JP4190720B2 - Multi-component alloy - Google Patents

Multi-component alloy Download PDF

Info

Publication number
JP4190720B2
JP4190720B2 JP2000362088A JP2000362088A JP4190720B2 JP 4190720 B2 JP4190720 B2 JP 4190720B2 JP 2000362088 A JP2000362088 A JP 2000362088A JP 2000362088 A JP2000362088 A JP 2000362088A JP 4190720 B2 JP4190720 B2 JP 4190720B2
Authority
JP
Japan
Prior art keywords
alloy
hardness
moles
present
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000362088A
Other languages
Japanese (ja)
Other versions
JP2002173732A (en
Inventor
均蔚 葉
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to JP2000362088A priority Critical patent/JP4190720B2/en
Publication of JP2002173732A publication Critical patent/JP2002173732A/en
Application granted granted Critical
Publication of JP4190720B2 publication Critical patent/JP4190720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Contacts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は一種のハイエントロピー多元合金に係り、特に、5種類から11種類の主要金属元素を含有するハイエントロピー多元合金に関する。
【0002】
【従来の技術】
伝統的な合金システムは、主要な構成元素、例えば鉄、銅、アルミニウム、マグネシウム、チタン、ジルコニウム、クロム、鉛、亜鉛、金、銀により分類される。周知の合金は、いずれも単一元素を主要合金元素としており、その他は副合金元素とされる。近年、急速凝固合金、機械合金、金属基複合材料が発展しているが、しかしその合金設計及び合金選択の理念は、いまだ一種類の元素を主要なものとする観念から脱していない。言い換えると、これまでの実験合金或いは商用合金のいずれもがある元素を単一主要元素とする合金の範疇から離脱していなかった。
【0003】
【発明が解決しようとする課題】
上述の伝統的な合金設計理念は明らかに合金成分の自由度を制限し、このため、新たな結晶構造及びそのマイクロ構造及び新たな性能の発展を制限する。本発明は新たな設計観念及びその合金範囲を提供して伝統的な制限を突破することを課題としている。
【0004】
【課題を解決するための手段】
請求項1の発明は、構造体に使用される多元合金において、
該多元合金は5種類から11種類の主要金属元素を含有し、これら主要金属元素は、チタン、バナジウム、鉄、ニッケルを含有すると共に、銅、アルミニウム、モリブデン、ジルコニウム、コバルト、クロム、パラジウムからなるグループから選ばれた一種以上の元素で構成され、且つ各一種類の主要金属元素のモル数が合金総モル数の5%から30%とされたことを特徴とする、多元合金としている。
請求項2の発明は、前記多元合金がさらいホウ素を含有し、且つ該ホウ素のモル数が合金総モル数の5%を超過しないことを特徴とする、請求項1に記載の多元合金としている。
【0005】
【発明の実施の形態】
本発明は一種のハイエントロピー多元合金を提供する。本発明の合金は、複数種類の元素からなる合金であり、その特徴は、合金が5種類から11種類の主要金属元素を含有し、各一種類の金属元素のモル数が合金総モル数の5%から30%とされる。
【0006】
本発明の合金の含有する主要金属元素は、アルミニウム、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、ジルコニウム、モリブデン、パラジウム、銀及び金より選択される。
【0007】
本発明のハイエントロピー多元合金はまた前述の主要金属元素のほかに、副元素を添加可能であり、この副元素は、そのモル数が合金の総モル数の5%を超過しない。副元素は、金属元素或いは非金属元素とされる。金属添加物、例えば金、銀、白金、タングステン、錫、亜鉛及びその他の金属元素とされ、非金属元素は例えば、炭素、ホウ素、ケイ素、リン、硫黄及びその他の非金属元素とされる。
【0008】
本発明のハイエントロピー多元合金は、任意の一つの元素のモル数が合金モル数の30%を超過せず、ゆえに単一主要元素がマトリクスを構成する現象を有することがなく、溶融、凝固構造性質上、明らかに伝統的な合金とは異なっている。本発明の合金は原子構成構造上、ハイエントロピー現象を発生し、ゆえに本合金はハイエントロピー多元合金と称される。
【0009】
本発明のハイエントロピー多元合金は少なくとも、以下の特性を同時に有する。
1.極めて高い硬度: 凝固して固体となった後、異なる元素組成により、その硬度はHv600からHv900まで変化し、カーボンスチール及び合金カーボンスチールの完全焼入れ硬化後の硬度に相当するか或いはそれより高い。
2.極めて高い耐熱性: 1000℃で12時間熱処理した後に炉中で冷却すると、熱軟化現象を発生しない。
3.極めて高い耐蝕性: 高濃度の硫酸、塩酸、硝酸に浸漬しても、ほぼ腐蝕現象を発生しない。
【0010】
【実施例】
本発明のハイエントロピー多元合金は、電気抵抗式加熱法、感応加熱法、真空アーク溶融法、急速凝固法、機械合金法及び粉末合金法によりキャスティング或いは合成で製造され、これらの加熱方法と技術はいずれも本発明の属する分野の技術に関係する者であれば熟知していることであるので、一つずつの説明は省略するが、ここではただ電気アームキャスティングについて説明する。キャスティングにおいては、まず、選択した金属元素材料を、その融点により上から下に溶炉の水冷銅型中に入れ、さらに、溶炉の上蓋を閉じ、先に抽気し真空とし、その後、純アルゴンガスを充填し、こうして重複した抽気及び充気操作を行った後に、溶融開始する。電気アークをオンとして、金属材料を完全に溶融させ、それが銅型中で凝固した後に、裏返しにしてさらにアーク溶融を行い、全ての合金元素を溶融させ並びに均一に混合するまでこれを数回繰り返す。さらにそれを冷却して合金タブレット或いは目的物を得て、取り出して使用する。
【0011】
本発明のハイエントロピー多元合金は複数種の金属元素をキャスティングするか或いは合成してなる合金である。該合金は少なくとも5種類以上の主要金属元素を含有し、各一種類の金属元素のモル数が合金総モル数の5%から30%とされる。好ましくは、該合金の含有する主要金属元素は、アルミニウム、チタン、バナジウム、クロム、鉄、コバルト、ニッケル、銅、ジルコニウム、モリブデン、パラジウム、銀及び金より選択される。
【0012】
本発明のハイエントロピー多元合金はまた前述の主要金属元素のほかに、副元素を添加可能であり、この副元素は、そのモル数が合金の総モル数の5%を超過しない。副元素は、金属元素或いは非金属元素とされる。
【0013】
実施例1:
銅、チタン、バナジウム、鉄、ニッケル及びジルコニウムの6種類の元素を同じモル数ずつ使用し、その総重量が約100gとなるようにする。各組成元素をその融点により上から下に溶炉の水冷銅型中に入れ、さらに、溶炉の上蓋を閉じ、先に5分間抽気して0.01大気圧とした後に、純アルゴンガスを、約0.2大気圧となるまで充填し、さらにもう一度、抽気及び充気操作を重複して行った後に、溶融を開始する。溶融電流は500アンペアとし、毎回溶融と凝固完成後に、銅型中の合金を裏返して電気アーク溶融を行い、これを全ての合金元素がすべて溶融し並びに均一に混合したと確定するまで続け、冷却後、外形が完全な円盤状とされた直径約5cmの合金タブレットを得る。これは以下の表1の合金番号1に示されるとおりである。このほか、さらに一部の合金タブレットを1000℃空気炉中に置いて12時間熱処理し、その後、炉中で冷却して熱処理状態を得て、並びにその性質を測定する。
【0014】
実施例2から20:
実施例1の製造ステップを重複して行うが、しかし組成元素はそれぞれ表1中の合金番号2〜20に示されるとおりとする。
【表1】

Figure 0004190720
ヴィッカー硬度テスタを利用し、合金コード1乃至20の全てのサンプルの硬度値を測定する。測量前、サンプルの表面を#120、#240、#400、#600のカーボランダムサンドペーパーで研磨して平らに整えた後、さらに硬度テスタで測量する。測量時に加える負荷は5kgfとし、負荷時間は10秒とする。各サンプルに対して7個の異なる位置の硬度値を測定し、中間の5個の平均値の平均をこのサンプルの硬度とし、その結果を表1に示した。
表1中の合金番号1から20について、それぞれキャスト状態と熱処理状態の硬度値を示した。これから合金硬度が元素個数及び種類により明らかに違いがあることが分かる。一般的には、元素個数が多いほど、硬度が高くなる。ホウ素を加えることで硬度を高めることができる。熱処理により少数の合金の硬度が僅かに下がったが、その他の合金は硬度が下がらないか或いは反対に上昇した。表1中、硬度値の変化範囲はHv590〜Hv890であり、もし、カーボンスチール及び合金カーボンスチール硬度を比較すると、この硬度範囲は0.35%から1.0%の炭素含有量のカーボンスチール及び合金カーボンスチールの完全焼入れ硬化後の硬度範囲に相当する。さらに石英の硬度は約Hv700であり、これもまたこの硬度範囲にあり、これから本発明の多元合金が極めて高い硬度を有することが分かる。特に進んだものでは、カーボンスチール或いは合金スチールは高温で軟化現象を呈し、ゆえに合金工具スチールは一般に550℃を越える温度では使用できず、使用した場合は急速に軟化し、変形断裂する。本発明のハイエントロピー多元合金は1000℃でも軟化せず、ゆえに極めて優れた耐熱性を有している。
耐酸性試験
本発明の多元合金を裁断し、約2グラムの粒塊を切り取り、それぞれ500mlの濃度が1及び0.01Mの塩酸、硫酸、及び硝酸水溶液中にそれぞれ24時間浸漬させ、多元合金サンプルと異なる酸液の反応程度と重量損失を観察し、異なる成分の各種の常用酸液に対する抵抗能力を比較した。その結果は表2のとおりである。
【表2】
Figure 0004190720
表2から明らかであるように、本発明のハイエントロピー多元合金は、いかなる表面処理も行わずとも極めて高い耐酸蝕性を有している。これに対して、カーボンスチール或いは合金カーボンスチールはこのような耐蝕性を有していない。
【0015】
実施例21乃至24
実施例1の製造ステップを重複して行うが、但し組成元素及び原子モル比組成は表3に示す通りとし、得られるタブレットを約2.5g切り取り、アーク溶炉中に入れて再度溶融させ、並びに石墨ハンマを用いて溶融した液体を打撃して厚さ約200μmの薄片を得る(その快速冷却速度は103 〜104 K/secとされる)、その後その性質を測定する。その硬度値は表4のとおりであり、モル比偏離などの状況にあって、急速凝固法で極めて高い硬度が得られることが分かる。そのうち実施例22の合金の硬度はHv1049にも達した。
【表3】
Figure 0004190720
【表4】
Figure 0004190720
【0016】
【発明の効果】
総合すると、本発明のハイエントロピー多元合金は、キャスト状態においてカーボンスチール及び合金カーボンスチール焼入れ完全硬化後の硬度水準より高い硬度を得ることができるだけでなく、長時間の高温(1000℃)熱処理においても硬度は軟化せず優れた焼き戻し軟化抵抗性を表現し、カーボンスチール及び合金カーボンスチール(550℃までしか耐えられない)の及ぶところではない。また本発明のハイエントロピー多元合金は優れた耐蝕性を有し、これもまたカーボンスチール及び合金カーボンスチールの及ぶところではない。伝統的な周知の合金組成でこれらの特性を同時に具えているものはない。本発明のハイエントロピー多元合金はゆえに特殊な用途を有し、例えば熱処理不要の精密キャスティング法による高温或いは低温用のツール、型(mold)及びパーツの直接製造の用途を有し、加工コストを下げられると共に、1000℃までで使用でき焼き戻し軟化の恐れがない。また例えばこのような合金に対して、プラズマ或いは火炎スプレー法によりパーツの表面を塗布して、耐磨、耐熱、耐蝕の用途を提供することができる。ゆえに本発明のハイエントロピー多元合金は新規性、進歩性を有し並びに産業上の利用価値を有し、特許の要件に符合する。なお以上の説明は本発明の望ましい実施例に係るものであって、本発明に基づきなしうる細部の修飾或いは改変は、いずれも本発明の請求範囲に属するものとする。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a kind of high-entropy multi-element alloy, and more particularly to a high-entropy multi-element alloy containing 5 to 11 main metal elements.
[0002]
[Prior art]
Traditional alloy systems are categorized by major constituent elements such as iron, copper, aluminum, magnesium, titanium, zirconium, chromium, lead, zinc, gold, silver. All known alloys have a single element as a main alloy element, and the others are suballoy elements. In recent years, rapid solidification alloys, mechanical alloys, and metal matrix composites have been developed, but the philosophy of alloy design and alloy selection has not been taken away from the idea of one element as a major element. In other words, neither experimental alloys nor commercial alloys so far have departed from the category of alloys in which an element is a single major element.
[0003]
[Problems to be solved by the invention]
The traditional alloy design philosophy described above clearly limits the freedom of alloying components, thus limiting the development of new crystal structures and their microstructures and new performance. The present invention seeks to break through the traditional limitations by providing a new design concept and its alloy range.
[0004]
[Means for Solving the Problems]
The invention of claim 1 is a multi-component alloy used for a structure,
The multi-component alloy contains 5 to 11 kinds of main metal elements. These main metal elements contain titanium, vanadium, iron and nickel, and are made of copper, aluminum, molybdenum, zirconium, cobalt, chromium and palladium. A multi-component alloy comprising one or more elements selected from a group, wherein the number of moles of each of the main metal elements is 5% to 30% of the total number of moles of the alloy .
The invention according to claim 2 is the multi-element alloy according to claim 1, wherein the multi-element alloy contains sieving boron and the number of moles of boron does not exceed 5% of the total number of moles of the alloy. .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a kind of high-entropy multicomponent alloy. The alloy of the present invention is an alloy composed of a plurality of kinds of elements, and the feature is that the alloy contains 5 to 11 kinds of main metal elements, and the number of moles of each kind of metal element is the total number of moles of the alloy. 5% to 30%.
[0006]
The main metal element contained in the alloy of the present invention is selected from aluminum, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zirconium, molybdenum, palladium, silver and gold.
[0007]
The high-entropy multicomponent alloy of the present invention can also contain subelements in addition to the main metal elements described above, and the subelements do not exceed 5% of the total number of moles of the alloy. The subelement is a metallic element or a nonmetallic element. Metal additives such as gold, silver, platinum, tungsten, tin, zinc, and other metal elements, and non-metal elements include, for example, carbon, boron, silicon, phosphorus, sulfur, and other non-metallic elements.
[0008]
The high-entropy multi-component alloy of the present invention has a molten, solidified structure in which the number of moles of any one element does not exceed 30% of the number of moles of the alloy, and therefore no single main element has the phenomenon of constituting a matrix. It is clearly different from traditional alloys in nature. The alloy of the present invention generates a high entropy phenomenon due to its atomic structure, and therefore the alloy is called a high entropy multi-element alloy.
[0009]
The high-entropy multicomponent alloy of the present invention has at least the following characteristics.
1. Extremely high hardness: After solidifying into a solid, due to the different elemental composition, its hardness varies from Hv600 to Hv900, corresponding to or higher than the hardness after complete quench hardening of carbon steel and alloy carbon steel.
2. Extremely high heat resistance: When heat-treated at 1000 ° C. for 12 hours and then cooled in a furnace, no thermal softening phenomenon occurs.
3. Extremely high corrosion resistance: Almost no corrosion occurs even when immersed in high-concentration sulfuric acid, hydrochloric acid or nitric acid.
[0010]
【Example】
The high-entropy multi-component alloy of the present invention is produced by casting or synthesis by an electric resistance heating method, a sensitive heating method, a vacuum arc melting method, a rapid solidification method, a mechanical alloy method, and a powder alloy method. Any one of those who are related to the technology in the field to which the present invention belongs will be familiar, so that the explanation for each one is omitted, but only the electric arm casting will be explained here. In casting, first, the selected metal element material is put into the water-cooled copper mold of the furnace from the top to the bottom depending on the melting point, and further, the upper lid of the furnace is closed and evacuated and vacuumed first, and then pure argon After filling with gas and thus performing the duplicated bleed and charge operations, melting starts. Turn on the electric arc to completely melt the metal material and after it solidifies in the copper mold, turn it over and perform further arc melting to melt all the alloy elements and mix them several times until they are evenly mixed repeat. Further, it is cooled to obtain an alloy tablet or a desired product, which is taken out and used.
[0011]
The high-entropy multicomponent alloy of the present invention is an alloy formed by casting or synthesizing a plurality of kinds of metal elements. The alloy contains at least five kinds of main metal elements, and the number of moles of each one kind of metal element is set to 5 to 30% of the total number of moles of the alloy. Preferably, the main metal element contained in the alloy is selected from aluminum, titanium, vanadium, chromium, iron, cobalt, nickel, copper, zirconium, molybdenum, palladium, silver and gold.
[0012]
The high-entropy multicomponent alloy of the present invention can also contain subelements in addition to the main metal elements described above, and the subelements do not exceed 5% of the total number of moles of the alloy. The subelement is a metallic element or a nonmetallic element.
[0013]
Example 1:
Six elements of copper, titanium, vanadium, iron, nickel and zirconium are used in the same number of moles so that the total weight is about 100 g. Each composition element is put into the water-cooled copper mold of the furnace from the top to the bottom according to its melting point, and further, the upper lid of the furnace is closed, and after first extracting for 5 minutes to 0.01 atmospheric pressure, pure argon gas is introduced. Then, filling is performed until the pressure reaches about 0.2 atmospheric pressure, and then, once again, the bleed and charge operations are repeated, and then melting is started. The melting current was 500 amperes, and after completion of melting and solidification each time, the alloy in the copper mold was turned over, and electric arc melting was performed, and this was continued until it was determined that all the alloy elements were all melted and mixed uniformly. Thereafter, an alloy tablet having a diameter of about 5 cm and having a complete outer shape is obtained. This is as shown in Alloy No. 1 in Table 1 below. In addition, some of the alloy tablets are further heat-treated for 12 hours in a 1000 ° C. air furnace, then cooled in the furnace to obtain a heat-treated state, and their properties are measured.
[0014]
Examples 2 to 20:
The manufacturing steps of Example 1 are repeated, but the compositional elements are as shown in Alloy Nos. 2 to 20 in Table 1, respectively.
[Table 1]
Figure 0004190720
Using a Vicker hardness tester, the hardness values of all the samples of the alloy cords 1 to 20 are measured. Before surveying, the surface of the sample is ground with # 120, # 240, # 400, and # 600 carborundum sandpaper and flattened, and then surveyed with a hardness tester. The load applied during surveying is 5 kgf, and the load time is 10 seconds. The hardness values at seven different positions were measured for each sample, and the average of the average of five intermediate values was taken as the hardness of this sample. The results are shown in Table 1.
For alloy numbers 1 to 20 in Table 1, the hardness values in the cast state and the heat treatment state are shown, respectively. It can be seen from this that the alloy hardness clearly varies depending on the number and type of elements. Generally, the greater the number of elements, the higher the hardness. Hardness can be increased by adding boron. The heat treatment slightly reduced the hardness of a few alloys, while the other alloys did not decrease in hardness or increased on the contrary. In Table 1, the change range of the hardness value is Hv590 to Hv890. If the carbon steel and alloy carbon steel hardness are compared, this hardness range is between 0.35% and 1.0% carbon steel and Corresponds to the hardness range after complete quench hardening of alloy carbon steel. Furthermore, the hardness of quartz is about Hv700, which is also in this hardness range, and it can be seen from this that the multi-element alloy of the present invention has a very high hardness. In particular, carbon steels or alloy steels exhibit a softening phenomenon at high temperatures, so alloy tool steels generally cannot be used at temperatures above 550 ° C., and when used, they soften rapidly and deform and tear. The high-entropy multicomponent alloy of the present invention does not soften even at 1000 ° C. and therefore has extremely excellent heat resistance.
Acid resistance test The multi-component alloy of the present invention was cut, and about 2 grams of agglomerates were cut out and immersed in hydrochloric acid, sulfuric acid, and aqueous nitric acid solutions each having a concentration of 500 ml of 1 and 0.01 M, respectively. The reaction degree and weight loss of different acid solutions were observed, and the resistance ability of various components to various common acid solutions was compared. The results are shown in Table 2.
[Table 2]
Figure 0004190720
As is apparent from Table 2, the high-entropy multicomponent alloy of the present invention has extremely high acid corrosion resistance without any surface treatment. On the other hand, carbon steel or alloy carbon steel does not have such corrosion resistance.
[0015]
Examples 21 to 24
The production steps of Example 1 are repeated, except that the compositional elements and the atomic molar ratio composition are as shown in Table 3, and about 2.5 g of the resulting tablet is cut out, placed in an arc furnace, and melted again. In addition, the molten liquid is hit using a graphite hammer to obtain a flake having a thickness of about 200 μm (the rapid cooling rate is 10 3 to 10 4 K / sec), and then the property is measured. The hardness values are as shown in Table 4, and it can be seen that extremely high hardness can be obtained by the rapid solidification method under conditions such as molar ratio deviation. Among them, the hardness of the alloy of Example 22 reached Hv1049.
[Table 3]
Figure 0004190720
[Table 4]
Figure 0004190720
[0016]
【The invention's effect】
In summary, the high-entropy multi-component alloy of the present invention can not only obtain a hardness higher than the hardness level after carbon steel and alloy carbon steel hardened completely in the cast state, but also in a long-time high temperature (1000 ° C.) heat treatment. Hardness does not soften, expresses excellent temper softening resistance, and does not reach carbon steel and alloy carbon steel (which can withstand only up to 550 ° C). The high-entropy multicomponent alloy of the present invention also has excellent corrosion resistance, which is not as much as that of carbon steel and alloy carbon steel. None of the traditional, well-known alloy compositions have these properties simultaneously. The high-entropy multi-component alloy of the present invention therefore has special applications, such as direct manufacturing of high-temperature or low-temperature tools, molds and parts by precision casting methods that do not require heat treatment, thus reducing processing costs. In addition, it can be used up to 1000 ° C. and there is no fear of temper softening. Further, for example, the surface of a part can be applied to such an alloy by plasma or flame spraying to provide applications for abrasion resistance, heat resistance, and corrosion resistance. Therefore, the high-entropy multicomponent alloy of the present invention has novelty, inventive step and industrial utility value and meets the requirements of patent. It should be noted that the above description relates to preferred embodiments of the present invention, and any modification or alteration in detail that can be made based on the present invention shall fall within the scope of the claims of the present invention.

Claims (2)

構造体に使用される多元合金において、
該多元合金は5種類から11種類の主要金属元素を含有し、これら主要金属元素は、チタン、バナジウム、鉄、ニッケルを含有すると共に、銅、アルミニウム、モリブデン、ジルコニウム、コバルト、クロム、パラジウムからなるグループから選ばれた一種以上の元素で構成され、且つ各一種類の主要金属元素のモル数が合金総モル数の5%から30%とされたことを特徴とする、多元合金。
In multi-component alloys used for structures,
The multi-component alloy contains 5 to 11 kinds of main metal elements. These main metal elements contain titanium, vanadium, iron and nickel, and are made of copper, aluminum, molybdenum, zirconium, cobalt, chromium and palladium. A multi-component alloy composed of one or more elements selected from a group, wherein the number of moles of each of the main metal elements is 5% to 30% of the total number of moles of the alloy.
前記多元合金がさらにホウ素を含有し、且つ該ホウ素のモル数が合金総モル数の5%を超過しないことを特徴とする、請求項1に記載の多元合金。The multicomponent alloy according to claim 1, wherein the multicomponent alloy further contains boron, and the number of moles of boron does not exceed 5% of the total number of moles of the alloy.
JP2000362088A 2000-11-29 2000-11-29 Multi-component alloy Expired - Fee Related JP4190720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000362088A JP4190720B2 (en) 2000-11-29 2000-11-29 Multi-component alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000362088A JP4190720B2 (en) 2000-11-29 2000-11-29 Multi-component alloy

Publications (2)

Publication Number Publication Date
JP2002173732A JP2002173732A (en) 2002-06-21
JP4190720B2 true JP4190720B2 (en) 2008-12-03

Family

ID=18833422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000362088A Expired - Fee Related JP4190720B2 (en) 2000-11-29 2000-11-29 Multi-component alloy

Country Status (1)

Country Link
JP (1) JP4190720B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550901A (en) * 2014-11-25 2015-04-29 沈阳工业大学 Powder for used in nickel single-element-based alloy surface laser high-entropy alloying and preparation process
CN106995898B (en) * 2017-04-18 2018-08-03 西安工业大学 Compacted black high-entropy alloy of a kind of high-performance and preparation method thereof
CN108431262A (en) * 2015-12-10 2018-08-21 日立金属株式会社 High-entropy alloy component, the alloy components manufacturing method and used the manufacture objects of the alloy components
KR20180110528A (en) 2017-03-29 2018-10-10 서울대학교산학협력단 CrCoNi ALLOYS WITH MULTI-DEFORMATION MECHANISM SENSING TEMPERATURE AND STRESS AND MANUFACTURING METHOD THEREOF
US10364487B2 (en) 2016-02-15 2019-07-30 Seoul National University R&Db Foundation High entropy alloy having TWIP/TRIP property and manufacturing method for the same
US11541456B2 (en) 2019-04-12 2023-01-03 Soochow University FeCrCuTiV high-entropy alloy powder for laser melting deposition manufacturing and preparation method thereof

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347978B (en) 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same
CN102277524B (en) * 2010-06-13 2013-04-24 厦门鑫柏龙仪器仪表有限公司 Au-Fe-Ni-Cr alloy
CN102220026A (en) * 2011-04-11 2011-10-19 黄元盛 High-entropy alloy powder conductive polymer composite material and manufacturing method thereof
CN102676904B (en) * 2012-05-10 2013-10-23 西安理工大学 Material and method used for TA2/0Cr18Ni9Ti welded by high-entropy effect
US9169538B2 (en) * 2012-05-31 2015-10-27 National Tsing Hua University Alloy material with constant electrical resistivity, applications and method for producing the same
CN102828139A (en) * 2012-09-28 2012-12-19 安徽工业大学 High-entropy alloy powder used for spraying
CN103255415A (en) * 2013-05-08 2013-08-21 北京工业大学 TiC-enhanced high-entropy alloy coating and preparation method thereof
CN105506618B (en) * 2013-10-10 2017-11-24 天津大学 The method for improving 42CrMo Steel Properties in laser melting coating
CN105441771B (en) * 2013-10-10 2018-07-13 天津大学 Application of the hexa-atomic alloy powder in laser melting coating
CN104651828B (en) * 2013-11-22 2017-06-06 沈阳工业大学 A kind of ferrous alloy surface prepares high-entropy alloy-base composite material modified layer powder
CN103898463B (en) * 2014-03-07 2015-11-11 浙江大学 A kind of polynary high-entropy alloy film and preparation method thereof
WO2016013492A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy powder used in fused deposition modeling
JP6455701B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Alloy structure
WO2016013493A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Production method of casting alloy
WO2016013496A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Relating to alloy structure and method for producing alloy structure.
JP6455699B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
JP6393885B2 (en) * 2014-07-25 2018-09-26 日立金属株式会社 Method for producing alloy powder
WO2016013495A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy structure and manufacturing method of alloy structure
JP6443721B2 (en) * 2014-07-25 2018-12-26 日立金属株式会社 Method for manufacturing alloy structure
WO2016013494A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy powder used in fused deposition modeling, and production method of said alloy powder
WO2016013497A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy structure and method for producing alloy structure
JP6455700B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
JP6393884B2 (en) * 2014-07-25 2018-09-26 日立金属株式会社 Method for producing alloy powder
WO2016013498A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy structure and method for manufacturing alloy structure
JP6388278B2 (en) * 2014-07-25 2018-09-12 日立金属株式会社 Alloy powder used for melt lamination molding
KR101728936B1 (en) * 2014-07-28 2017-04-21 세종대학교산학협력단 High entropy alloy having excellent strength and ductility
CN104099509B (en) * 2014-08-07 2016-06-08 四川建筑职业技术学院 A kind of high-entropy alloy and its preparation method
WO2016067439A1 (en) * 2014-10-31 2016-05-06 株式会社日立製作所 Alloy and lithium ion battery
CN104607631B (en) * 2014-11-25 2017-10-17 沈阳工业大学 Powder and preparation technology used in a kind of copper single element based alloy laser high-entropy alloy
CN104451338B (en) * 2014-12-03 2017-01-04 北京理工大学 Cocrfenialcusi high-entropy alloy and preparation method thereof
CN104694808B (en) * 2015-03-26 2017-02-22 北京科技大学 High-entropy alloy with dispersion nano-sized precipitate strengthening effect and preparing method thereof
KR101761009B1 (en) 2015-09-02 2017-07-24 한국과학기술원 Hight-entropy multioelement alloy with single phase and process for preparing the same
CN105463443B (en) * 2015-12-04 2018-06-12 山东开泰抛丸机械股份有限公司 A kind of marine drilling platform corrosion resistant coating production
CN105478724B (en) * 2015-12-23 2017-08-29 华南理工大学 A kind of high-entropy alloy particle enhanced aluminum-based composite material and its stirring casting preparation technology
CN105562680B (en) * 2016-01-05 2017-12-05 济南大学 The method that a kind of high-entropy alloy powder and hot pressed sintering prepare high-entropy alloy coating
US20170218480A1 (en) * 2016-01-29 2017-08-03 Seoul National University R&Db Foundation High-entropy alloy foam and manufacturing method for the foam
KR101684856B1 (en) * 2016-01-29 2016-12-09 서울대학교 산학협력단 High-entropy-alloy foam and manufacturing method for the foam
WO2017138191A1 (en) 2016-02-09 2017-08-17 株式会社日立製作所 Alloy member, process for producing said alloy member, and product including said alloy member
KR101748836B1 (en) 2016-02-15 2017-07-03 서울대학교 산학협력단 High entropy alloy having twip/trip property and manufacturing method for the same
KR101783242B1 (en) 2016-03-18 2017-10-10 충남대학교산학협력단 High entropy alloy having interstitial solid solution hardening and method for manufacturing the same
KR101888300B1 (en) 2016-03-21 2018-08-16 포항공과대학교 산학협력단 High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium
WO2017164602A1 (en) * 2016-03-21 2017-09-28 포항공과대학교 산학협력단 Cr-fe-mn-ni-v-based high-entropy alloy
WO2017164601A1 (en) * 2016-03-21 2017-09-28 포항공과대학교 산학협력단 High-entropy alloy for ultra-low temperature
KR101888299B1 (en) 2016-03-21 2018-08-16 포항공과대학교 산학협력단 Cryogenic High Entropy Alloy
WO2017164709A1 (en) * 2016-03-24 2017-09-28 영남대학교 산학협력단 Metal composite
KR101831056B1 (en) * 2016-06-01 2018-02-21 한국기계연구원 High entropy alloy
CN105862035A (en) * 2016-06-25 2016-08-17 芜湖三刀材料科技有限公司 High-entropy alloy coating and preparation method thereof
CN105862036A (en) * 2016-06-25 2016-08-17 芜湖三刀材料科技有限公司 High-entropy coating for surface of iron substrate and preparation method of high-entropy coating
US11339817B2 (en) 2016-08-04 2022-05-24 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US10640854B2 (en) 2016-08-04 2020-05-05 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11318566B2 (en) 2016-08-04 2022-05-03 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
CN106319513B (en) * 2016-09-26 2018-09-11 沈阳工业大学 A kind of preparation method of high-entropy alloy powder and high rigidity high-entropy alloy coating
KR101993527B1 (en) * 2016-10-24 2019-06-27 세종대학교산학협력단 High entropy alloy having excellent strength
CN106756636B (en) * 2016-11-28 2018-12-07 西安交通大学 A kind of high anti-corrosion amorphous high-entropy alloy and preparation method thereof
CN106756417B (en) * 2016-12-20 2018-01-30 安徽工业大学 A kind of method of controllable preparation CoCrCuFeNi high-entropy alloy powders
KR101928329B1 (en) 2017-02-24 2018-12-12 국민대학교산학협력단 Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom
KR20190127808A (en) * 2017-03-08 2019-11-13 씨알에스 홀딩즈 인코포레이티드 High nitrogen multi main element high entropy corrosion resistant alloy
CN107267844B (en) * 2017-06-08 2019-02-12 江苏科技大学 A kind of hexa-atomic high-entropy alloy and preparation method thereof
CN107326246B (en) * 2017-07-17 2019-02-05 西安交通大学 A kind of high-performance high-entropy alloy and its processing method
SG11201901923YA (en) 2017-08-09 2019-04-29 Hitachi Metals Ltd Alloy member, process for producing said alloy member, and product including said alloy member
KR101962229B1 (en) * 2017-09-08 2019-03-26 포항공과대학교 산학협력단 Boron-doped High Entropy Alloy and Manufacturing Method of the Same
CN107739958B (en) * 2017-10-24 2019-10-11 辽宁工业大学 A kind of high-entropy alloy and preparation method thereof containing eutectic structure
WO2019088158A1 (en) 2017-10-31 2019-05-09 日立金属株式会社 Alloy material, method for producing said alloy material, product using said alloy material, and fluid machine having said product
US12000022B2 (en) 2017-10-31 2024-06-04 Proterial, Ltd. High entropy alloy article, product formed of said high entropy alloy article, and fluid machine having said product
CN107829008A (en) * 2017-11-01 2018-03-23 常州大学 A kind of BCC+B2 two-phase alloys of fine uniform distribution and preparation method thereof
EP3543368B1 (en) * 2018-03-20 2020-08-05 The Swatch Group Research and Development Ltd High-entropy alloys for covering components
CN108642399B (en) * 2018-05-17 2020-01-14 哈尔滨工业大学 Basal high-entropy alloy and preparation method thereof
CN108913974A (en) * 2018-06-20 2018-11-30 中国科学院兰州化学物理研究所 A kind of sulfur-bearing self-lubricating high-entropy alloy and preparation method thereof
CN108950286B (en) * 2018-09-28 2019-12-17 宝鸡文理学院 Method for preparing ZnAlCrMnNbB high-entropy alloy
CN109536817B (en) * 2018-11-19 2020-07-07 中国科学院力学研究所 Tungsten high-entropy alloy with armor-piercing self-sharpening effect and preparation method thereof
WO2020105688A1 (en) * 2018-11-22 2020-05-28 株式会社カネカ Multicomponent metal compound
CN109266947A (en) * 2018-11-27 2019-01-25 东莞颠覆产品设计有限公司 A kind of high-entropy alloy composite component and preparation method thereof
CN109554602B (en) * 2018-12-28 2019-12-20 太原理工大学 High-entropy alloy with high-principal-element single-phase close-packed hexagonal structure and preparation method thereof
KR102220219B1 (en) * 2019-01-29 2021-02-24 서울대학교산학협력단 Refractory high entropy superalloy with bcc dual phase and manufacturing method for the same
CN109913732B (en) * 2019-03-21 2021-06-08 大连理工大学 Irradiation-resistant FCC structure high-entropy alloy
CN110106428B (en) * 2019-05-27 2020-10-09 河北工业大学 High-entropy alloy with banded precipitated phases and preparation method thereof
CN112048655B (en) * 2019-06-05 2021-10-22 中国科学院金属研究所 High-density high-activity multi-principal-element alloy and preparation method thereof
CN110229991B (en) * 2019-07-03 2020-07-03 青海大学 Quinary high-entropy alloy with excellent strong plasticity matching and preparation method thereof
CN110629092B (en) * 2019-11-01 2021-11-02 江苏锋泰工具有限公司 Ti (C, N) -based hard alloy material and preparation method thereof
JP7471078B2 (en) 2019-12-24 2024-04-19 山陽特殊製鋼株式会社 A multi-component alloy with excellent resistance to softening, balance of strength and elongation, and excellent wear resistance.
US11511375B2 (en) 2020-02-24 2022-11-29 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys
CN111519078A (en) * 2020-04-27 2020-08-11 浙江亚通焊材有限公司 High-nickel eutectic high-entropy alloy powder for additive manufacturing and preparation method thereof
CN111748721B (en) * 2020-07-08 2022-02-18 重庆师范大学 High-entropy alloy/metal glass composite material and preparation method thereof
CN111961946B (en) * 2020-07-29 2022-01-18 西北工业大学 Low-cost high-strength high-toughness medium-entropy alloy and preparation method thereof
CN113151728B (en) * 2021-02-24 2022-10-18 攀枝花学院 FeCrVTiCu high-entropy alloy and preparation method thereof
CN113061763B (en) * 2021-03-23 2022-05-24 广东省科学院智能制造研究所 High-entropy alloy and preparation method thereof
CN113293368A (en) * 2021-05-21 2021-08-24 贵州大学 High-hardness high-wear-resistance high-entropy intermetallic compound coating and preparation method thereof
CN113788677B (en) * 2021-09-28 2022-10-11 上海电机学院 High-entropy sesqui-rare earth sulfide ceramic material and preparation method and application thereof
CN114059065A (en) * 2021-11-18 2022-02-18 江苏科技大学 Argon arc cladding high-entropy alloy coating and preparation method and application thereof
CN114525420B (en) * 2022-01-21 2023-01-06 山东科技大学 Method for improving kilogram level AlCoCrFeNi by pulse current technology 2.1 Method for mechanical property of eutectic high-entropy alloy
CN114686744B (en) * 2022-04-06 2022-09-20 大连理工大学 High-strength high-plasticity six-element eutectic high-entropy alloy and preparation method thereof
CN114686743B (en) * 2022-04-06 2022-09-20 大连理工大学 High-strength high-plasticity Co-Cr-Fe-Ni-V-B-Si eutectic high-entropy alloy capable of being subjected to thermal mechanical treatment and preparation method thereof
CN114855054A (en) * 2022-05-13 2022-08-05 赵克中 Molybdenum-zirconium-based alloy material and preparation method thereof
CN114990413B (en) * 2022-05-27 2023-04-07 中国科学院赣江创新研究院 Corrosion-resistant FeCrNiCuTi high-entropy alloy and preparation method thereof
CN115094295B (en) * 2022-06-23 2023-03-31 江苏科技大学 High-entropy alloy powder, coating thereof and preparation method of coating
CN114892064B (en) * 2022-06-28 2023-04-18 湖南三泰新材料股份有限公司 FeCrCuVCo high-entropy alloy and preparation method thereof
CN115491529A (en) * 2022-09-15 2022-12-20 上海工程技术大学 Method for improving mechanical property of AlCrFeNiV high-entropy alloy by regulating precipitated phase
CN116065078A (en) * 2022-10-25 2023-05-05 锑玛(苏州)精密工具股份有限公司 FeCoCrCuAl high-entropy alloy for nuclear power equipment sampling tool, and preparation method and application thereof
CN115627403B (en) * 2022-11-21 2023-11-10 中国科学院兰州化学物理研究所 High-toughness lubrication integrated high-entropy ceramic matrix composite material and preparation method thereof
CN116024566B (en) * 2022-12-07 2023-07-28 哈尔滨工业大学 High-temperature-wear-resistant high-entropy alloy coating and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550901A (en) * 2014-11-25 2015-04-29 沈阳工业大学 Powder for used in nickel single-element-based alloy surface laser high-entropy alloying and preparation process
CN108431262A (en) * 2015-12-10 2018-08-21 日立金属株式会社 High-entropy alloy component, the alloy components manufacturing method and used the manufacture objects of the alloy components
CN108431262B (en) * 2015-12-10 2020-06-26 日立金属株式会社 High-entropy alloy member, method for producing same, and product using same
US10364487B2 (en) 2016-02-15 2019-07-30 Seoul National University R&Db Foundation High entropy alloy having TWIP/TRIP property and manufacturing method for the same
KR20180110528A (en) 2017-03-29 2018-10-10 서울대학교산학협력단 CrCoNi ALLOYS WITH MULTI-DEFORMATION MECHANISM SENSING TEMPERATURE AND STRESS AND MANUFACTURING METHOD THEREOF
CN106995898B (en) * 2017-04-18 2018-08-03 西安工业大学 Compacted black high-entropy alloy of a kind of high-performance and preparation method thereof
US11541456B2 (en) 2019-04-12 2023-01-03 Soochow University FeCrCuTiV high-entropy alloy powder for laser melting deposition manufacturing and preparation method thereof

Also Published As

Publication number Publication date
JP2002173732A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP4190720B2 (en) Multi-component alloy
CN107686928B (en) A kind of high-performance NiCoCrFeMnTi system high-entropy alloy and preparation method thereof
US20020159914A1 (en) High-entropy multielement alloys
JP3731600B2 (en) Copper alloy and manufacturing method thereof
KR20060120276A (en) Copper alloy and method for production thereof
CN112981208B (en) Light refractory high-temperature-resistant eutectic high-entropy alloy and preparation method thereof
WO2015142804A1 (en) High strength, homogeneous copper-nickel-tin alloy and production process
JPH0819496B2 (en) Method for manufacturing aluminum alloy parts that retains high fatigue strength even after being kept at high temperature for a long time
CN110029252A (en) Plate high-strength and high ductility antioxidation aluminium magnesium alloy materials and preparation method thereof in a kind of 5G mobile phone
US2964397A (en) Copper-boron alloys
JP2020531683A (en) Copper-based alloys for the production of bulk metallic glasses
Bian et al. Influence of yttrium and vacuum degree on the purification of K417 superalloy
KR102486303B1 (en) Mold materials for casting, and copper alloy materials
CN102965556B (en) Multi-element Mg-Zn-Al based magnesium alloy and preparation method thereof
CN112981212B (en) Preparation method of non-equiatomic ratio high-entropy alloy semi-solid thixotropic blank
CN110453105B (en) Palladium-molybdenum precision resistance alloy and preparation method thereof
JP2534073B2 (en) Copper alloy for electronic component construction and method for producing the same
CN114657437B (en) Co-Cr-Fe-Ni-V-B eutectic high-entropy alloy with excellent thermal modification and preparation method thereof
CN109161767A (en) A kind of creep-resistant property magnesium alloy of the phase containing W and preparation method thereof
CN113604707A (en) Nickel-based high-temperature alloy, and preparation method and application thereof
US3174853A (en) Chromium base alloys
Tsujimoto et al. Structures and properties of an intermetallic compound TiAl based alloys containing silver
JPS62182238A (en) Cu alloy for continuous casting mold
KR950003051B1 (en) Heat-resistant nickel forging alloy
JPS6126739A (en) Heat resistant co alloy for metallic mold for molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070409

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees