CN112487555B - 一种水空两栖潜水器无量纲阻力系数辨识方法 - Google Patents

一种水空两栖潜水器无量纲阻力系数辨识方法 Download PDF

Info

Publication number
CN112487555B
CN112487555B CN202011366190.0A CN202011366190A CN112487555B CN 112487555 B CN112487555 B CN 112487555B CN 202011366190 A CN202011366190 A CN 202011366190A CN 112487555 B CN112487555 B CN 112487555B
Authority
CN
China
Prior art keywords
water
submersible
amphibious submersible
air amphibious
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011366190.0A
Other languages
English (en)
Other versions
CN112487555A (zh
Inventor
张立川
赵荞荞
代文帅
唐鑫鑫
任染臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202011366190.0A priority Critical patent/CN112487555B/zh
Publication of CN112487555A publication Critical patent/CN112487555A/zh
Application granted granted Critical
Publication of CN112487555B publication Critical patent/CN112487555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明提出一种水空两栖潜水器无量纲阻力系数辨识方法,首先建立无干扰条件下水空两栖潜水器水中沉浮状态下的动力学模型,然后根据步骤1建立的动力学模型,离散化处理得到水空两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的辨识模型,最后利用一段时间的观测数据,采用最小二乘法求解辨识模型,得到水空两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的估计值。本发明通过最小二乘估计的方法对水空两栖潜水器沉浮状态下动力学模型中的无量纲阻力系数进行了辨识,为建立精确完整的两栖潜水器动力学模型提供基础,有益于水空两栖潜水器控制系统的设计与实现。

Description

一种水空两栖潜水器无量纲阻力系数辨识方法
技术领域
本发明涉及水空两栖航行器技术领域,具体为一种两栖潜水器动力学模型系数辨识方法。尤其涉及一种基于最小二乘的水空两栖潜水器沉浮状态下的动力学模型中的无量纲阻力系数辨识方法。
背景技术
水空两栖潜水器是一种既能在空中飞行又能在水下潜航的潜水器,它集合了飞机的快速性、灵活性与潜水器的隐蔽性于一身,能执行多任务巡航,满足了海洋科学工程对特定海域同时进行空中、水面和水下的探测需求。水空两栖潜水器动力学模型是潜水器控制系统设计与实现的基础,因此对动力学模型参数的准确辨识对两栖潜水器性能的提高有重大意义。
目前,国内对两栖潜水器的研究还处于初步阶段。现有的对水下机器人动力学参数辨识的主要方法有经验法、试验法。前者利用机器人的几何外形计算流线形机器人的水动力参数,从已测试过的模型中进行归纳,利用外形类似和水动力参数已知的系统进行对比得到新系统的参数,适用对象较单一且精度不高;后者是目前最常用的一种方法,研究的是基于系统输入/输出的本质特性建立的动力学数学模型,其中的未知参数是根据模型输出与测量输出的误差函数的均方差最小确定的。经验法大多用于相关研究成果较多的领域,对于处于起步阶段的水空两栖潜水器研究来说,使用该方法进行动力学参数辨识难度大且精确度不高;试验法是目前被认为进行参数辨识最好的方法,但多用于陆地和空中等机器人系统的参数辨识,还未涉及到对水空两栖潜水器动力学模型的参数辨识。
发明内容
为解决上述背景技术提出的问题,本发明提出了一种基于最小二乘法的水空两栖潜水器沉浮状态下动力学模型无量纲阻力系数辨识方法,对建立完整精确的水空两栖潜水器沉浮状态下动力学模型提供基础,有益于潜水器控制系统的设计与实现。
本发明的技术方案为:
所述一种水空两栖潜水器无量纲阻力系数辨识方法,包括以下步骤:
步骤1:建立无干扰条件下水空两栖潜水器水中沉浮状态下的动力学模型:
其中m为水空两栖潜水器的质量,h为水空两栖潜水器的下潜深度,ρ为水空两栖潜水器所在水下环境的液体密度,A为水空两栖潜水器在沉浮状态下的迎流面积,CD为待辨识的无量纲阻力系数,g为重力加速度,ΔV为水空两栖潜水器皮囊排水体积的变化;动力学模型中,以水空两栖潜水器皮囊排水体积的变化ΔV为输入量,以水空两栖潜水器的下潜深度h为输出量;
步骤2:根据步骤1建立的动力学模型,离散化处理得到水空两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的辨识模型为
h(k+2)=a1h(k+1)+a2h(k)+b1ΔV(k)
其中h(k)为水空两栖潜水器系统输出量的第k次观测值,h(k+1)为水空两栖潜水器系统输出量的第k+1次观测值,h(k+2)为水空两栖潜水器系统输出量的第k+2次观测值;ΔV(k)为水空两栖潜水器系统的第k个输入量;系数
步骤3:利用数据长度为n的观测数据,采用最小二乘法求解步骤2建立的辨识模型,得到水空两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的估计值。
进一步的,步骤1中,建立所述动力学模型时,对水空两栖潜水器所做假设为:水空两栖潜水器是一个均匀的刚体;惯性坐标系原点与潜水器质心及几何中心处于同一个位置;海空两栖潜水器所受重力始终保持不变,不受飞行高度等因素影响。
进一步的,步骤1中,所述动力学模型通过以下过程得到:潜水器收到下沉指令时,动力装置会控制水空两栖潜水器中皮囊排水体积发生变化,则水空两栖潜水器在地面坐标系中,竖直方向的运动规律根据牛顿第二定律得到
其中ΔP为变化浮力,ΔP=ρgΔV,Rt为水空两栖潜水器在水中所受到的水动力:
U为潜水器的沉浮速度,从而得到
以水空两栖潜水器皮囊排水体积的变化ΔV为输入量,以水空两栖潜水器的下潜深度h为输出量,得到水空两栖潜水器在地面坐标系中,竖直方向的动力学模型为:
考虑水空两栖潜水器沉浮运动时的速度较低,认为潜水器的阻力与速度成线性关系,得到线性化后的动力学模型为:
进一步的,步骤3中,采用最小二乘法求解步骤2建立的辨识模型的过程为:利用数据长度为n的观测数据,代入辨识模型得到
Y=[h(3) h(4) ... h(n)]T
θ=[a1 a2 b1]T
得到Y=Xθ,X为信息矩阵,θ为待估参数,利用最小二乘估计,取准则函数:
得到θ的估计:
进而根据估计值解算水空两栖潜水器沉浮状态下无量纲阻力系数CD的估计值。
有益效果
本发明通过最小二乘估计的方法对水空两栖潜水器沉浮状态下动力学模型中的无量纲阻力系数进行了辨识,为建立精确完整的两栖潜水器动力学模型提供基础,有益于水空两栖潜水器控制系统的设计与实现。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1:本发明的流程框架示意图;
图2:坐标旋转图;
图3:两栖潜水器在无干扰沉浮状态下的受力分析图;
图4:潜水器的迎流面积,即潜水器在XOY面上的投影。
具体实施方式
下面结合附图及实施例对本发明的工作流程进行详细说明。
如图1所示,本实施例中的使用最小二乘辨识水空两栖潜水器在沉浮状态下无量纲阻力系数的方法包括以下步骤:
步骤1:建立无干扰条件下水空两栖潜水器水中沉浮状态下的动力学模型;
为了使所建立的动力学模型不失一般性,对水空两栖潜水器做出如下假设:
1、水空两栖潜水器是一个均匀的刚体;
2、惯性坐标系原点与潜水器质心及几何中心处于同一个位置;
3、海空两栖潜水器所受重力始终保持不变,不受飞行高度等因素影响。
为了清楚地说明机体坐标系与地面坐标系之间的旋转,设两坐标系的原点与潜水器质心处于同一位置,两坐标系的旋转如图2所示,建立机体坐标系B(Oxyz)与地面坐标系E(OXYZ),首先,地面坐标系OXeYeZe绕Ze轴旋转ψ角,得到坐标系OX1Y1Ze;然后坐标系OX1Y1Ze绕X1轴旋转θ角,得到坐标系OX1ybZ1;最后坐标系OX1ybZ1绕yb旋转γ角得到坐标系Oxbybzb,根据以上三次旋转得到地面坐标系E(OXYZ)到机体坐标系B(Oxyz)的旋转矩阵为:
式(1)中γ、ψ、θ分别代表潜水器的俯仰角、偏航角和横滚角。
则机体坐标系B(Oxyz)到地面坐标系E(OXYZ)的旋转矩阵为:
所述步骤1中,水空两栖潜水器在无干扰条件下沉浮运动时受力分析如图3所示,潜水器所受外力包括重力G,浮力B,水动力Rt
水空两栖潜水器在水面上时,重力等于浮力,潜水器处于静止状态,当收到下沉指令时,动力装置会将液体推进或吸出皮囊,此时,重力与浮力出现偏差,称这部分浮力变化为盈余浮力ΔP:
ΔP=ρgΔV (3)
其中,ρ为水密度,ΔV为皮囊排水体积的变化。根据牛顿第二定律:
式(4)中:m为水空两栖潜水器的质量,h(t)为两栖潜水器的下潜深度,Rt为两栖潜水器在水中所受到的水动力,通常可以表示为无量纲的阻力系数CD、来流的动压和参考面积A三者的乘积:
式(5)中:A一般取为潜水器在沉浮状态下的迎流面积,即潜水器在水平方向上的机身投影面积,可由两栖潜水器的三维模型计算得到,U为潜水器的沉浮速度,即则式(4)变为:
以皮囊排水体积的变化ΔV为输入量,潜水器下潜的深度h(t)为输出量,即水空两栖潜水器在地面坐标系E(OXYZ)中,Z轴方向的动力学模型为:
式(7)所述的两栖潜水器在Z轴方向的动力学模型为非线性的,为了后续研究计算,将模型做线性化处理。因为两栖潜水器沉浮运动时的速度较低,因此,可以近似的认为潜水器的阻力与速度成线性关系,于是,线性化后的模型为:
步骤2:建立两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的辨识模型;
对式(8)连续性系统做离散化处理:
h(k+2)=a1h(k+1)+a2h(k)+b1ΔV(k) (9)
式(9)中,h(k)为系统输出量的第k次观测值,h(k+1)为系统输出量的第k+1次观测值,h(k+2)为系统输出量的第k+2次观测值,依次类推;ΔV(k)为系统的第k个输入量。并令可以看出,模型中需要辨识的系数是CD,进一步体现的就是系数a1和a2
步骤3:采用最小二乘法,辨识水空两栖潜水器沉浮状态下动力学模型中的无量纲阻力系数CD。设观测的数据长度为n,对步骤2得到的辨识模型有:
其中,h为系统输出深度的观测值,ΔV为系统的输入量,a1、a2为需辨识的参数。
Y=[h(3) h(4) ... h(n)]T (11)
θ=[a1 a2 b1]T (14)
方程组(10)可表示为:
Y=Xθ (15)
式(15)中,X为信息矩阵,θ为待估参数,将系统输入量和观测量带入式(15),利用最小二乘估计,取准则函数:
为使最小,对式(16)关于θ求导,若X的行数大于等于列数,则(XTX)-1存在,从而得到θ的估计:
中关于潜水器的迎流面积A可由其三维结构确定,由此可得到两栖潜水器在沉浮状态下无量纲阻力系数CD的估计。
下面给出具体的实施例:
(1)水密度ρ=1.0×103kg/m3,重力加速度g=9.8N/kg。假设两栖潜水器的质量m=20kg,潜水器在XOY面上的投影面积A=0.1m2,其在XOY面上的投影面积为潜水器在沉浮状态下的迎流面积,如图4所示。
(2)假设观测数据长度为10,根据式(18)计算参数a1,a2
将式(18)写为Y=Xθ,其中X为常数矩阵,h(1)为系统输出量的第1次观测值,h(2)为系统输出量的第2次观测值,依次类推,ΔV(1)为系统的第1个输入量。
由此,参数a1,a2,b1的计算结果为a1=1.9091,a2=-0.8413,b1=4.9×102
由式(9)知,则两栖潜水器无量纲阻力系数CD=0.036。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (3)

1.一种水空两栖潜水器无量纲阻力系数辨识方法,其特征在于:包括以下步骤:
步骤1:建立无干扰条件下水空两栖潜水器水中沉浮状态下的动力学模型:
其中m为水空两栖潜水器的质量,h为水空两栖潜水器的下潜深度,ρ为水空两栖潜水器所在水下环境的液体密度,A为水空两栖潜水器在沉浮状态下的迎流面积,CD为待辨识的无量纲阻力系数,g为重力加速度,△V为水空两栖潜水器皮囊排水体积的变化;动力学模型中,以水空两栖潜水器皮囊排水体积的变化△V为输入量,以水空两栖潜水器的下潜深度h为输出量;
所述动力学模型通过以下过程得到:潜水器收到下沉指令时,动力装置会控制水空两栖潜水器中皮囊排水体积发生变化,则水空两栖潜水器在地面坐标系中,竖直方向的运动规律根据牛顿第二定律得到:
其中△P为变化浮力,△P=ρg△V,Rt为水空两栖潜水器在水中所受到的水动力:
U为潜水器的沉浮速度,从而得到
以水空两栖潜水器皮囊排水体积的变化△V为输入量,以水空两栖潜水器的下潜深度h为输出量,得到水空两栖潜水器在地面坐标系中,竖直方向的动力学模型为:
考虑水空两栖潜水器沉浮运动时的速度较低,认为潜水器的阻力与速度成线性关系,得到线性化后的动力学模型为:
步骤2:根据步骤1建立的动力学模型,离散化处理得到水空两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的辨识模型为
h(k+2)=a1h(k+1)+a2h(k)+b1△V(k)
其中h(k)为水空两栖潜水器系统输出量的第k次观测值,h(k+1)为水空两栖潜水器系统输出量的第k+1次观测值,h(k+2)为水空两栖潜水器系统输出量的第k+2次观测值;△V(k)为水空两栖潜水器系统的第k个输入量;系数
步骤3:利用数据长度为n的观测数据,采用最小二乘法求解步骤2建立的辨识模型,得到水空两栖潜水器沉浮状态下动力学模型中无量纲阻力系数的估计值。
2.根据权利要求1所述一种水空两栖潜水器无量纲阻力系数辨识方法,其特征在于:步骤1中,建立所述动力学模型时,对水空两栖潜水器所做假设为:水空两栖潜水器是一个均匀的刚体;惯性坐标系原点与潜水器质心及几何中心处于同一个位置;海空两栖潜水器所受重力始终保持不变,不受飞行高度因素影响。
3.根据权利要求1所述一种水空两栖潜水器无量纲阻力系数辨识方法,其特征在于:步骤3中,采用最小二乘法求解步骤2建立的辨识模型的过程为:利用数据长度为n的观测数据,代入辨识模型得到
Y=[h(3)h(4)...h(n)]T
θ=[a1 a2 b1]T
得到Y=Xθ,X为信息矩阵,θ为待估参数,利用最小二乘估计,取准则函数:
得到θ的估计:
进而根据估计值解算水空两栖潜水器沉浮状态下无量纲阻力系数CD的估计值。
CN202011366190.0A 2020-11-29 2020-11-29 一种水空两栖潜水器无量纲阻力系数辨识方法 Active CN112487555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011366190.0A CN112487555B (zh) 2020-11-29 2020-11-29 一种水空两栖潜水器无量纲阻力系数辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011366190.0A CN112487555B (zh) 2020-11-29 2020-11-29 一种水空两栖潜水器无量纲阻力系数辨识方法

Publications (2)

Publication Number Publication Date
CN112487555A CN112487555A (zh) 2021-03-12
CN112487555B true CN112487555B (zh) 2024-01-09

Family

ID=74936774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011366190.0A Active CN112487555B (zh) 2020-11-29 2020-11-29 一种水空两栖潜水器无量纲阻力系数辨识方法

Country Status (1)

Country Link
CN (1) CN112487555B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013140744A (ru) * 2013-09-03 2015-03-10 Лев Петрович Петренко Способ минимизации динамического сопротивления воды при движении судна и подводной лодки (вариант русской логики)
WO2018130360A1 (de) * 2017-01-12 2018-07-19 Thyssenkrupp Marine Systems Gmbh Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten
WO2019184662A1 (zh) * 2018-03-26 2019-10-03 中国海洋大学 基于浮力驱动与无轴矢量推进的变形潜水器及其工作方法
CN110334411A (zh) * 2019-06-16 2019-10-15 武汉理工大学 一种基于Huber M估计的水下机器人动力学模型参数辨识方法
CN110509276A (zh) * 2019-08-28 2019-11-29 哈尔滨工程大学 一种机场跑道检测机器人的运动建模及参数辨识方法
CN110775264A (zh) * 2019-10-28 2020-02-11 上海交通大学 水空两栖无人航行器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2013140744A (ru) * 2013-09-03 2015-03-10 Лев Петрович Петренко Способ минимизации динамического сопротивления воды при движении судна и подводной лодки (вариант русской логики)
WO2018130360A1 (de) * 2017-01-12 2018-07-19 Thyssenkrupp Marine Systems Gmbh Verfahren zur bestimmung von hydrodynamischen koeffizienten bei unterseebooten
WO2019184662A1 (zh) * 2018-03-26 2019-10-03 中国海洋大学 基于浮力驱动与无轴矢量推进的变形潜水器及其工作方法
CN110334411A (zh) * 2019-06-16 2019-10-15 武汉理工大学 一种基于Huber M估计的水下机器人动力学模型参数辨识方法
CN110509276A (zh) * 2019-08-28 2019-11-29 哈尔滨工程大学 一种机场跑道检测机器人的运动建模及参数辨识方法
CN110775264A (zh) * 2019-10-28 2020-02-11 上海交通大学 水空两栖无人航行器及其控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Multi-UUV Cooperative Dynamic Maneuver Decision-Making Algorithm Using Intuitionistic Fuzzy Game Theory;Lu liu etal.;Hindawi Complexity;全文 *
两栖车辆非线性横摇动力学参数辨识研究;马新谋;常列珍;侯宏花;;中北大学学报(自然科学版)(第02期);全文 *
多UUV协同导航与定位研究;张立川等;系统仿真学报;第20卷(第19期);全文 *
载人潜水器水平面动力学模型系统辨识;马岭;崔维成;;中国造船(第02期);全文 *

Also Published As

Publication number Publication date
CN112487555A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Skjetne et al. A nonlinear ship manoeuvering model: Identification and adaptive control with experiments for a model ship
Zhang et al. Using CFD software to calculate hydrodynamic coefficients
CN109558694B (zh) 一种水下机器人和机械手系统抓取运动过程的水动力分析方法
Wang et al. Modeling and simulation of the VideoRay Pro III underwater vehicle
CN106896817A (zh) 一种基于粘滞阻尼振荡模型的多auv编队控制方法
CN106840143B (zh) 一种判别水下机器人姿态稳定的方法
CN114186508A (zh) 一种基于cfd软件的水下航行器水动力系数测算方法
CN104155043B (zh) 一种动力定位系统外界环境力测量方法
Aras et al. Design analysis and modelling of autonomous underwater vehicle (AUV) using CAD
CN112487555B (zh) 一种水空两栖潜水器无量纲阻力系数辨识方法
CN112836448B (zh) 一种船舶水动力系数的实船试验方法
Duecker et al. Parameter identification for micro underwater vehicles
Lee et al. On the synthesis of an underwater ship hull cleaning robot system
Sangalang et al. Design of a control architecture for an underwater remotely operated vehicle (ROV) used for search and rescue operations
Lin et al. Experimental determination of the hydrodynamic coefficients of an underwater manipulator
CN108460206B (zh) 一种波浪滑翔器运动预测方法
Dang et al. Identification of hydrodynamic coefficients of a robotic fish using improved extended kalman filter
CN113671977B (zh) 一种海上作业船状态同步稳定鲁棒控制方法
Jeon et al. Evaluation of dynamic characteristics for a submerged body with large angle of attack motion via CFD analysis
CN112947448B (zh) 一种无人船集群协同包围多目标模糊控制器结构及设计方法
Gao et al. Numerical computation and analysis of high-speed autonomous underwater vehicle (AUV) moving in head sea based on dynamic mesh
Garcia et al. Design, construction, and control for an underwater vehicle type sepiida
CN113378491A (zh) 一种深海Argo浮标能耗参数灵敏度分析方法
CN107463754B (zh) 用于flng装置液化工艺的海上边界条件仿真模拟方法
Liu et al. Hydrodynamic modeling with grey-box method of a foil-like underwater vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant