EP3568345B1 - Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten - Google Patents
Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten Download PDFInfo
- Publication number
- EP3568345B1 EP3568345B1 EP17818505.4A EP17818505A EP3568345B1 EP 3568345 B1 EP3568345 B1 EP 3568345B1 EP 17818505 A EP17818505 A EP 17818505A EP 3568345 B1 EP3568345 B1 EP 3568345B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- trim
- speed
- acceleration
- hydroplane
- keel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 230000009189 diving Effects 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims 1
- 230000001133 acceleration Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 5
- 229920000535 Tan II Polymers 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/30—Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
Definitions
- the invention relates to a method for determining hydrodynamic coefficients in submarines.
- the z-direction is the direction perpendicular to the longitudinal axis of the submarine, with positive values pointing downwards.
- the y direction is the direction transverse to the longitudinal axis of the submarine, with positive values pointing to starboard.
- ⁇ s is the aft depth rudder angle
- ⁇ b is the forward depth rudder angle
- ⁇ is the angle of attack of the submarine
- ⁇ is the drift angle of the submarine
- f x a factor for rudder
- X rudder f x 4
- cross rudder f x 1
- W is the weight of the submarine including flooded clearances
- W. ′ W. ⁇ 2 ⁇ L. 2 ⁇ U ⁇ 2 a dimensionless value
- B is the buoyancy of the submarine
- B. ′ B. ⁇ 2 ⁇ L.
- C is the origin of the boat-based coordinate system
- L is the length of the submarine
- ⁇ is the density of the surrounding water
- g is the acceleration due to gravity
- U the speed of the submarine when traveling through the water
- u is the speed component in the x direction
- U the speed of the submarine during stationary travel through the water for a freely selectable reference travel state
- u c is the propulsion speed, which corresponds to the speed u that the boat would achieve at the current propeller speed when traveling ahead on a level keel with zero rudder angles
- u c ′ u U ⁇ a dimensionless value
- v is the speed component in the y direction across the submarine
- v ′ v U ⁇ a dimensionless value
- w is the speed component in the z direction normal to the submarine
- w ′ w U ⁇ a dimensionless value
- Z is the hydrodynamic force in the z direction
- Z * is the coefficient describing the normal force Z as a function of
- Z w is the coefficient describing the normal force Z as a function of the product u w
- Z w ′ Z w ⁇ 2 L. 2 a dimensionless value, Z
- , Z w ′ Z w ⁇ 2 L. 2 a dimensionless value, Z w
- the coefficient describing the normal force Z as a function of w ⁇ v 2 + w 2 , Z w w ′ Z w w ⁇ 2 L.
- Z ww is the coefficient describing the normal force Z as a function of
- Z ww ′ Z ww ⁇ 2 L. 2 a dimensionless value
- ⁇ is the coefficient to describe the normal force Z as a function of w v 2 + w 2 ⁇ ⁇ ⁇ C. - 1
- Z w w ⁇ ′ Z w w ⁇ ⁇ 2 L. 2 a dimensionless value
- Z ⁇ s is the coefficient describing the normal force Z as a function of u 2 ⁇ s
- Z ⁇ s ′ Z ⁇ s ′ ⁇ 2 L.
- Z ⁇ b is the coefficient describing the normal force Z as a function of u 2 ⁇ b
- Z ⁇ b ′ Z ⁇ b ′ ⁇ 2 L. 2 a dimensionless value
- Z ⁇ s ⁇ is the coefficient describing the normal force Z as a function of u 2 ⁇ s ( ⁇ C - 1)
- Z ⁇ s ⁇ ′ Z ⁇ s ⁇ ′ ⁇ 2 L. 2 a dimensionless value
- M is the hydrodynamic torque around the y- axis, also called pitching torque
- M * is the coefficient describing the pitching moment M
- M. ⁇ ′ M. ⁇ ⁇ 2 L.
- M w is the coefficient for describing the pitching moment M as a function of u w
- M. w ′ M. w ⁇ 2 L. 3 a dimensionless value
- , M. w ′ M. w ⁇ 2 L. 3 a dimensionless value
- M. w w ′ M. w w ⁇ 2 L. 3 a dimensionless value
- M ww is the coefficient describing the pitching moment M as a function of
- M. ww ′ M. ww ⁇ 2 L. 3 a dimensionless value
- ⁇ is the coefficient to describe the pitching moment M as a function of w v 2 + w 2 ⁇ ⁇ ⁇ C. - 1
- M. w w ⁇ ′ M. w w ⁇ ⁇ 2 L. 3 a dimensionless value
- M ⁇ s is the coefficient for describing the pitching moment M as a function of u 2 ⁇ s
- M. ⁇ s ′ M. ⁇ s ⁇ 2 L. 3 a dimensionless value
- M ⁇ b is the coefficient for describing the pitching moment M as a function of u 2 ⁇ b , M.
- M ⁇ b ′ M. ⁇ b ⁇ 2 L. 3 a dimensionless value
- M ⁇ S ⁇ is the coefficient to describe the pitching moment M as a function of u 2 ⁇ s ( ⁇ C - 1)
- M. ⁇ s ⁇ ′ M. ⁇ s ⁇ ⁇ 2 L. 3 a dimensionless value.
- the JP S63 43896 A has the purpose of automatically adjusting weighting and trimming. For this purpose, data is recorded with sensors.
- the object of the invention is to provide a method with which these hydrodynamic coefficients can be recorded or determined simply and precisely by measuring technology on a real submarine.
- the submarine is free-swimming in this procedure.
- Free floating means that the submarine is not towed or has some other form of connection, for example a submarine model that is attached to a rod. So none work external forces on the submarine, for example a force via a tow rope.
- the submarine is therefore force-free, i.e. all forces, acceleration from the propeller, friction, buoyancy from the hull, buoyancy from the rudder, etc., balance each other out.
- Free swimming thus enables direct and simple determination on a specific submarine and not on a model. As a result, the parameters determined are exact and can be determined individually depending on the state, for example different loads.
- a pitch angle ⁇ of the submarine of ⁇ 1 ° ⁇ ⁇ ⁇ + 1 °, preferably of ⁇ 0.2 ° ⁇ ⁇ + 0.2 °, particularly preferably of ⁇ 0.05 ° ⁇ ⁇ ⁇ + 0.05 ° to be understood.
- the pitch angle is the angle between the longitudinal axis of the submarine and the projection of the longitudinal axis of the submarine into the plane and thus reflects the inclination in the z-direction.
- a particular pitch angle ⁇ of the submarine is
- Acceleration-free travel is understood to mean an operating mode in which the boat moves at a constant speed, with constant being regarded as constant within the scope of the detection accuracy and control accuracy.
- the measured values are evaluated separately for journeys with a flat keel and with a sloping keel.
- the measured values obtained in steps a) to d) are shown as a function of 1 u ki 2 evaluated by calculating best-fit straight lines.
- the best-fit straight lines result as limit values for u ⁇ ⁇ the rear depth rudder angle ⁇ sn and front depth rudder angle ⁇ bn for the so-called lift and torque-free ride. Only the limit values are evaluated here.
- ⁇ ski ⁇ sn - G ⁇ L.
- x CT is the x coordinate of the center of gravity of the control cell
- x CT ′ x CT L.
- ⁇ x TT is the positive distance of the center of gravity from the front to the rear trim cell volume
- ⁇ x TT ′ ⁇ x TT L.
- x ⁇ s the x -coordinate of the forward depth rudder
- x ⁇ s ′ x ⁇ s L.
- x ⁇ b the x -coordinate of the rear depth rudder
- x ⁇ b ′ x ⁇ b L.
- V CT is the filling volume of the control cell
- V CT ′ V CT 1 2 L. 3
- the rudder angles are about 1 u ki 2 applied.
- the slope of this straight line is not relevant, it is decisive for zero and thus for u ki 2 towards infinitely extrapolated limit value.
- the x-coordinates of trim and control cells and rudder position are known from boat geometry.
- V TTki ′ 1 ⁇ x TT ′ u i 2 G ⁇ L. ⁇ f x ⁇ M. ⁇ s ′ ⁇ ⁇ ski - ⁇ sn + M. ⁇ b ′ ⁇ ⁇ bki - ⁇ bn cos ⁇ ki - x CT ′ ⁇ V CTki ′
- the coefficients Z ⁇ ′ , Z ⁇ s ′ , Z ⁇ b ′ , M. ⁇ ′ , M. ⁇ s ′ and M. ⁇ b ′ are determined for lift and torque-free travel.
- z GB ′ z GB L. a dimensionless value
- z Gn the z-component of the center of gravity of the boat including flooded clearances for the state of buoyancy and torque-free travel
- z B the z -coordinate of the lift center of gravity of the shape displacement in the boat-fixed coordinate system.
- the determination is made from the measured data by means of multilinear regression using the variables already known from a).
- the coefficients Z w ′ , Z w w ′ , Z ⁇ s ⁇ ′ , M. w ′ , M. w w ′ , and M. ⁇ s ⁇ ′ and the stability lever arm z GB determined.
- first speeds in particular a total of five to eight first speeds, particularly preferably six first speeds, are particularly preferably used.
- second speeds in particular a total of four to eight second speeds, particularly preferably five second speeds, are particularly preferably used.
- the first speeds are selected from the range from 4 kn to 25 kn, preferably from the range from 5 kn to 20 kn, particularly preferably from the range from 6 kn to 15 kn.
- the second speeds are selected from the range from 4 kn to 25 kn, preferably from the range from 5 kn to 20 kn, particularly preferably from the range from 6 kn to 14 kn.
