extrapolated limit value.
  • the x-coordinates of trim and control cells and rudder position are known from boat geometry.
  • V TTki ′ 1 ⁇ x TT ′ u i 2 G ⁇ L. ⁇ f x ⁇ M. ⁇ s ′ ⁇ ⁇ ski - ⁇ sn + M. ⁇ b ′ ⁇ ⁇ bki - ⁇ bn cos ⁇ ki - x CT ′ ⁇ V CTki ′
  • the coefficients Z ⁇ ′ , Z ⁇ s ′ , Z ⁇ b ′ , M. ⁇ ′ , M. ⁇ s ′ and M. ⁇ b ′ are determined for lift and torque-free travel.
  • z GB ′ z GB L. a dimensionless value
  • z Gn the z-component of the center of gravity of the boat including flooded clearances for the state of buoyancy and torque-free travel
  • z B the z -coordinate of the lift center of gravity of the shape displacement in the boat-fixed coordinate system.
  • the determination is made from the measured data by means of multilinear regression using the variables already known from a).
  • the coefficients Z w ′ , Z w w ′ , Z ⁇ s ⁇ ′ , M. w ′ , M. w w ′ , and M. ⁇ s ⁇ ′ and the stability lever arm z GB determined.
  • first speeds in particular a total of five to eight first speeds, particularly preferably six first speeds, are particularly preferably used.
  • second speeds in particular a total of four to eight second speeds, particularly preferably five second speeds, are particularly preferably used.
  • the first speeds are selected from the range from 4 kn to 25 kn, preferably from the range from 5 kn to 20 kn, particularly preferably from the range from 6 kn to 15 kn.
  • the second speeds are selected from the range from 4 kn to 25 kn, preferably from the range from 5 kn to 20 kn, particularly preferably from the range from 6 kn to 14 kn.
  • an angle of + 15 ° to + 25 °, in particular + 18 ° to + 22 °, is selected as the first forward elevator position and an angle of -15 ° to -25 ° is selected as the second forward elevator position, selected in particular from -18 ° to -22 °.
  • the method is carried out in such a way that the diving depth is selected so that at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, water above the submarine and at least 25 m, preferably at least 50 m , particularly preferably at least the length of the submarine, are water under the submarine.
  • This procedure determines the hydrodynamic coefficients in the unaffected deep water area.
  • the method is carried out in such a way that the diving depth is chosen so that less than 25 m, preferably less than 15 m, water above the submarine and at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, there are water under the submarine.
  • This procedure determines the hydrodynamic coefficients in the near-surface area and is important for snorkeling, for example.
  • This method is preferably used in addition to the determination in the unaffected deep water area.
  • the method is carried out in such a way that the diving depth is selected so that at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, water above the submarine and less than 25 m, preferably less than 15 m, there are water under the submarine.
  • This procedure determines the hydrodynamic coefficients in the area close to the ground and is important, for example, for submerged trips in shallow water. This method is preferably used in addition to the determination in the unaffected deep water area.
  • the speed u of the submarine, the front depth rudder angle ⁇ s , the rear depth rudder angle ⁇ b , the change in volume of the trim tanks ⁇ V TT and the change in volume of the control cell ⁇ V CT are recorded during the acceleration-free journeys.
  • the speed of rotation n of the screw and the trim angle ⁇ are additionally recorded during the acceleration-free journeys.
  • the roll angle ⁇ and the change in volume of the ballast tank ⁇ V CT are also recorded during the acceleration-free journeys.
  • the weight distribution in the submarine is kept constant except for the targeted changes during the method. In particular, care is taken that the crew does not change their position, as this leads to non-detectable mass displacements and thus reduces the measurement accuracy of the method.
  • the first first trim position and the second first trim position are selected to be different by 500 kNm ⁇ 50 kNm.
  • a first, second trim position and a second, second trim position are selected in steps e) and l), the first, second trim position and the second, second trim position being selected to be different by 1000 kNm ⁇ 100 kNm.
  • the coefficients are in step m) Z w ′ , Z w w ′ , Z ⁇ s ⁇ ′ , M. w ′ , M. w w ′ , and M. ⁇ s ⁇ ′ and the stability lever arm z GB determined.
  • Fig. 1 the angles and sizes are shown using the example of a submarine with a cross rudder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten.
  • Bei stationärer Fahrt eines Unterseeboots ist insbesondere die auf das Boot wirkende Normalkraft gleich null. Diese wird durch die folgende Gleichung beschrieben: Z + Z w tan α + Z w tan α + Z w w tan α tan α + Z ww tan 2 α + f x Z δs δ s + Z δb δ b + f x Z δsη δ s + Z tan α + Z w w η tan α tan α η C 1 + W B u 2 cos θ cos ϕ = 0
    Figure imgb0001
  • Ebenso gilt für die bei stationärer Fahrt am Boot, dass die angreifenden Trimmmomente gleich null sind. Dieses beschreibt die folgende Gleichung: M + M w tan α + M w tan α + M w w tan α tan α + M ww tan 2 α + f x M δs δ s + M δb δ b + f x M δsη δ s + M tan α + M w w η tan α tan α η C 1 + x G W x B B u 2 cos θ cos ϕ + x G W x B B u 2 sin θ = 0
    Figure imgb0002
  • Die z-Richtung ist die Richtung senkrecht zur Längsachse des Unterseebootes, wobei positive Werte nach unten zeigen.
    Die y-Richtung ist die Richtung quer zur Längsachse des Unterseebootes, wobei positive Werte nach steuerbord zeigen.
  • Hierbei ist:
    δ s  der hintere Tiefenruderwinkel,
    δ b  der vordere Tiefenruderwinkel,
    α  der Anstellwinkel des Unterseeboots,
    β  der Driftwinkel des Unterseeboots,
    fx   ein Faktor für Ruder, bei X-Ruder fx = 4, bei Kreuzruder fx = 1,
    η  das Verhältnis u c u ,
    Figure imgb0003

    W  das Gewicht des Unterseeboots einschließlich gefluteter Freiräume,
    W = W ρ 2 L 2 U 2
    Figure imgb0004
      ein dimensionsloser Wert,
    B  der Formauftrieb des Unterseeboots,
    B = B ρ 2 L 2 U 2
    Figure imgb0005
      ein dimensionsloser Wert,
    C  der Ursprung des bootsfesten Koordinatensystems,
    L  die Länge des Unterseeboots,
    ρ  die Dicht des umgebenden Wassers,
    g  die Erdbeschleunigung,
    U  die Geschwindigkeit des Unterseeboots bei Fahrt durch das Wasser,
    u  die Geschwindigkeitskomponente in x-Richtung,
    U   die Geschwindigkeit des Unterseeboots bei stationärer Fahrt durch das Wasser für einen frei wählbaren Referenzfahrtzustand,
    uc   die Propulsionsgeschwindigkeit, welche der Geschwindigkeit u entspricht, die das Boot bei der momentanen Propellerdrehzahl bei Vorausfahrt auf ebenem Kiel mit Nullruderlagen erreichen würde, u c = u U
    Figure imgb0006
    ein dimensionsloser Wert,
    v  die Geschwindigkeitskomponente in y-Richtung quer zum Unterseeboot,
    v = v U
    Figure imgb0007
      ein dimensionsloser Wert,
    w  die Geschwindigkeitskomponente in z-Richtung normal zum Unterseeboot,
    w = w U
    Figure imgb0008
      ein dimensionsloser Wert,
    Z  die Hydrodynamische Kraft in z-Richtung,
    Z *  der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2,
    Z = Z ρ 2 L 2
    Figure imgb0009
      ein dimensionsloser Wert,
    Zw   der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von dem Produkt u · w,
    Z w = Z w ρ 2 L 2
    Figure imgb0010
      ein dimensionsloser Wert,
    Z |w|  der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von dem Produkt u · |w|,
    Z w = Z w ρ 2 L 2
    Figure imgb0011
      ein dimensionsloser Wert,
    Z w|w|  der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von w v 2 + w 2
    Figure imgb0012
    ,
    Z w w = Z w w ρ 2 L 2
    Figure imgb0013
      ein dimensionsloser Wert,
    Zww   der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von |w| · v 2 + w 2 ,
    Figure imgb0014

    Z ww = Z ww ρ 2 L 2
    Figure imgb0015
      ein dimensionsloser Wert,
    Z w|w|η   der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von w · v 2 + w 2 η C 1 ,
    Figure imgb0016

    Z w w η = Z w w η ρ 2 L 2
    Figure imgb0017
      ein dimensionsloser Wert,
    Zδs   der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2 · δs,
    Z δs = Z δs ρ 2 L 2
    Figure imgb0018
      ein dimensionsloser Wert,
    Zδb   der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2 · δb,
    Z δb = Z δb ρ 2 L 2
    Figure imgb0019
      ein dimensionsloser Wert,
    Z δsη   der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2 · δs · (η · C - 1),
    Z δsη = Z δsη ρ 2 L 2
    Figure imgb0020
      ein dimensionsloser Wert,
    M  das hydrodynamische Drehmoment um die y-Achse, auch Stampfmoment genannt,
    M *  der Koeffizient zur Beschreibung des Stampfmoments M,
    M = M ρ 2 L 3
    Figure imgb0021
      ein dimensionsloser Wert,
    Mw   der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u · w,
    M w = M w ρ 2 L 3
    Figure imgb0022
      ein dimensionsloser Wert,
    M |w|  der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u · |w|,
    M w = M w ρ 2 L 3
    Figure imgb0023
      ein dimensionsloser Wert,
    M w|w|  der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von w · v 2 + w 2 ,
    Figure imgb0024

    M w w = M w w ρ 2 L 3
    Figure imgb0025
      ein dimensionsloser Wert,
    Mww   der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von |w| ·
    M ww = M ww ρ 2 L 3
    Figure imgb0026
      ein dimensionsloser Wert,
    M w|w|η   der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von w · v 2 + w 2 η C 1 ,
    Figure imgb0027

    M w w η = M w w η ρ 2 L 3
    Figure imgb0028
      ein dimensionsloser Wert,
    Mδs   der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u 2 · δs,
    M δs = M δs ρ 2 L 3
    Figure imgb0029
      ein dimensionsloser Wert,
    Mδb   der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u 2 · δb,
    M δb = M δb ρ 2 L 3
    Figure imgb0030
      ein dimensionsloser Wert,
    MδSη   der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u 2 · δs · (η · C - 1),
    M δsη = M δsη ρ 2 L 3
    Figure imgb0031
      ein dimensionsloser Wert.
  • Diese hydrodynamischen Koeffizienten können theoretisch berechnet oder im Modellversuch experimentell bestimmt werden. Dieses ist jedoch extrem aufwändig und kann auch nicht präzise für die aktuelle Beladungssituation des Unterseeboots durchgeführt werden, sodass mit Näherungswerten gearbeitet werden muss.
  • Die exakte Kenntnis dieser Parameter erlaubt eine präzise Vorhersage des Bootsverhaltens. Somit können Manöver sehr präzise gesteuert werden, wenn diese Parameter exakt bekannt sind. Die berechneten oder im Modellversuch bestimmten hydrodynamischen Koeffizienten sind für eine präzise Vorhersage des Bootsverhaltens daher im Allgemeinen zu ungenau. Deshalb werden die hydrodynamischen Koeffizienten üblicher Weise durch Auswertung von Großausführungsversuchen verifiziert bzw. korrigiert, wobei die heute verwendeten Großausführungsversuchen jedoch nur aufwändige Näherungsverfahren darstellen.
  • Die JP S63 43896 A hat den Zweck, Gewichtung und Trimmung automatisch anzupassen. Hierzu werden Daten mit Sensoren erfasst.
  • Aus der US 2004/224577 A1 ist eine Vorrichtung zur Navigationskontrolle eines Wasserfahrzeugs bekannt.
  • Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, mit dem diese hydrodynamischen Koeffizienten an einem realen Unterseeboot einfach und präzise messtechnisch erfasst oder bestimmt werden können.
  • Gelöst wird diese Aufgabe durch das Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten mit den in Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den Zeichnungen.
  • Das erfindungsgemäße Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten mit einem vorderen Tiefenruder und einem hinteren Tiefenruder weist die folgenden Schritte auf:
    1. a) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer ersten ersten Geschwindigkeit und einer ersten ersten Trimmlage,
    2. b) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der ersten ersten Geschwindigkeit und einer zweiten ersten Trimmlage,
    3. c) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer zweiten ersten Geschwindigkeit und der ersten ersten Trimmlage,
    4. d) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der zweiten ersten Geschwindigkeit und der zweiten ersten Trimmlage,
    5. e) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer ersten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
    6. f) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
    7. g) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,
    8. h) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
    9. i) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
    10. j) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
    11. k) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
    12. l) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
    13. m) Ermitteln von hydrodynamischen Koeffizienten aus den in den vorhergehenden Schritten ermittelten Messgrößen,
    wobei die Schritte a) bis l) in beliebiger Reihenfolge durchgeführt werden. Der Schritt m) wird nach den Schritten a) bis l) durchgeführt.
  • Das Unterseeboot ist bei diesem Verfahren freischwimmend. Freischwimmend bedeutet, dass das Unterseeboot nicht geschleppt wird oder eine andere Form einer Anbindung hat, beispielsweise sich um ein Unterseebootmodell handelt, welches an einem Stab befestigt ist. Somit wirken keine externen Kräfte auf das Unterseeboot, beispielsweise eine Kraft über ein Schleppseil. Bei beschleunigungsfreier Fahrt ist das Unterseeboot somit kräftefrei, das heißt alle Kräfte, Beschleunigung durch den Propeller, Reibung, Auftrieb durch den Schiffskörper, Auftrieb durch Ruder etc., gleichen sich in Summe aus. Freischwimmend ermöglicht somit die direkte und einfache Bestimmung an einem konkreten Unterseeboot und nicht an einem Modell. Hierdurch sind die ermittelten Parameter exakt und können je nach Zustand, beispielsweise unterschiedliche Beladung) individuell ermittelt werden.
  • Unter einem ebenen Kiel ist insbesondere ein Stampfwinkel θ des Unterseeboots von - 1° < θ < + 1°, bevorzugt von - 0,2° < θ < + 0,2°, besonders bevorzugt von - 0,05° < θ < + 0,05° zu verstehen. Der Stampfwinkel ist der Winkel zwischen der Längsachse des Unterseeboots und der Projektion der Längsachse des Unterseeboots in die Ebene und gibt somit die Neigung in z-Richtung wieder.
  • Unter einem schrägem Kiel ist ein insbesondere Stampfwinkel θ des Unterseeboots von |θ| > 0,5°, bevorzugt von |θ| > 1°, besonders bevorzugt von |θ| > 2° zu verstehen.
  • Unter beschleunigungsfreier Fahrt wird ein Betriebsmodus verstanden, bei dem sich das Boot mit konstanter Geschwindigkeit bewegt, wobei konstant als konstant im Rahmen der Erfassungsgenauigkeit und Regelgenauigkeit anzusehen ist.
  • Da die Fahrt bei konstanter Tiefe erfolgt, kompensieren sich die vertikal verlaufenden Kräfte, also die Gravitations- oder die Auftriebsbeschleunigung, sodass es zu keinem Auf- oder Abtrieb kommt.
  • Bei einer beschleunigungsfreien Fahrt gleichen sich die Kräfte aus. Somit wirkt keine resultierende Kraft auf das Unterseeboot. Es gilt somit, dass die Summe aller wirkenden Kräfte null ist. Des Weiteren gilt, dass auch die Summe aller Kraftveränderungen zwischen zwei beschleunigungsfreien Fahrten gleich null sein muss. Die absolute Geschwindigkeit in horizontaler Richtung ist bei Fahrt definitionsgemäß größer null. Aus technischen Gründen sind sehr geringe Geschwindigkeiten, insbesondere kleiner 2 kn, ganz besonders kleiner 1 kn, nicht vorteilhaft.
  • Um die Messwerte sinnvoll zu indizieren, werden die verschiedenen ersten Geschwindigkeiten und zweiten Geschwindigkeiten mit dem Index i bezeichnet. So ist i = 1 für die erste erste Geschwindigkeit und die erste zweite Geschwindigkeit und i = 2 für die zweite erste Geschwindigkeit und die zweite zweite Geschwindigkeit.
  • Als weiter Index wird k verwendet, um die Trimm- und Gewichtszustände zu unterscheiden. So ist k = 1 für die erste erste Trimmlage und die erste vordere Tiefenruderlage und k = 2 für die zweite erste Trimmlage und die zweite vordere Tiefenruderlage.
  • Die Messwerte werden getrennt für Fahrten bei ebenem Kiel und bei schrägem Kiel getrennt ausgewertet.
  • Beispielsweise zunächst werden die Messwerte für die Fahrten bei ebenem Kiel ausgewertet.
  • Zunächst werden die in den Schritten a) bis d) erhaltenen Messwerte als Funktion von 1 u ki 2
    Figure imgb0032
    durch Berechnung von Ausgleichsgeraden ausgewertet. Die Ausgleichsgeraden ergeben als Grenzwerte für u → ∞ die hinteren Tiefenruderwinkel δsn und vorderen Tiefenruderwinkel δbn für die sogenannte auftrieb- und momentfreie Fahrt. Es werden hierbei nur die Grenzwerte ausgewertet. δ ski = δ sn g L u ki 2 cos ϕ ki x CT x δb V CTki + Δ x TT V TTki f x Z δs x δs x δb
    Figure imgb0033
    δ bki = δ bn + g L u ki 2 cos ϕ ki x CT x δs V CTki + Δ x TT V TTki Z δs x δs x δb
    Figure imgb0034
  • Hierbei ist:
    xCT   die x-Koordinate des Schwerpunkts der Regelzelle,
    x CT = x CT L
    Figure imgb0035
      ein dimensionsloser Wert,
    ΔxTT   der positive Abstand des Schwerpunkts vom vorderen zum hinteren Trimmzellenvolumen,
    Δ x TT = Δ x TT L
    Figure imgb0036
      ein dimensionsloser Wert,
    xδs   die x-Koordinate des vorderen Tiefenruders,
    x δs = x δs L
    Figure imgb0037
      ein dimensionsloser Wert,
    xδb   die x-Koordinate des hinteren Tiefenruders,
    x δb = x δb L
    Figure imgb0038
      ein dimensionsloser Wert,
    VCT   das Füllvolumen der Regelzelle,
    V CT = V CT 1 2 L 3
    Figure imgb0039
      ein dimensionsloser Wert,
    VTT   die Trimmzellenfüllung, wobei das Trimmmoment MTT =- ρ · ΔxTT · VTT ist,
    V TT = V TT 1 2 L 3
    Figure imgb0040
      ein dimensionsloser Wert.
  • Wie bereits ausgeführt, werden die Ruderwinkel über 1 u ki 2
    Figure imgb0041
    aufgetragen. Die Steigung dieser Geraden ist nicht relevant, entscheidet ist der für null und somit für u ki 2
    Figure imgb0042
    gegen unendlich extrapolierte Grenzwert. Die x-Koordinaten von Trimm- und Regelzellen und Ruderposition sind aus der Bootsgeometrie bekannt.
  • Durch Subtraktion der aus den Schritten a) bis d) ermittelten Werten bei verschiedenen Trimm- und Gewichtszuständen gemessenen Ruderwinkel gemäß Δ δ si u i = δ s 2 i u i δ s 1 i u i
    Figure imgb0043
    und Δ δ bi u i = δ b 2 i u i δ b 1 i u i
    Figure imgb0044
    werden die Werte Z δsi = g L 2 cos ϕ ki u ki 2 + cos ϕ ki u 2 i 2 x CT x δb Δ V CT + Δ x TT Δ V TT f x Δ δ si x δs x δb
    Figure imgb0045
    und Z δbi = g L 2 cos ϕ ki u ki 2 + cos ϕ ki u 2 i 2 x CT x δs Δ V CT + Δ x TT Δ V TT f x Δ δ bi x δs x δb
    Figure imgb0046
    ermittelt. Die Koeffizienten Z δs
    Figure imgb0047
    und Z δb
    Figure imgb0048
    ergeben sich daraus als Mittelwerte.
  • Daraus ergeben sich dann die Koeffizienten zur Beschreibung des Stampfmoments: M δs = Z δs x δs
    Figure imgb0049
    M δb = Z δb x δb
    Figure imgb0050
    sowie: Z = f x Z δs δ sn Z δb δ bn
    Figure imgb0051
    M = f x M δs δ sn Z δb δ bn
    Figure imgb0052
    V CTki = u i 2 g L f x Z δs δ ski δ sn + Z δb δ bki δ bn cos ϕ ki
    Figure imgb0053
    V TTki = 1 Δ x TT u i 2 g L f x M δs δ ski δ sn + M δb δ bki δ bn cos ϕ ki x CT V CTki
    Figure imgb0054
  • Die Füllvolumen der Regelzelle V CT1 und V CT2 und die Trimmzellenfüllungen V TT1 und V TT2 für Trimm- und Gewichtszustände des Unterseebootes, gekennzeichnet durch den Index k = 1 und k = 2 ergeben sich als Mittelwerte der V CT1 i' V CT2 i, V TT1i bzw. V TT2i Werte.
  • Insbesondere werden durch Auswertung der Versuchsreihe a) die Koeffizienten Z ,
    Figure imgb0055
    Z δs ,
    Figure imgb0056
    Z δb ,
    Figure imgb0057
    M
    Figure imgb0058
    , M δs
    Figure imgb0059
    und M δb ,
    Figure imgb0060
    die Füllvolumen der Regelzelle V CT1 und V CT2 , die Trimmzellenfüllungen V TT1 und VTT2 und die Ruderwinkel δsn und δbn für auftrieb- und momentfreie Fahrt bestimmt.
  • Anschließend werden die in den Schritten e) bis l) ermittelten Messwerte für die Fahrten mit achter- oder vorlastig statisch vertrimmten Boot ausgewertet.
  • Hierbei gilt:
  • Z W Z W W Z δsη tan θ i tan θ i tan θ i f x η i C 1 δ si = g L V CTi u i 2 cos θ i cos ϕ i Z δs f x δ si δ sn Z δb δ bi δ bn
    Figure imgb0061
    M W M W W M δsη z GB tan θ i tan θ i tan θ i f x η i C 1 δ si g L V u i 2 sin θ i = g L u i 2 x CT V CTi + x TT V TTi cos θ i cos ϕ i + z CT V CTi sin θ i M δs f x δ si δ sn M δb δ bi δ bn
    Figure imgb0062
  • Hierbei ist:

  • zGB   der Stabilitätshebelarm zGB = zGn - zB,
    z GB = z GB L
    Figure imgb0063
      ein dimensionsloser Wert,
    zGn   die z-Komponente des Gewichtsschwerpunkts des Bootes einschließlich gefluteter Freiräume für den Zustand der auftriebs- und momentfreien Fahrt,
    zB   die z-Koordinate des Auftriebsschwerpunkts der Formverdrängung im bootsfesten Koordinatensystem.
  • Die Ermittlung erfolgt aus den gemessenen Daten mittels multilinearer Regression unter Verwendung der bereits aus a) bekannten Größen.
  • Insbesondere werden hierbei die Koeffizienten Z w ,
    Figure imgb0064
    Z w w ,
    Figure imgb0065
    Z δsη ,
    Figure imgb0066
    M w ,
    Figure imgb0067
    M w w ,
    Figure imgb0068
    und M δsη
    Figure imgb0069
    und der Stabilitätshebelarm zGB bestimmt.
  • In einer weiteren Ausführungsform der Erfindung werden zusätzlich zu den Schritten a) bis d) die folgenden Schritte ausgeführt:
    • n) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer ersten ersten Trimmlage,
    • o) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer zweiten ersten Trimmlage.
  • Besonders bevorzugt werden weitere erste Geschwindigkeiten, insbesondere insgesamt fünf bis acht erste Geschwindigkeiten, besonders bevorzugt sechs erste Geschwindigkeiten, verwendet.
  • In einer weiteren Ausführungsform der Erfindung werden zusätzlich zu den Schritten e) bis h) die folgenden Schritte ausgeführt:
    • p) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
    • q) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
    • r) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,
    • s) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung.
  • Besonders bevorzugt werden weitere zweite Geschwindigkeiten, insbesondere insgesamt vier bis acht zweite Geschwindigkeiten, besonders bevorzugt fünf zweite Geschwindigkeiten, verwendet.
  • In einer weiteren Ausführungsform der Erfindung sind die ersten Geschwindigkeiten ausgewählt aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 15 kn.
  • In einer weiteren Ausführungsform der Erfindung sind die zweiten Geschwindigkeiten ausgewählt aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 14 kn.
  • In einer weiteren Ausführungsform der Erfindung wird als ersten vorderen Tiefenruderlage ein Winkel von + 15° bis + 25°, insbesondere von + 18° bis + 22° gewählt wird und dass als zweite vorderen Tiefenruderlage ein Winkel von - 15° bis - 25°, insbesondere von - 18° bis - 22° gewählt.
  • In einer weiteren Ausführungsform der Erfindung wird das Verfahren derart durchgeführt, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
  • Dieses Verfahren bestimmt die hydrodynamischen Koeffizienten im unbeeinflussten Tiefwasserbereich.
  • In einer weiteren Ausführungsform der Erfindung wird das Verfahren derart durchgeführt, dass die Tauchtiefe so gewählt wird, dass weniger als 25 m, bevorzugt weniger als 15 m, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
  • Dieses Verfahren bestimmt die hydrodynamischen Koeffizienten im oberflächennahen Bereich und ist zum Beispiel für Schnorchelfahrt wichtig. Dieses Verfahren wird bevorzugt zusätzlich zum Bestimmung im unbeeinflussten Tiefwasserbereich verwendet.
  • In einer weiteren Ausführungsform der Erfindung wird das Verfahren derart durchgeführt, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und weniger als 25 m, bevorzugt weniger als 15 m, Wasser unter dem Unterseeboot sind.
  • Dieses Verfahren bestimmt die hydrodynamischen Koeffizienten im grundnahen Bereich und ist zum Beispiel für getauchte Fahrten im Flachwasser wichtig. Dieses Verfahren wird bevorzugt zusätzlich zum Bestimmung im unbeeinflussten Tiefwasserbereich verwendet.
  • Erfindungsgemäß werden während der beschleunigungsfreien Fahrten jeweils die Geschwindigkeit u des Unterseeboots, der vordere Tiefenruderwinkel δ s, der hintere Tiefenruderwinkel δb , die Volumenänderung der Trimmtanks ΔVTT und die Volumenänderung der Regelzelle ΔVCT erfasst.
  • In einer weiteren Ausführungsform der Erfindung werden während der beschleunigungsfreien Fahrten zusätzlich die Umdrehungsgeschwindigkeit n der Schraube und der Trimmwinkel θ erfasst.
  • In einer weiteren Ausführungsform der Erfindung werden während der beschleunigungsfreien Fahrten jeweils zusätzlich der Rollwinkel φ und Volumenänderung des Ballasttanks ΔVCT erfasst.
  • In einer weiteren Ausführungsform der Erfindung wird während des Verfahrens die Gewichtsverteilung im Unterseeboot bis auf die gezielten Änderungen konstant gehalten. Insbesondere wird darauf geachtet, dass die Besatzung ihre Position nicht verändert, da dieses zu nicht erfassbaren Masseverschiebungen führt und somit die Messgenauigkeit des Verfahrens verringert.
  • In einer weiteren Ausführungsform der Erfindung werden im Schritt m) die Koeffizienten Z , Z δs ,
    Figure imgb0070
    Z δb ,
    Figure imgb0071
    M ,
    Figure imgb0072
    M δs
    Figure imgb0073
    und M δb ,
    Figure imgb0074
    die Füllvolumen der Regelzelle V CT1 und V CT2 die Trimmzellenfüllungen V TT1 und VTT2 und die Ruderwinkel δsn und δbn für auftrieb- und momentfreie Fahrt bestimmt.
  • In einer weiteren Ausführungsform der Erfindung werden die erste erste Trimmlage und die zweite erste Trimmlage um 500 kNm ± 50 kNm unterschiedlich gewählt.
  • In einer weiteren Ausführungsform der Erfindung werden in den Schritten e) und l) eine erste zweite Trimmlage und eine zweite zweite Trimmlage gewählt, wobei die erste zweite Trimmlage und die zweite zweite Trimmlage um 1000 kNm ± 100 kNm unterschiedlich gewählt werden.
  • In einer weiteren Ausführungsform der Erfindung werden in Schritt m) die Koeffizienten Z w ,
    Figure imgb0075
    Z w w ,
    Figure imgb0076
    Z δsη ,
    Figure imgb0077
    M w ,
    Figure imgb0078
    M w w ,
    Figure imgb0079
    und M δsη
    Figure imgb0080
    und der Stabilitätshebelarm zGB bestimmt.
  • Bei beschleunigungsfreien Fahrten des Unterseebootes werden durch Änderung von Tankfüllungen aufgebrachte statische Kräfte durch Strömungskräfte an Ruder und Rumpf kompensiert. Da die Strömungskräfte in getauchter Fahrt mit dem Quadrat der Fahrgeschwindigkeit anwachsen, während die statischen Kräfte konstant bleiben, ergibt sich die Möglichkeit, die Strömungskräfte bzw. hydrodynamischen Koeffizienten aus der Kompensation von bekannten statisch eingeleiteten Gewichtskräften mit bisher nicht erreichter Genauigkeit zu bestimmen. Alle Messfahrten werden bei verschiedenen konstanten Geschwindigkeiten und verschiedenen vorgegebenen Trimmwinkeln des Bootes durch entsprechendes Legen von vorderem und hinterem Tiefenruder auf konstanter Tiefe durchgeführt. Damit ergibt sich die Möglichkeit, hydrodynamische Koeffizienten in Abhängigkeit von der Tauchtiefe des Bootes bzw. vom Abstand des Bootes zur Wasseroberfläche zu bestimmen.
  • Fig. 1
    Darstellung der Vektoren und Winkel am Unterseeboot
  • In Fig. 1 sind die Winkel und Größen am Beispiel eines Unterseeboots mit Kreuzruder gezeigt.

