WO2023128355A1 - High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same - Google Patents

High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same Download PDF

Info

Publication number
WO2023128355A1
WO2023128355A1 PCT/KR2022/019715 KR2022019715W WO2023128355A1 WO 2023128355 A1 WO2023128355 A1 WO 2023128355A1 KR 2022019715 W KR2022019715 W KR 2022019715W WO 2023128355 A1 WO2023128355 A1 WO 2023128355A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
titanium alloy
ferrochrome
titanium
molybdenum
Prior art date
Application number
PCT/KR2022/019715
Other languages
French (fr)
Korean (ko)
Inventor
염종택
박찬희
홍재근
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2023128355A1 publication Critical patent/WO2023128355A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to titanium and methods for its production. More specifically, the present invention relates to a titanium alloy having high strength and high formability using molybdenum and ferrochrome and a manufacturing method thereof.
  • titanium and its alloys Due to its high strength, high corrosion resistance and high biocompatibility, titanium and its alloys are widely used in a wide range of industries such as aerospace, national defense, energy industry, medical care and consumer goods.
  • titanium alloys are classified into pure titanium, alpha ( ⁇ ) alloys, alpha-beta ( ⁇ - ⁇ ) alloys, and beta ( ⁇ ) alloys based on their stable phase at room temperature.
  • alpha alloys are known to have excellent creep strength and weldability
  • beta alloys are known to increase workability.
  • titanium alloys pure titanium for general industrial use and Ti-6Al-4V alloy, an alpha-beta alloy for aviation and defense, have been mainly used, and some Ti-Zr alloys that can obtain low elastic modulus and high strength in medical and consumer goods.
  • Ti-Nb alloy, and Ti-Mo alloy are used, and research to improve low elastic modulus and high strength is continuously conducted.
  • Ti-6Al-4V an alpha-beta titanium alloy
  • the beta alloy can implement desired properties through the control of alloying elements, but has a disadvantage in that the price is significantly higher than that of pure titanium as well as the Ti-6Al-4V alloy.
  • medical implants and eyeglass frames require excellent biocompatibility, low modulus of elasticity and high strength. is causing
  • the problem to be solved by the present invention is to provide a high-strength, high-formability titanium alloy using molybdenum and ferrochrome.
  • the problem to be solved by the present invention is to provide a method for manufacturing a high-strength, high-formability titanium alloy that is advantageous in terms of securing strength and elongation as well as lowering the manufacturing cost of the titanium alloy by using ferrochrome as an alloy additive.
  • Titanium alloy according to an embodiment of the present invention for solving the above problems is molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 3.0% by weight, iron (Fe): 0.1 to 1.0% by weight, silicon (Si): 0.01 to 0.1% by weight, oxygen (O): 0.4% by weight or less, characterized in that it consists of the remaining titanium (Ti) and unavoidable impurities.
  • a titanium alloy according to a preferred embodiment of the present invention contains molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 1.98% by weight, iron (Fe): 0.1 to 0.93% by weight, silicon (Si): 0.01 ⁇ 0.09% by weight, oxygen (O): 0.4% by weight or less, but the content of chromium (Cr) is greater than the content of iron (Fe), and the rest is made of titanium (Ti) and unavoidable impurities, 1109 to 1510 MPa It is characterized by having a tensile strength of.
  • the chromium content may be 1.7 to 4 times the iron content.
  • the titanium alloy may have a molybdenum equivalent ([Mo]eq.) of 5.5 to 20 and a beta transformation point of 670 to 815 ° C. (in Equation 1, [ ] is the weight% of the corresponding component) .
  • the titanium alloy may have a tensile strength of 750 to 1510 MPa, a yield strength of 545 to 1420 MPa, and a Young's modulus of 80 to 110 GPa.
  • a titanium alloy manufacturing method for solving the above problems is (a) an alloy or mixture of titanium (Ti) and molybdenum, chromium (Cr), iron (Fe), silicon (Si) and carbon ( C) adding a ferrochrome comprising; (b) forming a titanium alloy base material by dissolving and then cooling the product of step (a); and (c) hot-forming the titanium alloy base material, wherein 1 to 15% by weight of the molybdenum and less than 4% by weight of the ferrochrome are added based on the total weight of the titanium alloy.
  • a method for producing a titanium alloy according to a preferred embodiment of the present invention includes (a) an alloy or mixture of titanium (Ti) and molybdenum, including chromium (Cr), iron (Fe), silicon (Si) and carbon (C) Adding ferrochrome; (b) forming a titanium alloy base material by dissolving and then cooling the product of step (a); and (c) hot-forming the titanium alloy base material, wherein the ferrochrome is iron (Fe): 20 to 35 wt%, silicon (Si): 1 to 4 wt%, carbon (C): 0.15 wt% % or less, and is composed of the remaining chromium (Cr) and unavoidable impurities, and is characterized in that 1 to 15% by weight of the molybdenum and less than 4% by weight of the ferrochrome are added with respect to the total weight of the titanium alloy.
  • the ferrochrome is iron (Fe): 20 to 35 wt%, silicon (Si)
  • the titanium alloy produced is molybdenum (Mo): 1.0 to 15.0 wt%, chromium (Cr): 0.1 to 1.98 wt%, iron (Fe): 0.1 to 0.93 wt%, silicon (Si): 0.01 to 0.09 wt% %, oxygen (O): contains 0.4% by weight or less, the remainder is composed of titanium (Ti) and unavoidable impurities, and may have a tensile strength of 1109 to 1510 MPa.
  • Mo molybdenum
  • Cr chromium
  • Fe iron
  • Si silicon
  • oxygen (O) contains 0.4% by weight or less
  • the remainder is composed of titanium (Ti) and unavoidable impurities, and may have a tensile strength of 1109 to 1510 MPa.
  • Oxygen (O) may be included in an amount of 0.4% by weight or less based on the total weight of the titanium alloy.
  • the ferrochrome may include iron (Fe): 20 to 35% by weight, silicon (Si): 1 to 4% by weight, carbon (C): 0.15% by weight or less, and may be composed of the remaining chromium (Cr) and unavoidable impurities. there is.
  • the hot forming may be performed at a molding rate of up to 90% at 800 to 850 °C.
  • low-carbon ferrochrome composed of elements harmless to the human body (Cr, Fe, Si, etc.) Compared to adding individual elements such as , Si, etc., costs can be lowered in terms of raw material prices and processes.
  • the high-strength, high-formability titanium alloy according to the present invention can provide excellent formability as well as excellent strength through control of ferrochrome content.
  • Figure 1a shows the phase fraction of a specimen in which 5% by weight of molybdenum was added to titanium.
  • Figure 1b shows the phase fraction of a specimen in which 5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
  • Figure 1c shows the phase fraction of a specimen in which 5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
  • Figure 2a shows the phase fraction of the specimen in which 9.5% by weight of molybdenum was added to titanium.
  • Figure 2b shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
  • Figure 2c shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
  • Figure 3a shows the phase fraction of the specimen in which 15% by weight of molybdenum was added to titanium.
  • Figure 3b shows the phase fraction of the specimen in which 15% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
  • Figure 3c shows the phase fraction of the specimen in which 15% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
  • Figure 4a shows the mechanical properties of Comparative Example specimens 1 and 4 and Example specimens 1 to 4.
  • Figure 4b shows the mechanical properties of Comparative Example specimens 2 and 5 and Example specimens 5 to 8.
  • Figure 4c shows the mechanical properties of Comparative Example specimens 3 and 6 and Example specimens 9 to 12.
  • the method of adding an alloying element is more advantageous than the method of miniaturizing crystal grains through plastic working and heat treatment.
  • alloying by selecting inexpensive alloying elements can be seen as the most desirable method for minimizing price increase and increasing strength.
  • toxic elements such as Co, Cu, Ni, V, etc.
  • the titanium alloy according to the present invention does not contain these elements, and as an exception, they are inevitably included as impurities.
  • the present inventors selected inexpensive and non-toxic Mo among the elements (Mo, V, Nb, etc.) Mo alloy was selected as the base, and Fe and Cr were selected as non-toxic alloy elements that have a greater effect on Mo equivalent (Mo equivalent greater than 1) and are relatively inexpensive and non-toxic.
  • alloying method by adding ferrochrome containing Fe, Cr, Si, etc. has been developed.
  • Si which is an element included in ferrochrome, it is possible to additionally expect a feature of refining the crystal grains of the melted ingot by providing a nucleation site during melting.
  • the present inventors developed a new Ti-Mo-Cr-Fe-Si alloy based on a titanium-moly (Ti-Mo) alloy.
  • ferrochrome containing chromium (Cr), iron (Fe), silicon (Si), and carbon (C) is added to an alloy or mixture of titanium (Ti) and molybdenum (Mo). and forming a titanium alloy base material by dissolving titanium and ferrochrome and then cooling them, and hot forming the titanium alloy base material.
  • Hot forming may be performed by hot rolling, hot forging, or the like. Hot forming may be performed at a forming ratio of 90% or less at 800 to 850 °C. The forming rate can be expressed as a reduction rate in the case of rolling. In the case of the present invention, as described below, 1 to 15% by weight of molybdenum and less than 4% by weight of ferrochrome are added, and as a result, no cracks occur even when molding is performed at a molding rate of 90% at 800 to 850 ° C. can provide.
  • cooling after hot forming various methods such as water cooling, air cooling, and furnace cooling may be used.
  • the cooling method may be determined according to the presence or absence of an additional hot process after hot forming. For example, if there is no additional hot process, water cooling may be performed after hot forming. After hot forming, heat treatment such as homogenization treatment, solution treatment, and aging treatment may be additionally performed.
  • One characteristic of the dissolution of ferrochrome is that the temperature when dissolving ferrochrome is significantly lower than when chromium, iron, silicon, etc. are individually dissolved, and is similar to the melting point of titanium. Through this, ferrochrome can be melted together with titanium at a relatively low temperature, and accordingly, the cost of manufacturing a titanium alloy can be reduced.
  • the addition amount of ferrochrome is less than 4% by weight based on the total weight of the titanium alloy. More preferably, it is 3% by weight or less, and most preferably 0.5 to 2% by weight.
  • strength can be increased compared to titanium alloys without ferrochrome.
  • the addition amount of ferrochrome is 4% by weight or more, the elongation is very low and there is a risk of cracking.
  • Ferrochrome includes iron (Fe): 20 to 35% by weight, silicon (Si): 1 to 4% by weight, carbon (C): 0.15% by weight or less, and may be composed of the remaining chromium (Cr) and unavoidable impurities. .
  • a characteristic of ferrochrome is that the Cr content is much greater than the Fe content. In ferrochrome, the Cr content can be 1.7-4 times the Fe content, for example 2-4 times.
  • the titanium alloy may satisfy the preferred content ranges of chromium, iron, and silicon as described above.
  • the present invention molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 3.0% by weight, iron (Fe): 0.1 to 1.0% by weight, silicon (Si): 0.01 to 0.01% by weight 0.1% by weight, oxygen (O): 0.4% by weight or less, and the titanium alloy characterized by consisting of the remaining titanium (Ti) and unavoidable impurities can be provided.
  • the present invention contains molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 1.98% by weight, iron (Fe): 0.1 to 0.93% by weight, silicon (Si): 0.01 to 0.09% by weight, Oxygen (O): It is possible to provide a titanium alloy comprising 0.4% by weight or less, but the content of chromium (Cr) is greater than the content of iron (Fe), and the remainder is composed of titanium (Ti) and unavoidable impurities. .
  • Molybdenum (Mo) is a non-toxic beta-phase stabilizing element. Molybdenum serves to increase the strength due to the solid solution strengthening effect. However, when molybdenum is excessively added in excess of 15% by weight, there is a problem in greatly increasing the modulus of elasticity of the alloy.
  • Chromium (Cr) is a non-toxic element and is a higher beta phase stabilizing element than molybdenum (Mo) in titanium alloys.
  • Mo molybdenum
  • chromium needs to be added in an amount of 0.1% by weight or more.
  • the content of chromium is preferably 3.0% by weight or less, more preferably 1.98% by weight or less.
  • Iron (Fe) is non-toxic like chromium (Cr) and is a beta-phase stabilizing element higher than molybdenum. When iron is added to titanium, its strength can be increased due to the solid solution strengthening effect. For this effect iron needs to be added at least 0.1% by weight. However, when dissolving a titanium alloy in which iron is added in an amount exceeding 1.0% by weight, macro or micro segregation may be induced, and when heat treated at a certain temperature, a TiFe phase, which is a very fragile phase, may be formed. Therefore, the content of iron is preferably 1.0% by weight or less, more preferably 0.9% by weight or less.
  • Silicon (Si) is a non-toxic element, and forms many nucleation sites when titanium alloy is melted to induce crystal grain refinement. Silicon also contributes to increasing the static strength of titanium alloys. For this effect, silicon needs to be added at least 0.01% by weight. However, when the content of silicon exceeds 0.1% by weight, crack generation may be promoted due to formation of brittle silicide. Therefore, the content of silicon is preferably 0.1% by weight or less, more preferably 0.09% by weight or less.
  • the content of Cr, Fe and Si is determined according to the addition amount of ferrochrome, and the addition amount of ferrochrome is less than 4% by weight, more preferably 3.0% by weight or less, and most preferably 0.5 to 2.0% by weight.
  • the above Cr, Fe and Si contents may be satisfied.
  • oxygen (O) may be included in an amount of 0.4% by weight or less based on the total weight of the titanium alloy.
  • Oxygen is an interstitial element and is a solid solution strengthening alloying element that strengthens the lattice without significantly affecting corrosion resistance.
  • impact resistance can be rapidly reduced by suppressing twin deformation at low temperatures.
  • the titanium alloy according to the present invention may have a molybdenum equivalent ([Mo]eq.) of 5.5 to 20 represented by Equation 1 below ([ ] in Equation 1 is the corresponding component % by weight of).
  • the high-strength titanium alloy according to the present invention may have a beta transformation point of 670 to 815 °C.
  • the high-strength titanium alloy according to the present invention has a tensile strength of 750 to 1510 MPa, and more preferably a tensile strength of 1109 to 1510 MPa, a yield strength of 545 to 1420 MPa, and It may have a Young's modulus of 80 to 110 GPa.
  • All three specimens contained about 66% by weight of Cr, about 31% of Fe, and about 3% by weight of Si, and it can be seen that the difference in content of the components is not large.
  • Ferrochrome is classified into low-carbon ferrochrome, medium-carbon ferrochrome, and high-carbon ferrochrome according to the carbon content.
  • low-carbon ferrochrome means that the carbon content is 0.2% by weight or less or 0.15% by weight or less.
  • the carbon content was about 0.1% by weight and the chromium content was about 67%, corresponding to low-carbon ferrochrome.
  • the melting points of Cr, Fe, and Si are 1907°C, 1538°C, and 1414°C, respectively, but the melting point of low-carbon ferrochrome having a carbon content of 0.15% by weight or less is known to be about 1620°C. Also, the melting point of titanium is 1668°C.
  • titanium In titanium, O, N, C, H, etc. are major elements that reduce fracture ductility and require special management. In titanium alloys, these elements must be controlled at less than the weight % shown in Table 3 (there is a very small difference in the permissible limit by country). In particular, since H deteriorates fracture ductility even when a small amount is added, special management is required compared to other elements.
  • Titanium (Ti-0.02 O) and molybdenum and ferrochrome of the contents shown in Table 4 were melted in an induction skull melting furnace to form a titanium alloy, and then cooled to prepare ingots having a width of 10 mm ⁇ a length of 30 mm ⁇ a thickness of 10 mm.
  • Ingots were molded at 830° C. ⁇ 20° C. at a forming ratio of about 90% shown in Table 4 and then cooled with water to prepare titanium alloy specimens according to Comparative Examples 1 to 3 and Examples 1 to 12.
  • Table 4 shows the Mo equivalent and beta transformation point according to the ferrochrome content in the titanium alloy specimens prepared according to Comparative Examples 1 to 3 and Examples 1 to 12.
  • Table 5 shows the contents of Cr, Fe, and Si according to the ferrochrome added in the titanium alloy specimens according to Examples 1 to 12.
  • Figure 1a shows the phase fraction of a specimen in which 5% by weight of molybdenum was added to titanium.
  • Figure 1b shows the phase fraction of a specimen in which 5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
  • Figure 1c shows the phase fraction of a specimen in which 5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
  • Figure 2a shows the phase fraction of the specimen in which 9.5% by weight of molybdenum was added to titanium.
  • Figure 2b shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
  • Figure 2c shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
  • Figure 3a shows the phase fraction of the specimen in which 15% by weight of molybdenum was added to titanium.
  • Figure 3b shows the phase fraction of the specimen in which 15% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
  • Figure 3c shows the phase fraction of the specimen in which 15% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
  • FIG. 4a to 4c show the mechanical properties of Comparative Samples 1 to 6 and Example Samples 1 to 12.
  • FIG. 4a shows the mechanical properties of Comparative Samples 1 and 4 and Example Samples 1 to 4 having a molybdenum content of 5.0% by weight
  • FIG. 4B shows Comparative Samples 2 and 5 having a molybdenum content of 9.5% by weight.
  • Example specimens 5 to 8 shows the mechanical properties of Comparative Example specimens 3 and 6 and Example specimens 9 to 12 having a molybdenum content of 15% by weight.
  • the specimen according to Comparative Example 4 is a titanium alloy specimen prepared by adding 5.0% by weight of molybdenum and 4% by weight of ferrochrome
  • the specimen according to Comparative Example 5 is a titanium alloy specimen prepared by adding 9.5% by weight of molybdenum and 4% by weight of ferrochrome. It is an alloy specimen and is a titanium alloy specimen prepared by adding 15% by weight of molybdenum and 4% by weight of ferrochrome.
  • the mechanical properties were obtained by performing a tensile test on each titanium alloy specimen at a strain rate of 1.5 mm/min at room temperature.
  • Table 6 shows the mechanical properties of Comparative Samples 1 to 3 and Example Samples 1 to 12.
  • Table 7 shows the elongation measurement results and crack observation results of the specimens according to Comparative Examples 4 to 6 and the specimens according to Examples 1 to 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Disclosed are a high-strength, high-formability titanium alloy using molybdenum and ferrochrome and a manufacturing method therefor. In the titanium alloy manufacturing method according to the present invention, a titanium alloy base material is formed by adding ferrochrome including Cr, Fe, Si and C to an alloy or mixture of Ti and Mo, dissolving and cooling same to form a titanium alloy base material, and then hot molding the formed titanium alloy base material. At this time, addition is made of Mo in an amount of 1 to 15wt% and ferrochrome in an amount of less than 4wt%.

Description

몰리브덴 및 페로크롬을 이용한 고강도 고성형성 타이타늄 합금 및 그 제조 방법High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing the same
본 발명은 타이타늄 및 그 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 몰리브덴과 페로크롬을 이용하여 고강도 및 고성형성을 갖는 타이타늄 합금 및 그 제조 방법에 관한 것이다.The present invention relates to titanium and methods for its production. More specifically, the present invention relates to a titanium alloy having high strength and high formability using molybdenum and ferrochrome and a manufacturing method thereof.
타이타늄과 그 합금은 고강도, 고내식성 및 높은 생체적합성에 기인하여, 항공 우주, 국방, 에너지 산업, 의료 및 생활소비재 등 광범위한 산업분야에 널리 활용되고 있다. Due to its high strength, high corrosion resistance and high biocompatibility, titanium and its alloys are widely used in a wide range of industries such as aerospace, national defense, energy industry, medical care and consumer goods.
일반적으로 타이타늄 합금의 종류는 상온에서의 안정상을 기준으로 순수 타이타늄, 알파(α) 합금, 알파-베타(α-β) 합금, 베타(β) 합금으로 구분된다. 이 중 알파 합금은 크리프 강도와 용접성 등이 우수하고, 베타 합금의 경우 가공성이 증가하는 것으로 알려져 있다. In general, titanium alloys are classified into pure titanium, alpha (α) alloys, alpha-beta (α-β) alloys, and beta (β) alloys based on their stable phase at room temperature. Among them, alpha alloys are known to have excellent creep strength and weldability, and beta alloys are known to increase workability.
지금까지 타이타늄 합금의 경우 일반산업용 순수 타이타늄과 항공, 국방용 알파-베타 합금인 Ti-6Al-4V 합금이 주로 사용되어 왔고 의료 및 생활소비재에서 저탄성계수와 고강도를 얻을 수 있는 일부 Ti-Zr 합금, Ti-Nb 합금, Ti-Mo 합금이 사용되고 있으며, 저탄성계수와 고강도를 향상시키기 위한 연구가 지속적으로 이루어지고 있다. 그러나, 이들 합금의 특성의 한계로 인해 사용이 확대되지 못하고 있다. Until now, in the case of titanium alloys, pure titanium for general industrial use and Ti-6Al-4V alloy, an alpha-beta alloy for aviation and defense, have been mainly used, and some Ti-Zr alloys that can obtain low elastic modulus and high strength in medical and consumer goods. , Ti-Nb alloy, and Ti-Mo alloy are used, and research to improve low elastic modulus and high strength is continuously conducted. However, due to limitations in the properties of these alloys, their use has not been expanded.
순수 타이타늄은 가격적인 측면에서 다른 타이타늄 합금에 비해 저렴하고, 성형성, 용접성, 가공성, 내식성이 우수하나 강도가 낮아 응용분야의 한계를 가지며, 알파-베타 타이타늄 합금인 Ti-6Al-4V는 강도가 높은 반면 가격이 높고 순수 타이타늄에 비해 강도를 제외한 모든 특성이 떨어지는 경향을 가진다. 또한, 베타 합금은 합금 첨가 원소 제어를 통해 원하는 특성을 구현하는 것이 가능하지만, 순수 타이타늄은 물론 Ti-6Al-4V 합금에 비해 가격이 상당히 높다는 단점을 가진다. 특히, 의료용 임플란트 및 안경테 등은 우수한 생체적합성, 저탄성계수와 고강도의 특성을 요구하고 있으며, 이 경우 이러한 특성을 함께 발현하기 위해서 타이타늄에 Nb, Ta 등의 고가 금속원소를 다량 첨가하여야 하는 문제를 야기시키고 있다.Pure titanium is cheaper than other titanium alloys in terms of price, and has excellent formability, weldability, workability, and corrosion resistance, but has low strength, which limits its application. Ti-6Al-4V, an alpha-beta titanium alloy, has high strength On the other hand, the price is high and all characteristics except strength tend to be inferior to pure titanium. In addition, the beta alloy can implement desired properties through the control of alloying elements, but has a disadvantage in that the price is significantly higher than that of pure titanium as well as the Ti-6Al-4V alloy. In particular, medical implants and eyeglass frames require excellent biocompatibility, low modulus of elasticity and high strength. is causing
따라서, 가격 상승을 최소화하면서 우수한 강도, 성형성, 용접성, 가공성, 내식성, 생체적합성, 저탄성계수 등의 특성을 제어할 수 있는 비교적 저렴한 원소들로 구성된 타이타늄 합금과 그 제조방법에 대한 개발이 요구된다.Therefore, there is a need to develop a titanium alloy composed of relatively inexpensive elements that can control properties such as excellent strength, formability, weldability, processability, corrosion resistance, biocompatibility, and low modulus of elasticity while minimizing price increase, and a manufacturing method thereof. do.
본 발명이 해결하고자 하는 과제는 몰리브덴과 페로크롬을 이용한 고강도 고성형성 타이타늄 합금을 제공하는 것이다.The problem to be solved by the present invention is to provide a high-strength, high-formability titanium alloy using molybdenum and ferrochrome.
또한 본 발명이 해결하고자 하는 과제는 페로크롬을 합금 첨가재로 이용하여 타이타늄 합금의 제조 비용을 낮출 수 있을 뿐만 아니라, 강도 및 연신율 확보 측면에서도 유리한 고강도 고성형성 타이타늄 합금을 제조하는 방법을 제공하는 것이다. In addition, the problem to be solved by the present invention is to provide a method for manufacturing a high-strength, high-formability titanium alloy that is advantageous in terms of securing strength and elongation as well as lowering the manufacturing cost of the titanium alloy by using ferrochrome as an alloy additive.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 본 발명의 다른 과제들 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 과제들 및 장점들은 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The tasks of the present invention are not limited to the tasks mentioned above, and other tasks and advantages of the present invention that are not mentioned can be understood by the following description and will be more clearly understood by the embodiments of the present invention. will be. It will also be readily apparent that the objects and advantages of the present invention may be realized by means of the instrumentalities and combinations thereof set forth in the claims.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 타이타늄 합금은 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼3.0 중량%, 철(Fe): 0.1∼1.0 중량%, 실리콘(Si): 0.01∼0.1 중량%, 산소(O): 0.4 중량% 이하를 포함하고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 것을 특징으로 한다. Titanium alloy according to an embodiment of the present invention for solving the above problems is molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 3.0% by weight, iron (Fe): 0.1 to 1.0% by weight, silicon (Si): 0.01 to 0.1% by weight, oxygen (O): 0.4% by weight or less, characterized in that it consists of the remaining titanium (Ti) and unavoidable impurities.
본 발명의 바람직한 실시예에 따른 타이타늄 합금은 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼1.98 중량%, 철(Fe): 0.1∼0.93 중량%, 실리콘(Si): 0.01∼0.09 중량%, 산소(O): 0.4 중량% 이하를 포함하되 크롬(Cr)의 함량이 철(Fe)의 함량보다 더 크고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지며, 1109∼1510 MPa의 인장강도를 갖는 것을 특징으로 한다.A titanium alloy according to a preferred embodiment of the present invention contains molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 1.98% by weight, iron (Fe): 0.1 to 0.93% by weight, silicon (Si): 0.01 ~0.09% by weight, oxygen (O): 0.4% by weight or less, but the content of chromium (Cr) is greater than the content of iron (Fe), and the rest is made of titanium (Ti) and unavoidable impurities, 1109 to 1510 MPa It is characterized by having a tensile strength of.
상기 크롬의 함량이 상기 철의 함량의 1.7-4배일 수 있다.The chromium content may be 1.7 to 4 times the iron content.
상기 타이타늄 합금은 이하의 식 1로 표현되는 몰리브덴 당량([Mo]eq.)이 5.5∼20 이고, 670∼815 ℃의 베타변태점을 가질 수 있다(식 1에서 [ ]는 해당 성분의 중량%). The titanium alloy may have a molybdenum equivalent ([Mo]eq.) of 5.5 to 20 and a beta transformation point of 670 to 815 ° C. (in Equation 1, [ ] is the weight% of the corresponding component) .
[식 1][Equation 1]
[Mo]eq. = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.4[W] + 0.67[V] + 1.25[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.5[Fe][Mo]eq. = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.4[W] + 0.67[V] + 1.25[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.5[Fe]
상기 타이타늄 합금은 750∼1510 MPa의 인장강도, 545∼1420 MPa의 항복강도 및 80∼110 GPa의 영률을 가질 수 있다. The titanium alloy may have a tensile strength of 750 to 1510 MPa, a yield strength of 545 to 1420 MPa, and a Young's modulus of 80 to 110 GPa.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 타이타늄 합금 제조 방법은 (a) 타이타늄(Ti)과 몰리브덴의 합금 또는 혼합물에, 크롬(Cr), 철(Fe), 실리콘(Si) 및 탄소(C)를 포함하는 페로크롬을 첨가하는 단계; (b) 상기 (a) 단계의 결과물을 용해시킨 후 냉각하여 타이타늄 합금 모재를 형성하는 단계; 및 (c) 타이타늄 합금 모재를 열간 성형하는 단계;를 포함하고, 타이타늄 합금 전체 중량에 대하여 상기 몰리브덴 1∼15중량%, 상기 페로크롬 4 중량% 미만으로 첨가되는 것을 특징으로 한다. A titanium alloy manufacturing method according to an embodiment of the present invention for solving the above problems is (a) an alloy or mixture of titanium (Ti) and molybdenum, chromium (Cr), iron (Fe), silicon (Si) and carbon ( C) adding a ferrochrome comprising; (b) forming a titanium alloy base material by dissolving and then cooling the product of step (a); and (c) hot-forming the titanium alloy base material, wherein 1 to 15% by weight of the molybdenum and less than 4% by weight of the ferrochrome are added based on the total weight of the titanium alloy.
본 발명의 바람직한 실시예에 따른 타이타늄 합금 제조 방법은 (a) 타이타늄(Ti)과 몰리브덴의 합금 또는 혼합물에, 크롬(Cr), 철(Fe), 실리콘(Si) 및 탄소(C)를 포함하는 페로크롬을 첨가하는 단계; (b) 상기 (a) 단계의 결과물을 용해시킨 후 냉각하여 타이타늄 합금 모재를 형성하는 단계; 및 (c) 타이타늄 합금 모재를 열간 성형하는 단계;를 포함하고, 상기 페로크롬은 철(Fe): 20∼35 중량%, 실리콘(Si): 1∼4 중량%, 탄소(C): 0.15 중량% 이하를 포함하고, 나머지 크롬(Cr)과 불가피한 불순물로 이루어지며, 타이타늄 합금 전체 중량에 대하여 상기 몰리브덴 1∼15중량%, 상기 페로크롬이 4 중량% 미만으로 첨가되는 것을 특징으로 한다. 이 경우, 제조되는 타이타늄 합금이 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼1.98 중량%, 철(Fe): 0.1∼0.93 중량%, 실리콘(Si): 0.01∼0.09 중량%, 산소(O): 0.4 중량% 이하를 포함하고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지며, 1109∼1510 MPa의 인장강도를 가질 수 있다.A method for producing a titanium alloy according to a preferred embodiment of the present invention includes (a) an alloy or mixture of titanium (Ti) and molybdenum, including chromium (Cr), iron (Fe), silicon (Si) and carbon (C) Adding ferrochrome; (b) forming a titanium alloy base material by dissolving and then cooling the product of step (a); and (c) hot-forming the titanium alloy base material, wherein the ferrochrome is iron (Fe): 20 to 35 wt%, silicon (Si): 1 to 4 wt%, carbon (C): 0.15 wt% % or less, and is composed of the remaining chromium (Cr) and unavoidable impurities, and is characterized in that 1 to 15% by weight of the molybdenum and less than 4% by weight of the ferrochrome are added with respect to the total weight of the titanium alloy. In this case, the titanium alloy produced is molybdenum (Mo): 1.0 to 15.0 wt%, chromium (Cr): 0.1 to 1.98 wt%, iron (Fe): 0.1 to 0.93 wt%, silicon (Si): 0.01 to 0.09 wt% %, oxygen (O): contains 0.4% by weight or less, the remainder is composed of titanium (Ti) and unavoidable impurities, and may have a tensile strength of 1109 to 1510 MPa.
상기 타이타늄 합금 전체 중량에 대하여 상기 페로크롬 0.5∼2 중량%로 첨가되는 것이 보다 바람직하다. It is more preferable to add 0.5 to 2% by weight of the ferrochrome based on the total weight of the titanium alloy.
상기 타이타늄 합금 전체 중량에 대하여 산소(O)가 0.4 중량% 이하로 포함될 수 있다. Oxygen (O) may be included in an amount of 0.4% by weight or less based on the total weight of the titanium alloy.
상기 페로크롬은 철(Fe): 20∼35 중량%, 실리콘(Si): 1∼4 중량%, 탄소(C): 0.15 중량% 이하를 포함하고, 나머지 크롬(Cr)과 불가피한 불순물로 이루어질 수 있다. The ferrochrome may include iron (Fe): 20 to 35% by weight, silicon (Si): 1 to 4% by weight, carbon (C): 0.15% by weight or less, and may be composed of the remaining chromium (Cr) and unavoidable impurities. there is.
상기 열간 성형은 800∼850 ℃에서 최대 90%의 성형률로 수행될 수 있다.The hot forming may be performed at a molding rate of up to 90% at 800 to 850 °C.
본 발명에 따른 고강도 고성형성 타이타늄 합금 제조 방법에 의하면, 인체에 무해한 원소(Cr, Fe, Si 등)로 구성된 저탄소 페로크롬(low-carbon ferrochrome)을 타이타늄-몰리브덴 합금재의 첨가재로 활용함으로써 Cr, Fe, Si 등 개별원소로 첨가하는 것에 비해 원재료 가격 측면에서 그리고 공정 측면에서 비용을 낮출 수 있다. According to the high-strength, high-formability titanium alloy manufacturing method according to the present invention, low-carbon ferrochrome composed of elements harmless to the human body (Cr, Fe, Si, etc.) Compared to adding individual elements such as , Si, etc., costs can be lowered in terms of raw material prices and processes.
또한, 본 발명에 따른 고강도 고성형성 타이타늄 합금은 페로크롬의 함량 제어를 통하여, 우수한 강도와 더불어 우수한 성형성을 제공할 수 있다. In addition, the high-strength, high-formability titanium alloy according to the present invention can provide excellent formability as well as excellent strength through control of ferrochrome content.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the effects described above, specific effects of the present invention will be described together while explaining specific details for carrying out the present invention.
도 1a는 타이타늄에 5 중량%의 몰리브덴이 첨가된 시편의 상분율을 나타낸 것이다. Figure 1a shows the phase fraction of a specimen in which 5% by weight of molybdenum was added to titanium.
도 1b는 타이타늄에 5 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. Figure 1b shows the phase fraction of a specimen in which 5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
도 1c는 타이타늄에 5 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다.Figure 1c shows the phase fraction of a specimen in which 5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
도 2a는 타이타늄에 9.5 중량%의 몰리브덴이 첨가된 시편의 상분율을 나타낸 것이다. Figure 2a shows the phase fraction of the specimen in which 9.5% by weight of molybdenum was added to titanium.
도 2b는 타이타늄에 9.5 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. Figure 2b shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
도 2c는 타이타늄에 9.5 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다.Figure 2c shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
도 3a는 타이타늄에 15 중량%의 몰리브덴이 첨가된 시편의 상분율을 나타낸 것이다. Figure 3a shows the phase fraction of the specimen in which 15% by weight of molybdenum was added to titanium.
도 3b는 타이타늄에 15 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. Figure 3b shows the phase fraction of the specimen in which 15% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium.
도 3c는 타이타늄에 15 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다.Figure 3c shows the phase fraction of the specimen in which 15% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
도 4a는 비교예 시편 1, 4 및 실시예 시편 1∼4에 대한 기계적 특성을 나타낸 것이다.Figure 4a shows the mechanical properties of Comparative Example specimens 1 and 4 and Example specimens 1 to 4.
도 4b는 비교예 시편 2, 5 및 실시예 시편 5∼8에 대한 기계적 특성을 나타낸 것이다.Figure 4b shows the mechanical properties of Comparative Example specimens 2 and 5 and Example specimens 5 to 8.
도 4c는 비교예 시편 3, 6 및 실시예 시편 9∼12에 대한 기계적 특성을 나타낸 것이다.Figure 4c shows the mechanical properties of Comparative Example specimens 3 and 6 and Example specimens 9 to 12.
전술한 목적, 특징 및 장점은 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. The above objects, features and advantages will be described in detail below, and accordingly, those skilled in the art will be able to easily implement the technical spirit of the present invention. In describing the present invention, if it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
이하에서는, 본 발명의 몇몇 실시예에 따른 몰리브덴 및 페로크롬을 이용한 고강도 고성형성 타이타늄 합금 및 그 제조 방법에 대하여 설명하도록 한다.Hereinafter, a high-strength, high-formability titanium alloy using molybdenum and ferrochrome according to some embodiments of the present invention and a manufacturing method thereof will be described.
순수 타이타늄의 강도를 증가하는 방법으로, 합금원소를 첨가하여 강도를 높이는 방법과 소성가공 및 열처리를 통해 내부의 결정립을 작게 하여 강도를 높이는 방법이 있다. 그러나, 이러한 방법은 합금원소를 첨가하고 별도의 결정립 미세화 공정이 추가되기 때문에 가격 상승의 원인이 된다. 또한, 소성가공 및 열처리를 통해 결정립을 미세화하는 방법의 경우, 공정에 따라 제조되는 타이타늄 합금의 기계적 특성의 변화가 크게 발생하며, 실제 생산공정에 직접적으로 적용하기 어려운 공정이 도출될 수 있는 단점이 있다. As a method of increasing the strength of pure titanium, there are a method of increasing the strength by adding alloying elements and a method of increasing the strength by reducing the internal crystal grains through plastic working and heat treatment. However, this method causes an increase in price because an alloying element is added and a separate crystal grain refinement process is added. In addition, in the case of the method of miniaturizing crystal grains through plastic working and heat treatment, the mechanical properties of the titanium alloy produced according to the process change greatly, and the process is difficult to apply directly to the actual production process. there is.
따라서, 소성가공 및 열처리를 통해 결정립을 미세화하는 방법보다는 합금원소를 첨가하는 방법이 더 유리하다고 볼 수 있다. 특히 저렴한 합금원소를 선택하여 합금화하는 것이 가격 상승을 최소화하고 강도를 증가시키는데 있어 가장 바람직한 방법이라 볼 수 있다. 나아가, 생체 안정성 확보를 위해, 독성이 있는 원소인 Co, Cu, Ni, V 등을 첨가하지 않은 것이 바람직하며, 본 발명에 따른 타이타늄 합금에는 이들 원소들이 포함되지 않으며, 예외적으로 불순물로 불가피하게 포함될 수는 있다. Therefore, it can be seen that the method of adding an alloying element is more advantageous than the method of miniaturizing crystal grains through plastic working and heat treatment. In particular, alloying by selecting inexpensive alloying elements can be seen as the most desirable method for minimizing price increase and increasing strength. Furthermore, in order to ensure biostability, it is preferable not to add toxic elements such as Co, Cu, Ni, V, etc., and the titanium alloy according to the present invention does not contain these elements, and as an exception, they are inevitably included as impurities. can be
본 발명자들은 오랜 연구 결과, 타이타늄과 전율 고용체(액상과 고상에서 서로 완전한 용해도를 보이는 계)를 형성하는 원소들(Mo, V, Nb 등) 중 가격이 저렴하고 독성이 없는 Mo를 선정하여 Ti-Mo합금을 기지로 선택하였고, Mo 당량에 Mo보다 큰 영향(1보다 큰 Mo 당량)을 미치고 가격이 비교적 저렴하며 독성이 없는 합금원소로 Fe, Cr를 선정하였다. 또한, 합금원소인 Fe, Cr 등을 개별적으로 첨가할 경우 용해시 휘발 등으로 균일 조성을 맞추기 어려운 단점을 극복하기 위해서 Fe, Cr, Si 등이 포함되어 있는 페로크롬(Ferrochrome)을 첨가하여 합금화하는 방법을 개발하였다. 특히 페로크롬(Ferrochrome)에 포함되어 있는 원소인 Si의 경우 용해시 핵생성 사이트를 제공하여 용해된 잉곳의 결정립을 미세화하는 특징을 추가적으로 기대할 수 있다. 이를 통해 본 발명자들은 타이타늄-몰리(Ti-Mo) 합금을 기지로 한 새로운 Ti-Mo-Cr-Fe-Si합금을 개발하였다. As a result of long-term research, the present inventors selected inexpensive and non-toxic Mo among the elements (Mo, V, Nb, etc.) Mo alloy was selected as the base, and Fe and Cr were selected as non-toxic alloy elements that have a greater effect on Mo equivalent (Mo equivalent greater than 1) and are relatively inexpensive and non-toxic. In addition, alloying method by adding ferrochrome containing Fe, Cr, Si, etc. has been developed. In particular, in the case of Si, which is an element included in ferrochrome, it is possible to additionally expect a feature of refining the crystal grains of the melted ingot by providing a nucleation site during melting. Through this, the present inventors developed a new Ti-Mo-Cr-Fe-Si alloy based on a titanium-moly (Ti-Mo) alloy.
이하, 몰리브덴 및 페로크롬을 이용한 고강도 타이타늄 합금 제조 방법에 대하여 보다 상세하게 설명하기로 한다. Hereinafter, a method for manufacturing a high-strength titanium alloy using molybdenum and ferrochrome will be described in more detail.
본 발명에 따른 고강도 타이타늄 합금 제조 방법은 타이타늄(Ti)과 몰리브덴(Mo)의 합금 또는 혼합물에 크롬(Cr), 철(Fe), 실리콘(Si) 및 탄소(C)를 포함하는 페로크롬을 첨가하는 단계와, 타이타늄과 페로크롬을 용해시킨 후 냉각하여 타이타늄 합금 모재를 형성하는 단계와, 타이타늄 합금 모재를 열간 성형하는 단계를 포함한다. In the method for manufacturing a high-strength titanium alloy according to the present invention, ferrochrome containing chromium (Cr), iron (Fe), silicon (Si), and carbon (C) is added to an alloy or mixture of titanium (Ti) and molybdenum (Mo). and forming a titanium alloy base material by dissolving titanium and ferrochrome and then cooling them, and hot forming the titanium alloy base material.
타이타늄, 몰리브덴과 페로크롬의 용해는 진공용해법, 전자빔 용해법, 플라즈마 아크 용해법, 비소모전극식 아크 용해법 또는 유도스컬 용해법 등 공지된 다양한 방법이 이용될 수 있다. 열간 성형은 열간 압연, 열간 단조 등의 방식으로 수행될 수 있다. 열간 성형은 800∼850 ℃에서 90% 이하의 성형률(forming ratio)로 수행될 수 있다. 성형률은 압연의 경우 압하율로 표현될 수 있다. 본 발명의 경우, 이하에서 설명하는 바와 같이 몰리브덴 1∼15중량%, 페로크롬 4중량% 미만으로 첨가되며, 그 결과 800∼850 ℃에서 성형률 90%로 성형을 진행하더라도 크랙이 발생하지 않는 효과를 제공할 수 있다.For the melting of titanium, molybdenum, and ferrochrome, various known methods such as vacuum melting, electron beam melting, plasma arc melting, non-consumable electrode arc melting, or induction skull melting may be used. Hot forming may be performed by hot rolling, hot forging, or the like. Hot forming may be performed at a forming ratio of 90% or less at 800 to 850 °C. The forming rate can be expressed as a reduction rate in the case of rolling. In the case of the present invention, as described below, 1 to 15% by weight of molybdenum and less than 4% by weight of ferrochrome are added, and as a result, no cracks occur even when molding is performed at a molding rate of 90% at 800 to 850 ° C. can provide.
열간 성형 후 냉각은 수냉, 공냉, 로냉 등 다양한 방법이 이용될 수 있다. 냉각 방식은 열간 성형 이후에 추가의 열간 공정 유무에 따라 결정될 수 있는데, 예를 들어 추가의 열간 공정이 존재하지 않는다면 열간 성형 후 수냉이 수행될 수 있다. 열간 성형 후에는 균질화 처리, 용체화 처리, 시효 처리 등의 열처리가 추가로 수행될 수 있다.For cooling after hot forming, various methods such as water cooling, air cooling, and furnace cooling may be used. The cooling method may be determined according to the presence or absence of an additional hot process after hot forming. For example, if there is no additional hot process, water cooling may be performed after hot forming. After hot forming, heat treatment such as homogenization treatment, solution treatment, and aging treatment may be additionally performed.
페로크롬의 용해와 관련하여 한가지 특징은 페로크롬을 용해할 때의 온도가 크롬, 철, 실리콘 등을 개별적으로 용해할 때보다 현저히 낮으며, 타이타늄의 융점과 유사하다는 것이다. 이를 통해 페로크롬은 상대적으로 낮은 온도에서 타이타늄과 함께 용해가 가능하며, 이에 따라 타이타늄 합금 제조 비용을 저감할 수 있다. One characteristic of the dissolution of ferrochrome is that the temperature when dissolving ferrochrome is significantly lower than when chromium, iron, silicon, etc. are individually dissolved, and is similar to the melting point of titanium. Through this, ferrochrome can be melted together with titanium at a relatively low temperature, and accordingly, the cost of manufacturing a titanium alloy can be reduced.
본 발명에서는 페로크롬의 첨가량이 타이타늄 합금 전체 중량에 대하여 4 중량% 미만인 것이 바람직하다. 보다 바람직하게는 3중량% 이하이고, 가장 바람직하게는 0.5∼2중량%이다. 페로크롬이 첨가되면, 페로크롬이 첨가되지 않은 타이타늄 합금에 비해 강도가 증가할 수 있다. 다만, 페로크롬의 첨가량이 4중량% 이상일 경우에는 연신율이 매우 낮으며, 크랙 발생의 우려가 있다. In the present invention, it is preferable that the addition amount of ferrochrome is less than 4% by weight based on the total weight of the titanium alloy. More preferably, it is 3% by weight or less, and most preferably 0.5 to 2% by weight. When ferrochrome is added, strength can be increased compared to titanium alloys without ferrochrome. However, when the addition amount of ferrochrome is 4% by weight or more, the elongation is very low and there is a risk of cracking.
페로 크롬은 철(Fe): 20∼35 중량%, 실리콘(Si): 1∼4 중량%, 탄소(C): 0.15 중량% 이하를 포함하고, 나머지 크롬(Cr)과 불가피한 불순물로 이루어질 수 있다. 페로 크롬의 특징은 Cr의 함량이 Fe의 함량보다 훨씬 많다는 것이다. 페로 크롬에서, Cr의 함량은 Fe의 함량의 1.7-4배, 예를 들어, 2-4배일 수 있다.Ferrochrome includes iron (Fe): 20 to 35% by weight, silicon (Si): 1 to 4% by weight, carbon (C): 0.15% by weight or less, and may be composed of the remaining chromium (Cr) and unavoidable impurities. . A characteristic of ferrochrome is that the Cr content is much greater than the Fe content. In ferrochrome, the Cr content can be 1.7-4 times the Fe content, for example 2-4 times.
페로 크롬의 함량이 4중량% 미만일 경우, 타이타늄 합금에서 상기와 같은 크롬, 철, 실리콘의 바람직한 함량 범위를 충족시킬 수 있다. When the content of ferrochrome is less than 4% by weight, the titanium alloy may satisfy the preferred content ranges of chromium, iron, and silicon as described above.
상기와 같은 방법을 통해, 본 발명은 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼3.0 중량%, 철(Fe): 0.1∼1.0 중량%, 실리콘(Si): 0.01∼0.1 중량%, 산소(O): 0.4 중량% 이하를 포함하고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 것을 특징으로 하는 타이타늄 합금을 제공할 수 있다. 보다 바람직하는 본 발명은 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼1.98 중량%, 철(Fe): 0.1∼0.93 중량%, 실리콘(Si): 0.01∼0.09 중량%, 산소(O): 0.4 중량% 이하를 포함하되 크롬(Cr)의 함량이 철(Fe)의 함량보다 더 크고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 것을 특징으로 하는 타이타늄 합금을 제공할 수 있다.Through the above method, the present invention molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 3.0% by weight, iron (Fe): 0.1 to 1.0% by weight, silicon (Si): 0.01 to 0.01% by weight 0.1% by weight, oxygen (O): 0.4% by weight or less, and the titanium alloy characterized by consisting of the remaining titanium (Ti) and unavoidable impurities can be provided. More preferably, the present invention contains molybdenum (Mo): 1.0 to 15.0% by weight, chromium (Cr): 0.1 to 1.98% by weight, iron (Fe): 0.1 to 0.93% by weight, silicon (Si): 0.01 to 0.09% by weight, Oxygen (O): It is possible to provide a titanium alloy comprising 0.4% by weight or less, but the content of chromium (Cr) is greater than the content of iron (Fe), and the remainder is composed of titanium (Ti) and unavoidable impurities. .
몰리브덴(Mo)은 독성이 없는 베타상 안정화 원소이다. 몰리브덴은 고용강화 효과로 인해 강도를 증가시키는 역할을 한다. 다만, 몰리브덴이 15중량%를 초과하여 과도하게 첨가되면, 합금의 탄성 계수를 크게 증가시키는 문제점이 있다. Molybdenum (Mo) is a non-toxic beta-phase stabilizing element. Molybdenum serves to increase the strength due to the solid solution strengthening effect. However, when molybdenum is excessively added in excess of 15% by weight, there is a problem in greatly increasing the modulus of elasticity of the alloy.
크롬(Cr)은 독성이 없는 원소로서, 타이타늄 합금에서 몰리브덴(Mo)보다 높은 베타상 안정화 원소이다. 타이타늄에 크롬을 첨가하면, 고용강화 효과로 인해 강도가 증가될 수 있다. 이러한 효과를 위해 크롬은 0.1 중량% 이상 첨가될 필요가 있다. 다만, 크롬이 3.0 중량%를 초과하여 과다하게 첨가되면 Laves Phase(TiCr2)상의 형성으로 성형공정에서 파단의 가능성이 크다. 따라서 크롬의 함량은 3.0 중량% 이하인 것이 바람직하고, 보다 바람직하게는 1.98 중량% 이하이다.Chromium (Cr) is a non-toxic element and is a higher beta phase stabilizing element than molybdenum (Mo) in titanium alloys. When chromium is added to titanium, its strength can be increased due to the solid solution strengthening effect. For this effect, chromium needs to be added in an amount of 0.1% by weight or more. However, if chromium is added in excess of 3.0% by weight, there is a high possibility of breakage in the molding process due to the formation of the Laves Phase (TiCr 2 ) phase. Therefore, the content of chromium is preferably 3.0% by weight or less, more preferably 1.98% by weight or less.
철(Fe)은 크롬(Cr)과 마찬가지로 독성이 없으며, 몰리브덴보다 높은 베타상 안정화 원소이다. 타이타늄에 철을 첨가하면, 고용강화 효과로 인해 강도가 증가될 수 있다. 이러한 효과를 위해 철은 0.1 중량% 이상 첨가될 필요가 있다. 다만, 철이 1.0 중량%를 초과하여 첨가된 타이타늄 합금의 용해시 마크로 또는 마이크로 편석을 유도할 수 있고, 일정 온도에서 열처리할 경우 상당히 취약한 상인 TiFe상을 형성할 수 있다. 따라서 철의 함량은 1.0 중량% 이하인 것이 바람직하고, 보다 바람직하게는 0.9 중량% 이하이다. Iron (Fe) is non-toxic like chromium (Cr) and is a beta-phase stabilizing element higher than molybdenum. When iron is added to titanium, its strength can be increased due to the solid solution strengthening effect. For this effect iron needs to be added at least 0.1% by weight. However, when dissolving a titanium alloy in which iron is added in an amount exceeding 1.0% by weight, macro or micro segregation may be induced, and when heat treated at a certain temperature, a TiFe phase, which is a very fragile phase, may be formed. Therefore, the content of iron is preferably 1.0% by weight or less, more preferably 0.9% by weight or less.
실리콘(Si)은 독성이 없는 원소로서, 타이타늄 합금 용해시 핵생성 사이트를 많이 형성하여 결정립 미세화를 유도한다. 또한 실리콘은 타이타늄 합금의 정적 강도(static strength)를 증가시키는데 기여한다. 이러한 효과를 위해 실리콘은 0.01 중량% 이상 첨가될 필요가 있다. 다만, 실리콘의 함량이 0.1 중량%를 초과하면, 취성이 강한 실리사이드 형성으로 인해 크랙 발생을 촉진시킬 수 있다. 따라서 실리콘의 함량은 0.1 중량% 이하인 것이 바람직하고, 보다 바람직하게는 0.09 중량% 이하이다.Silicon (Si) is a non-toxic element, and forms many nucleation sites when titanium alloy is melted to induce crystal grain refinement. Silicon also contributes to increasing the static strength of titanium alloys. For this effect, silicon needs to be added at least 0.01% by weight. However, when the content of silicon exceeds 0.1% by weight, crack generation may be promoted due to formation of brittle silicide. Therefore, the content of silicon is preferably 0.1% by weight or less, more preferably 0.09% by weight or less.
본 발명에 따른 타이타늄 합금에서 Cr, Fe 및 Si 함량은 페로크롬의 첨가량에 따라 결정되며, 페로크롬 첨가량이 4중량% 미만, 보다 바람직하게는 3.0중량% 이하, 가장 바람직하게는 0.5∼2.0중량%임에 따라 상기와 같은 Cr, Fe 및 Si 함량을 충족할 수 있다. In the titanium alloy according to the present invention, the content of Cr, Fe and Si is determined according to the addition amount of ferrochrome, and the addition amount of ferrochrome is less than 4% by weight, more preferably 3.0% by weight or less, and most preferably 0.5 to 2.0% by weight. Optionally, the above Cr, Fe and Si contents may be satisfied.
본 발명에 따른 타이타늄 합금에는 산소(O)가 타이타늄 합금 전체 중량에 대하여 0.4 중량% 이하로 포함될 수 있다. 산소는 침입형 원소로서, 부식 저항성에 큰 영향을 미치지 않으면서 격자를 강화시키는 고용강화 합금 원소이다. 다만, 산소가 0.4중량%를 초과하여 과다 포함되면, 저온에서의 쌍정변형을 억제시킴으로써 충격저항을 급격히 감소시킬 수 있다. In the titanium alloy according to the present invention, oxygen (O) may be included in an amount of 0.4% by weight or less based on the total weight of the titanium alloy. Oxygen is an interstitial element and is a solid solution strengthening alloying element that strengthens the lattice without significantly affecting corrosion resistance. However, when oxygen is excessively included in excess of 0.4% by weight, impact resistance can be rapidly reduced by suppressing twin deformation at low temperatures.
본 발명에 따른 타이타늄 합금은 후술하는 실시예에서 볼 수 있는 바와 같이, 이하의 식 1로 표현되는 몰리브덴 당량([Mo]eq.)이 5.5∼20일 수 있다(식 1에서 [ ]는 해당 성분의 중량%). As can be seen in the examples to be described later, the titanium alloy according to the present invention may have a molybdenum equivalent ([Mo]eq.) of 5.5 to 20 represented by Equation 1 below ([ ] in Equation 1 is the corresponding component % by weight of).
[식 1][Equation 1]
[Mo]eq. = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.4[W] + 0.67[V] + 1.25[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.5[Fe][Mo]eq. = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.4[W] + 0.67[V] + 1.25[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.5[Fe]
또한, 본 발명에 따른 고강도 타이타늄 합금은 670∼815 ℃의 베타변태점을 가질 수 있다.In addition, the high-strength titanium alloy according to the present invention may have a beta transformation point of 670 to 815 °C.
나아가, 실험 결과, 본 발명에 따른 고강도 타이타늄 합금은 750∼1510 MPa, 하기 실시예들에 의할 때 연신율까지 고려하면 보다 바람직하게는 1109∼1510 MPa의 인장강도, 545∼1420 MPa의 항복강도 및 80∼110 GPa의 영률을 가질 수 있다. Furthermore, as a result of the experiment, the high-strength titanium alloy according to the present invention has a tensile strength of 750 to 1510 MPa, and more preferably a tensile strength of 1109 to 1510 MPa, a yield strength of 545 to 1420 MPa, and It may have a Young's modulus of 80 to 110 GPa.
실시예Example
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 이하의 실시예에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다. Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention and cannot be construed as limiting the present invention by this in any sense. Details not described in the following embodiments can be sufficiently technically inferred by those skilled in the art, so description thereof will be omitted.
1. 페로크롬 분석1. Ferrochrome Assay
3개의 페로크롬 시편에 대하여 다음과 같이 성분 분석을 하였다. 10 mm × 10 mm 사이즈의 각 시편의 3개 위치(Left, Center, Right)에 대하여 각각 3번씩 EDS 분석을 수행하였으며, 그 결과를 표 1에 나타내었다.Component analysis was performed on the three ferrochrome specimens as follows. EDS analysis was performed three times for each of the three positions (Left, Center, Right) of each specimen of 10 mm × 10 mm size, and the results are shown in Table 1.
[표 1] (단위 : 중량%)[Table 1] (Unit: % by weight)
Figure PCTKR2022019715-appb-img-000001
Figure PCTKR2022019715-appb-img-000001
3개의 시편 모두 약 66중량%의 Cr과, 약 31%의 Fe와, 약 3중량%의 Si를 함유하며, 성분들의 함량 차이는 크지 않은 것을 볼 수 있다.All three specimens contained about 66% by weight of Cr, about 31% of Fe, and about 3% by weight of Si, and it can be seen that the difference in content of the components is not large.
이하에서는 페로크롬 시편 #1을 대상으로 실험을 진행하였다. Hereinafter, experiments were conducted on ferrochrome specimen #1.
페로크롬 시편 #1의 표면산화층을 제거한 후, EDS로 O, N, H, C의 함량을 분석한 결과를 표 2에 나타내었다. After removing the surface oxide layer of ferrochrome specimen #1, the results of analyzing the contents of O, N, H, and C by EDS are shown in Table 2.
[표 2][Table 2]
Figure PCTKR2022019715-appb-img-000002
Figure PCTKR2022019715-appb-img-000002
페로크롬은 탄소 함량에 따라, 저탄소 페로크롬, 중탄소 페로크롬, 고탄소 페로크롬으로 구분되는데, 이 중 저탄소 페로크롬은 탄소 함량이 0.2중량% 이하 또는 0.15중량% 이하인 것을 의미한다. 앞서 분석된 페로크롬 시편 #1의 경우 탄소 함량이 약 0.1중량%이고, 크롬 함량이 약 67%인 바, 저탄소 페로크롬에 해당한다. Ferrochrome is classified into low-carbon ferrochrome, medium-carbon ferrochrome, and high-carbon ferrochrome according to the carbon content. Among them, low-carbon ferrochrome means that the carbon content is 0.2% by weight or less or 0.15% by weight or less. In the case of the previously analyzed ferrochrome specimen #1, the carbon content was about 0.1% by weight and the chromium content was about 67%, corresponding to low-carbon ferrochrome.
Cr, Fe 및 Si의 융점은 각각 1907℃, 1538℃ 및 1414℃이나, 탄소 함량이 0.15중량% 이하인 저탄소 페로크롬의 융점은 약 1620℃로 알려져 있다. 또한, 타이타늄의 융점은 1668℃이다.The melting points of Cr, Fe, and Si are 1907°C, 1538°C, and 1414°C, respectively, but the melting point of low-carbon ferrochrome having a carbon content of 0.15% by weight or less is known to be about 1620°C. Also, the melting point of titanium is 1668°C.
타이타늄에서 O, N, C, H 등은 파괴연성을 저하시키는 주요 원소로 특별한 관리가 요구된다. 타이타늄 합금에서 이들 원소들은 표 3에 나와 있는 중량% 이하로 관리하여야 한다(국가별 허용치 극소량 차이 존재). 특히 H 는 소량 첨가시에도 파괴연성을 저하시키므로 다른 원소에 비해 특별한 관리가 요구된다.In titanium, O, N, C, H, etc. are major elements that reduce fracture ductility and require special management. In titanium alloys, these elements must be controlled at less than the weight % shown in Table 3 (there is a very small difference in the permissible limit by country). In particular, since H deteriorates fracture ductility even when a small amount is added, special management is required compared to other elements.
[표 3][Table 3]
Figure PCTKR2022019715-appb-img-000003
Figure PCTKR2022019715-appb-img-000003
앞서 분석된 페로크롬 시편 #1의 경우, 저탄소 페로크롬이고, 표 3의 O, N, C, H 등의 원소에 대한 최대 중량% 이하를 만족하고 있다.In the case of the previously analyzed ferrochrome specimen #1, it is a low-carbon ferrochrome and satisfies the maximum weight % or less for elements such as O, N, C, and H in Table 3.
타이타늄 합금 시편의 제조Preparation of titanium alloy specimens
타이타늄(Ti-0.02 O)과 표 4에 기재된 함량의 몰리브덴 및 페로크롬을 유도스컬 용해로에서 용해하여 타이타늄 합금을 형성한 후, 냉각하여 폭 10mm × 길이 30mm × 두께 10mm의 잉곳들을 제조하였다. Titanium (Ti-0.02 O) and molybdenum and ferrochrome of the contents shown in Table 4 were melted in an induction skull melting furnace to form a titanium alloy, and then cooled to prepare ingots having a width of 10 mm × a length of 30 mm × a thickness of 10 mm.
잉곳들을 830℃±20℃에서 표 4에 기재된 약 90%의 성형률(forming ratio)로 성형한 후 수냉하여, 비교예 1∼3 및 실시예 1∼12에 따른 타이타늄 합금 시편을 제조하였다. Ingots were molded at 830° C.±20° C. at a forming ratio of about 90% shown in Table 4 and then cooled with water to prepare titanium alloy specimens according to Comparative Examples 1 to 3 and Examples 1 to 12.
표 4는 비교예 1∼3 및 실시예 1∼12에 따라 제조된 타이타늄 합금 시편에 있어서, 페로크롬 함량에 따른 Mo 당량과 베타변태점을 나타낸 것이다. 그리고, 표 5는 실시예 1∼12에 따른 타이타늄 합금 시편에서 첨가된 페로크롬에 따른 Cr, Fe 및 Si의 함량을 나타낸 것이다.Table 4 shows the Mo equivalent and beta transformation point according to the ferrochrome content in the titanium alloy specimens prepared according to Comparative Examples 1 to 3 and Examples 1 to 12. And, Table 5 shows the contents of Cr, Fe, and Si according to the ferrochrome added in the titanium alloy specimens according to Examples 1 to 12.
[표 4][Table 4]
Figure PCTKR2022019715-appb-img-000004
Figure PCTKR2022019715-appb-img-000004
[표 5] [Table 5]
Figure PCTKR2022019715-appb-img-000005
Figure PCTKR2022019715-appb-img-000005
도 1a는 타이타늄에 5 중량%의 몰리브덴이 첨가된 시편의 상분율을 나타낸 것이다. 도 1b는 타이타늄에 5 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. 도 1c는 타이타늄에 5 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. Figure 1a shows the phase fraction of a specimen in which 5% by weight of molybdenum was added to titanium. Figure 1b shows the phase fraction of a specimen in which 5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium. Figure 1c shows the phase fraction of a specimen in which 5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
도 1a 내지 도 1c를 참조하면, 타이타늄에 5 중량%의 몰리브덴이 첨가된 시편 및 타이타늄에 5 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 경우, TiCr2 석출상을 거의 나타내지 않는 반면, 타이타늄에 5 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 경우 약 5.63중량%의 TiCr2 석출상을 나타내는 것을 볼 수 있다. 전술한 바와 같이 TiCr2가 과다하면 성형 공정에서 파단 가능성이 있는 바, 페로크롬은 4.0중량% 미만, 보다 바람직하게는 3.0중량% 이하, 더욱 바람직하게는 0.5∼2.0 중량%로 첨가될 필요가 있다. 1a to 1c, in the case of specimens in which 5% by weight of molybdenum was added to titanium and specimens in which 5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium, the TiCr 2 precipitation phase was hardly shown. On the other hand, in the case of the specimen in which 5 wt% of molybdenum and 4.0 wt% of ferrochrome were added to titanium, it can be seen that about 5.63 wt% of TiCr 2 precipitated phase was exhibited. As described above, if the TiCr 2 is excessive, there is a possibility of breakage in the molding process. Therefore, ferrochrome needs to be added in an amount of less than 4.0% by weight, more preferably 3.0% by weight or less, and still more preferably 0.5 to 2.0% by weight. .
도 2a는 타이타늄에 9.5 중량%의 몰리브덴이 첨가된 시편의 상분율을 나타낸 것이다. 도 2b는 타이타늄에 9.5 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. 도 2c는 타이타늄에 9.5 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. Figure 2a shows the phase fraction of the specimen in which 9.5% by weight of molybdenum was added to titanium. Figure 2b shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium. Figure 2c shows the phase fraction of the specimen in which 9.5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
도 2a 내지 도 2c를 참조하면, 타이타늄에 9.5 중량%의 몰리브덴이 첨가된 시편 및 타이타늄에 9.5 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 경우, TiCr2 석출상을 거의 나타내지 않는 반면, 타이타늄에 9.5 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 경우 약 5.63중량%의 TiCr2 석출상을 나타내는 것을 볼 수 있다.Referring to FIGS. 2a to 2c, in the case of specimens in which 9.5% by weight of molybdenum was added to titanium and specimens in which 9.5% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium, the TiCr2 precipitation phase was hardly shown. , in the case of the specimen in which 9.5 wt% of molybdenum and 4.0 wt% of ferrochrome were added to titanium, it can be seen that about 5.63 wt% of TiCr 2 precipitated phase was exhibited.
도 3a는 타이타늄에 15 중량%의 몰리브덴이 첨가된 시편의 상분율을 나타낸 것이다. 도 3b는 타이타늄에 15 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다. 도 3c는 타이타늄에 15 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 상분율을 나타낸 것이다.Figure 3a shows the phase fraction of the specimen in which 15% by weight of molybdenum was added to titanium. Figure 3b shows the phase fraction of the specimen in which 15% by weight of molybdenum and 4.0% by weight of ferrochrome were added to titanium. Figure 3c shows the phase fraction of the specimen in which 15% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium.
도 3a 내지 도 3c를 참조하면, 타이타늄에 15 중량%의 몰리브덴이 첨가된 시편 및 타이타늄에 15 중량%의 몰리브덴 및 0.5 중량%의 페로크롬이 첨가된 시편의 경우, TiCr2 석출상을 거의 나타내지 않는 반면, 타이타늄에 15 중량%의 몰리브덴 및 4.0 중량%의 페로크롬이 첨가된 시편의 경우 약 5.63중량%의 TiCr2 석출상을 나타내는 것을 볼 수 있다.3a to 3c, in the case of specimens in which 15% by weight of molybdenum was added to titanium and specimens in which 15% by weight of molybdenum and 0.5% by weight of ferrochrome were added to titanium, the TiCr 2 precipitation phase was hardly shown. On the other hand, in the case of the specimen in which 15 wt% of molybdenum and 4.0 wt% of ferrochrome were added to titanium, it can be seen that about 5.63 wt% of TiCr 2 precipitated phase was exhibited.
도 4a 내지 도 4c는 비교예 시편 1∼6 및 실시예 시편 1∼12에 대한 기계적 특성을 나타낸 것이다. 구체적으로, 도 4a는 몰리브덴 함량이 5.0중량%인 비교예 시편 1, 4 및 실시예 시편 1∼4에 대한 기계적 특성을 나타낸 것이고, 도 4b는 몰리브덴 함량이 9.5중량%인 비교예 시편 2, 5 및 실시예 시편 5∼8에 대한 기계적 특성을 나타낸 것이며, 도 4c는 몰리브덴 함량이 15중량%인 비교예 시편 3, 6 및 실시예 시편 9∼12에 대한 기계적 특성을 나타낸 것이다. 4a to 4c show the mechanical properties of Comparative Samples 1 to 6 and Example Samples 1 to 12. Specifically, FIG. 4a shows the mechanical properties of Comparative Samples 1 and 4 and Example Samples 1 to 4 having a molybdenum content of 5.0% by weight, and FIG. 4B shows Comparative Samples 2 and 5 having a molybdenum content of 9.5% by weight. and Example specimens 5 to 8, and FIG. 4c shows the mechanical properties of Comparative Example specimens 3 and 6 and Example specimens 9 to 12 having a molybdenum content of 15% by weight.
비교예 4에 따른 시편은 몰리브덴 5.0 중량% 및 페로크롬 4중량%가 첨가되어 제조된 타이타늄 합금 시편이고, 비교예 5에 따른 시편은 몰리브덴 9.5 중량% 및 페로크롬 4중량%가 첨가되어 제조된 타이타늄 합금 시편이며, 몰리브덴 15 중량% 및 페로크롬 4중량%가 첨가되어 제조된 타이타늄 합금 시편이다.The specimen according to Comparative Example 4 is a titanium alloy specimen prepared by adding 5.0% by weight of molybdenum and 4% by weight of ferrochrome, and the specimen according to Comparative Example 5 is a titanium alloy specimen prepared by adding 9.5% by weight of molybdenum and 4% by weight of ferrochrome. It is an alloy specimen and is a titanium alloy specimen prepared by adding 15% by weight of molybdenum and 4% by weight of ferrochrome.
기계적 특성은 각 타이타늄 합금 시편에 대하여 상온에서 변형속도 1.5 mm/min 조건으로 인장시험하여 얻었다.The mechanical properties were obtained by performing a tensile test on each titanium alloy specimen at a strain rate of 1.5 mm/min at room temperature.
비교예 시편 1∼3 및 실시예 시편 1∼12에 대한 기계적 특성을 표 6에 나타내었다. Table 6 shows the mechanical properties of Comparative Samples 1 to 3 and Example Samples 1 to 12.
[표 6] [Table 6]
Figure PCTKR2022019715-appb-img-000006
Figure PCTKR2022019715-appb-img-000006
표 6을 참조하면, 페로크롬이 첨가되지 않은 비교예 1 ∼ 3에 따른 타이타늄-몰리브덴 합금 시편들의 경우, 786 ∼ 1064MPa의 인장강도와 712 ∼ 855MPa의 항복강도를 나타내는 것을 볼 수 있다. 이에 반해, 타이타늄-몰리브덴 합금에 페로크롬이 3.0중량% 이하로 첨가하여 제조된 타이타늄 합금 시편들의 경우, 인장강도가 최대 1510 MPa로, 항복강도가 최대 1420 MPa로 상승한 것을 볼 수 있다. 즉, 페로크롬이 첨가되어 제조된 타이타늄 합금의 경우, 그렇지 않은 타이타늄 합금에 비해 강도가 상승하는 것을 볼 수 있다. Referring to Table 6, it can be seen that the titanium-molybdenum alloy specimens according to Comparative Examples 1 to 3 to which ferrochrome was not added exhibited tensile strength of 786 to 1064 MPa and yield strength of 712 to 855 MPa. In contrast, in the case of titanium alloy specimens prepared by adding 3.0% by weight or less of ferrochrome to the titanium-molybdenum alloy, it can be seen that the tensile strength increased to a maximum of 1510 MPa and the yield strength to a maximum of 1420 MPa. That is, in the case of the titanium alloy prepared by adding ferrochrome, it can be seen that the strength is increased compared to the titanium alloy without it.
특히, 표 6을 참조하면, 실시예 2-4의 경우, 1109∼1510 MPa의 인장강도를 가지면서 양호한 연신율을 갖는 것을 볼 수 있다.In particular, referring to Table 6, in the case of Examples 2-4, it can be seen that it has a good elongation while having a tensile strength of 1109 to 1510 MPa.
표 7은 비교예 4∼6에 따른 시편과 실시예 1∼12에 따른 시편의 연신율 측정 결과 및 크랙발생 관찰 결과를 나타낸 것이다. Table 7 shows the elongation measurement results and crack observation results of the specimens according to Comparative Examples 4 to 6 and the specimens according to Examples 1 to 12.
[표 7][Table 7]
Figure PCTKR2022019715-appb-img-000007
Figure PCTKR2022019715-appb-img-000007
도 4a 내지 4c 및 표 7을 참조하면, 비교예 4 ∼ 6의 경우, 타이타늄에 몰리브덴이 5∼15중량% 첨가한 타이타늄 합금에서 4.0중량%로 페로크롬을 첨가한 경우 연신율이 1.4∼2.3%로 급격히 연신율이 감소한 것을 볼 수 있다. 이에 반해, 실시예 1∼12의 경우, 타이타늄에 몰리브덴이 5∼15중량% 첨가된 타이타늄 합금에 4.0 중량% 미만의 페로크롬을 첨가한 경우 급격한 연신율 감소없이 연신율 범위가 2.4∼49%로 나타나는 것을 볼 수 있다. 나아가, 페로크롬의 첨가량이 0.5∼2.0 중량%인 경우, 더 높은 연신율을 나타내고 있는 바, 강도 및 연신율을 모두 고려할 때 페로크롬의 첨가량은 0.5∼2.0 중량%인 것이 가장 바람직하다고 볼 수 있다. Referring to Figures 4a to 4c and Table 7, in the case of Comparative Examples 4 to 6, when ferrochrome was added at 4.0% by weight in the titanium alloy in which 5 to 15% by weight of molybdenum was added to titanium, the elongation was 1.4 to 2.3%. It can be seen that the elongation rate decreased rapidly. On the other hand, in the case of Examples 1 to 12, when less than 4.0% by weight of ferrochrome was added to a titanium alloy in which 5 to 15% by weight of molybdenum was added to titanium, the elongation range was 2.4 to 49% without a rapid decrease in elongation. can see. Furthermore, when the amount of ferrochrome added is 0.5 to 2.0% by weight, higher elongation is exhibited. Considering both strength and elongation, it is most preferable that the amount of ferrochrome added is 0.5 to 2.0% by weight.
또한, 표 7을 참조하면, 비교예 4 및 비교예 6에 따른 타이타늄 합금 시편의 경우 크랙이 발생하였으나, 실시예 1∼12에 따른 타이타늄 합금 시편의 경우 크랙이 발생하지 않은 것을 볼 수 있다.In addition, referring to Table 7, it can be seen that cracks occurred in the titanium alloy specimens according to Comparative Examples 4 and 6, but no cracks occurred in the titanium alloy specimens according to Examples 1 to 12.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the drawings illustrated, but the present invention is not limited by the embodiments and drawings disclosed in this specification, and various modifications are made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that variations can be made. In addition, although the operational effects according to the configuration of the present invention have not been explicitly described and described while describing the embodiments of the present invention, it is natural that the effects predictable by the corresponding configuration should also be recognized.

Claims (8)

  1. 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼1.98 중량%, 철(Fe): 0.1∼0.93 중량%, 실리콘(Si): 0.01∼0.09 중량%, 산소(O): 0.4 중량% 이하를 포함하되 크롬(Cr)의 함량이 철(Fe)의 함량보다 더 크고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지며,Molybdenum (Mo): 1.0 to 15.0% by weight, Chromium (Cr): 0.1 to 1.98% by weight, Iron (Fe): 0.1 to 0.93% by weight, Silicon (Si): 0.01 to 0.09% by weight, Oxygen (O): 0.4 Including the weight percent or less, but the content of chromium (Cr) is greater than the content of iron (Fe), consisting of the remaining titanium (Ti) and unavoidable impurities,
    1109∼1510 MPa의 인장강도를 갖는 것을 특징으로 하는 타이타늄 합금. A titanium alloy characterized by having a tensile strength of 1109 to 1510 MPa.
  2. 제1항에 있어서,According to claim 1,
    상기 크롬의 함량이 상기 철의 함량의 1.7-4배인 것을 특징으로 하는 타이타늄 합금. Titanium alloy, characterized in that the content of the chromium is 1.7-4 times the content of iron.
  3. 제1항에 있어서,According to claim 1,
    상기 타이타늄 합금은 이하의 식 1로 표현되는 몰리브덴 당량([Mo]eq.)이 5.5∼20 이고, 670∼815 ℃의 베타변태점을 갖는 것을 특징으로 하는 타이타늄 합금.The titanium alloy has a molybdenum equivalent ([Mo]eq.) represented by Equation 1 below of 5.5 to 20 and a beta transformation point of 670 to 815 ° C.
    [식 1][Equation 1]
    [Mo]eq. = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.4[W] + 0.67[V] + 1.25[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.5[Fe][Mo]eq. = [Mo] + 0.2[Ta] + 0.28[Nb] + 0.4[W] + 0.67[V] + 1.25[Cr] + 1.25[Ni] + 1.7[Mn] + 1.7[Co] + 2.5[Fe]
  4. 제1항에 있어서,According to claim 1,
    상기 타이타늄 합금은 545∼1420 MPa의 항복강도 및 80∼110 GPa의 영률을 갖는 것을 특징으로 하는 타이타늄 합금.The titanium alloy has a yield strength of 545 to 1420 MPa and a Young's modulus of 80 to 110 GPa.
  5. (a) 타이타늄(Ti)과 몰리브덴의 합금 또는 혼합물에, 크롬(Cr), 철(Fe), 실리콘(Si) 및 탄소(C)를 포함하는 페로크롬을 첨가하는 단계; (a) adding ferrochrome containing chromium (Cr), iron (Fe), silicon (Si) and carbon (C) to an alloy or mixture of titanium (Ti) and molybdenum;
    (b) 상기 (a) 단계의 결과물을 용해시킨 후 냉각하여 타이타늄 합금 모재를 형성하는 단계; 및(b) forming a titanium alloy base material by dissolving and then cooling the product of step (a); and
    (c) 타이타늄 합금 모재를 열간 성형하는 단계;를 포함하고, (c) hot forming the titanium alloy base material; including,
    상기 페로크롬은 철(Fe): 20∼35 중량%, 실리콘(Si): 1∼4 중량%, 탄소(C): 0.15 중량% 이하를 포함하고, 나머지 크롬(Cr)과 불가피한 불순물로 이루어지며,The ferrochrome includes iron (Fe): 20 to 35% by weight, silicon (Si): 1 to 4% by weight, carbon (C): 0.15% by weight or less, and is composed of the remaining chromium (Cr) and unavoidable impurities, ,
    타이타늄 합금 전체 중량에 대하여 상기 몰리브덴 1∼15중량%, 상기 페로크롬이 4 중량% 미만으로 첨가되는 것을 특징으로 하는 타이타늄 합금 제조 방법.1 to 15% by weight of the molybdenum and less than 4% by weight of the ferrochrome, based on the total weight of the titanium alloy.
  6. 제5항에 있어서, According to claim 5,
    상기 타이타늄 합금 전체 중량에 대하여 상기 페로크롬 0.5∼2 중량%로 첨가되는 것을 특징으로 하는 타이타늄 합금 제조 방법.Titanium alloy manufacturing method, characterized in that the addition of 0.5 to 2% by weight of the ferrochrome relative to the total weight of the titanium alloy.
  7. 제5항에 있어서,According to claim 5,
    상기 열간 성형은 800∼850 ℃에서 90% 이하의 성형률로 수행되는 것을 특징으로 하는 타이타늄 합금 제조 방법.The hot forming is a titanium alloy manufacturing method, characterized in that carried out at a forming rate of 90% or less at 800 ~ 850 ℃.
  8. 제5항에 있어서,According to claim 5,
    제조되는 타이타늄 합금이 몰리브덴(Mo): 1.0∼15.0 중량%, 크롬(Cr): 0.1∼1.98 중량%, 철(Fe): 0.1∼0.93 중량%, 실리콘(Si): 0.01∼0.09 중량%, 산소(O): 0.4 중량% 이하를 포함하고, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지며, 1109∼1510 MPa의 인장강도를 갖는 것을 특징으로 하는 타이타늄 합금 제조 방법.The titanium alloy produced contains molybdenum (Mo): 1.0 to 15.0 wt%, chromium (Cr): 0.1 to 1.98 wt%, iron (Fe): 0.1 to 0.93 wt%, silicon (Si): 0.01 to 0.09 wt%, oxygen (O): A method for producing a titanium alloy, characterized in that it contains 0.4% by weight or less, the remainder is made of titanium (Ti) and unavoidable impurities, and has a tensile strength of 1109 to 1510 MPa.
PCT/KR2022/019715 2021-12-29 2022-12-06 High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same WO2023128355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210191856A KR102434520B1 (en) 2021-12-29 2021-12-29 High strength and high formability titanium alloy using molybdenum and ferrochrome and method of manufacturing the same
KR10-2021-0191856 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023128355A1 true WO2023128355A1 (en) 2023-07-06

Family

ID=83103161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019715 WO2023128355A1 (en) 2021-12-29 2022-12-06 High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102434520B1 (en)
WO (1) WO2023128355A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434520B1 (en) * 2021-12-29 2022-08-22 한국재료연구원 High strength and high formability titanium alloy using molybdenum and ferrochrome and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP2010031314A (en) * 2008-07-28 2010-02-12 Kobe Steel Ltd Titanium alloy sheet having high strength and excellent formability, and method for producing the same
WO2019026251A1 (en) * 2017-08-03 2019-02-07 新日鐵住金株式会社 Titanium block, method for producing same, and titanium slab
KR20210043652A (en) * 2018-11-15 2021-04-21 닛폰세이테츠 가부시키가이샤 Titanium alloy wire rod and method of manufacturing titanium alloy wire rod
KR102434520B1 (en) * 2021-12-29 2022-08-22 한국재료연구원 High strength and high formability titanium alloy using molybdenum and ferrochrome and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835408B1 (en) 2016-10-14 2018-03-09 한국기계연구원 Titanium alloy with excellent mechanical property and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295969A (en) * 1995-04-28 1996-11-12 Nippon Steel Corp High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP2010031314A (en) * 2008-07-28 2010-02-12 Kobe Steel Ltd Titanium alloy sheet having high strength and excellent formability, and method for producing the same
WO2019026251A1 (en) * 2017-08-03 2019-02-07 新日鐵住金株式会社 Titanium block, method for producing same, and titanium slab
KR20210043652A (en) * 2018-11-15 2021-04-21 닛폰세이테츠 가부시키가이샤 Titanium alloy wire rod and method of manufacturing titanium alloy wire rod
KR102434520B1 (en) * 2021-12-29 2022-08-22 한국재료연구원 High strength and high formability titanium alloy using molybdenum and ferrochrome and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN LEI; XIAO WENLONG; KENT DAMON; WAN MIN; MA CHAOLI; ZHOU LIAN: "Simultaneously enhanced strength and ductility in a metastable B-Ti alloy by stress-induced hierarchical twin structure", SCRIPTA MATERIALIA, ELSEVIER, AMSTERDAM., NL, vol. 184, 5 April 2020 (2020-04-05), NL , pages 6 - 11, XP086145834, ISSN: 1359-6462, DOI: 10.1016/j.scriptamat.2020.03.039 *

Also Published As

Publication number Publication date
KR102434520B1 (en) 2022-08-22

Similar Documents

Publication Publication Date Title
WO2019022283A1 (en) Medium-entropy alloy having excellent cryogenic characteristics
WO2023128355A1 (en) High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same
WO2013180338A1 (en) Beta titanium alloy with low elasticity and high strength
WO2017164601A1 (en) High-entropy alloy for ultra-low temperature
WO2020080660A1 (en) Medium-entropy alloy and manufacturing method therefor
WO2023128356A1 (en) Method for manufacturing high-strength titanium alloy by using ferrochrome, and high-strength titanium alloy
WO2022139007A1 (en) Aluminum alloy for high-toughness casting and manufacturing method therefor
WO2017164602A1 (en) Cr-fe-mn-ni-v-based high-entropy alloy
US11920231B2 (en) Creep resistant titanium alloys
WO2019039743A1 (en) V-cr-fe-ni based high-strength high-entropy alloy
US11384413B2 (en) High temperature titanium alloys
JPH03104832A (en) Gamma-titanium-aluminum alloy modified with chrome and silicon and its manufacture
WO2021025499A1 (en) High-strength and high-formability beta titanium alloy
WO2013172510A1 (en) Fe-mn-c-based twip steel having remarkable mechanical performance at very low temperature, and preparation method thereof
WO2019083103A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
CN112575259A (en) Antiviral austenitic stainless steel material and preparation process thereof
CN112662914A (en) Low-elastic-modulus high-plasticity titanium alloy and preparation method and application thereof
WO2020085586A1 (en) Titanium alloy with high strength and high ductility comprising elements with melting points of 1,900℃ or lower
WO2022239886A1 (en) Pure titanium having high strength and high ductility, and preparation method therefor
WO2019240395A1 (en) Titanium alloy having low modulus of elasticity and high yield strength
WO2024085348A1 (en) Titanium alloy and manufacturing method therefor
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
CN112877566A (en) Low-clearance medical titanium alloy TC4ELI and preparation method thereof
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916501

Country of ref document: EP

Kind code of ref document: A1