- an angle of + 15 ° to + 25 °, in particular + 18 ° to + 22 °, is selected as the first forward elevator position and an angle of -15 ° to -25 ° is selected as the second forward elevator position, selected in particular from -18 ° to -22 °.
- the method is carried out in such a way that the diving depth is selected so that at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, water above the submarine and at least 25 m, preferably at least 50 m , particularly preferably at least the length of the submarine, are water under the submarine.
- This procedure determines the hydrodynamic coefficients in the unaffected deep water area.
- the method is carried out in such a way that the diving depth is chosen so that less than 25 m, preferably less than 15 m, water above the submarine and at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, there are water under the submarine.
- This procedure determines the hydrodynamic coefficients in the near-surface area and is important for snorkeling, for example.
- This method is preferably used in addition to the determination in the unaffected deep water area.
- the method is carried out in such a way that the diving depth is selected so that at least 25 m, preferably at least 50 m, particularly preferably at least the length of the submarine, water above the submarine and less than 25 m, preferably less than 15 m, there are water under the submarine.
- This procedure determines the hydrodynamic coefficients in the area close to the ground and is important, for example, for submerged trips in shallow water. This method is preferably used in addition to the determination in the unaffected deep water area.
- the speed u of the submarine, the front depth rudder angle ⁇ s , the rear depth rudder angle ⁇ b , the change in volume of the trim tanks ⁇ V TT and the change in volume of the control cell ⁇ V CT are recorded during the acceleration-free journeys.
- the speed of rotation n of the screw and the trim angle ⁇ are additionally recorded during the acceleration-free journeys.
- the roll angle ⁇ and the change in volume of the ballast tank ⁇ V CT are also recorded during the acceleration-free journeys.
- the weight distribution in the submarine is kept constant except for the targeted changes during the method. In particular, care is taken that the crew does not change their position, as this leads to non-detectable mass displacements and thus reduces the measurement accuracy of the method.
- the first first trim position and the second first trim position are selected to be different by 500 kNm ⁇ 50 kNm.
- a first, second trim position and a second, second trim position are selected in steps e) and l), the first, second trim position and the second, second trim position being selected to be different by 1000 kNm ⁇ 100 kNm.
- the coefficients are in step m) Z w ′ , Z w w ′ , Z ⁇ s ⁇ ′ , M. w ′ , M. w w ′ , and M. ⁇ s ⁇ ′ and the stability lever arm z GB determined.
- Fig. 1 the angles and sizes are shown using the example of a submarine with a cross rudder.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Navigation (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten.
-
-
- Die z-Richtung ist die Richtung senkrecht zur Längsachse des Unterseebootes, wobei positive Werte nach unten zeigen.
Die y-Richtung ist die Richtung quer zur Längsachse des Unterseebootes, wobei positive Werte nach steuerbord zeigen. - Hierbei ist:
δ s der hintere Tiefenruderwinkel,
δ b der vordere Tiefenruderwinkel,
α der Anstellwinkel des Unterseeboots,
β der Driftwinkel des Unterseeboots,
fx ein Faktor für Ruder, bei X-Ruder fx = 4, bei Kreuzruder fx = 1,
η das Verhältnis
W das Gewicht des Unterseeboots einschließlich gefluteter Freiräume,
B der Formauftrieb des Unterseeboots,
C der Ursprung des bootsfesten Koordinatensystems,
L die Länge des Unterseeboots,
ρ die Dicht des umgebenden Wassers,
g die Erdbeschleunigung,
U die Geschwindigkeit des Unterseeboots bei Fahrt durch das Wasser,
u die Geschwindigkeitskomponente in x-Richtung,
U die Geschwindigkeit des Unterseeboots bei stationärer Fahrt durch das Wasser für einen frei wählbaren Referenzfahrtzustand,
uc die Propulsionsgeschwindigkeit, welche der Geschwindigkeit u entspricht, die das Boot bei der momentanen Propellerdrehzahl bei Vorausfahrt auf ebenem Kiel mit Nullruderlagen erreichen würde,
v die Geschwindigkeitskomponente in y-Richtung quer zum Unterseeboot,
w die Geschwindigkeitskomponente in z-Richtung normal zum Unterseeboot,
Z die Hydrodynamische Kraft in z-Richtung,
Z * der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2,
Zw der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von dem Produkt u · w,
Z |w| der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von dem Produkt u · |w|,
Z w|w| der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von
Zww der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von |w| ·
Z w|w|η der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von w ·
Zδs der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2 · δs,
Zδb der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2 · δb,
Z δsη der Koeffizient zur Beschreibung der Normalkraft Z als Funktion von u 2 · δs · (η · C - 1),
M das hydrodynamische Drehmoment um die y-Achse, auch Stampfmoment genannt,
M * der Koeffizient zur Beschreibung des Stampfmoments M,
Mw der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u · w,
M |w| der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u · |w|,
M w|w| der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von w ·
Mww der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von |w| ·
M w|w|η der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von w ·
Mδs der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u 2 · δs,
Mδb der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u 2 · δb,
MδSη der Koeffizient zur Beschreibung des Stampfmoments M als Funktion von u 2 · δs · (η · C - 1),
- Diese hydrodynamischen Koeffizienten können theoretisch berechnet oder im Modellversuch experimentell bestimmt werden. Dieses ist jedoch extrem aufwändig und kann auch nicht präzise für die aktuelle Beladungssituation des Unterseeboots durchgeführt werden, sodass mit Näherungswerten gearbeitet werden muss.