Claims (15)

  1. Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten mit einem vorderen Tiefenruder und einem hinteren Tiefenruder, wobei das Unterseeboot freischwimmend ist, wobei das Verfahren die folgenden Schritte aufweist:
    a) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer ersten ersten Geschwindigkeit und einer ersten ersten Trimmlage,
    b) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der ersten ersten Geschwindigkeit und einer zweiten ersten Trimmlage,
    c) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer zweiten ersten Geschwindigkeit und der ersten ersten Trimmlage,
    d) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der zweiten ersten Geschwindigkeit und der zweiten ersten Trimmlage,
    e) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer ersten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
    f) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
    g) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,
    h) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
    i) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
    j) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
    k) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
    l) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
    m) Ermitteln von hydrodynamischen Koeffizienten aus den in den vorhergehenden Schritten ermittelten Messgrößen,
    wobei die Schritte a) bis l) in beliebiger Reihenfolge durchgeführt werden, wobei der Schritt m) nach den Schritten a) bis l) durchgeführt wird, wobei während der beschleunigungsfreien Fahrten jeweils die Geschwindigkeit u des Unterseeboots, der Trimmwinkel θ, die vordere Tiefenruderlage δ s, der hintere Tiefenruderwinkel δb , die Volumenänderung der Trimmtanks ΔVTT und die Volumenänderung der Regelzelle ΔVCT als Messgrößen erfasst werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zusätzlich zu den Schritten a) bis d) die folgenden Schritte ausgeführt werden:
    n) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer ersten ersten Trimmlage,
    o) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer zweiten ersten Trimmlage.
  3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich zu den Schritten e) bis l) die folgenden Schritte ausgeführt werden:
    p) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
    q) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
    r) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,
    s) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Geschwindigkeiten ausgewählt sind aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 15 kn.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Geschwindigkeiten ausgewählt sind aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 14 kn.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als ersten vorderen Tiefenruderlage ein Winkel von + 15° bis + 25°, insbesondere von + 18° bis + 22° gewählt wird und dass als zweite vorderen Tiefenruderlage ein Winkel von - 15° bis - 25°, insbesondere von - 18° bis - 22° gewählt wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren derart durchgeführt wird, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
  8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verfahren derart durchgeführt wird, dass die Tauchtiefe so gewählt wird, dass weniger als 25 m, bevorzugt weniger als 15 m, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
  9. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verfahren derart durchgeführt wird, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und weniger als 25 m, bevorzugt weniger als 15 m, Wasser unter dem Unterseeboot sind.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich die Umdrehungsgeschwindigkeit n der Schraube und der Rollwinkel φ als Messgrößen erfasst werden.
  11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass während des Verfahrens die Gewichtsverteilung im Unterseeboot bis auf die gezielten Änderungen konstant gehalten wird.
  12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass im Schritt m) die Koeffizienten Z ,
    Figure imgb0081
    Z δs ,
    Figure imgb0082
    Z δb ,
    Figure imgb0083
    M ,
    Figure imgb0084
    M δs
    Figure imgb0085
    und M δb ,
    Figure imgb0086
    die Füllvolumen der Regelzelle V CT1 und V CT2 , die Trimmzellenfüllungen V TT1 und VTT2 und die Ruderwinkel δsn und δbn für auftrieb- und momentfreie Fahrt bestimmt werden.
  13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die erste erste Trimmlage und die zweite erste Trimmlage um 500 kNm ± 50 kNm unterschiedlich gewählt werden.
  14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in den Schritten e) bis l) eine erste zweite Trimmlage und eine zweite zweite Trimmlage gewählt wird, wobei die erste zweite Trimmlage und die zweite zweite Trimmlage um 1000 kNm ± 100 kNm unterschiedlich gewählt werden.
  15. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in Schritt m) die Koeffizienten Z w ,
    Figure imgb0087
    Z w w ,
    Figure imgb0088
    Z δsη ,
    Figure imgb0089
    M w ,
    Figure imgb0090
    M w w ,
    Figure imgb0091
    und M δsη
    Figure imgb0092
    und der Stabilitätshebelarm zGB bestimmt werden.
EP17818505.4A 2017-01-12 2017-12-13 Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten Active EP3568345B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200468.1A DE102017200468A1 (de) 2017-01-12 2017-01-12 Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten
PCT/EP2017/082510 WO2018130360A1 (de) 2017-01-12 2017-12-13 Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten

Publications (2)

Publication Number Publication Date
EP3568345A1 EP3568345A1 (de) 2019-11-20
EP3568345B1 true EP3568345B1 (de) 2021-04-07

Family

ID=60788583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17818505.4A Active EP3568345B1 (de) 2017-01-12 2017-12-13 Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten

Country Status (4)

Country Link
EP (1) EP3568345B1 (de)
DE (1) DE102017200468A1 (de)
ES (1) ES2878052T3 (de)
WO (1) WO2018130360A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218231B3 (de) 2018-10-24 2020-02-13 Thyssenkrupp Ag Verfahren zum Navigieren eines Unterwasserfahrzeugs und Unterwasserfahrzeug
CN109766569A (zh) * 2018-11-23 2019-05-17 中国船舶重工集团公司第七一九研究所 潜艇运动模型简化方法及装置
CN111862722B (zh) * 2020-09-11 2022-03-04 中国人民解放军海军工程大学 一种潜艇操纵运动示教系统
CN112487555B (zh) * 2020-11-29 2024-01-09 西北工业大学 一种水空两栖潜水器无量纲阻力系数辨识方法
CN113514224B (zh) * 2021-05-26 2022-10-04 浙江大学 一种高压海底电缆水动力系数测量装置及其测量方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3052120A (en) * 1959-05-29 1962-09-04 Goodman Alex Planar motion mechanism and system
JPS6343896A (ja) * 1986-08-11 1988-02-24 Nec Corp 潜水船自動重量ツリム制御装置
JP2004334714A (ja) * 2003-05-09 2004-11-25 Yamaha Motor Co Ltd パラメータ最適化方法、パラメータ最適化装置、パラメータ最適化プログラム、及び、航走制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017200468A1 (de) 2018-07-12
EP3568345A1 (de) 2019-11-20
WO2018130360A1 (de) 2018-07-19
ES2878052T3 (es) 2021-11-18

Similar Documents

Publication Publication Date Title
EP3568345B1 (de) Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten
EP2876041B1 (de) Anordnung zur Ermittlung einer auf ein Ruder wirkenden Kraft
EP2435998A1 (de) Verfahren zur rechnergestützten steuerung eines schiffes
DE2245166C3 (de) Automatische Anordnung zur dynamischen Einhaltung der Position und zum Steuern eines Wasser- oder Unterwasserfahrzeugs
EP3568346B1 (de) Vorrichtung und verfahren zur steuerung eines unterwasserfahrzeugs
DE102018003250B3 (de) Verfahren zur magnetischen Signaturvermessung
DE102009001220B3 (de) Verfahren und Vorrichtung zur Bestimmung aerodynamischer Kenngrößen eines Flugzeuges
DE2454593A1 (de) Hochsee-fahrzeug
DE893630C (de) Geraet zur Stromraeumung
DE2045407C3 (de) Einrichtung zur Ermittlung des Tiefganges der Schiffsenden
EP3152589A1 (de) Verfahren zum ermitteln einer unterwasserkarte, unterwasserkarte sowie fahrzeug
DE2947523A1 (de) Schwenkbarer universalkiel mit spreizbarer kielflosse
DE102012015491A1 (de) Anordnung aus einem Luftfahrzeug und einer abwerfbaren Luftfahrzeug-Außenlast sowie Verfahren zur Ermittlung von für einen Abwurf einer Außenlast von einem Luftfahrzeug zulässigen Flugzuständen und Parametern einer Abgangsregelung für die Außenlast
EP3800441A2 (de) Verfahren sowie vermessungsvorrichtung zur vermessung eines bauwerks
DE102019212491A1 (de) Unterwasserfahrzeug ohne inertiales Navigationssystem
DE102019131106A1 (de) Schwimmkörper und Verfahren zur Stabilisierung eines Schwimmkörpers
DD240715A1 (de) Verfahren zur bestimmung des tiefgangs und masseaenderung eines schiffes
DD259385A1 (de) Verfahren und einrichtung zur automatischen kontrolle und regelung der schwimmlage, der stabilitaet und der gesamtfestigkeit eines schwimmkoerpers
DE1431318A1 (de) Verfahren und Einrichtung,um ein Wasserfahrzeug in einer gewuenschten Position zu halten
DE102023125613A1 (de) Automatische feststellung einer festmachrichtung eines bootes
DE102016107558B4 (de) Vorrichtung zur lösbaren Verbindung eines Drahtes und Verfahren zum Ausbringen des Gerätes in ein Gewässer mit der Vorrichtung
DE1917002A1 (de) Pendel-Beschleunigungsmesser
EP3922544A1 (de) Messplattform und verfahren zum auffinden und zur überwachung von rohrleitungen unter wasser
DE102014224204A1 (de) Verfahren und Vorrichtung zum Führen einer Last gemäß einer Soll-Absolut-Trajektorienvorgabe mittels eines Fahrzeugs, welches einer Fluidbewegung eines Fluids ausgesetzt ist
DE3430765A1 (de) System zur automatisierten kontrolle der schwimmlage und stabilitaet von schiffen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190812

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017010036

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B63B0009080000

Ipc: B63G0008000000

RIC1 Information provided on ipc code assigned before grant

Ipc: B63G 8/00 20060101AFI20200707BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200901

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1379368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010036

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2878052

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010036

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 7

Ref country code: FR

Payment date: 20231222

Year of fee payment: 7

Ref country code: DE

Payment date: 20231214

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1379368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213