EP3543368B1 - High-entropy alloys for covering components - Google Patents

High-entropy alloys for covering components Download PDF

Info

Publication number
EP3543368B1
EP3543368B1 EP18162716.7A EP18162716A EP3543368B1 EP 3543368 B1 EP3543368 B1 EP 3543368B1 EP 18162716 A EP18162716 A EP 18162716A EP 3543368 B1 EP3543368 B1 EP 3543368B1
Authority
EP
European Patent Office
Prior art keywords
atomic concentration
alloy according
equal
alloy
major elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18162716.7A
Other languages
German (de)
French (fr)
Other versions
EP3543368A1 (en
Inventor
Joël Porret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP18162716.7A priority Critical patent/EP3543368B1/en
Priority to JP2019019528A priority patent/JP6802866B2/en
Priority to US16/271,925 priority patent/US20190292633A1/en
Priority to KR1020190017908A priority patent/KR102180486B1/en
Priority to CN201910207000.1A priority patent/CN110306094A/en
Publication of EP3543368A1 publication Critical patent/EP3543368A1/en
Application granted granted Critical
Publication of EP3543368B1 publication Critical patent/EP3543368B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/006Amorphous alloys with Cr as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/08Amorphous alloys with aluminium as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases

Definitions

  • the present invention relates to a high entropy alloy and to a covering component for a watch or a piece of jewelry made from this alloy.
  • Austenitic stainless steels generally contain nickel and also have limited hardnesses ( ⁇ 300 HV in the annealed state). Martensitic stainless steels are hard (> 600 HV) but ferromagnetic. Finally, titanium alloys, such as grade 5 titanium (Ti6Al4V), certainly represent the best compromise among the properties presented above but they have a particular color and hardness (around 350 HV for grade 5 titanium) not significantly higher. higher than some austenitic stainless steels for example. For comparison, amorphous metals, also very interesting for cladding components, may have hardnesses greater than 500 HV. However, very specific implementations are necessary to obtain components made of amorphous metal, which further limits their use as a trim element.
  • high entropy alloys In the field of watch dressing, there is therefore always a strong interest in obtaining hard crystalline alloys (> 400 HV in the annealed state), non-ferromagnetic, corrosion resistant and exhibiting good polishability.
  • high entropy alloys currently very studied and which constitute a new class of alloys, are particularly promising.
  • high entropy alloys are considered to be all alloys containing at least 5 main elements with an atomic fraction between 5 and 35%, the elements having an atomic fraction of less than 5% being considered as minor.
  • alloys containing 4 main elements can also be considered as high entropy alloys.
  • the high entropy resulting from the mixing of numerous main elements would make it possible to stabilize the phases in solid solution with respect to the formation of potentially embrittling intermetallic phases.
  • unique and little observed properties in traditional alloys based on one or two main elements are obtained.
  • obtaining simple phases in solid solution is very advantageous, because this promotes good polishability and good corrosion resistance.
  • the mixing of many different elements results in solid solution hardening.
  • high hardnesses have thus already been demonstrated, particularly for those which have a centered cubic structure.
  • the object of the invention is to provide a high entropy alloy with a composition specifically adapted to the needs of the trim components.
  • the present invention thus aims more particularly to develop an alloy having, after processing, a hardness greater than or equal to 400 HV, a non-ferromagnetic behavior and a high corrosion resistance.
  • the alloy contains 3 main elements which are Cr, Fe and V, each having atomic concentrations between 20 and 40%. It also contains as main element Al and / or Si having the effect of destroying the ferromagnetic behavior of the alloy. These elements each have an atomic concentration greater than or equal to 5% with a total atomic concentration for Al and Si less than or equal to 25%.
  • the alloy can also optionally comprise one or more main elements chosen from Mn, Mo, Ti and Ni each having an atomic concentration greater than or equal to 5% with a total atomic concentration for these 4 main elements less than or equal to 35 %.
  • the Ni content is specifically maintained at a value less than 20% to avoid, during implementation and in particular heat treatments, the formation of undesirable phases which weaken the material and reduce corrosion resistance. .
  • Some grades are also Ni-free to ensure high biocompatibility.
  • the remainder can be composed of possible impurities and / or of one or more minor elements each having an atomic concentration of less than 5%.
  • the material obtained after processing has, depending on the composition and the thermomechanical treatments, a single phase with a centered cubic structure, which promotes good resistance to corrosion and good polishability for a better surface finish or in the case of of multiphase alloys, a matrix (main phase) with a centered cubic structure reinforced with nanoprecipitates. It has the other advantage of having a color close to that of austenitic stainless steels.
  • the present invention relates to high entropy alloys and to their use for trim components for watches or jewelry, in particular for components intended to be in contact with the skin.
  • the covering component can be a caseband, a back, a bezel, a push-piece, crown, bracelet link, dial, hand, dial index, clasp, etc.
  • a watch case 1 produced in the alloy according to the invention is shown in figure 1 .
  • the alloys have between 4 and 9 main elements.
  • the term “main elements” is understood to mean elements having an atomic concentration greater than or equal to 5%. Alloys contain the following 3 main elements: Cr, Fe, V with an atomic concentration of between 20 and 40%. They also contain 1 or 2 main elements chosen from Al and Si with a total atomic concentration for these two elements less than or equal to 25%. They also optionally comprise one or more main elements chosen from Mn, Mo, Ti and Ni with a total atomic concentration for these 4 main elements of less than or equal to 35%.
  • the total atomic concentration for all of the aforementioned main elements is greater than or equal to 80%.
  • the balance may optionally contain minor elements chosen from the list comprising Si, Mn, Mo, Al, Nb, H, B, C, N, O, Mg, Sc, Ti, Cu, Ni, Zn, Ga, Ge, Sr, Y, Zr, Rh, Pd, Ag, Sn, Sb, Hf, Ta, W, Pt and Au.
  • the term “minor elements” is understood to mean elements having an atomic concentration of less than 5%.
  • the balance may also contain residual impurities from processing.
  • alloys according to the invention all the forming processes can be envisaged. It is in particular possible to obtain these alloys by casting, by powder metallurgy processes, by additive manufacturing techniques or even by layer deposition technologies. This also includes possible thermomechanical treatments (heat treatment, hot deformation, cold deformation) and stages of sintering and hot isostatic compression (HIP).
  • thermomechanical treatments heat treatment, hot deformation, cold deformation
  • HIP hot isostatic compression
  • the alloys according to the invention After shaping and carrying out any thermomechanical treatments, the alloys according to the invention mainly exhibit a centered cubic structure (BCC), which can be disordered (structure A2, space group Im3m ) or ordered (structure B2, space group Pm3m ).
  • BCC centered cubic structure
  • a single-phase microstructure can be obtained at ambient temperature for the alloys according to the invention which contain neither Ni, nor Ti as main elements, nor minor elements, which promotes corrosion resistance and polishability. .
  • the alloys according to the invention can exhibit a microstructure with a second phase in the form of precipitates which in certain cases make it possible to improve the mechanical properties (hardness, ductility, toughness, etc. .).
  • the precipitates are small with sizes which may be nanometric and when the matrix has an almost unchanged composition, i.e. that it retains a composition which satisfies the definition of the alloys according to the invention (phases in multi-element solid solution), good polishability, high corrosion resistance and the absence of ferromagnetism are retained.
  • the addition of Ni or Ni and Ti is particularly advantageous, since this makes it possible to obtain very hardening nanoprecipitates.
  • the alloys according to the invention have, after processing, the following properties required for the trim components: non-ferromagnetic behavior, hardness greater than or equal to 400HV, high corrosion resistance, with in particular no sign of corrosion after salt spray test according to ISO 9227.
  • alloy compositions which meet all these criteria after processing are given in Table 1 below.
  • the alloys were produced by arc melting ( arc melting ) without further heat treatment.
  • atomic fractions have been rounded to the nearest whole number and hardnesses have been rounded to the nearest ten.

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne un alliage à haute entropie et un composant d'habillage pour une montre ou un bijou réalisé dans cet alliage.The present invention relates to a high entropy alloy and to a covering component for a watch or a piece of jewelry made from this alloy.

ART ANTERIEURPRIOR ART

Différents alliages sont aujourd'hui couramment utilisés pour la fabrication de composants d'habillage de montres qui sont des composants généralement exposés à l'environnement extérieur et pouvant être en contact avec la peau. Il s'agit, par exemple, d'aciers inoxydables austénitiques, d'alliages de titane ou encore de métaux précieux. Ces alliages possèdent en effet certaines propriétés importantes pour ce type de pièces, à savoir une résistance à la corrosion élevée, une bonne polissabilité pour des raisons esthétiques, et pas de ferromagnétisme. Outre ces caractéristiques, d'autres propriétés sont actuellement très recherchées en horlogerie. Ces caractéristiques sont une biocompatibilité élevée, notamment en réduisant ou en éliminant les éléments potentiellement allergènes comme le nickel ou le cobalt, et, une dureté et une résistance aux rayures élevées. Les alliages qui remplissent tous ces critères sont rares. Les métaux précieux ont des duretés faibles (<200 HV à l'état recuit). Les aciers inoxydables austénitiques contiennent généralement du nickel et possèdent également des duretés limitées (<300 HV à l'état recuit). Les aciers inoxydables martensitiques sont durs (>600 HV) mais ferromagnétiques. Finalement, les alliages de titane, comme le titane grade 5 (Ti6Al4V), représentent certainement le meilleur compromis parmi les propriétés présentées ci-dessus mais ils ont une couleur particulière et des duretés (environ 350 HV pour le titane grade 5) pas significativement plus élevées que certains aciers inoxydables austénitiques par exemple. Pour comparaison, les métaux amorphes, également très intéressants pour les composants d'habillage, peuvent avoir des duretés supérieures à 500 HV. Toutefois, des mises en œuvre très particulières sont nécessaires pour obtenir des composants en métal amorphe, ce qui limite encore leur utilisation en tant qu'élément d'habillage.Different alloys are now commonly used for the manufacture of watch trim components which are components generally exposed to the external environment and which may be in contact with the skin. These are, for example, austenitic stainless steels, titanium alloys or even precious metals. These alloys indeed have certain important properties for this type of part, namely high corrosion resistance, good polishability for aesthetic reasons, and no ferromagnetism. In addition to these characteristics, other properties are currently in high demand in watchmaking. These characteristics are high biocompatibility, in particular by reducing or eliminating potentially allergenic elements such as nickel or cobalt, and high hardness and scratch resistance. Alloys that meet all of these criteria are rare. Precious metals have low hardnesses (<200 HV in the annealed state). Austenitic stainless steels generally contain nickel and also have limited hardnesses (<300 HV in the annealed state). Martensitic stainless steels are hard (> 600 HV) but ferromagnetic. Finally, titanium alloys, such as grade 5 titanium (Ti6Al4V), certainly represent the best compromise among the properties presented above but they have a particular color and hardness (around 350 HV for grade 5 titanium) not significantly higher. higher than some austenitic stainless steels for example. For comparison, amorphous metals, also very interesting for cladding components, may have hardnesses greater than 500 HV. However, very specific implementations are necessary to obtain components made of amorphous metal, which further limits their use as a trim element.

Dans le domaine de l'habillage horloger, il demeure donc toujours un fort intérêt pour l'obtention d'alliages cristallins durs (>400 HV à l'état recuit), non ferromagnétiques, résistants à la corrosion et présentant une bonne polissabilité. Dans ce cadre, les alliages à haute entropie, actuellement très étudiés et qui constituent une nouvelle classe d'alliages, sont particulièrement prometteurs. Selon la définition initiale, sont considérés comme alliages à haute entropie tous les alliages contenant au moins 5 éléments principaux avec une fraction atomique entre 5 et 35%, les éléments présentant une fraction atomique inférieure à 5% étant considérés comme mineurs. A ce jour, il est admis que les alliages contenant 4 éléments principaux peuvent également être considérés comme alliages à haute entropie. Au niveau thermodynamique, la haute entropie résultant du mélange de nombreux éléments principaux permettrait de stabiliser les phases en solution solide par rapport à la formation de phases intermétalliques potentiellement fragilisantes. En conséquence, des propriétés uniques et peu observées dans les alliages traditionnels basés sur un ou deux éléments principaux sont obtenues. Pour l'habillage horloger, l'obtention de phases simples en solution solide est très intéressante, car cela favorise une bonne polissabilité et une bonne résistance à la corrosion. De plus, le mélange de nombreux éléments différents engendre un durcissement par solution solide. Parmi les alliages à haute entropie monophasés, des duretés élevées ont ainsi déjà été mises en évidence, particulièrement pour ceux qui présentent une structure cubique centrée. Ces alliages à haute entropie monophasés à structure cubique centrée, comme par exemple le NbTiVZr, AINbTiV, Al0.4Hf0.6NbTaTiZr ou encore le Hf0.5Nb0.5Ta0.5Ti1.5Zr, visent plus spécifiquement les applications à haute température, pour l'aéronautique notamment. Toutefois, ils contiennent beaucoup d'éléments chers, très réactifs ou ayant des températures de fusion élevées, comme le Nb, Zr, Hf, Ta. Pour faciliter la mise en œuvre des composants d'habillage, il est important d'éviter ou de limiter la quantité de ces éléments, la résistance à haute température n'étant pas une propriété désirée.In the field of watch dressing, there is therefore always a strong interest in obtaining hard crystalline alloys (> 400 HV in the annealed state), non-ferromagnetic, corrosion resistant and exhibiting good polishability. In this context, high entropy alloys, currently very studied and which constitute a new class of alloys, are particularly promising. According to the initial definition, high entropy alloys are considered to be all alloys containing at least 5 main elements with an atomic fraction between 5 and 35%, the elements having an atomic fraction of less than 5% being considered as minor. To date, it is accepted that alloys containing 4 main elements can also be considered as high entropy alloys. At the thermodynamic level, the high entropy resulting from the mixing of numerous main elements would make it possible to stabilize the phases in solid solution with respect to the formation of potentially embrittling intermetallic phases. As a result, unique and little observed properties in traditional alloys based on one or two main elements are obtained. For watchmaking, obtaining simple phases in solid solution is very advantageous, because this promotes good polishability and good corrosion resistance. In addition, the mixing of many different elements results in solid solution hardening. Among the single-phase high entropy alloys, high hardnesses have thus already been demonstrated, particularly for those which have a centered cubic structure. These single-phase high entropy alloys with a centered cubic structure, such as for example NbTiVZr, AINbTiV, Al0.4Hf0.6NbTaTiZr or even Hf0.5Nb0.5Ta0.5Ti1.5Zr, more specifically target high temperature applications, for aeronautics especially. However, they contain a lot of elements expensive, very reactive or having high melting temperatures, such as Nb, Zr, Hf, Ta. To facilitate the implementation of the trim components, it is important to avoid or limit the amount of these elements, as high temperature resistance is not a desired property.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention a pour objet de proposer un alliage à haute entropie avec une composition spécifiquement adaptée aux besoins des composants d'habillage. La présente invention vise ainsi plus particulièrement à développer un alliage présentant après mise en œuvre une dureté supérieure ou égale à 400 HV, un comportement non ferromagnétique et une résistance à la corrosion élevée.The object of the invention is to provide a high entropy alloy with a composition specifically adapted to the needs of the trim components. The present invention thus aims more particularly to develop an alloy having, after processing, a hardness greater than or equal to 400 HV, a non-ferromagnetic behavior and a high corrosion resistance.

A cet effet, l'alliage contient 3 éléments principaux qui sont le Cr, le Fe et le V ayant chacun des concentrations atomiques comprises entre 20 et 40%. Il contient en outre comme élément principal de l'Al et/ou du Si ayant pour effet d'annihiler le comportement ferromagnétique de l'alliage. Ces éléments ont chacun une concentration atomique supérieure ou égale à 5% avec une concentration atomique totale pour l'Al et le Si inférieure ou égale à 25%.For this purpose, the alloy contains 3 main elements which are Cr, Fe and V, each having atomic concentrations between 20 and 40%. It also contains as main element Al and / or Si having the effect of destroying the ferromagnetic behavior of the alloy. These elements each have an atomic concentration greater than or equal to 5% with a total atomic concentration for Al and Si less than or equal to 25%.

L'alliage peut en outre optionnellement comporter un ou plusieurs éléments principaux choisis parmi le Mn, Mo, Ti et le Ni ayant chacun une concentration atomique supérieure ou égale à 5% avec une concentration atomique totale pour ces 4 éléments principaux inférieure ou égale à 35%. Selon l'invention, la teneur en Ni est spécifiquement maintenue à une valeur inférieure à 20% pour éviter, lors de la mise en œuvre et notamment des traitements thermiques, la formation de phases indésirables qui fragilisent le matériau et réduisent la résistance à la corrosion. Certaines nuances sont par ailleurs dépourvues de Ni pour garantir une biocompatibilité élevée.The alloy can also optionally comprise one or more main elements chosen from Mn, Mo, Ti and Ni each having an atomic concentration greater than or equal to 5% with a total atomic concentration for these 4 main elements less than or equal to 35 %. According to the invention, the Ni content is specifically maintained at a value less than 20% to avoid, during implementation and in particular heat treatments, the formation of undesirable phases which weaken the material and reduce corrosion resistance. . Some grades are also Ni-free to ensure high biocompatibility.

Le solde peut être composé d'impuretés éventuelles et/ou d'un ou plusieurs éléments mineurs ayant chacun une concentration atomique inférieure à 5%.The remainder can be composed of possible impurities and / or of one or more minor elements each having an atomic concentration of less than 5%.

Le matériau obtenu après mise en œuvre présente, en fonction de la composition et des traitements thermomécaniques, une seule phase à structure cubique centrée, ce qui favorise une bonne résistance à la corrosion et une bonne polissabilité pour un meilleur fini de surface ou dans le cas d'alliages multiphasés, une matrice (phase principale) à structure cubique centrée renforcée avec des nanoprécipités. Il présente pour autre avantage d'avoir une couleur proche de celle des aciers inoxydables austénitiques.The material obtained after processing has, depending on the composition and the thermomechanical treatments, a single phase with a centered cubic structure, which promotes good resistance to corrosion and good polishability for a better surface finish or in the case of of multiphase alloys, a matrix (main phase) with a centered cubic structure reinforced with nanoprecipitates. It has the other advantage of having a color close to that of austenitic stainless steels.

D'autres avantages ressortiront des caractéristiques exprimées dans les revendications, de la description détaillée de l'invention illustrée ci-après à l'aide des dessins annexés donnés à titre d'exemples nullement limitatifs.Other advantages will emerge from the characteristics expressed in the claims, from the detailed description of the invention illustrated below with the aid of the appended drawings given by way of non-limiting examples.

BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES

  • La figure 1 représente une boîte de montre réalisée avec l'alliage selon l'invention.The figure 1 shows a watch case made with the alloy according to the invention.
  • La figure 2 représente le diffractogramme d'un alliage Al6Cr30Fe30Mo5V29 après coulée et traitement thermique de 3h à 1300°C suivi d'un refroidissement dans un four avec une vitesse de refroidissement moyenne de l'ordre de 100°C/min.The figure 2 represents the diffractogram of an Al6Cr30Fe30Mo5V29 alloy after casting and heat treatment for 3 h at 1300 ° C followed by cooling in a furnace with an average cooling rate of the order of 100 ° C / min.
  • La figure 3 représente pour ce même alliage la courbe d'hystérèse.The figure 3 represents for this same alloy the hysteresis curve.
DESCRIPTION DETAILLEEDETAILED DESCRIPTION

La présente invention se rapporte à des alliages à haute entropie et à leur utilisation pour des composants d'habillage pour montre ou bijou, notamment pour des composants destinés à être en contact avec la peau. Le composant d'habillage peut être une carrure, un fond, une lunette, un poussoir, une couronne, un maillon de bracelet, un cadran, une aiguille, un index de cadran, un fermoir, etc. A titre illustratif, une boîte de montre 1 réalisée dans l'alliage selon l'invention est représentée à la figure 1.The present invention relates to high entropy alloys and to their use for trim components for watches or jewelry, in particular for components intended to be in contact with the skin. The covering component can be a caseband, a back, a bezel, a push-piece, crown, bracelet link, dial, hand, dial index, clasp, etc. By way of illustration, a watch case 1 produced in the alloy according to the invention is shown in figure 1 .

Selon l'invention, les alliages comportent entre 4 et 9 éléments principaux. On entend par éléments principaux, des éléments ayant une concentration atomique supérieure ou égale à 5%. Les alliages comportent les 3 éléments principaux suivants : Cr, Fe, V avec une concentration atomique comprise entre 20 et 40%. Ils comportent en outre 1 ou 2 éléments principaux choisis parmi l'Al et le Si avec une concentration atomique totale pour ces deux éléments inférieure ou égale à 25%. Ils comportent en outre optionnellement un ou plusieurs éléments principaux choisis parmi le Mn, Mo, Ti et le Ni avec une concentration atomique totale pour ces 4 éléments principaux inférieure ou égale à 35%.According to the invention, the alloys have between 4 and 9 main elements. The term “main elements” is understood to mean elements having an atomic concentration greater than or equal to 5%. Alloys contain the following 3 main elements: Cr, Fe, V with an atomic concentration of between 20 and 40%. They also contain 1 or 2 main elements chosen from Al and Si with a total atomic concentration for these two elements less than or equal to 25%. They also optionally comprise one or more main elements chosen from Mn, Mo, Ti and Ni with a total atomic concentration for these 4 main elements of less than or equal to 35%.

Selon l'invention, la concentration atomique totale pour l'ensemble des éléments principaux précités est supérieure ou égale à 80%. Le solde peut, à titre optionnel, contenir des éléments mineurs choisis parmi la liste comprenant le Si, Mn, Mo, Al, Nb, H, B, C, N, O, Mg, Sc, Ti, Cu, Ni, Zn, Ga, Ge, Sr, Y, Zr, Rh, Pd, Ag, Sn, Sb, Hf, Ta, W, Pt et Au. On entend par éléments mineurs des éléments ayant une concentration atomique inférieure à 5%. Le solde peut également contenir des impuretés résiduelles issues de la mise en œuvre.According to the invention, the total atomic concentration for all of the aforementioned main elements is greater than or equal to 80%. The balance may optionally contain minor elements chosen from the list comprising Si, Mn, Mo, Al, Nb, H, B, C, N, O, Mg, Sc, Ti, Cu, Ni, Zn, Ga, Ge, Sr, Y, Zr, Rh, Pd, Ag, Sn, Sb, Hf, Ta, W, Pt and Au. The term “minor elements” is understood to mean elements having an atomic concentration of less than 5%. The balance may also contain residual impurities from processing.