- Die exakte Kenntnis dieser Parameter erlaubt eine präzise Vorhersage des Bootsverhaltens. Somit können Manöver sehr präzise gesteuert werden, wenn diese Parameter exakt bekannt sind. Die berechneten oder im Modellversuch bestimmten hydrodynamischen Koeffizienten sind für eine präzise Vorhersage des Bootsverhaltens daher im Allgemeinen zu ungenau. Deshalb werden die hydrodynamischen Koeffizienten üblicher Weise durch Auswertung von Großausführungsversuchen verifiziert bzw. korrigiert, wobei die heute verwendeten Großausführungsversuchen jedoch nur aufwändige Näherungsverfahren darstellen.
- Die
JP S63 43896 A - Aus der
US 2004/224577 A1 ist eine Vorrichtung zur Navigationskontrolle eines Wasserfahrzeugs bekannt. - Aufgabe der Erfindung ist es, ein Verfahren bereitzustellen, mit dem diese hydrodynamischen Koeffizienten an einem realen Unterseeboot einfach und präzise messtechnisch erfasst oder bestimmt werden können.
- Gelöst wird diese Aufgabe durch das Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten mit den in Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den Zeichnungen.
- Das erfindungsgemäße Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten mit einem vorderen Tiefenruder und einem hinteren Tiefenruder weist die folgenden Schritte auf:
- a) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer ersten ersten Geschwindigkeit und einer ersten ersten Trimmlage,
- b) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der ersten ersten Geschwindigkeit und einer zweiten ersten Trimmlage,
- c) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer zweiten ersten Geschwindigkeit und der ersten ersten Trimmlage,
- d) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der zweiten ersten Geschwindigkeit und der zweiten ersten Trimmlage,
- e) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer ersten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
- f) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
- g) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,
- h) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
- i) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
- j) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,
- k) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
- l) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,
- m) Ermitteln von hydrodynamischen Koeffizienten aus den in den vorhergehenden Schritten ermittelten Messgrößen,
- Das Unterseeboot ist bei diesem Verfahren freischwimmend. Freischwimmend bedeutet, dass das Unterseeboot nicht geschleppt wird oder eine andere Form einer Anbindung hat, beispielsweise sich um ein Unterseebootmodell handelt, welches an einem Stab befestigt ist. Somit wirken keine externen Kräfte auf das Unterseeboot, beispielsweise eine Kraft über ein Schleppseil. Bei beschleunigungsfreier Fahrt ist das Unterseeboot somit kräftefrei, das heißt alle Kräfte, Beschleunigung durch den Propeller, Reibung, Auftrieb durch den Schiffskörper, Auftrieb durch Ruder etc., gleichen sich in Summe aus. Freischwimmend ermöglicht somit die direkte und einfache Bestimmung an einem konkreten Unterseeboot und nicht an einem Modell. Hierdurch sind die ermittelten Parameter exakt und können je nach Zustand, beispielsweise unterschiedliche Beladung) individuell ermittelt werden.
- Unter einem ebenen Kiel ist insbesondere ein Stampfwinkel θ des Unterseeboots von - 1° < θ < + 1°, bevorzugt von - 0,2° < θ < + 0,2°, besonders bevorzugt von - 0,05° < θ < + 0,05° zu verstehen. Der Stampfwinkel ist der Winkel zwischen der Längsachse des Unterseeboots und der Projektion der Längsachse des Unterseeboots in die Ebene und gibt somit die Neigung in z-Richtung wieder.
- Unter einem schrägem Kiel ist ein insbesondere Stampfwinkel θ des Unterseeboots von |θ| > 0,5°, bevorzugt von |θ| > 1°, besonders bevorzugt von |θ| > 2° zu verstehen.
- Unter beschleunigungsfreier Fahrt wird ein Betriebsmodus verstanden, bei dem sich das Boot mit konstanter Geschwindigkeit bewegt, wobei konstant als konstant im Rahmen der Erfassungsgenauigkeit und Regelgenauigkeit anzusehen ist.
- Da die Fahrt bei konstanter Tiefe erfolgt, kompensieren sich die vertikal verlaufenden Kräfte, also die Gravitations- oder die Auftriebsbeschleunigung, sodass es zu keinem Auf- oder Abtrieb kommt.
