WO2017164602A1 - Cr-fe-mn-ni-v-based high-entropy alloy - Google Patents

Cr-fe-mn-ni-v-based high-entropy alloy Download PDF

Info

Publication number
WO2017164602A1
WO2017164602A1 PCT/KR2017/002989 KR2017002989W WO2017164602A1 WO 2017164602 A1 WO2017164602 A1 WO 2017164602A1 KR 2017002989 W KR2017002989 W KR 2017002989W WO 2017164602 A1 WO2017164602 A1 WO 2017164602A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
alloy
phase
entropy alloy
high entropy
Prior art date
Application number
PCT/KR2017/002989
Other languages
French (fr)
Korean (ko)
Inventor
이병주
이성학
김형섭
나영상
홍순익
최원미
전창우
정승문
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170032630A external-priority patent/KR101888300B1/en
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US16/084,610 priority Critical patent/US10988834B2/en
Publication of WO2017164602A1 publication Critical patent/WO2017164602A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a high entropy alloy designed using a thermodynamic calculation of a computer simulation technique. Through the thermodynamic calculation, an alloy composition region having a microstructure of a face centered cubic (FCC) single phase is set up to 700 ° C. or more.
  • the present invention relates to a Cr-Fe-Mn-Ni-V-based high entropy alloy having excellent low-temperature tensile strength and elongation by allowing FCC single-phase microstructure at room temperature and cryogenic temperature after rapid heat treatment at 700 ° C or higher. .
  • High Entropy Alloy (HEA) alloy is a five-element or more multi-element alloy system. Despite being a high alloy system, the high entropy alloy has a high mixed entropy, so that no intermetallic compound is formed and the ductility is excellent.
  • Body Centered Cubic (BCC) is a new concept of new material consisting of a single phase.
  • High entropy alloys having a face-centered cubic lattice (FCC) structure not only have excellent fracture toughness at cryogenic temperatures, but also have excellent corrosion resistance, high mechanical strength, and high mechanical properties.
  • Republic of Korea Patent Publication No. 2016-0014130 is a high entropy alloy that can be used as a heat-resistant material Ti 16 . 6 Zr 16 . 6 Hf 16 . 6 Ni 16 . 6 Cu 16 .
  • High entropy alloys such as 6 Co 17 , Ti 16.6 Zr 16.6 Hf 16.6 Ni 16.6 Cu 16.6 Nb 17 have been proposed, and Japanese Laid-Open Patent Publication No. 2002-173732 discloses Cu-Ti-V-Fe-Ni-Zr as the main element. High entropy alloys with high hardness and corrosion resistance are proposed.
  • the present invention is to solve the problem to provide a Cr-Fe-Mn-Ni-V-based high entropy alloy having a FCC single-phase structure at room temperature and cryogenic temperature and having low temperature tensile strength and low temperature stretching characteristics can be used for cryogenic applications It is a task.
  • the present invention Cr: 3 to 18 atomic%, Fe: 3 to 60 atomic%, Mn: 3 to 40 atomic%, Ni: 20 to 80 atomic%, V: 3 to 12 atomic% It is to provide a high entropy alloy, containing unavoidable impurities, the ratio of the V content to the Ni content (V / Ni) is 0.5 or less.
  • the alloy having such a composition consists of a single phase of the FCC structure without formation of an intermediate phase, and exhibits better tensile strength and elongation at cryogenic temperature (77K) than at room temperature (298K).
  • the new high entropy alloys provided by the present invention have high tensile strength and elongation at cryogenic temperatures rather than at room temperature, and thus have high utility as structural materials used in extreme environments such as cryogenic environments.
  • 1 is a phase at 700 ° C. according to the molar fractions of iron (Fe), manganese (Mn) and nickel (Ni) of an alloy comprising 15 atomic% chromium (Cr) and 10 atomic% vanadium (V). Equilibrium information is shown.
  • FIG. 2 shows a change in equilibrium with temperature for an alloy having a composition marked with a star in FIG. 1.
  • FIG. 3 shows the phase at 700 ° C. according to the molar fractions of iron (Fe), manganese (Mn) and nickel (Ni) of an alloy comprising 10 atomic percent chromium (Cr) and 10 atomic percent vanadium (V). Equilibrium information is shown.
  • FIG. 4 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG.
  • FIG. 5 shows the phase at 700 ° C. according to the remaining mole fractions of chromium (Cr), nickel (Ni) and vanadium (V) of an alloy comprising 30 atomic% iron (Fe) and 20 atomic% manganese (Mn). Equilibrium information is shown.
  • FIG. 6 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG. 5.
  • FIG. 7 shows a binary alloy based state diagram composed of two elements of five elements of chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
  • FIG. 10 is an EBSD phase map photograph of a high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention.
  • FIG. 10 is an EBSD phase map photograph of a high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention.
  • Figure 11 shows the results of room temperature (298K) tensile test of the high entropy alloy prepared according to Examples 1 and 3 of the present invention.
  • Figure 13 shows the cryogenic (77K) tensile test results of the high entropy alloy prepared according to Example 2 of the present invention.
  • Regions 1 and 2 in FIG. 1 represent regions for maintaining the FCC single phase at 700 ° C. or lower, and regions for maintaining two-phase or three-phase equilibrium are indicated in the remaining regions. Alloys having a composition belonging to region 2 of FIG. 1 maintain the FCC single phase from melting temperature up to 700 ° C. to 500 ° C. FIG. The composition at the two-phase equilibrium region and the boundary maintains the FCC single phase up to 700 ° C.
  • the line between the zone 1 and zone 2 is a line representing the boundary between the FCC single-phase zone and the two-phase equilibrium zone calculated at 500 ° C. Alloys having a composition belonging to zone 1 of FIG. Maintain FCC single phase. The composition located at the boundaries of zones 1 and 2 computationally maintains the FCC single phase up to 500 ° C.
  • FIG. 2 illustrates a change in equilibrium with temperature for an alloy having a composition indicated by a star ( ⁇ ) in FIG. 1.
  • An alloy having a composition indicated by a star ( ⁇ ) has a boundary between regions 2 and a two-phase equilibrium region in FIG. 1. Because of the composition located at, it forms the FCC single phase region from the melting temperature to 700 ° C.
  • 5 is an alloy containing 30 atomic% iron (Fe) and 20 atomic% manganese (Mn), according to the mole fractions of chromium (Cr), nickel (Ni) and vanadium (V), which are the remaining alloy components, Phase equilibrium information at 700 ° C is shown.
  • FIG. 6 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG.
  • FIG. 7 shows a binary alloy-based state diagram composed of two elements of five elements of chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
  • the FCC single phase region and the sigma phase region which degrades mechanical properties are shown in dark color.
  • Six binary alloy systems containing no vanadium (V) have a small sigma phase region and a wide FCC single phase region.
  • the sigma phase is relatively widely distributed in four binary alloy systems including vanadium (V).
  • the sigma phase is distributed up to a high temperature at which the liquid phase is stable.
  • the sigma phase in the nickel (Ni) -vanadium (V) alloy-based state diagram mainly appears in the section where the ratio (V / Ni) of the vanadium (V) content to the nickel (Ni) content is high.
  • the section where the ratio of vanadium (V) to V content is low a wide FCC single phase section appears.
  • the present inventors are high-entropy alloys composed of FCC single phase and excellent low temperature characteristics, Cr: 3-18 atomic%, Fe: 3-60 atomic %, Mn: 3 to 40 atomic%, Ni: 20 to 80 atomic%, V: 3 to 12 atomic%, and inevitable impurities, and the ratio of V content to Ni content (V / Ni) is 0.5 or less High entropy alloys were derived.
  • the content of Mn is less than 3 atomic%, it is disadvantageous in terms of manufacturing cost, and if it is more than 40 atomic%, the phase becomes unstable, and it is disadvantageous due to oxide formation during the manufacturing process.
  • the Mn content is more preferably 10 to 25 atomic percent in terms of phase stability and mechanical properties.
  • Ni content When the content of Ni is less than 20 atomic%, the phase becomes unstable, and if it is more than 80 atomic%, it becomes disadvantageous in terms of manufacturing cost, so 20 to 80 atomic% is preferable, and the stability of the phase In terms of mechanical properties, more preferable Ni content is 25 to 45 atomic%.
  • V When the content of V is less than 3 atomic%, it is difficult to obtain a reinforcing effect, and when the content of V is higher than 12 atomic%, the possibility of forming an intermediate phase is increased, and 3 to 12 atomic% is preferable, and the phase stability, mechanical properties and In view of the production cost, a more preferable content of V is 5 to 12 atomic%.
  • the ratio of the V content to the content of Ni is preferably 0.5 or less.
  • composition range of the alloy it is difficult to obtain a solid solution having an FCC single phase when it is out of each composition constituting the alloy.
  • the sum of the Fe and Mn contents is preferably 50 atomic% or less.
  • the composition of each component constituting the high entropy alloy is 7-18 atomic% Cr, 18-35 atomic% Fe, 10-25 atomic% Mn. , Ni: 25 to 45 atomic%, V: 5 to 12 atomic%, more preferably the ratio (V / Ni) of the V content to the content of Ni is 0.5 or less.
  • the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 30% or more at cryogenic temperatures (77 K).
  • the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 60% or more at cryogenic temperatures (77 K).
  • the high entropy alloy may have a tensile strength of 800 MPa or more and an elongation of 30% or more at room temperature (298 K).
  • Table 1 below shows three compositions selected for the alloy preparation of the regions calculated through the above-mentioned thermodynamic review.
  • the ingot was prepared by a known method by dissolving the alloy at 1500 ° C or more using an induction furnace.
  • the alloy ingot was kept in the FCC single phase region for 2 hours at 1000 ° C. to homogenize the tissue, and then the homogenized ingot was pickled to remove surface impurities and oxide layer.
  • the pickled ingot was cold rolled at a reduction ratio of 75% to prepare a cold rolled sheet.
  • the cold rolled sheet was heat-treated (800 ° C., 2 hours) in the FCC single phase region to remove residual stress, completely recrystallized the crystal grains, and then cooled with water to prepare a high entropy alloy sheet.
  • the ingot of the alloy 1 was homogenized by maintaining the ingot in the FCC single-phase region at 1100 ° C. for 6 hours, and then the homogenized ingot was pickled to remove impurities and oxide layers from the surface.
  • the pickled ingot was cold rolled at a reduction ratio of 75% to prepare a cold rolled sheet.
  • the high entropy alloy sheet manufactured according to Example 2 is different from the heat treatment conditions in the same composition as in Example 1.
  • the microstructure of the high entropy alloy sheet prepared as described above was analyzed using a scanning electron microscope, an X-ray diffractometer and an EBSD.
  • FIG. 8 is an EBSD inverse pole figure (IPF) map photograph of a high entropy alloy sheet prepared according to Examples 1 and 2 of the present invention.
  • FIG. 8 is an EBSD inverse pole figure (IPF) map photograph of a high entropy alloy sheet prepared according to Examples 1 and 2 of the present invention.
  • the grain size can be measured, and the two alloys (Examples 1 and 3) subjected to cold rolling and recrystallization heat treatment with a 75% reduction ratio have an average grain size of 5.4-7.4 ⁇ m.
  • the crystalline phases were in polycrystalline form and their sizes were relatively uniform regardless of the alloy composition.
  • FIG. 10 is an EBSD phase map photograph of a high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention.
  • FIG. The EBSD phase map displays each phase in a different color when two or more different phases are in the microstructure.
  • the alloys according to Example 1 and Example 3 are all the same. Shown in color, this means that the microstructure of these alloys consists of the FCC single phase and no second phase, such as a sigma phase, that degrades mechanical properties has been produced.
  • the yield strength at room temperature (298K) of the high entropy alloy sheet according to Examples 1 and 3 of the present invention is 460 to 503 MPa
  • tensile strength is 815 to 842 MPa
  • elongation is about 35 to 45% shows excellent tensile properties.

Abstract

The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having a FCC single-phase microstructure at 700°C or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Cr: 3-18 at%; Fe: 3-60 at%; Mn: 3-40 at%; Ni: 20-80 at%; V: 3-12 at%; and inevitable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less.

Description

CR-FE-MN-NI-V계 고 엔트로피 합금CR-FE-MN-NI-V series high entropy alloy
본 발명은 전산모사 기법 중 열역학 계산을 이용하여 설계된 고 엔트로피 합금에 관한 것으로, 열역학 계산을 통해 700℃ 이상에서 면심입방격자(Face Centered Cubic: FCC) 단상의 미세구조를 가지는 합금 조성 영역을 설정하고, 700℃ 이상에서 열처리 후 급랭할 시에 상온 및 극저온에서 FCC 단상의 미세조직을 가질 수 있도록 함으로써, 특히 저온 인장 강도 및 연신율이 우수한 Cr-Fe-Mn-Ni-V계 고 엔트로피 합금에 관한 것이다.The present invention relates to a high entropy alloy designed using a thermodynamic calculation of a computer simulation technique. Through the thermodynamic calculation, an alloy composition region having a microstructure of a face centered cubic (FCC) single phase is set up to 700 ° C. or more. In particular, the present invention relates to a Cr-Fe-Mn-Ni-V-based high entropy alloy having excellent low-temperature tensile strength and elongation by allowing FCC single-phase microstructure at room temperature and cryogenic temperature after rapid heat treatment at 700 ° C or higher. .
고 엔트로피 (High Entropy Alloy:HEA) 합금은 5원계 이상의 다원소 합금계로서, 고합금계임에도 불구하고 혼합엔트로피가 높아 금속간 화합물이 형성되지 않고 연성이 우수한 면심입방격자(Face Centered Cubic: FCC) 또는 체심입방격자(Body Centered Cubic: BCC) 단상(single phase)으로 구성된 새로운 개념의 신물질이다.High Entropy Alloy (HEA) alloy is a five-element or more multi-element alloy system. Despite being a high alloy system, the high entropy alloy has a high mixed entropy, so that no intermetallic compound is formed and the ductility is excellent. Body Centered Cubic (BCC) is a new concept of new material consisting of a single phase.
주 원소 없이 5개 이상의 원소를 비슷한 비율로 합금화했을 때 중간상 없이 단상이 얻어진다는 것이 2004년 High Entropy Alloy(HEA)라는 이름으로 학계에 발표되었고, 최근 급격한 관심으로 관련연구가 폭발적으로 증가하는 추세이다.When alloying five or more elements in a similar proportion without a main element, a single phase was obtained in 2004 under the name of High Entropy Alloy (HEA). .
이 특별한 원자 배열구조가 나타나는 이유나 그 특성은 명확하지 않지만 이러한 구조에서 나타나는 우수한 화학적, 기계적 특성이 보고되고 있고, FCC 단상 CoCrFeMnNi 고 엔트로피 합금은 저온에서 나노 단위의 쌍정(twin)이 발현하여 높은 항복 및 인장강도를 가지며 지금까지 보고된 재료와 비교를 했을 때 가장 높은 인성을 가진 것으로 보고되었다.The reasons for this particular atomic arrangement and its nature are not clear, but the excellent chemical and mechanical properties of these structures have been reported, and FCC single-phase CoCrFeMnNi high entropy alloys exhibit nano yield twins at low temperatures resulting in high yield and It has a tensile strength and is reported to have the highest toughness compared to the materials reported so far.
면심입방격자(FCC) 구조를 가지는 고 엔트로피 합금은 극저온에서 파괴인성이 뛰어날 뿐만 아니라 내식성이 우수하고 고강도, 고연성의 우수한 기계적 물성을 지니고 있어 극저온 재료로써 개발이 촉진되고 있다.High entropy alloys having a face-centered cubic lattice (FCC) structure not only have excellent fracture toughness at cryogenic temperatures, but also have excellent corrosion resistance, high mechanical strength, and high mechanical properties.
한편, 대한민국 공개특허공보 제2016-0014130호에는 내열 재료로 사용될 수 있는 고 엔트로피 합금으로 Ti16 . 6Zr16 . 6Hf16 . 6Ni16 . 6Cu16 . 6Co17, Ti16.6Zr16.6Hf16.6Ni16.6Cu16.6Nb17과 같은 고 엔트로피 합금이 제시되고 있고, 일본 공개특허공보 제2002-173732호에는 Cu-Ti-V-Fe-Ni-Zr을 주원소로 하며 고경도와 내식성이 우수한 고 엔트로피 합금이 제시되어 있다.On the other hand, Republic of Korea Patent Publication No. 2016-0014130 is a high entropy alloy that can be used as a heat-resistant material Ti 16 . 6 Zr 16 . 6 Hf 16 . 6 Ni 16 . 6 Cu 16 . High entropy alloys such as 6 Co 17 , Ti 16.6 Zr 16.6 Hf 16.6 Ni 16.6 Cu 16.6 Nb 17 have been proposed, and Japanese Laid-Open Patent Publication No. 2002-173732 discloses Cu-Ti-V-Fe-Ni-Zr as the main element. High entropy alloys with high hardness and corrosion resistance are proposed.
이와 같이 다양한 고 엔트로피 합금이 개발되고 있으며, 고 엔트로피 합금의 적용 영역을 확장하기 위해서는 다양한 특성을 가지는 고 엔트로피 합금의 개발이 요구된다.As described above, various high entropy alloys are being developed, and in order to expand an application area of the high entropy alloy, development of high entropy alloys having various characteristics is required.
본 발명은 상온 및 극저온에서 FCC 단상 조직을 가지며 저온 인장강도와 저온 연신특성을 구비하여 극저온용에 적합하게 사용될 수 있는 Cr-Fe-Mn-Ni-V계 고 엔트로피 합금을 제공하는 것을 해결하고자 하는 과제로 한다.The present invention is to solve the problem to provide a Cr-Fe-Mn-Ni-V-based high entropy alloy having a FCC single-phase structure at room temperature and cryogenic temperature and having low temperature tensile strength and low temperature stretching characteristics can be used for cryogenic applications It is a task.
상기 과제를 해결하기 위해 본 발명은, Cr: 3~18원자%, Fe: 3~60원자%, Mn: 3~40원자%, Ni: 20~80원자%, V: 3~12원자%와, 불가피한 불순물을 포함하고, 상기 Ni 함량에 대한 V 함량의 비(V/Ni)는 0.5이하인, 고 엔트로피 합금을 제공하는 것이다.In order to solve the above problems, the present invention, Cr: 3 to 18 atomic%, Fe: 3 to 60 atomic%, Mn: 3 to 40 atomic%, Ni: 20 to 80 atomic%, V: 3 to 12 atomic% It is to provide a high entropy alloy, containing unavoidable impurities, the ratio of the V content to the Ni content (V / Ni) is 0.5 or less.
이와 같은 조성을 갖는 합금은 중간상의 생성 없이 FCC 구조의 단상으로 이루어지며, 상온(298K)에 비해 극저온(77K)에서 더 우수한 인장강도와 연신율을 나타낸다.The alloy having such a composition consists of a single phase of the FCC structure without formation of an intermediate phase, and exhibits better tensile strength and elongation at cryogenic temperature (77K) than at room temperature (298K).
본 발명에 의해 제공되는 새로운 고 엔트로피 합금은 상온에서 보다 오히려 극저온에서 인장강도와 연신율이 향상되므로, 특히 극저온 환경과 같은 극한환경에 사용되는 구조용 재료로써 활용 가치가 높다.The new high entropy alloys provided by the present invention have high tensile strength and elongation at cryogenic temperatures rather than at room temperature, and thus have high utility as structural materials used in extreme environments such as cryogenic environments.
본 발명에 따른 고엔트로피 합금은, 최인접 원자간 거리가 다른 원소들과 상이한 바나듐(V)을 첨가함으로써 기존 소재보다 강화효과를 쉽게 얻을 수 있다. 또한 바나듐(V) 함량에 따라 다른 4개 원소의 함량을 적절하게 조절함으로써, 시그마 상(sigma phase)의 생성을 억제하고 FCC 단상 조직을 구현하여 엄격히 제어된 열처리 공정을 수행하지 않아도 종래의 고 엔트로피 합금에 비해 동등 이상의 기계적 특성을 얻을 수 있게 된다.In the high entropy alloy according to the present invention, reinforcing effects can be easily obtained by adding vanadium (V) different from elements having different nearest interatomic distances. In addition, by controlling the content of the other four elements according to the vanadium (V) content, it suppresses the generation of sigma phase and implements FCC single-phase structure to perform conventional high entropy without performing strictly controlled heat treatment process Compared with the alloy, mechanical properties more than equivalent can be obtained.
도 1은 15원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸 것이다.1 is a phase at 700 ° C. according to the molar fractions of iron (Fe), manganese (Mn) and nickel (Ni) of an alloy comprising 15 atomic% chromium (Cr) and 10 atomic% vanadium (V). Equilibrium information is shown.
도 2는 도 1에서 별(★)로 표시된 조성을 가지는 합금에 대해, 온도에 따른 평형상의 변화를 나타낸다.FIG. 2 shows a change in equilibrium with temperature for an alloy having a composition marked with a star in FIG. 1.
도 3은 10원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸 것이다.FIG. 3 shows the phase at 700 ° C. according to the molar fractions of iron (Fe), manganese (Mn) and nickel (Ni) of an alloy comprising 10 atomic percent chromium (Cr) and 10 atomic percent vanadium (V). Equilibrium information is shown.
도 4는 도 3의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸 것이다.FIG. 4 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 5는 30원자%의 철(Fe)과 20원자%의 망간(Mn)을 포함하는 합금의 나머지 크롬(Cr), 니켈(Ni), 바나듐(V) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸 것이다.FIG. 5 shows the phase at 700 ° C. according to the remaining mole fractions of chromium (Cr), nickel (Ni) and vanadium (V) of an alloy comprising 30 atomic% iron (Fe) and 20 atomic% manganese (Mn). Equilibrium information is shown.
도 6은 도 5의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸 것이다.FIG. 6 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG. 5.
도 7은 크롬(Cr), 철(Fe), 망간(Mn), 니켈(Ni), 바나듐(V) 5개의 원소 중 두 개 원소로 구성된 2원 합금계 상태도를 나타낸다.FIG. 7 shows a binary alloy based state diagram composed of two elements of five elements of chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
도 8은 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금 판재의 EBSD IPF(inverse pole figure) 맵 사진이다.8 is an EBSD inverse pole figure (IPF) map photograph of a high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention.
도 9는 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금 판재의 X-선 회절분석 결과이다.9 is an X-ray diffraction analysis of the high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention.
도 10은 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금 판재의 EBSD phase 맵 사진이다.FIG. 10 is an EBSD phase map photograph of a high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention. FIG.
도 11은 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금의 상온(298K) 인장시험 결과를 나타낸 것이다.Figure 11 shows the results of room temperature (298K) tensile test of the high entropy alloy prepared according to Examples 1 and 3 of the present invention.
도 12는 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금의 극저온(77K) 인장시험 결과를 나타낸 것이다.12 shows the cryogenic (77K) tensile test results of the high entropy alloy prepared according to Examples 1 and 3 of the present invention.
도 13은 본 발명의 실시예 2에 따라 제조한 고 엔트로피 합금의 극저온(77K) 인장시험 결과를 나타낸 것이다.Figure 13 shows the cryogenic (77K) tensile test results of the high entropy alloy prepared according to Example 2 of the present invention.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
도 1은 15 원자%의 크롬(Cr)과 10 원자%의 바나듐(V)을 포함하는 합금의, 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸 것이다.1 shows an alloy comprising 15 atomic% chromium (Cr) and 10 atomic% vanadium (V) at 700 ° C. according to the remaining iron (Fe), manganese (Mn) and nickel (Ni) mole fractions. Phase equilibrium information is shown.
도 1의 영역 1과 2는 700℃ 이하에서 FCC 단상을 유지하는 영역을 나타내고, 나머지 영역에는 2상 또는 3상 평형을 유지하는 영역이 표시되어 있다. 도 1의 영역 2에 속하는 조성을 가지는 합금들은 용해 온도부터 700℃ 이하, 500℃까지 FCC 단상을 유지한다. 이때 2상 평형 영역과 경계 부분에 위치한 조성은 계산상으로 700℃까지 FCC 단상을 유지한다. Regions 1 and 2 in FIG. 1 represent regions for maintaining the FCC single phase at 700 ° C. or lower, and regions for maintaining two-phase or three-phase equilibrium are indicated in the remaining regions. Alloys having a composition belonging to region 2 of FIG. 1 maintain the FCC single phase from melting temperature up to 700 ° C. to 500 ° C. FIG. The composition at the two-phase equilibrium region and the boundary maintains the FCC single phase up to 700 ° C.
영역 1과 영역 2의 경계가 되는 선은 500℃에서 계산한, FCC 단상 영역과 2상 평형 영역의 경계를 나타내는 선으로, 도 1의 영역 1에 속하는 조성을 가지는 합금들은 용해 온도부터 500℃ 이하까지 FCC 단상을 유지한다. 영역 1과 2의 경계선에 위치한 조성은 계산상으로 500℃까지 FCC 단상을 유지한다.The line between the zone 1 and zone 2 is a line representing the boundary between the FCC single-phase zone and the two-phase equilibrium zone calculated at 500 ° C. Alloys having a composition belonging to zone 1 of FIG. Maintain FCC single phase. The composition located at the boundaries of zones 1 and 2 computationally maintains the FCC single phase up to 500 ° C.
즉, 도 1이 의미하는 바는 15원자%의 크롬(Cr)과 10원자%의 바나듐(V) 그리고 0~48원자%의 철(Fe), 0~25원자%의 망간(Mn), 27~75원자%의 니켈(Ni)을 포함하는 5원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.1 means that 15 atomic% chromium (Cr), 10 atomic% vanadium (V) and 0 to 48 atomic% iron (Fe), 0 to 25 atomic% manganese (Mn), 27 All five-membered and lower alloys containing ~ 75 atomic percent nickel (Ni) maintain the FCC single phase from the melting temperature up to 700 ° C.
도 2는 도 1에서 별(★)로 표시된 조성을 가지는 합금에 대해, 온도에 따른 평형상의 변화를 나타낸 것인데, 별(★)로 표시된 조성을 가지는 합금은 도 1에서 영역 2와 2상 평형 영역과 경계에 위치한 조성이기 때문에, 용해 온도부터 700℃까지 FCC 단상 영역을 이룬다.FIG. 2 illustrates a change in equilibrium with temperature for an alloy having a composition indicated by a star (★) in FIG. 1. An alloy having a composition indicated by a star (★) has a boundary between regions 2 and a two-phase equilibrium region in FIG. 1. Because of the composition located at, it forms the FCC single phase region from the melting temperature to 700 ° C.
도 3은 10원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금에 있어서, 나머지 합금성분인 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.3 is an alloy containing 10 atomic% chromium (Cr) and 10 atomic% vanadium (V), according to the mole fractions of iron (Fe), manganese (Mn), and nickel (Ni), which are the remaining alloy components, Phase equilibrium information at 700 ° C is shown.
도 3이 의미하는 바는 10원자%의 크롬(Cr)과 10원자%의 바나듐(V) 그리고 0~56원자%의 철(Fe), 0~41원자%의 망간(Mn), 23~80원자%의 니켈(Ni)을 포함하는 5원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.3 means 10 atomic% chromium (Cr) and 10 atomic% vanadium (V) and 0 to 56 atomic% iron (Fe), 0 to 41 atomic% manganese (Mn), 23 to 80 All five-membered and lower alloys containing atomic percent nickel (Ni) maintain the FCC single phase from the melting temperature up to 700 ° C.
도 4는 도 4의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.4 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 5는 30원자%의 철(Fe)과 20원자%의 망간(Mn)을 포함하는 합금에 있어서, 나머지 합금성분인 크롬(Cr), 니켈(Ni), 바나듐(V) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.5 is an alloy containing 30 atomic% iron (Fe) and 20 atomic% manganese (Mn), according to the mole fractions of chromium (Cr), nickel (Ni) and vanadium (V), which are the remaining alloy components, Phase equilibrium information at 700 ° C is shown.
도 5가 의미하는 바는 30원자%의 철(Fe)과 20원자%의 망간(Mn) 그리고 0~18원자%의 크롬(Cr), 28~50원자%의 니켈(Ni), 0~18원자%의 바나듐(V)을 포함하는 5원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.5 means that 30 atomic% iron (Fe) and 20 atomic% manganese (Mn) and 0 to 18 atomic% chromium (Cr), 28 to 50 atomic% nickel (Ni), 0-18 All five-membered and lower alloys containing atomic percent vanadium (V) maintain the FCC single phase from the melting temperature up to 700 ° C.
도 6은 도 5의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.6 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 7은 크롬(Cr), 철(Fe), 망간(Mn), 니켈(Ni), 바나듐(V) 5 개의 원소 중 두 개 원소로 구성된 2원 합금계 상태도를 나타낸다. FIG. 7 shows a binary alloy-based state diagram composed of two elements of five elements of chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
도 7에는 FCC 단상영역과 기계적 특성을 열화시키는 시그마 상(sigma phase) 영역이 짙은 색으로 표시되어 있다. 바나듐(V)을 포함하지 않는 6개의 2원 합금계에는 시그마 상(sigma phase) 영역이 적고 FCC 단상영역이 넓게 분포하고 있다. 반면, 바나듐(V)을 포함하는 4개의 2원 합금계에는 시그마 상(sigma phase)이 비교적 넓게 분포한다. 특히 니켈(Ni)-바나듐(V) 2원계의 경우는 액상이 안정한 고온까지 시그마 상(sigma phase)이 분포한다. 하지만 니켈(Ni)-바나듐(V) 합금계 상태도에서 시그마 상(sigma phase)은 니켈(Ni) 함량에 대한 바나듐(V) 함량의 비(V/Ni)가 높은 구간에서 주로 나타나고, 니켈(Ni) 함량에 대한 바나듐(V) 함량의 비(V/Ni)가 낮은 구간에는 넓은 FCC 단상 구간이 나타난다.In FIG. 7, the FCC single phase region and the sigma phase region which degrades mechanical properties are shown in dark color. Six binary alloy systems containing no vanadium (V) have a small sigma phase region and a wide FCC single phase region. On the other hand, the sigma phase is relatively widely distributed in four binary alloy systems including vanadium (V). In particular, in the case of the nickel (Ni) -vanadium (V) binary system, the sigma phase is distributed up to a high temperature at which the liquid phase is stable. However, the sigma phase in the nickel (Ni) -vanadium (V) alloy-based state diagram mainly appears in the section where the ratio (V / Ni) of the vanadium (V) content to the nickel (Ni) content is high. In the section where the ratio of vanadium (V) to V content is low, a wide FCC single phase section appears.
도 7이 의미하는 바는 Ni 함량에 대한 V 함량의 비(V/Ni)를 낮춘다면 FCC단상으로 이루어진 고 엔트로피 합금을 설계 할 수 있다는 것이다.7 means that if the ratio of the V content to the Ni content (V / Ni) is lowered, it is possible to design a high entropy alloy consisting of FCC single phase.
이상과 같은 도 1, 도 3, 도 5 및 도 7의 열역학적 정보로부터, 본 발명자들은 FCC 단상으로 이루어지며 저온 특성이 우수한 고 엔트로피 합금으로, Cr: 3~18원자%, Fe: 3~60원자%, Mn: 3~40원자%, Ni: 20~80원자%, V: 3~12원자%와, 불가피한 불순물을 포함하고, 상기 Ni 함량에 대한 V 함량의 비(V/Ni)는 0.5 이하인 고 엔트로피 합금을 도출하였다.From the thermodynamic information of FIGS. 1, 3, 5, and 7 as described above, the present inventors are high-entropy alloys composed of FCC single phase and excellent low temperature characteristics, Cr: 3-18 atomic%, Fe: 3-60 atomic %, Mn: 3 to 40 atomic%, Ni: 20 to 80 atomic%, V: 3 to 12 atomic%, and inevitable impurities, and the ratio of V content to Ni content (V / Ni) is 0.5 or less High entropy alloys were derived.
상기 Cr의 함량은, 3원자% 미만일 경우 내식성 등의 합금의 물성에 불리하게 작용하고, 18원자% 초과일 경우에는 중간상 형성 가능성이 높아지므로, 3~18원자%가 바람직하며, 상(phase)의 안정성, 기계적 특성 및 제조비용의 관점에서 보다 바람직한 Cr의 함량은 7~18원자%이다.When the content of Cr is less than 3 atomic%, it adversely affects the properties of the alloy, such as corrosion resistance, and when the content of more than 18 atomic% increases the possibility of forming an intermediate phase, 3 to 18 atomic% is preferable, and the phase In view of the stability, mechanical properties and manufacturing cost of the more preferable content of Cr is 7 to 18 atomic%.
상기 Fe의 함량은, 3원자% 미만일 경우 제조비용 측면에서 불리해 지고, 60원자% 초과일 경우에는 상(phase)이 불안정해지므로, 3~60원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Fe의 함량은 18~35원자%이다.When the content of Fe is less than 3 atomic%, it becomes disadvantageous in terms of manufacturing cost, and when it exceeds 60 atomic%, the phase becomes unstable, so 3 to 60 atomic% is preferable, and phase stability In view of the mechanical properties and the more preferable content of Fe is 18 to 35 atomic%.
상기 Mn의 함량은, 3원자% 미만일 경우 제조비용 측면에서 불리해지고, 40원자% 초과일 경우에는 상(phase)이 불안정해지고, 제조과정 중 산화물 형성으로 인하여 불리해지므로, 3~40원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Mn의 함량은 10~25원자%이다.When the content of Mn is less than 3 atomic%, it is disadvantageous in terms of manufacturing cost, and if it is more than 40 atomic%, the phase becomes unstable, and it is disadvantageous due to oxide formation during the manufacturing process. Preferably, the Mn content is more preferably 10 to 25 atomic percent in terms of phase stability and mechanical properties.
상기 Ni의 함량은, 20원자% 미만일 경우 상(phase)이 불안정해지고, 80원자% 초과일 경우에는 제조비용 측면에서 불리해지므로, 20~80원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Ni의 함량은 25~45원자%이다.When the content of Ni is less than 20 atomic%, the phase becomes unstable, and if it is more than 80 atomic%, it becomes disadvantageous in terms of manufacturing cost, so 20 to 80 atomic% is preferable, and the stability of the phase In terms of mechanical properties, more preferable Ni content is 25 to 45 atomic%.
상기 V의 함량은, 3원자% 미만일 경우 강화효과를 얻기 힘들고, 12원자% 초과일 경우에는 중간상 형성 가능성이 높아지므로, 3~12원자%가 바람직하며, 상(phase)의 안정성, 기계적 특성 및 제조비용의 관점에서 보다 바람직한 V의 함량은 5~12원자%이다.When the content of V is less than 3 atomic%, it is difficult to obtain a reinforcing effect, and when the content of V is higher than 12 atomic%, the possibility of forming an intermediate phase is increased, and 3 to 12 atomic% is preferable, and the phase stability, mechanical properties and In view of the production cost, a more preferable content of V is 5 to 12 atomic%.
또한, 안정적으로 단상의 FCC 조직을 구현하기 위하여, 상기 Ni의 함량에 대한 V 함량의 비율(V/Ni)이 0.5 이하인 것이 바람직하다.In addition, in order to stably implement a single-phase FCC structure, the ratio of the V content to the content of Ni (V / Ni) is preferably 0.5 or less.
상기 합금을 구성하는 각 조성을 벗어날 경우 FCC 단상을 갖는 고용체를 얻기 어려우므로, 상기 합금의 조성범위를 유지하는 것이 바람직하다.It is preferable to maintain the composition range of the alloy because it is difficult to obtain a solid solution having an FCC single phase when it is out of each composition constituting the alloy.
또한, 상기 고 엔트로피 합금에 있어서, Ni 함량은 30 원자% 이상일 때 최적의 특성을 나타내기 때문에, 상기 Fe와 Mn 함량의 합은 50원자% 이하인 것이 바람직하다.In addition, in the high entropy alloy, since the Ni content exhibits optimum properties when it is 30 atomic% or more, the sum of the Fe and Mn contents is preferably 50 atomic% or less.
또한, 우수한 물성과 안정적인 고 엔트로피 합금을 얻는 측면에서, 상기 고 엔트로피 합금을 구성하는 각 성분의 조성은, Cr: 7~18원자%, Fe: 18~35원자%, Mn: 10~25원자%, Ni: 25~45원자%, V: 5~12원자%이고, 상기 Ni의 함량에 대한 V 함량의 비율(V/Ni)이 0.5 이하인 것이 보다 바람직하다.In addition, in terms of obtaining excellent physical properties and stable high entropy alloy, the composition of each component constituting the high entropy alloy is 7-18 atomic% Cr, 18-35 atomic% Fe, 10-25 atomic% Mn. , Ni: 25 to 45 atomic%, V: 5 to 12 atomic%, more preferably the ratio (V / Ni) of the V content to the content of Ni is 0.5 or less.
또한, 상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 30% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 30% or more at cryogenic temperatures (77 K).
또한, 상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 60% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 60% or more at cryogenic temperatures (77 K).
또한, 상기 고 엔트로피 합금은 상온(298K)에서 인장강도가 800MPa 이상이고, 연신율이 30% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 800 MPa or more and an elongation of 30% or more at room temperature (298 K).
이하에서는 본 발명의 바람직한 실시예에 기초하여 본 발명을 보다 상세하게 설명하나, 본 발명이 본 발명의 바람직한 실시예에 제한되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail based on the preferred embodiments of the present invention, but the present invention should not be construed as being limited to the preferred embodiments of the present invention.
[실시예]EXAMPLE
고 엔트로피 합금 제조High Entropy Alloy Manufacturing
하기 표 1은 전술한 열역학적 검토를 통해 계산된 영역의 합금 제조를 위해 선택된 3가지 조성을 나타낸 것이다.Table 1 below shows three compositions selected for the alloy preparation of the regions calculated through the above-mentioned thermodynamic review.
합금No.Alloy No. 잉고트 조성 (원자%)Ingot composition (atomic%)
CrCr FeFe MnMn NiNi VV
1One 1515 2222 1313 4040 1010
22 1010 3030 2020 3030 1010
33 1515 3030 2020 3030 55
99.9% 이상의 순 Cr, Fe, Mn, Ni, V을 상기 표 1의 조성이 되도록 준비한 후, 유도 가열로를 이용하여 1500℃ 이상에서 합금을 용해하여 공지의 방법으로 잉고트를 제조하였다.After preparing 99.9% or more of pure Cr, Fe, Mn, Ni, V to the composition of Table 1, the ingot was prepared by a known method by dissolving the alloy at 1500 ° C or more using an induction furnace.
[실시예 1]Example 1
No. 1 합금 잉고트를, FCC 단상 영역에서, 1000℃에서 2시간 동안 유지시킴으로써 조직을 균질화 시킨 후, 균질화 처리된 잉고트를 산세하여 표면의 불순물과 산화층을 제거하였다.No. The alloy ingot was kept in the FCC single phase region for 2 hours at 1000 ° C. to homogenize the tissue, and then the homogenized ingot was pickled to remove surface impurities and oxide layer.
산세 처리된 잉고트를 압하율 75%로 냉간압연을 수행하여 냉간압연 판재를 제조하였다.The pickled ingot was cold rolled at a reduction ratio of 75% to prepare a cold rolled sheet.
이와 같이 냉간압연된 판재는 FCC 단상 영역에서 열처리(800℃, 2시간)하여 잔류응력을 제거하고, 결정립을 완전하게 재결정시킨 후 수냉하여, 고 엔트로피 합금 판재로 제조하였다.The cold rolled sheet was heat-treated (800 ° C., 2 hours) in the FCC single phase region to remove residual stress, completely recrystallized the crystal grains, and then cooled with water to prepare a high entropy alloy sheet.
[실시예 2]Example 2
No. 1 합금의 잉고트를, FCC 단상 영역에서, 1100℃에서 6시간 동안 유지시킴으로써 조직을 균질화 시킨 후, 균질화 처리된 잉고트를 산세하여 표면의 불순물과 산화층을 제거하였다.No. The ingot of the alloy 1 was homogenized by maintaining the ingot in the FCC single-phase region at 1100 ° C. for 6 hours, and then the homogenized ingot was pickled to remove impurities and oxide layers from the surface.
산세 처리된 잉고트를 압하율 75%로 냉간압연을 수행하여 냉간압연 판재를 제조하였다.The pickled ingot was cold rolled at a reduction ratio of 75% to prepare a cold rolled sheet.
이후 FCC 단상 영역에서 열처리(800℃, 2시간)하여 잔류응력을 제거하고, 결정립을 완전하게 재결정시킨 후 수냉하여, 고 엔트로피 합금 판재로 제조하였다.After the heat treatment (800 ℃, 2 hours) in the FCC single-phase region to remove the residual stress, completely recrystallized crystal grains and then cooled by water to prepare a high entropy alloy sheet.
즉, 실시예 2에 따라 제조된 고 엔트로피 합금 판재는 실시예 1과 동일한 조성에 열처리 조건만을 달리 한 것이다.That is, the high entropy alloy sheet manufactured according to Example 2 is different from the heat treatment conditions in the same composition as in Example 1.
[실시예 3]Example 3
No. 2 합금의 잉고트를, 실시예 1과 동일한 제조공정을 통해, 고 엔트로피 합금 판재로 제조하였다.No. An ingot of two alloys was manufactured from a high entropy alloy sheet through the same production process as in Example 1.
상기 표 1의 No. 3 합금에 대해서는 잉고트를 고 엔트로피 합금 판재로 제조하여 미세조직 및 기계적 특성을 평가하지 않았으나, 첨부된 도 6에서 확인되는 바와 같이, FCC 단상 영역(800℃ 이상)에서 열처리 한 후 급랭할 시에, 상온(298K) 및 극저온(77K)에서 FCC 단상을 형성할 수 있는 조성임을 알 수 있다.No. 1 in Table 1 above. In the case of alloy 3, the ingot was made of a high entropy alloy sheet and the microstructure and mechanical properties thereof were not evaluated. However, as shown in FIG. 6, when quenched after heat treatment in an FCC single phase region (800 ° C. or higher), It can be seen that the composition capable of forming an FCC single phase at room temperature (298K) and cryogenic temperature (77K).
미세조직Microstructure
이상과 같이 제조된 고 엔트로피 합금 판재의 미세조직을 주사전자현미경, X-선회절분석기 및 EBSD를 사용하여 분석하였다.The microstructure of the high entropy alloy sheet prepared as described above was analyzed using a scanning electron microscope, an X-ray diffractometer and an EBSD.
도 8은 본 발명의 실시예 1 및 실시예 2에 따라 제조한 고 엔트로피 합금 판재의 EBSD IPF(inverse pole figure) 맵 사진이다.FIG. 8 is an EBSD inverse pole figure (IPF) map photograph of a high entropy alloy sheet prepared according to Examples 1 and 2 of the present invention. FIG.
이 맵으로부터 결정립 크기를 측정할 수 있으며, 75% 압하율의 냉간압연과 재결정 열처리 과정을 거친 두 합금(실시예 1 및 실시예 3)은 5.4~7.4㎛의 평균 결정립 크기를 가지고 있다. 결정상들은 다결정 형태를 띠고 있으며, 그 크기는 합금 조성에 관계없이 비교적 균일하였다.From this map, the grain size can be measured, and the two alloys (Examples 1 and 3) subjected to cold rolling and recrystallization heat treatment with a 75% reduction ratio have an average grain size of 5.4-7.4 μm. The crystalline phases were in polycrystalline form and their sizes were relatively uniform regardless of the alloy composition.
도 9는 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금 판재의 X-선 회절분석 결과이다. 두 합금 모두 동일한 피크를 나타내고 있으며, 이를 분석한 결과, 모두 FCC 구조에 해당하는 피크임이 확인되었다.9 is an X-ray diffraction analysis of the high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention. Both alloys show the same peak, and the analysis shows that both peaks correspond to the FCC structure.
도 10은 본 발명의 실시예 1 및 실시예 3에 따라 제조한 고 엔트로피 합금 판재의 EBSD phase 맵 사진이다. EBSD phase 맵은 서로 다른 2개 이상의 상이 미세조직 내에 있을 때, 각각의 상을 서로 다른 색으로 표시하는데, 도 10에서 확인되는 바와 같이, 실시예 1 및 실시예 3에 따른 합금이 모두 동일한 하나의 색으로 표시되며, 이는 이들 합금의 미세조직이 FCC 단상으로 이루어져 있으며, 기계적 특성을 저하시키는 시그마 상(sigma phase)와 같은 제2상이 생성되지 않았음을 의미한다.FIG. 10 is an EBSD phase map photograph of a high entropy alloy sheet prepared according to Examples 1 and 3 of the present invention. FIG. The EBSD phase map displays each phase in a different color when two or more different phases are in the microstructure. As can be seen in FIG. 10, the alloys according to Example 1 and Example 3 are all the same. Shown in color, this means that the microstructure of these alloys consists of the FCC single phase and no second phase, such as a sigma phase, that degrades mechanical properties has been produced.
상온 및 극저온 기계적 특성 평가Evaluation of room temperature and cryogenic mechanical properties
이상과 같이 제조된 고 엔트로피 합금 판재를 인장시험기를 통하여 상온(298K)에서의 인장특성을 평가하였으며, 도 11과 아래 표 2는 그 결과를 나타낸 것이다.The high entropy alloy sheet produced as described above was evaluated for tensile properties at room temperature (298K) through a tensile tester, Figure 11 and Table 2 shows the results.
상온(298K)Room temperature (298K)
YS(MPa)YS (MPa) UTS(MPa)UTS (MPa) El.(%)El. (%)
실시예 1Example 1 460460 815815 45.245.2
실시예 3Example 3 503503 842842 35.235.2
표 2에서 확인되는 바와 같이, 본 발명의 실시예 1 및 실시예 3에 따른 고 엔트로피 합금 판재의 상온(298K)에서의 항복 강도는 460 ~ 503MPa, 인장 강도가 815 ~ 842MPa, 연신율이 약 35~45%로 우수한 인장 특성을 나타낸다.As shown in Table 2, the yield strength at room temperature (298K) of the high entropy alloy sheet according to Examples 1 and 3 of the present invention is 460 to 503 MPa, tensile strength is 815 to 842 MPa, and elongation is about 35 to 45% shows excellent tensile properties.
도 12 및 13과 아래 표 3은 극저온 챔버와 인장시험기를 통하여 극저온(77K)에서의 인장특성을 평가한 결과를 나타낸 것이다.12 and 13 and Table 3 below show the results of evaluating the tensile properties at cryogenic temperatures (77K) through the cryogenic chamber and the tensile tester.

Claims (6)

  1. Cr: 3~18원자%, Fe: 3~60원자%, Mn: 3~40원자%, Ni: 20~80원자%, V: 3~12원자%와, 불가피한 불순물을 포함하고,Cr: 3-18 atomic%, Fe: 3-60 atomic%, Mn: 3-40 atomic%, Ni: 20-80 atomic%, V: 3-12 atomic% and inevitable impurities,
    상기 Ni의 함량에 대한 V 함량의 비율(V/Ni)이 0.5 이하인, 고 엔트로피 합금.A high entropy alloy, wherein the ratio of V content to Ni content (V / Ni) is 0.5 or less.
  2. 제1항에 있어서,The method of claim 1,
    상기 고 엔트로피 합금은 면심입방구조(Face Centered Cubic) 단상인 고 엔트로피 합금.The high entropy alloy is a face centered cubic single phase high entropy alloy.
  3. 제1항에 있어서,The method of claim 1,
    상기 Fe와 Mn 함량의 합이 50원자% 이하인 고 엔트로피 합금.A high entropy alloy having a sum of Fe and Mn content of 50 atomic% or less.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 30% 이상인 고 엔트로피 합금.The high entropy alloy has a high tensile strength of at least 1000 MPa and an elongation of at least 30% at cryogenic temperatures (77K).
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 60% 이상인 고 엔트로피 합금.The high entropy alloy has a high tensile strength of at least 1000 MPa and an elongation of at least 60% at cryogenic temperatures (77 K).
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 고 엔트로피 합금은 상온(298K)에서 인장강도가 800MPa 이상이고, 연신율이 30% 이상인 고 엔트로피 합금.The high entropy alloy has a high tensile strength of 800 MPa or more at room temperature (298 K) and an elongation of at least 30%.
PCT/KR2017/002989 2016-03-21 2017-03-21 Cr-fe-mn-ni-v-based high-entropy alloy WO2017164602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/084,610 US10988834B2 (en) 2016-03-21 2017-03-21 Cr—Fe—Mn—Ni—V-based high-entropy alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160033419 2016-03-21
KR10-2016-0033419 2016-03-21
KR10-2017-0032630 2017-03-15
KR1020170032630A KR101888300B1 (en) 2016-03-21 2017-03-15 High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium

Publications (1)

Publication Number Publication Date
WO2017164602A1 true WO2017164602A1 (en) 2017-09-28

Family

ID=59899581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002989 WO2017164602A1 (en) 2016-03-21 2017-03-21 Cr-fe-mn-ni-v-based high-entropy alloy

Country Status (1)

Country Link
WO (1) WO2017164602A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660354A (en) * 2018-08-20 2018-10-16 太原理工大学 A kind of high entropy stainless steel of Fe-Mn-Cr-Ni systems and preparation method thereof
US10640854B2 (en) 2016-08-04 2020-05-05 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11318566B2 (en) 2016-08-04 2022-05-03 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11339817B2 (en) 2016-08-04 2022-05-24 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11511375B2 (en) 2020-02-24 2022-11-29 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
KR20090030198A (en) * 2007-09-19 2009-03-24 인더스트리얼 테크놀로지 리써치 인스티튜트 Ultra-hard composite material and method for manufacturing the same
US20160025386A1 (en) * 2014-07-28 2016-01-28 Ut-Battelle, Llc High Entropy NiMn-based Magnetic Refrigerant Materials
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
KR20160014130A (en) * 2014-07-28 2016-02-11 세종대학교산학협력단 High entropy alloy having excellent strength and ductility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
KR20090030198A (en) * 2007-09-19 2009-03-24 인더스트리얼 테크놀로지 리써치 인스티튜트 Ultra-hard composite material and method for manufacturing the same
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
US20160025386A1 (en) * 2014-07-28 2016-01-28 Ut-Battelle, Llc High Entropy NiMn-based Magnetic Refrigerant Materials
KR20160014130A (en) * 2014-07-28 2016-02-11 세종대학교산학협력단 High entropy alloy having excellent strength and ductility

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640854B2 (en) 2016-08-04 2020-05-05 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11318566B2 (en) 2016-08-04 2022-05-03 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11339817B2 (en) 2016-08-04 2022-05-24 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
US11535913B2 (en) 2016-08-04 2022-12-27 Honda Motor Co., Ltd. Multi-material component and methods of making thereof
CN108660354A (en) * 2018-08-20 2018-10-16 太原理工大学 A kind of high entropy stainless steel of Fe-Mn-Cr-Ni systems and preparation method thereof
US11511375B2 (en) 2020-02-24 2022-11-29 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys

Similar Documents

Publication Publication Date Title
WO2017164602A1 (en) Cr-fe-mn-ni-v-based high-entropy alloy
WO2017164601A1 (en) High-entropy alloy for ultra-low temperature
KR101888299B1 (en) Cryogenic High Entropy Alloy
KR101888300B1 (en) High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium
KR102236938B1 (en) Twinning/transformation induced plasticity high entropy steels and method for manufacturing the same
WO2020085697A1 (en) Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
WO2019022283A1 (en) Medium-entropy alloy having excellent cryogenic characteristics
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
KR101871590B1 (en) Stress-induced phase transformable dual-phase high entropy alloy and manufacturing method for the same
US20170233855A1 (en) High entropy alloy having twip/trip property and manufacturing method for the same
WO2019039743A1 (en) V-cr-fe-ni based high-strength high-entropy alloy
WO2020080660A1 (en) Medium-entropy alloy and manufacturing method therefor
WO2017164709A1 (en) Metal composite
WO2020209485A1 (en) Cu-co-si-fe-p-based copper alloy having excellent bending workability and method for preparing same
US20210395869A1 (en) Iron-based superalloy for high temperature 700 c with coherent precipitation of cuboidal b2 nanoparticles
Yang et al. Effects of thermomechanical treatment on microstructure and shape memory effect of Ti–13V–3Al lightweight shape memory alloy
US11851735B2 (en) High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof
JP4756974B2 (en) Ni3 (Si, Ti) -based foil and method for producing the same
WO2019083103A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
KR102179460B1 (en) High entropy alloy and manufacturing method of the same
WO2017131260A1 (en) Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
WO2023128356A1 (en) Method for manufacturing high-strength titanium alloy by using ferrochrome, and high-strength titanium alloy
EP0285952B1 (en) Superconductor cable
WO2023128355A1 (en) High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same
KR20200066925A (en) High entropy alloy and manufacturing method of the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770572

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770572

Country of ref document: EP

Kind code of ref document: A1