Pour obtenir les alliages selon l'invention, tous les procédés de mise en forme sont envisageables. Il est notamment possible d'obtenir ces alliages par coulée, par des procédés de métallurgie des poudres, par des techniques de fabrication additive ou encore par des technologies de déposition de couches. Cela inclut également des éventuels traitements thermomécaniques (traitement thermique, déformation à chaud, déformation à froid) et des étapes de frittage et de compression isostatique à chaud (HIP).In order to obtain the alloys according to the invention, all the forming processes can be envisaged. It is in particular possible to obtain these alloys by casting, by powder metallurgy processes, by additive manufacturing techniques or even by layer deposition technologies. This also includes possible thermomechanical treatments (heat treatment, hot deformation, cold deformation) and stages of sintering and hot isostatic compression (HIP).

Après mise en forme et réalisation d'éventuels traitements thermomécaniques, les alliages selon l'invention présentent majoritairement une structure cubique centrée (BCC), qui peut être désordonnée (structure A2, space group Im3m) ou ordonnée (structure B2, space group Pm3m). En particulier, une microstructure monophasée peut être obtenue à température ambiante pour les alliages selon l'invention qui ne comportent ni du Ni, ni du Ti comme éléments principaux, ni d'éléments mineurs, ce qui favorise la résistance à la corrosion et la polissabilité. Néanmoins, en fonction de la composition et des traitements thermiques effectués, les alliages selon l'invention peuvent présenter une microstructure avec une seconde phase sous forme de précipités qui permettent dans certains cas d'améliorer les propriétés mécaniques (dureté, ductilité, ténacité, etc.). Lorsque les précipités sont petits avec des tailles pouvant être nanométriques et lorsque la matrice possède une composition quasi inchangée, c.à.d. qu'elle conserve une composition qui satisfait la définition des alliages selon l'invention (phases en solution solide multi-éléments), la bonne polissabilité, la résistance à la corrosion élevée ainsi que l'absence de ferromagnétisme sont conservées. En particulier, l'ajout de Ni ou de Ni et de Ti est particulièrement intéressant, puisque cela permet d'obtenir des nanoprécipités très durcissants.After shaping and carrying out any thermomechanical treatments, the alloys according to the invention mainly exhibit a centered cubic structure (BCC), which can be disordered (structure A2, space group Im3m ) or ordered (structure B2, space group Pm3m ). In particular, a single-phase microstructure can be obtained at ambient temperature for the alloys according to the invention which contain neither Ni, nor Ti as main elements, nor minor elements, which promotes corrosion resistance and polishability. . Nevertheless, depending on the composition and the heat treatments carried out, the alloys according to the invention can exhibit a microstructure with a second phase in the form of precipitates which in certain cases make it possible to improve the mechanical properties (hardness, ductility, toughness, etc. .). When the precipitates are small with sizes which may be nanometric and when the matrix has an almost unchanged composition, i.e. that it retains a composition which satisfies the definition of the alloys according to the invention (phases in multi-element solid solution), good polishability, high corrosion resistance and the absence of ferromagnetism are retained. In particular, the addition of Ni or Ni and Ti is particularly advantageous, since this makes it possible to obtain very hardening nanoprecipitates.

En résumé, les alliages selon l'invention présentent après mise en œuvre les propriétés suivantes requises pour les composants d'habillage : comportement non ferromagnétique, dureté supérieure ou égale à 400HV, résistance à la corrosion élevée, avec notamment aucun signe de corrosion après le test au brouillard salin selon la norme ISO 9227.In summary, the alloys according to the invention have, after processing, the following properties required for the trim components: non-ferromagnetic behavior, hardness greater than or equal to 400HV, high corrosion resistance, with in particular no sign of corrosion after salt spray test according to ISO 9227.

Quelques exemples de compositions d'alliages qui remplissent tous ces critères après élaboration sont donnés dans la table 1 ci-après. Les alliages ont été élaborés par fusion à l'arc (arc melting) sans autre traitement thermique. Dans la table, les fractions atomiques ont été arrondies au nombre entier le plus proche et les duretés ont été arrondies à la dizaine la plus proche. Table 1 Compositions (% at) Dureté (HV10) AI10Fe25Cr40V25 450 Al10Fe40Cr25V25 410 Al10Fe25Cr25V40 500 Al10Fe30Cr30V30 410 Al5Cr30Fe30Mo5V30 480 Al6Cr30Fe30Mo5V29 480 Al5Cr30Fe30Si5V30 460 Al5Cr30Fe30Mn5V30 410 Al13Cr25Fe25Ni12V25 650 Fe25Cr25V25Al10Ni10Ti5 630 Cr31Fe31V31Si7 500 Some examples of alloy compositions which meet all these criteria after processing are given in Table 1 below. The alloys were produced by arc melting ( arc melting ) without further heat treatment. In the table, atomic fractions have been rounded to the nearest whole number and hardnesses have been rounded to the nearest ten. <u> Table 1 </u> Compositions (% at) Hardness (HV10) AI10Fe25Cr40V25 450 Al10Fe40Cr25V25 410 Al10Fe25Cr25V40 500 Al10Fe30Cr30V30 410 Al5Cr30Fe30Mo5V30 480 Al6Cr30Fe30Mo5V29 480 Al5Cr30Fe30Si5V30 460 Al5Cr30Fe30Mn5V30 410 Al13Cr25Fe25Ni12V25 650 Fe25Cr25V25Al10Ni10Ti5 630 Cr31Fe31V31Si7 500

On observe notamment que l'ajout de nickel permet d'augmenter significativement la dureté, grâce à la formation de nanoprécipités de NiAI dans la matrice à structure cubique centrée.It is observed in particular that the addition of nickel makes it possible to significantly increase the hardness, thanks to the formation of nanoprecipitates of NiAI in the matrix with a centered cubic structure.

Après coulée et un traitement thermique de 3h sous argon à 1300 °C pour homogénéiser la structure de coulée, une microstructure monophasée est obtenue, notamment pour les alliages contenant uniquement des éléments majeurs sans Ni ni Ti, comme, par exemple, pour l'alliage Al6Cr30Fe30Mo5V29.After casting and a heat treatment of 3 hours under argon at 1300 ° C to homogenize the casting structure, a single-phase microstructure is obtained, in particular for alloys containing only major elements without Ni or Ti, such as, for example, for the alloy Al6Cr30Fe30Mo5V29.

Une analyse par diffraction des rayons X (configuration Bragg-Brentano) a été effectuée sur cet alliage et a confirmé qu'une seule phase est présente avec trois raies correspondant à la structure cubique centrée. Le diffractogramme est représenté à la figure 2.X-ray diffraction analysis (Bragg-Brentano configuration) was performed on this alloy and confirmed that only one phase is present with three lines corresponding to the centered cubic structure. The diffractogram is shown at figure 2 .

Concernant les propriétés magnétiques de ce même alliage, une courbe d'hystérèse a été mesurée à température ambiante avec un magnétomètre à échantillon vibrant (aimantation M en fonction du champ appliqué H). Bien que présentant une susceptibilité volumique relativement élevée (4.8 10-3), l'alliage présente un comportement linéaire signature du comportement paramagnétique comme montré à la figure 3.Regarding the magnetic properties of this same alloy, a hysteresis curve was measured at room temperature with a vibrating sample magnetometer (magnetization M as a function of the applied field H). Although exhibiting a relatively high volume susceptibility high (4.8 10 -3 ), the alloy exhibits a linear behavior signature of the paramagnetic behavior as shown in figure 3 .

Il est encore possible d'améliorer les propriétés, particulièrement les propriétés mécaniques, en ajoutant certains éléments mineurs tout en maintenant une phase principale qui satisfait la définition des alliages selon l'invention. Il est, par exemple, possible d'ajouter une petite quantité de bore comme élément mineur. En ajoutant 0.1% at. de bore à l'alliage Al10Cr30Fe30V30, la dureté est inchangée par rapport au même alliage sans bore (410 HV) mais, par contre, l'ajout de bore permet de réduire la croissance granulaire après traitement thermique et par là-même d'améliorer la ductilité et la polissabilité. L'ajout d'atomes interstitiels tels que le C, N et l'O comme éléments mineurs permet également d'augmenter la dureté.It is still possible to improve the properties, particularly the mechanical properties, by adding certain minor elements while maintaining a main phase which satisfies the definition of the alloys according to the invention. It is, for example, possible to add a small amount of boron as a minor element. By adding 0.1% at. of boron to the Al10Cr30Fe30V30 alloy, the hardness is unchanged compared to the same boron-free alloy (410 HV) but, on the other hand, the addition of boron makes it possible to reduce the granular growth after heat treatment and thereby improve ductility and polishability. Adding interstitial atoms such as C, N and O as minor elements also helps to increase hardness.

Claims (11)

  1. High entropy alloy with a composition containing between 4 and 9 major elements chosen from the list comprising Cr, Fe, V, Al, Si, Mn, Mo, Ti and Ni with:
    - 3 major elements which are Cr, Fe and V, each having an atomic concentration comprised between 20 and 40%,
    - 1 or 2 major elements chosen from Al and Si each having an atomic concentration greater than or equal to 5% with a total concentration for these 2 major elements of less than or equal to 25%,
    - 0, 1, 2, 3 or 4 major elements chosen from Mn, Mo, Ti and Ni, each having an atomic concentration greater than or equal to 5% with a total atomic concentration for these 4 major elements of less than or equal to 35%,
    the total atomic concentration for all of the 4 to 9 major elements being greater than or equal to 80% and the remainder being made up of impurities and/or one or more minor elements each having an atomic concentration of less than 5%.
  2. Alloy according to claim 1, characterised in that the minor element(s) are chosen from the list comprising Si, Mn, Mo, Al, Nb, H, B, C, N, O, Mg, Sc, Ti, Cu, Ni, Zn, Ga, Ge, Sr, Y, Zr, Rh, Pd, Ag, Sn, Sb, Hf, Ta, W, Pt and Au.
  3. Alloy according to claim 1 or 2, characterised in that it contains between 0.005 and 0.1% atomic concentration of B as minor element.
  4. Alloy according to any one of the preceding claims, characterised in that it contains between 7 and 15% atomic concentration of Ni as major element.
  5. Alloy according to any one of the preceding claims, characterised in that the alloy meets one of the following formulae expressed in atomic fractions: Al10Fe25Cr40V25, Al10Fe40Cr25V25, Al10Fe25Cr25V40, Al10Fe30Cr30V30, Al5Cr30Fe30Mo5V30, Al6Cr30Fe30Mo5V29, Al5Cr30Fe30Si5V30, Al5Cr30Fe30Mn5V30, Al13Cr25Fe25Ni12V25, Cr31 Fe31 V31 Si7 or Fe25Cr25V25Al10Ni10Ti5.
  6. Alloy according to any one of the preceding claims, characterised in that it includes a single-phase, body-centred cubic solid solution.
  7. Alloy according to any one of claims 1 to 5, characterised in that it has a two-phase structure including a body-centred cubic matrix and nanoprecipitates.
  8. Alloy according to any one of the preceding claims, characterised in that it exhibits non-ferromagnetic behaviour and does not exhibit signs of corrosion after being subjected to the salt spray test according to ISO standard 9227.
  9. Alloy according to any one of the preceding claims, characterised in that it has a hardness HV10 greater than or equal to 400.
  10. External component for horology or jewellery, characterised in that it is made from the alloy according to any one of the preceding claims.
  11. Component according to claim 10, characterised in that it is chosen from the list including a case middle, a case back, a bezel, a pusher, a crown, a bracelet link, a clasp, a buckle, a prong, a dial, a hand, and a dial index.
EP18162716.7A 2018-03-20 2018-03-20 High-entropy alloys for covering components Active EP3543368B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18162716.7A EP3543368B1 (en) 2018-03-20 2018-03-20 High-entropy alloys for covering components
JP2019019528A JP6802866B2 (en) 2018-03-20 2019-02-06 High entropy alloy for exterior parts
US16/271,925 US20190292633A1 (en) 2018-03-20 2019-02-11 High entropy alloy for external components
KR1020190017908A KR102180486B1 (en) 2018-03-20 2019-02-15 High entropy alloy for external components
CN201910207000.1A CN110306094A (en) 2018-03-20 2019-03-19 High-entropy alloy for external module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18162716.7A EP3543368B1 (en) 2018-03-20 2018-03-20 High-entropy alloys for covering components

Publications (2)

Publication Number Publication Date
EP3543368A1 EP3543368A1 (en) 2019-09-25
EP3543368B1 true EP3543368B1 (en) 2020-08-05

Family

ID=61691839

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18162716.7A Active EP3543368B1 (en) 2018-03-20 2018-03-20 High-entropy alloys for covering components

Country Status (5)

Country Link
US (1) US20190292633A1 (en)
EP (1) EP3543368B1 (en)
JP (1) JP6802866B2 (en)
KR (1) KR102180486B1 (en)
CN (1) CN110306094A (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110777273B (en) * 2018-07-31 2020-10-16 哈尔滨工业大学 Method for improving room temperature plasticity of refractory high-entropy alloy
CN110735078B (en) * 2019-10-14 2020-08-28 中南大学 CrFeMnMoSiZr high-entropy alloy porous material and preparation method thereof
CN111187962B (en) * 2020-01-07 2021-11-23 北京大学 High thermal stability AlxFeCrV multi-principal-element solid solution alloy, preparation and application
CN111004958B (en) * 2020-01-07 2021-03-16 北京科技大学 Preparation method of Al-Si-Mn-Fe-Ga high-entropy ten-order quasicrystal
CN111218601B (en) * 2020-01-07 2021-06-01 北京大学 High-strength-toughness low-activation FeCrVO multi-principal-element alloy and preparation method thereof
CN111074133A (en) * 2020-01-07 2020-04-28 北京大学 Low-activation multi-principal-element solid solution alloy and preparation method thereof
US11353117B1 (en) 2020-01-17 2022-06-07 Vulcan Industrial Holdings, LLC Valve seat insert system and method
WO2021172635A1 (en) * 2020-02-28 2021-09-02 엘지전자 주식회사 Multi-component alloy
CN111321335A (en) * 2020-03-06 2020-06-23 中南大学 High-corrosion-resistance high-toughness FeCrNi series multi-principal-element alloy and preparation method thereof
CN111647792A (en) * 2020-04-28 2020-09-11 苏州鑫旭合智能科技有限公司 Light high-entropy alloy and preparation method thereof
CN111809126A (en) * 2020-06-09 2020-10-23 江苏理工学院 Method for eliminating amplitude modulation structure in FeCrNiMn quaternary high-entropy alloy
KR102431831B1 (en) * 2020-06-25 2022-08-10 포항공과대학교 산학협력단 Medium entropy alloy and manufacturing method thereof
US11421680B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing bore wear sleeve retainer system
US11421679B1 (en) 2020-06-30 2022-08-23 Vulcan Industrial Holdings, LLC Packing assembly with threaded sleeve for interaction with an installation tool
CN111945034B (en) * 2020-07-30 2021-09-28 东北大学 BCC-structure high-entropy alloy containing boron and preparation method thereof
US11384756B1 (en) 2020-08-19 2022-07-12 Vulcan Industrial Holdings, LLC Composite valve seat system and method
USD980876S1 (en) 2020-08-21 2023-03-14 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD986928S1 (en) 2020-08-21 2023-05-23 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
USD997992S1 (en) 2020-08-21 2023-09-05 Vulcan Industrial Holdings, LLC Fluid end for a pumping system
CN112870683A (en) * 2021-01-08 2021-06-01 东莞颠覆产品设计有限公司 Application of high-entropy alloy in skiing equipment
US11391374B1 (en) 2021-01-14 2022-07-19 Vulcan Industrial Holdings, LLC Dual ring stuffing box
CN112962014B (en) * 2021-02-03 2022-05-13 湖南大学 Method for improving strength and plasticity of multi-component alloy based on annealing hardening
CN113481418B (en) * 2021-06-01 2022-03-25 西安理工大学 Nickel-aluminum-molybdenum-chromium-vanadium-iron eutectic high-entropy alloy and preparation method thereof
CN113444955B (en) * 2021-06-01 2022-03-22 西安理工大学 High-entropy alloy containing eutectic structure and preparation method thereof
CN113403555B (en) * 2021-06-09 2022-06-17 北京理工大学 Method for improving performance of silicide enhanced refractory high-entropy alloy through thermal deformation process
CN113564493B (en) * 2021-08-10 2022-02-08 成都大学 High-entropy alloy reinforced FeCrAl alloy cladding material and preparation process thereof
CN113774295B (en) * 2021-09-24 2022-05-17 中国人民解放军军事科学院国防科技创新研究院 Al-Ni-Zr-Y-Co high-entropy amorphous alloy and preparation method thereof
CN114210964B (en) * 2021-11-17 2022-08-30 东北大学 Extremely-miscible 21-element high-entropy alloy nanoparticle and preparation method thereof
CN115141984B (en) * 2021-11-23 2023-02-24 燕山大学 High-entropy austenitic stainless steel and preparation method thereof
WO2023140388A1 (en) * 2022-01-24 2023-07-27 日立金属株式会社 Alloy, alloy member and product
CN114769600B (en) * 2022-04-12 2023-02-10 哈尔滨工业大学 Si-containing high-entropy alloy powder and preparation method thereof
CN114574747B (en) * 2022-04-18 2023-02-10 西安稀有金属材料研究院有限公司 Low-activation anti-irradiation and corrosion-resistant high-entropy alloy for nuclear reactor and preparation method thereof
CN114657439A (en) * 2022-04-19 2022-06-24 西安稀有金属材料研究院有限公司 Refractory high-entropy alloy with good room-temperature plasticity and preparation method thereof
US11434900B1 (en) 2022-04-25 2022-09-06 Vulcan Industrial Holdings, LLC Spring controlling valve
CN114959404A (en) * 2022-05-16 2022-08-30 哈尔滨工业大学 Multi-element high-entropy alloy powder and preparation method and application thereof
US11920684B1 (en) 2022-05-17 2024-03-05 Vulcan Industrial Holdings, LLC Mechanically or hybrid mounted valve seat
CN114939654B (en) * 2022-05-27 2023-04-07 中机新材料研究院(郑州)有限公司 High-entropy alloy powder for laser additive manufacturing and preparation method and application thereof
CN115491564B (en) * 2022-10-09 2023-06-23 南京工业大学 Iron-rich high-strength and high-toughness duplex high-entropy stainless steel and preparation method thereof
CN116227252B (en) * 2023-05-10 2023-07-04 吉林大学 Method for determining atomic distribution on surface of noble metal high-entropy alloy based on linear function

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020159914A1 (en) * 2000-11-07 2002-10-31 Jien-Wei Yeh High-entropy multielement alloys
JP4190720B2 (en) * 2000-11-29 2008-12-03 國立清華大學 Multi-component alloy
CA2649394C (en) * 2006-04-21 2015-11-24 Shell Internationale Research Maatschappij B.V. Adjusting alloy compositions for selected properties in temperature limited heaters
TWI347978B (en) * 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same
CN101418394A (en) * 2007-10-23 2009-04-29 财团法人工业技术研究院 Superhard composite material and method for preparation thereof
CN102776430B (en) * 2012-08-20 2014-08-06 太原理工大学 AlCoCrFeNiTix high-entropy alloy material and method for preparing same
CN103194656A (en) * 2013-04-19 2013-07-10 梧州漓佳铜棒有限公司 AlxCrFeNiCuVTi high-entropy alloy material and preparation method thereof
CN103757661A (en) * 2014-01-24 2014-04-30 福建工程学院 Aluminum electrolysis inert anode
JP6455700B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
JP6455699B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
JP6432822B2 (en) * 2014-07-25 2018-12-05 日立金属株式会社 Alloy powder used for melt lamination molding
JP6388381B2 (en) * 2014-07-23 2018-09-12 日立金属株式会社 Alloy structure
JP6455701B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Alloy structure
US10190197B2 (en) * 2015-12-11 2019-01-29 The Trustees Of Dartmouth College Oxidation resistant high-entropy alloys
CN105714353B (en) * 2016-02-02 2018-04-13 北京科技大学 A kind of method in high-entropy alloy Surface Creation Nano tube of composite oxides array
KR101831056B1 (en) * 2016-06-01 2018-02-21 한국기계연구원 High entropy alloy
CN108359948B (en) * 2018-01-22 2020-04-24 北京科技大学 Cr-Fe-V-Ta-W high-entropy alloy film for high-flux screening and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102180486B1 (en) 2020-11-19
JP6802866B2 (en) 2020-12-23
EP3543368A1 (en) 2019-09-25
US20190292633A1 (en) 2019-09-26
CN110306094A (en) 2019-10-08
JP2019163535A (en) 2019-09-26
KR20190110432A (en) 2019-09-30

Similar Documents

Publication Publication Date Title
EP3543368B1 (en) High-entropy alloys for covering components
CH714802A2 (en) High entropy alloys for dressing components.
EP3240915B1 (en) Lightweight precious alloy made from titanium and gold, and timepiece or jewellery item component made from a lightweight precious alloy of titanium and gold
EP3147380B1 (en) Nickel-free austenitic stainless steel
EP3128035B1 (en) Bulk amorphous alloy made of nickel-free zirconium
EP3519900B1 (en) Timepiece component having a high-entropy alloy
EP2728028B1 (en) Edelstahllegierung ohne Nickel
EP2546371B1 (en) 18-carat grey gold
EP2588635B1 (en) Gold alloy with improved hardness
EP3835438A1 (en) Paramagnetic hard stainless steel and method for manufacturing same
CH716938B1 (en) Paramagnetic hard stainless steel and method of making same.
EP3885842B1 (en) Non-magnetic timepiece component with improved wear resistance
CH716937A2 (en) Paramagnetic hard stainless steel and its manufacturing process.
EP3995600A1 (en) Paramagnetic hard stainless steel and its manufacturing process
CH718042A2 (en) Paramagnetic hard stainless steel and method of making same.
CH717261A2 (en) Non-magnetic watch component with wear resistance
EP3808865B1 (en) White gold alloy and method for manufacturing same
CH707203A2 (en) Stainless steel alloy, useful in component of clockwork and jewelry, comprises base including iron and chromium, nickel, and filler metal of first assembly comprising copper, ruthenium, rhodium, palladium, rhenium and osmium
EP4166684A1 (en) Precious cermet item
WO2023214024A1 (en) Timepiece component made of polished titanium alloy
CH719052A9 (en) Item in precious cermet.
EP4245871A1 (en) Gold alloy
CH710575A2 (en) lightweight alloy of titanium and precious gold and watch component or jewelry made of precious light alloy of titanium and gold.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200325

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200506

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/18 20060101AFI20200420BHEP

Ipc: C22C 45/08 20060101ALI20200420BHEP

Ipc: C22C 45/00 20060101ALI20200420BHEP

Ipc: C22C 38/24 20060101ALI20200420BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1298808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018006542

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1298808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018006542

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210320

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230221

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230401

Year of fee payment: 6