- Bei einer beschleunigungsfreien Fahrt gleichen sich die Kräfte aus. Somit wirkt keine resultierende Kraft auf das Unterseeboot. Es gilt somit, dass die Summe aller wirkenden Kräfte null ist. Des Weiteren gilt, dass auch die Summe aller Kraftveränderungen zwischen zwei beschleunigungsfreien Fahrten gleich null sein muss. Die absolute Geschwindigkeit in horizontaler Richtung ist bei Fahrt definitionsgemäß größer null. Aus technischen Gründen sind sehr geringe Geschwindigkeiten, insbesondere kleiner 2 kn, ganz besonders kleiner 1 kn, nicht vorteilhaft.
- Um die Messwerte sinnvoll zu indizieren, werden die verschiedenen ersten Geschwindigkeiten und zweiten Geschwindigkeiten mit dem Index i bezeichnet. So ist i = 1 für die erste erste Geschwindigkeit und die erste zweite Geschwindigkeit und i = 2 für die zweite erste Geschwindigkeit und die zweite zweite Geschwindigkeit.
- Als weiter Index wird k verwendet, um die Trimm- und Gewichtszustände zu unterscheiden. So ist k = 1 für die erste erste Trimmlage und die erste vordere Tiefenruderlage und k = 2 für die zweite erste Trimmlage und die zweite vordere Tiefenruderlage.
- Die Messwerte werden getrennt für Fahrten bei ebenem Kiel und bei schrägem Kiel getrennt ausgewertet.
- Beispielsweise zunächst werden die Messwerte für die Fahrten bei ebenem Kiel ausgewertet.
- Zunächst werden die in den Schritten a) bis d) erhaltenen Messwerte als Funktion von
- Hierbei ist:
xCT die x-Koordinate des Schwerpunkts der Regelzelle,
ΔxTT der positive Abstand des Schwerpunkts vom vorderen zum hinteren Trimmzellenvolumen,
xδs die x-Koordinate des vorderen Tiefenruders,
xδb die x-Koordinate des hinteren Tiefenruders,
VCT das Füllvolumen der Regelzelle,
VTT die Trimmzellenfüllung, wobei das Trimmmoment MTT =- ρ · ΔxTT · VTT ist,
-
-
-
- Die Füllvolumen der Regelzelle V CT1 und V CT2 und die Trimmzellenfüllungen V TT1 und V TT2 für Trimm- und Gewichtszustände des Unterseebootes, gekennzeichnet durch den Index k = 1 und k = 2 ergeben sich als Mittelwerte der V CT1 i' V CT2 i, V TT1i bzw. V TT2i Werte.
-
- Anschließend werden die in den Schritten e) bis l) ermittelten Messwerte für die Fahrten mit achter- oder vorlastig statisch vertrimmten Boot ausgewertet.
-
-
zGB der Stabilitätshebelarm zGB = zGn - zB,
zGn die z-Komponente des Gewichtsschwerpunkts des Bootes einschließlich gefluteter Freiräume für den Zustand der auftriebs- und momentfreien Fahrt,
zB die z-Koordinate des Auftriebsschwerpunkts der Formverdrängung im bootsfesten Koordinatensystem. - Die Ermittlung erfolgt aus den gemessenen Daten mittels multilinearer Regression unter Verwendung der bereits aus a) bekannten Größen.
-
- In einer weiteren Ausführungsform der Erfindung werden zusätzlich zu den Schritten a) bis d) die folgenden Schritte ausgeführt:
- n) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer ersten ersten Trimmlage,
- o) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer zweiten ersten Trimmlage.
- Besonders bevorzugt werden weitere erste Geschwindigkeiten, insbesondere insgesamt fünf bis acht erste Geschwindigkeiten, besonders bevorzugt sechs erste Geschwindigkeiten, verwendet.
- In einer weiteren Ausführungsform der Erfindung werden zusätzlich zu den Schritten e) bis h) die folgenden Schritte ausgeführt:
- p) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
- q) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,
- r) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,
- s) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung.
- Besonders bevorzugt werden weitere zweite Geschwindigkeiten, insbesondere insgesamt vier bis acht zweite Geschwindigkeiten, besonders bevorzugt fünf zweite Geschwindigkeiten, verwendet.
- In einer weiteren Ausführungsform der Erfindung sind die ersten Geschwindigkeiten ausgewählt aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 15 kn.
- In einer weiteren Ausführungsform der Erfindung sind die zweiten Geschwindigkeiten ausgewählt aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 14 kn.
- In einer weiteren Ausführungsform der Erfindung wird als ersten vorderen Tiefenruderlage ein Winkel von + 15° bis + 25°, insbesondere von + 18° bis + 22° gewählt wird und dass als zweite vorderen Tiefenruderlage ein Winkel von - 15° bis - 25°, insbesondere von - 18° bis - 22° gewählt.
- In einer weiteren Ausführungsform der Erfindung wird das Verfahren derart durchgeführt, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
- Dieses Verfahren bestimmt die hydrodynamischen Koeffizienten im unbeeinflussten Tiefwasserbereich.
- In einer weiteren Ausführungsform der Erfindung wird das Verfahren derart durchgeführt, dass die Tauchtiefe so gewählt wird, dass weniger als 25 m, bevorzugt weniger als 15 m, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
- Dieses Verfahren bestimmt die hydrodynamischen Koeffizienten im oberflächennahen Bereich und ist zum Beispiel für Schnorchelfahrt wichtig. Dieses Verfahren wird bevorzugt zusätzlich zum Bestimmung im unbeeinflussten Tiefwasserbereich verwendet.
- In einer weiteren Ausführungsform der Erfindung wird das Verfahren derart durchgeführt, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und weniger als 25 m, bevorzugt weniger als 15 m, Wasser unter dem Unterseeboot sind.
- Dieses Verfahren bestimmt die hydrodynamischen Koeffizienten im grundnahen Bereich und ist zum Beispiel für getauchte Fahrten im Flachwasser wichtig. Dieses Verfahren wird bevorzugt zusätzlich zum Bestimmung im unbeeinflussten Tiefwasserbereich verwendet.
- Erfindungsgemäß werden während der beschleunigungsfreien Fahrten jeweils die Geschwindigkeit u des Unterseeboots, der vordere Tiefenruderwinkel δ s, der hintere Tiefenruderwinkel δb , die Volumenänderung der Trimmtanks ΔVTT und die Volumenänderung der Regelzelle ΔVCT erfasst.
- In einer weiteren Ausführungsform der Erfindung werden während der beschleunigungsfreien Fahrten zusätzlich die Umdrehungsgeschwindigkeit n der Schraube und der Trimmwinkel θ erfasst.
- In einer weiteren Ausführungsform der Erfindung werden während der beschleunigungsfreien Fahrten jeweils zusätzlich der Rollwinkel φ und Volumenänderung des Ballasttanks ΔVCT erfasst.
- In einer weiteren Ausführungsform der Erfindung wird während des Verfahrens die Gewichtsverteilung im Unterseeboot bis auf die gezielten Änderungen konstant gehalten. Insbesondere wird darauf geachtet, dass die Besatzung ihre Position nicht verändert, da dieses zu nicht erfassbaren Masseverschiebungen führt und somit die Messgenauigkeit des Verfahrens verringert.
-
- In einer weiteren Ausführungsform der Erfindung werden die erste erste Trimmlage und die zweite erste Trimmlage um 500 kNm ± 50 kNm unterschiedlich gewählt.
- In einer weiteren Ausführungsform der Erfindung werden in den Schritten e) und l) eine erste zweite Trimmlage und eine zweite zweite Trimmlage gewählt, wobei die erste zweite Trimmlage und die zweite zweite Trimmlage um 1000 kNm ± 100 kNm unterschiedlich gewählt werden.
-
- Bei beschleunigungsfreien Fahrten des Unterseebootes werden durch Änderung von Tankfüllungen aufgebrachte statische Kräfte durch Strömungskräfte an Ruder und Rumpf kompensiert. Da die Strömungskräfte in getauchter Fahrt mit dem Quadrat der Fahrgeschwindigkeit anwachsen, während die statischen Kräfte konstant bleiben, ergibt sich die Möglichkeit, die Strömungskräfte bzw. hydrodynamischen Koeffizienten aus der Kompensation von bekannten statisch eingeleiteten Gewichtskräften mit bisher nicht erreichter Genauigkeit zu bestimmen. Alle Messfahrten werden bei verschiedenen konstanten Geschwindigkeiten und verschiedenen vorgegebenen Trimmwinkeln des Bootes durch entsprechendes Legen von vorderem und hinterem Tiefenruder auf konstanter Tiefe durchgeführt. Damit ergibt sich die Möglichkeit, hydrodynamische Koeffizienten in Abhängigkeit von der Tauchtiefe des Bootes bzw. vom Abstand des Bootes zur Wasseroberfläche zu bestimmen.
- Fig. 1
- Darstellung der Vektoren und Winkel am Unterseeboot
- In
Fig. 1 sind die Winkel und Größen am Beispiel eines Unterseeboots mit Kreuzruder gezeigt.
Claims (15)
- Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten mit einem vorderen Tiefenruder und einem hinteren Tiefenruder, wobei das Unterseeboot freischwimmend ist, wobei das Verfahren die folgenden Schritte aufweist:a) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer ersten ersten Geschwindigkeit und einer ersten ersten Trimmlage,b) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der ersten ersten Geschwindigkeit und einer zweiten ersten Trimmlage,c) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer zweiten ersten Geschwindigkeit und der ersten ersten Trimmlage,d) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei der zweiten ersten Geschwindigkeit und der zweiten ersten Trimmlage,e) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer ersten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,f) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,g) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,h) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der ersten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,i) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,j) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der ersten Trimmtankfüllung,k) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der ersten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,l) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei der zweiten zweiten Geschwindigkeit und der zweiten vorderen Tiefenruderlage und der zweiten Trimmtankfüllung,m) Ermitteln von hydrodynamischen Koeffizienten aus den in den vorhergehenden Schritten ermittelten Messgrößen,wobei die Schritte a) bis l) in beliebiger Reihenfolge durchgeführt werden, wobei der Schritt m) nach den Schritten a) bis l) durchgeführt wird, wobei während der beschleunigungsfreien Fahrten jeweils die Geschwindigkeit u des Unterseeboots, der Trimmwinkel θ, die vordere Tiefenruderlage δ s, der hintere Tiefenruderwinkel δb , die Volumenänderung der Trimmtanks ΔVTT und die Volumenänderung der Regelzelle ΔVCT als Messgrößen erfasst werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zusätzlich zu den Schritten a) bis d) die folgenden Schritte ausgeführt werden:n) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer ersten ersten Trimmlage,o) beschleunigungsfreie Fahrt mit ebenem Kiel bei konstanter Tiefe und bei einer dritten ersten Geschwindigkeit und einer zweiten ersten Trimmlage.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich zu den Schritten e) bis l) die folgenden Schritte ausgeführt werden:p) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,q) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer ersten Trimmtankfüllung,r) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer ersten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung,s) beschleunigungsfreie Fahrt mit schrägem Kiel bei konstanter Tiefe und bei einer dritten zweiten Geschwindigkeit und einer zweiten vorderen Tiefenruderlage und einer zweiten Trimmtankfüllung.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Geschwindigkeiten ausgewählt sind aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 15 kn.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Geschwindigkeiten ausgewählt sind aus dem Bereich von 4 kn bis 25 kn, bevorzugt aus dem Bereich von 5 kn bis 20 kn, besonders bevorzugt aus dem Bereich von 6 kn bis 14 kn.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass als ersten vorderen Tiefenruderlage ein Winkel von + 15° bis + 25°, insbesondere von + 18° bis + 22° gewählt wird und dass als zweite vorderen Tiefenruderlage ein Winkel von - 15° bis - 25°, insbesondere von - 18° bis - 22° gewählt wird.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren derart durchgeführt wird, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verfahren derart durchgeführt wird, dass die Tauchtiefe so gewählt wird, dass weniger als 25 m, bevorzugt weniger als 15 m, Wasser über dem Unterseeboot und wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser unter dem Unterseeboot sind.
- Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Verfahren derart durchgeführt wird, dass die Tauchtiefe so gewählt wird, dass wenigstens 25 m, bevorzugt wenigstens 50 m, besonders bevorzugt wenigstes die Länge des Unterseeboots, Wasser über dem Unterseeboot und weniger als 25 m, bevorzugt weniger als 15 m, Wasser unter dem Unterseeboot sind.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich die Umdrehungsgeschwindigkeit n der Schraube und der Rollwinkel φ als Messgrößen erfasst werden.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass während des Verfahrens die Gewichtsverteilung im Unterseeboot bis auf die gezielten Änderungen konstant gehalten wird.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die erste erste Trimmlage und die zweite erste Trimmlage um 500 kNm ± 50 kNm unterschiedlich gewählt werden.
- Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in den Schritten e) bis l) eine erste zweite Trimmlage und eine zweite zweite Trimmlage gewählt wird, wobei die erste zweite Trimmlage und die zweite zweite Trimmlage um 1000 kNm ± 100 kNm unterschiedlich gewählt werden.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017200468.1A DE102017200468A1 (de) | 2017-01-12 | 2017-01-12 | Verfahren zur Bestimmung von hydrodynamischen Koeffizienten bei Unterseebooten |
PCT/EP2017/082510 WO2018130360A1 (de) | 2017-01-12 | 2017-12-13 | Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3568345A1 EP3568345A1 (de) | 2019-11-20 |
EP3568345B1 true EP3568345B1 (de) | 2021-04-07 |
Family
ID=60788583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17818505.4A Active EP3568345B1 (de) | 2017-01-12 | 2017-12-13 | Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3568345B1 (de) |
DE (1) | DE102017200468A1 (de) |
ES (1) | ES2878052T3 (de) |
WO (1) | WO2018130360A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018218231B3 (de) | 2018-10-24 | 2020-02-13 | Thyssenkrupp Ag | Verfahren zum Navigieren eines Unterwasserfahrzeugs und Unterwasserfahrzeug |
CN109766569A (zh) * | 2018-11-23 | 2019-05-17 | 中国船舶重工集团公司第七一九研究所 | 潜艇运动模型简化方法及装置 |
CN111862722B (zh) * | 2020-09-11 | 2022-03-04 | 中国人民解放军海军工程大学 | 一种潜艇操纵运动示教系统 |
CN112487555B (zh) * | 2020-11-29 | 2024-01-09 | 西北工业大学 | 一种水空两栖潜水器无量纲阻力系数辨识方法 |
CN113514224B (zh) * | 2021-05-26 | 2022-10-04 | 浙江大学 | 一种高压海底电缆水动力系数测量装置及其测量方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3052120A (en) * | 1959-05-29 | 1962-09-04 | Goodman Alex | Planar motion mechanism and system |
JPS6343896A (ja) * | 1986-08-11 | 1988-02-24 | Nec Corp | 潜水船自動重量ツリム制御装置 |
JP2004334714A (ja) * | 2003-05-09 | 2004-11-25 | Yamaha Motor Co Ltd | パラメータ最適化方法、パラメータ最適化装置、パラメータ最適化プログラム、及び、航走制御装置 |
-
2017
- 2017-01-12 DE DE102017200468.1A patent/DE102017200468A1/de not_active Withdrawn
- 2017-12-13 WO PCT/EP2017/082510 patent/WO2018130360A1/de unknown
- 2017-12-13 ES ES17818505T patent/ES2878052T3/es active Active
- 2017-12-13 EP EP17818505.4A patent/EP3568345B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3568345A1 (de) | 2019-11-20 |
ES2878052T3 (es) | 2021-11-18 |
DE102017200468A1 (de) | 2018-07-12 |
WO2018130360A1 (de) | 2018-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3568345B1 (de) | Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten | |
EP2876041B1 (de) | Anordnung zur Ermittlung einer auf ein Ruder wirkenden Kraft | |
EP2435998A1 (de) | Verfahren zur rechnergestützten steuerung eines schiffes | |
DE2245166C3 (de) | Automatische Anordnung zur dynamischen Einhaltung der Position und zum Steuern eines Wasser- oder Unterwasserfahrzeugs | |
EP3568346B1 (de) | Vorrichtung und verfahren zur steuerung eines unterwasserfahrzeugs | |
DE69619853T2 (de) | Propelleranordnung für schiffe mit sinusförmiger wasserlinie | |
EP3152589A1 (de) | Verfahren zum ermitteln einer unterwasserkarte, unterwasserkarte sowie fahrzeug | |
DE102009001220B3 (de) | Verfahren und Vorrichtung zur Bestimmung aerodynamischer Kenngrößen eines Flugzeuges | |
DE2454593A1 (de) | Hochsee-fahrzeug | |
DE893630C (de) | Geraet zur Stromraeumung | |
DE102019131106A1 (de) | Schwimmkörper und Verfahren zur Stabilisierung eines Schwimmkörpers | |
DE3783054T2 (de) | Kabelinstallierungsverfahren. | |
DE2045407C3 (de) | Einrichtung zur Ermittlung des Tiefganges der Schiffsenden | |
DE102012015491A1 (de) | Anordnung aus einem Luftfahrzeug und einer abwerfbaren Luftfahrzeug-Außenlast sowie Verfahren zur Ermittlung von für einen Abwurf einer Außenlast von einem Luftfahrzeug zulässigen Flugzuständen und Parametern einer Abgangsregelung für die Außenlast | |
EP3800441A2 (de) | Verfahren sowie vermessungsvorrichtung zur vermessung eines bauwerks | |
DE2639192C3 (de) | Einrichtung zur Tiefgangermittlung eines Schiffes | |
DE102019212491A1 (de) | Unterwasserfahrzeug ohne inertiales Navigationssystem | |
DE69107360T2 (de) | Verfahren und System um unter einem Hubschrauber im Wasser schleppend zu messen. | |
DD240715A1 (de) | Verfahren zur bestimmung des tiefgangs und masseaenderung eines schiffes | |
DD259385A1 (de) | Verfahren und einrichtung zur automatischen kontrolle und regelung der schwimmlage, der stabilitaet und der gesamtfestigkeit eines schwimmkoerpers | |
DE1431318A1 (de) | Verfahren und Einrichtung,um ein Wasserfahrzeug in einer gewuenschten Position zu halten | |
DE1917002A1 (de) | Pendel-Beschleunigungsmesser | |
DE102023125613A1 (de) | Automatische feststellung einer festmachrichtung eines bootes | |
DE102016107558B4 (de) | Vorrichtung zur lösbaren Verbindung eines Drahtes und Verfahren zum Ausbringen des Gerätes in ein Gewässer mit der Vorrichtung | |
EP3922544A1 (de) | Messplattform und verfahren zum auffinden und zur überwachung von rohrleitungen unter wasser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190812 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502017010036 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B63B0009080000 Ipc: B63G0008000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B63G 8/00 20060101AFI20200707BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200901 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1379368 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017010036 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2878052 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210708 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210809 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017010036 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211213 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231228 Year of fee payment: 7 Ref country code: FR Payment date: 20231222 Year of fee payment: 7 Ref country code: DE Payment date: 20231214 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1379368 Country of ref document: AT Kind code of ref document: T Effective date: 20221213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240130 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |