WO2024085348A1 - Titanium alloy and manufacturing method therefor - Google Patents

Titanium alloy and manufacturing method therefor Download PDF

Info

Publication number
WO2024085348A1
WO2024085348A1 PCT/KR2023/009396 KR2023009396W WO2024085348A1 WO 2024085348 A1 WO2024085348 A1 WO 2024085348A1 KR 2023009396 W KR2023009396 W KR 2023009396W WO 2024085348 A1 WO2024085348 A1 WO 2024085348A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
titanium alloy
titanium
alloy
molybdenum
Prior art date
Application number
PCT/KR2023/009396
Other languages
French (fr)
Korean (ko)
Inventor
이동근
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Publication of WO2024085348A1 publication Critical patent/WO2024085348A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Definitions

  • the present invention relates to a titanium alloy that has excellent mechanical properties, can be manufactured at low cost, and can be used in defense, aviation, space, biomaterials, etc., and a method for manufacturing the same.
  • Titanium and titanium alloys have high specific strength and excellent corrosion resistance, and are widely used in many fields such as national defense, aviation, space, and biomaterials.
  • titanium alloy has a lower elastic modulus and higher specific strength than stainless steel, cobalt alloy, and alumina, so it is widely used as a biomaterial.
  • pure titanium has low hardness and relatively low mechanical properties such as tensile strength, making it difficult to use as a biomaterial, so it is mainly used by alloying.
  • biofriendly ⁇ stabilizing elements include niobium (Nb), zirconium (Zr), tantalum (Ta), and molybdenum (Mo). there is.
  • ⁇ titanium such as Ti-3Zr-5Fe, Ti-14Mn, Ti-10Fe-10Ta, Ti-27Nb-7Fe-8Cr, Ti-33Cr-3Fe-4Cr and Ti-7.5Mo alloy was developed.
  • This ⁇ titanium alloy has superior heat treatment characteristics compared to ⁇ + ⁇ titanium alloy and has a BCC structure, so it can secure excellent formability.
  • it has a low elastic modulus, so it is used not only in biomaterials but also in various fields.
  • ⁇ stabilizing elements niobium (Nb), zirconium (Zr), and tantalum (Ta) are a major factor limiting the application of ⁇ titanium alloys because their high density and melting point inevitably leads to an increase in process costs, resulting in low price competitiveness. It is becoming.
  • One purpose of the present invention is to use only low-cost alloy elements such as molybdenum (Mo) and iron (Fe) instead of expensive alloy elements such as niobium (Nb), zirconium (Zr), and tantalum (Ta), while providing excellent quality.
  • the aim is to provide a titanium alloy with mechanical properties.
  • Another object of the present invention is to provide a method for manufacturing a titanium alloy having excellent mechanical properties while using only low-cost alloy elements such as molybdenum (Mo) and iron (Fe).
  • Mo molybdenum
  • Fe iron
  • One aspect of the present invention for achieving the above object includes molybdenum (Mo) in an amount of 2.0% by weight or more and 10.0% by weight or less, iron (Fe) in an amount of 0.5% by weight or more and 6.5% by weight or less, and the remaining titanium and inevitable impurities.
  • Mo molybdenum
  • Fe iron
  • a titanium alloy consisting of.
  • Another aspect of the present invention for achieving the above other object is that molybdenum (Mo) is 2.0% by weight or more and 10.0% by weight or less, iron (Fe) is 0.5% by weight or more and 6.5% by weight or less, the remaining titanium (Ti) and inevitable impurities.
  • a method for manufacturing a titanium alloy consisting of, comprising the steps of melting raw materials to make a molten metal of the alloy composition, casting the molten metal to make an ingot, and forming the ingot into a molded product of a predetermined shape.
  • a method for manufacturing titanium alloy is provided.
  • the alloy according to an embodiment of the present invention uses relatively inexpensive alloy elements such as molybdenum (Mo) and iron (Fe) instead of expensive alloy elements such as niobium (Nb), zirconium (Zr), and tantalum (Ta).
  • Mo molybdenum
  • Fe iron
  • Ta tantalum
  • the alloy manufacturing method according to an embodiment of the present invention can manufacture ⁇ titanium alloy at low cost.
  • Figure 1 is a scanning microscope tissue photograph of an ingot manufactured according to an embodiment of the present invention.
  • Figure 2 is a graph showing the correlation between the tensile strength and Vickers hardness of cast ingots of Examples 1 to 6.
  • Figure 3 is a graph showing the correlation between elongation and Vickers hardness of cast ingots of Examples 1 to 6.
  • Figure 4 is a graph showing changes in Vickers hardness, elongation, and tensile strength in response to changes in iron (Fe) content in a cast ingot when the molybdenum (Mo) content is fixed at 5% by weight.
  • Figure 5 is a graph showing changes in hardness, elongation, and tensile strength in response to changes in molybdenum (Mo) content in a cast ingot when the iron (Fe) content is fixed at 2% by weight.
  • Figure 6 is a graph showing the correlation between tensile strength and Vickers hardness of Examples 7 to 12 of hollow rolled specimens.
  • Figure 7 is a graph showing the correlation between elongation and Vickers hardness of Examples 7 to 12 of cavity-rolled specimens.
  • Figure 8 is a graph showing the change in hardness, elongation, and tensile strength in response to the change in iron (Fe) content when the molybdenum (Mo) content in a die-rolled specimen was fixed at 5% by weight.
  • Figure 9 is a graph showing changes in hardness, elongation, and tensile strength in response to changes in molybdenum (Mo) content when the iron (Fe) content was fixed at 2% by weight in a die-rolled specimen.
  • the alloy according to the present invention is characterized by being composed of molybdenum (Mo) at least 2.0% by weight and less than 10.0% by weight, iron (Fe) at least 0.5% by weight and less than 6.5% by weight, and the remainder being titanium (Ti) and inevitable impurities.
  • Mo molybdenum
  • Fe iron
  • Ti titanium
  • molybdenum When added to titanium (Ti), molybdenum (Mo) not only improves corrosion resistance, lowers the elastic modulus, and increases strength, but is also non-toxic to living organisms, making it an element that can greatly improve so-called “biocompatibility.” am.
  • the molybdenum (Mo) content is less than 2.0% by weight, the effect of adding molybdenum (Mo) is not sufficient, and the molybdenum (Mo) content is 2.0% by weight ⁇ 10.0% by weight or less is preferable.
  • the content of molybdenum (Mo) is more preferably 3.0% by weight to 9.5% by weight, more preferably 3.2% by weight to 7.0% by weight, and most preferably 4.5% by weight to 6.0% by weight.
  • Iron (Fe) is a very inexpensive alloy element and is not allergenic or toxic to the human body, so it not only has excellent "human compatibility", but also plays a role in stabilizing the beta ( ⁇ ) phase when added to titanium (Ti). and gives a strengthening effect.
  • the iron (Fe) content is preferably 0.5% by weight to 6.5% by weight.
  • the content of iron (Fe) is more preferably 1.0% by weight to 5.5% by weight, more preferably 1.5% by weight to 4.5% by weight, and most preferably 1.5% by weight to 2.5% by weight.
  • Unavoidable impurities refer to components that may be unintentionally mixed into the raw materials of titanium (Ti) alloy or during the manufacturing process.
  • oxygen (O) reduces the deformability of titanium (Ti) alloy, causes cracks to occur during high-strength cold working, and increases deformation resistance, so it is recommended to keep it at 0.4% by weight or less. It is preferable, and it is more preferable to keep it at 0.25% by weight or less.
  • H hydrogen
  • Ti titanium
  • carbon (C) greatly reduces the deformability of titanium (Ti) alloy, the less it is included, the better. 0.15% by weight or less is preferable, and 0.1% by weight or less is more preferable.
  • nitrogen (N) greatly reduces the deformability of titanium (Ti) alloy, the less it contains, the better. 0.1% by weight or less is preferable, and 0.05% by weight or less is more preferable.
  • the titanium (Ti) alloy according to the present invention in its microstructure, can be basically composed of a ⁇ phase consisting of a body centered cubic structure (BCC) and a small amount of an ⁇ phase having a hexagonal close-packed structure (HCP), and can be post-processed.
  • the ⁇ ' phase, ⁇ " phase, ⁇ phase, etc. may be additionally formed by heat treatment.
  • the ⁇ phase, which constitutes the basic structure may have an area fraction of at least 90% as observed in the cross-sectional structure.
  • the tensile strength of the titanium (Ti) alloy according to the present invention may be 900 MPa or more, preferably 1000 MPa or more, and may be 1000 to 1300 MPa depending on whether a post-treatment process such as cold working or post-heat treatment is performed.
  • the elongation of the titanium (Ti) alloy according to the present invention may be 1% or more, preferably 2% or more, more preferably 3% or more, and most preferably 4% or more.
  • titanium (Ti) alloy according to the present invention can be manufactured into medical articles or sports/leisure articles, and its use is not necessarily limited to medical articles or sports/leisure articles.
  • the method for producing an alloy according to the present invention consists of 2.0% by weight or more and 10.0% by weight or less of molybdenum (Mo), 0.5% by weight or more and 6.5% by weight or less of iron (Fe), and the remaining titanium (Ti) and inevitable impurities.
  • a method for manufacturing a titanium alloy comprising the steps of melting raw materials to make a molten metal of the alloy composition, casting the molten metal to make an ingot, and forming the ingot into a molded product of a predetermined shape. do.
  • the process of melting the raw material may preferably be performed by a vacuum arc remelting method (VAR).
  • VAR vacuum arc remelting method
  • the heat treatment process for the melt-manufactured product is preferably performed in the range of 750°C to 950°C for 30 minutes to 4 hours.
  • the swaging process may be performed in 1 to 10 passes at room temperature or below 500°C.
  • a composition having the composition shown in Table 1 below was prepared by dissolving using the vacuum arc re-dissolution (VAR) method. At this time, impurities such as oxygen (O), nitrogen (N), carbon (C), and hydrogen (H) in all alloys were kept to less than 0.65% by weight.
  • VAR vacuum arc re-dissolution
  • Titanium (Ti) alloy manufactured into a rod shape with a diameter of 16 mm to 20 mm and a length of 500 mm or more was maintained at 850°C for 1 hour and subjected to furnace cooling, followed by 3 to 8 passes of form rolling ( It was manufactured into a bar with a diameter of 12 mm through swaging.
  • the manufactured alloy ingot was cut into a cross section perpendicular to the longitudinal direction and a cross section parallel to the longitudinal direction, macro polished with sandpaper no. 2400, and then micro polished using diamond paste. After performing this mechanical polishing, it was etched with Kroll etchant (100 ml of H 2 O + 5 ml of HNO 3 + 3 ml of HF), and the microstructure was observed using a scanning electron microscope (SEM). It has a cast structure as shown in Figure 1, and titanium alloy has a ⁇ phase as its basic structure and includes a small amount of ⁇ phase, ⁇ ' phase, ⁇ " phase, or ⁇ phase.
  • Table 2 shows the Vickers hardness, elongation, and tensile strength test results for the cast ingots.
  • the tensile strength of Examples 1 to 6 in the ingot state was 900 to 1050 MPa, the elongation was 0 to 4%, and the Vickers hardness was 300 to 430 Hv.
  • Figure 2 shows the correlation of tensile strength with Vickers hardness of cast ingots of Examples 1 to 6
  • Figure 3 shows the correlation of elongation with Vickers hardness of cast ingots of Examples 1 to 6.
  • Figure 4 shows the change in Vickers hardness, elongation, and tensile strength with respect to the change in iron (Fe) content in the cast ingot when the molybdenum (Mo) content is fixed at 5% by weight
  • Figure 5 shows In the cast ingot, the change in hardness, elongation, and tensile strength in response to the change in molybdenum (Mo) content is shown when the iron (Fe) content is fixed at 2% by weight.
  • the molybdenum (Mo) content is in the range of 3.2 wt% to 7.0 wt%, and the iron (Fe) content is 1.5 to 4.5 wt. It can be seen that it is desirable to be included in the range of.
  • Table 3 shows the Vickers hardness, elongation, and tensile strength test results for products that have completed the shape rolling process.
  • Figure 6 shows the correlation of tensile strength with Vickers hardness of Examples 7 to 12 of the die-rolled specimens
  • Figure 7 shows the correlation of elongation with the Vickers hardness of Examples 7 to 12 of the die-rolled specimens. It is shown.
  • Figure 8 shows the change in hardness, elongation, and tensile strength in response to the change in iron (Fe) content when the molybdenum (Mo) content is fixed at 5% by weight in a shape-rolled specimen
  • Figure 9 shows In a die-rolled specimen, the change in hardness, elongation, and tensile strength in response to the change in molybdenum (Mo) content is shown when the iron (Fe) content is fixed at 2% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a titanium alloy that can be manufactured at low cost while possessing excellent mechanical properties and can be used in defense, aviation, space, biomaterials, etc. The titanium alloy according to the present invention comprises 2.0 wt% (inclusive) to 10.0 wt% (exclusive) of molybdenum (Mo), 0.5 wt% to 6.5 wt% (both inclusive) of iron (Fe), with the balance being titanium (Ti) and inevitable impurities.

Description

타이타늄 합금 및 이의 제조방법Titanium alloy and its manufacturing method
본 발명은 우수한 기계적 특성을 가지고 저비용으로 제조할 수 있으며, 국방, 항공, 우주, 생체재료 등에 사용될 수 있는 타이타늄 합금과 이의 제조방법에 관한 것이다.The present invention relates to a titanium alloy that has excellent mechanical properties, can be manufactured at low cost, and can be used in defense, aviation, space, biomaterials, etc., and a method for manufacturing the same.
타이타늄 및 타이타늄 합금은 높은 비강도와 내식성이 우수하여 국방, 항공, 우주, 생체재료 등 많은 분야에 널리 사용되고 있다. 특히, 타이타늄 합금은 스테인리스강, 코발트 합금, 알루미나에 비해 낮은 탄성계수 및 높은 비강도를 가지고 있어 생체재료로 널리 사용되고 있다.Titanium and titanium alloys have high specific strength and excellent corrosion resistance, and are widely used in many fields such as national defense, aviation, space, and biomaterials. In particular, titanium alloy has a lower elastic modulus and higher specific strength than stainless steel, cobalt alloy, and alumina, so it is widely used as a biomaterial.
한편, 순수한 타이타늄은 낮은 경도를 가지며 인장강도 같은 기계적 특성이 상대적으로 낮아 생체재료로 사용하기에 어려움이 있어, 주로 합금화하여 사용하고 있다.Meanwhile, pure titanium has low hardness and relatively low mechanical properties such as tensile strength, making it difficult to use as a biomaterial, so it is mainly used by alloying.
그런데 타이타늄 상용 합금인 Ti-6Al-4V에 첨가된 알루미늄(Al)은 알츠하이머형 치매, 바나듐(V)은 독성 이온의 방출로 인한 심각한 합병증 및 알레르기를 유발할 수 있다고 보고되고 있다.However, it has been reported that aluminum (Al) added to Ti-6Al-4V, a commercial titanium alloy, can cause Alzheimer's-type dementia, and vanadium (V) can cause serious complications and allergies due to the release of toxic ions.
따라서 이를 대체하기 위해, 생체 친화적인 β 타이타늄 합금 개발이 요구되고 있으며, 이때 생체 친화적인 β 안정화 원소는 나이오븀(Nb), 지르코늄(Zr), 탄탈륨(Ta) 및 몰리브데늄(Mo) 등이 있다.Therefore, to replace it, there is a need to develop a biocompatible β titanium alloy. In this case, biofriendly β stabilizing elements include niobium (Nb), zirconium (Zr), tantalum (Ta), and molybdenum (Mo). there is.
위와 같은 β 안정화 원소를 활용하여, Ti-3Zr-5Fe, Ti-14Mn, Ti-10Fe-10Ta, Ti-27Nb-7Fe-8Cr, Ti-33Cr-3Fe-4Cr 및 Ti-7.5Mo와 같은 많은 β 타이타늄 합금이 개발되었다. 이러한 β 타이타늄 합금은 α+β 타이타늄 합금에 비해 열처리 특성이 우수하며 BCC구조를 가지고 있어 우수한 성형성을 확보할 수 있다. 또한, 낮은 탄성계수를 가지고 있어 생체재료뿐만 아니라 다양한 분야에서 사용되고 있다.Utilizing the above β stabilizing elements, many β titanium such as Ti-3Zr-5Fe, Ti-14Mn, Ti-10Fe-10Ta, Ti-27Nb-7Fe-8Cr, Ti-33Cr-3Fe-4Cr and Ti-7.5Mo alloy was developed. This β titanium alloy has superior heat treatment characteristics compared to α+β titanium alloy and has a BCC structure, so it can secure excellent formability. In addition, it has a low elastic modulus, so it is used not only in biomaterials but also in various fields.
그러나, β 안정화 원소인 나이오븀(Nb), 지르코늄(Zr), 탄탈륨(Ta)은 높은 밀도와 용융점으로 인해 공정 비용의 상승이 불가피하여 가격 경쟁력이 낮기 때문에 β 타이타늄 합금의 응용을 제약하는 주요 요인이 되고 있다.However, the β stabilizing elements niobium (Nb), zirconium (Zr), and tantalum (Ta) are a major factor limiting the application of β titanium alloys because their high density and melting point inevitably leads to an increase in process costs, resulting in low price competitiveness. It is becoming.
이에, 나이오븀(Nb), 지르코늄(Zr), 탄탈륨(Ta)과 같은 고가 합금원소를 철(Fe), 몰리브데늄(Mo), 망간(Mn) 등의 저가 원소로 대체하고자 하는 연구가 진행되고 있으나, 고가 합금원소를 첨가한 타이타늄 합금을 대체할 수 있을 정도의 물성을 구현하기 어려운 문제점이 있다.Accordingly, research is underway to replace expensive alloy elements such as niobium (Nb), zirconium (Zr), and tantalum (Ta) with low-cost elements such as iron (Fe), molybdenum (Mo), and manganese (Mn). However, there is a problem in that it is difficult to realize physical properties sufficient to replace titanium alloy with expensive alloy elements added.
본 발명의 일 목적은 나이오븀(Nb), 지르코늄(Zr), 탄탈륨(Ta)과 같은 고가의 합금 원소 대신에 몰리브데늄(Mo)과 철(Fe)과 같은 저가의 합금원소만을 사용하면서도 우수한 기계적 특성을 가지는 타이타늄 합금을 제공하는데 있다.One purpose of the present invention is to use only low-cost alloy elements such as molybdenum (Mo) and iron (Fe) instead of expensive alloy elements such as niobium (Nb), zirconium (Zr), and tantalum (Ta), while providing excellent quality. The aim is to provide a titanium alloy with mechanical properties.
본 발명의 다른 목적은 몰리브데늄(Mo)과 철(Fe)과 같은 저가의 합금원소만을 사용하면서도 우수한 기계적 특성을 가지는 타이타늄 합금의 제조방법을 제공하는데 있다.Another object of the present invention is to provide a method for manufacturing a titanium alloy having excellent mechanical properties while using only low-cost alloy elements such as molybdenum (Mo) and iron (Fe).
상기 일 목적을 달성하기 위한 본 발명의 일 측면은, 몰리브데늄(Mo) 2.0중량% 이상 10.0중량% 이하, 철(Fe) 0.5중량% 이상 6.5중량% 이하로 포함하고, 나머지 타이타늄과 불가피한 불순물로 이루어지는 타이타늄 합금을 제공한다.One aspect of the present invention for achieving the above object includes molybdenum (Mo) in an amount of 2.0% by weight or more and 10.0% by weight or less, iron (Fe) in an amount of 0.5% by weight or more and 6.5% by weight or less, and the remaining titanium and inevitable impurities. Provides a titanium alloy consisting of.
상기 다른 목적을 달성하기 위한 본 발명의 다른 측면은, 몰리브데늄(Mo) 2.0중량% 이상 10.0중량% 이하, 철(Fe) 0.5중량% 이상 6.5중량% 이하, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 타이타늄 합금의 제조방법으로, 원료를 용해하여 상기 합금 조성의 용탕을 만드는 단계와, 상기 용탕을 주조하여 잉곳을 만드는 단계와, 상기 잉곳을 소정 형상의 성형품으로 공형압연하는 단계를 포함하는, 타이타늄 합금의 제조방법을 제공한다.Another aspect of the present invention for achieving the above other object is that molybdenum (Mo) is 2.0% by weight or more and 10.0% by weight or less, iron (Fe) is 0.5% by weight or more and 6.5% by weight or less, the remaining titanium (Ti) and inevitable impurities. A method for manufacturing a titanium alloy consisting of, comprising the steps of melting raw materials to make a molten metal of the alloy composition, casting the molten metal to make an ingot, and forming the ingot into a molded product of a predetermined shape. A method for manufacturing titanium alloy is provided.
본 발명의 일 실시형태에 따른 합금은, 나이오븀(Nb), 지르코늄(Zr), 탄탈륨(Ta)과 같은 고가의 합금 원소 대신에 몰리브데늄(Mo), 철(Fe)과 같이 상대적으로 저가의 합금 원소를 사용하면서 우수한 기계적 특성을 구현하여 β 타이타늄 합금을 제공하여, β 타이타늄 합금의 응용 범위를 확장할 수 있다.The alloy according to an embodiment of the present invention uses relatively inexpensive alloy elements such as molybdenum (Mo) and iron (Fe) instead of expensive alloy elements such as niobium (Nb), zirconium (Zr), and tantalum (Ta). By providing β titanium alloy with excellent mechanical properties while using alloy elements, the application range of β titanium alloy can be expanded.
또한, 본 발명의 일 실시형태에 따른 합금의 제조방법은 저비용으로 β 타이타늄 합금을 제조할 수 있다.Additionally, the alloy manufacturing method according to an embodiment of the present invention can manufacture β titanium alloy at low cost.
도 1은 본 발명의 실시예에 따라 제조된 잉곳의 주사현미경 조직 사진이다.Figure 1 is a scanning microscope tissue photograph of an ingot manufactured according to an embodiment of the present invention.
도 2는 주조된 잉곳의 실시예 1 ~ 6의 비커스 경도에 대한 인장강도의 상관관계를 나타낸 그래프이다.Figure 2 is a graph showing the correlation between the tensile strength and Vickers hardness of cast ingots of Examples 1 to 6.
도 3은 주조된 잉곳의 실시예 1 ~ 6의 비커스 경도에 대한 연신율의 상관관계를 나타낸 그래프이다.Figure 3 is a graph showing the correlation between elongation and Vickers hardness of cast ingots of Examples 1 to 6.
도 4는 주조된 잉곳에 있어서, 몰리브데늄(Mo)의 함량을 5중량%로 고정하였을 때 철(Fe)의 함량 변화에 대한 비커스 경도, 연신율 및 인장강도의 변화를 나타낸 그래프이다.Figure 4 is a graph showing changes in Vickers hardness, elongation, and tensile strength in response to changes in iron (Fe) content in a cast ingot when the molybdenum (Mo) content is fixed at 5% by weight.
도 5는 주조된 잉곳에 있어서, 철(Fe)의 함량을 2중량%로 고정하였을 때 몰리브데늄(Mo)의 함량 변화에 대한 경도, 연신율 및 인장강도의 변화를 나타낸 그래프이다.Figure 5 is a graph showing changes in hardness, elongation, and tensile strength in response to changes in molybdenum (Mo) content in a cast ingot when the iron (Fe) content is fixed at 2% by weight.
도 6은 공형압연된 시편의 실시예 7 ~ 12의 비커스 경도에 대한 인장강도의 상관관계를 나타낸 그래프이다.Figure 6 is a graph showing the correlation between tensile strength and Vickers hardness of Examples 7 to 12 of hollow rolled specimens.
도 7은 공형압연된 시편의 실시예 7 ~ 12의 비커스 경도에 대한 연신율의 상관관계를 나타낸 그래프이다.Figure 7 is a graph showing the correlation between elongation and Vickers hardness of Examples 7 to 12 of cavity-rolled specimens.
도 8은 공형압연된 시편에 있어서, 몰리브데늄(Mo)의 함량을 5중량%로 고정하였을 때 철(Fe)의 함량 변화에 대한 경도, 연신율 및 인장강도의 변화를 나타낸 그래프이다.Figure 8 is a graph showing the change in hardness, elongation, and tensile strength in response to the change in iron (Fe) content when the molybdenum (Mo) content in a die-rolled specimen was fixed at 5% by weight.
도 9는 공형압연된 시편에 있어서, 철(Fe)의 함량을 2중량%로 고정하였을 때 몰리브데늄(Mo)의 함량 변화에 대한 경도, 연신율 및 인장강도의 변화를 나타낸 그래프이다.Figure 9 is a graph showing changes in hardness, elongation, and tensile strength in response to changes in molybdenum (Mo) content when the iron (Fe) content was fixed at 2% by weight in a die-rolled specimen.
이하 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, in describing the present invention, if a detailed description of a related known function or configuration is judged to unnecessarily obscure the gist of the present invention, the detailed description will be omitted. In addition, when a part is said to 'include' a certain component, this does not mean that other components are excluded, but that it can further include other components, unless specifically stated to the contrary.
본 발명에 따른 합금은 몰리브데늄(Mo) 2.0중량% 이상 10.0중량% 미만, 철(Fe) 0.5중량% 이상 6.5중량% 이하, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 것을 특징으로 한다.The alloy according to the present invention is characterized by being composed of molybdenum (Mo) at least 2.0% by weight and less than 10.0% by weight, iron (Fe) at least 0.5% by weight and less than 6.5% by weight, and the remainder being titanium (Ti) and inevitable impurities.
본 발명에 따른 합금에 있어서 합금원소의 조성범위를 상기와 같이 한정한 이유는 다음과 같다.The reason for limiting the composition range of alloy elements in the alloy according to the present invention as described above is as follows.
몰리브데늄(Mo)Molybdenum (Mo)
몰리브데늄(Mo)은 타이타늄(Ti)에 첨가되었을 때, 내식성을 향상시키고 탄성계수를 낮추며 강도를 높이는 기능을 할 뿐 아니라 생체에 대한 독성이 없어 이른바 "생체 적합성"을 크게 향상시킬 수 있는 원소이다.When added to titanium (Ti), molybdenum (Mo) not only improves corrosion resistance, lowers the elastic modulus, and increases strength, but is also non-toxic to living organisms, making it an element that can greatly improve so-called "biocompatibility." am.
본 발명에 따른 합금에 있어서, 몰리브데늄(Mo)의 함량이 2.0중량% 미만일 경우 전술한 몰리브데늄(Mo) 첨가 효과가 충분하지 않으며, 몰리브데늄(Mo)의 함량은 2.0중량% ~ 10.0중량% 이하가 바람직하다.In the alloy according to the present invention, when the molybdenum (Mo) content is less than 2.0% by weight, the effect of adding molybdenum (Mo) is not sufficient, and the molybdenum (Mo) content is 2.0% by weight ~ 10.0% by weight or less is preferable.
상기 몰리브데늄(Mo)의 함량은 3.0중량% ~ 9.5중량% 이 더 바람직하고, 3.2 중량% ~ 7.0중량%이 보다 더 바람직하고, 4.5 중량% ~ 6.0중량%가 가장 바람직하다.The content of molybdenum (Mo) is more preferably 3.0% by weight to 9.5% by weight, more preferably 3.2% by weight to 7.0% by weight, and most preferably 4.5% by weight to 6.0% by weight.
철(Fe)Iron (Fe)
철(Fe)은 매우 저렴한 합금 원소이며, 인체에 대해 알레르기를 일으키거나 독성이 없어 "인체 친화성"이 우수할 뿐 아니라, 타이타늄(Ti)에 첨가되었을 때 베타(β) 상을 안정화시키는 역할을 하고 강화 효과를 부여한다.Iron (Fe) is a very inexpensive alloy element and is not allergenic or toxic to the human body, so it not only has excellent "human compatibility", but also plays a role in stabilizing the beta (β) phase when added to titanium (Ti). and gives a strengthening effect.
본 발명에 따른 합금에 있어서, 철(Fe)의 함량이 0.5중량% 미만일 경우 전술한 철(Fe) 첨가 효과가 충분하지 않고, 6.5중량% 이상으로 첨가될 경우 합금에 균열을 발생시키는 것과 같은 좋지 않은 영향이 발생하므로, 철(Fe)의 함량은 0.5중량% ~ 6.5중량%가 바람직하다.In the alloy according to the present invention, when the content of iron (Fe) is less than 0.5% by weight, the effect of adding iron (Fe) is not sufficient, and when it is added at more than 6.5% by weight, adverse effects such as cracking in the alloy occur. Since negative effects occur, the iron (Fe) content is preferably 0.5% by weight to 6.5% by weight.
상기 철(Fe)의 함량은 1.0 중량% ~ 5.5 중량% 이 더 바람직하고, 1.5 중량% ~ 4.5 중량%가 보다 더 바람직하고, 1.5 중량% ~ 2.5 중량%가 가장 바람직하다.The content of iron (Fe) is more preferably 1.0% by weight to 5.5% by weight, more preferably 1.5% by weight to 4.5% by weight, and most preferably 1.5% by weight to 2.5% by weight.
불가피한 불순물unavoidable impurities
불가피한 불순물은 타이타늄(Ti) 합금의 원료 또는 제조과정에서 의도하지 않게 혼입될 수 있는 성분을 의미한다.Unavoidable impurities refer to components that may be unintentionally mixed into the raw materials of titanium (Ti) alloy or during the manufacturing process.
구체적으로, 산소(O)는 타이타늄(Ti) 합금의 변형능을 저하시키고, 고강도의 냉간가공을 하였을 때에 균열을 발생시키는 원인이 되고 변형저항을 높이는 원인이 되므로, 0.4중량% 이하가 되도록 유지하는 것이 바람직하며, 0.25중량% 이하가 되도록 유지하는 것이 보다 바람직하다.Specifically, oxygen (O) reduces the deformability of titanium (Ti) alloy, causes cracks to occur during high-strength cold working, and increases deformation resistance, so it is recommended to keep it at 0.4% by weight or less. It is preferable, and it is more preferable to keep it at 0.25% by weight or less.
또한, 수소(H)는 타이타늄(Ti) 합금의 연성 및 인성을 떨어뜨리므로 적게 포함할수록 좋으며, 0.03중량% 이하로 포함하는 것이 바람직하고, 0.015중량% 이하로 포함하는 것이 보다 바람직하다.In addition, since hydrogen (H) reduces the ductility and toughness of titanium (Ti) alloy, the less it contains, the better. It is preferable to include 0.03% by weight or less, and more preferably 0.015% by weight or less.
또한, 탄소(C)는 타이타늄(Ti) 합금의 변형능을 크게 저하시키므로 적게 포함할수록 좋으며, 0.15중량% 이하가 바람직하고, 0.1중량% 이하가 보다 바람직하다.In addition, since carbon (C) greatly reduces the deformability of titanium (Ti) alloy, the less it is included, the better. 0.15% by weight or less is preferable, and 0.1% by weight or less is more preferable.
또한, 질소(N)도 타이타늄(Ti) 합금의 변형능을 크게 저하시키므로 적게 포함할수록 좋으며, 0.1중량% 이하가 바람직하고, 0.05중량% 이하가 보다 바람직하다.In addition, since nitrogen (N) greatly reduces the deformability of titanium (Ti) alloy, the less it contains, the better. 0.1% by weight or less is preferable, and 0.05% by weight or less is more preferable.
또한, 본 발명에 따른 타이타늄(Ti) 합금은, 그 미세조직에 있어서 기본적으로 체심입방구조(BCC)로 이루어진 β상과 육방조밀구조(HCP)를 갖는 소량의 α상으로 구성될 수 있으며, 후가공 또는 열처리에 의해 α'상, α"상, ω상 등이 추가로 구성될 수 있다. 기본 조직을 이루는 β상은 단면조직으로 관찰된 면적분율이 적어도 90% 이상일 수 있다.In addition, the titanium (Ti) alloy according to the present invention, in its microstructure, can be basically composed of a β phase consisting of a body centered cubic structure (BCC) and a small amount of an α phase having a hexagonal close-packed structure (HCP), and can be post-processed. Alternatively, the α' phase, α" phase, ω phase, etc. may be additionally formed by heat treatment. The β phase, which constitutes the basic structure, may have an area fraction of at least 90% as observed in the cross-sectional structure.
또한, 본 발명에 따른 타이타늄(Ti) 합금의 인장강도는 900MPa 이상, 바람직하게는 1000MPa 이상일 수 있고, 냉간가공, 후열처리 등 후처리 공정 여부에 따라 1000 ~ 1300MPa일 수 있다.In addition, the tensile strength of the titanium (Ti) alloy according to the present invention may be 900 MPa or more, preferably 1000 MPa or more, and may be 1000 to 1300 MPa depending on whether a post-treatment process such as cold working or post-heat treatment is performed.
또한, 본 발명에 따른 타이타늄(Ti) 합금의 연신율은 1% 이상일 수 있고, 2%이상이 바람직하고, 3% 이상이 보다 바람직하고, 4% 이상인 것이 가장 바람직하다.Additionally, the elongation of the titanium (Ti) alloy according to the present invention may be 1% or more, preferably 2% or more, more preferably 3% or more, and most preferably 4% or more.
또한, 본 발명에 따른 타이타늄(Ti) 합금은 의료용 물품 또는 스포츠/레저용 물품으로 제조될 수 있으며, 그 용도는 반드시 의료용 물품 또는 스포츠/레저용 물품에 한정되지 않는다.In addition, the titanium (Ti) alloy according to the present invention can be manufactured into medical articles or sports/leisure articles, and its use is not necessarily limited to medical articles or sports/leisure articles.
또한, 본 발명에 따른 합금의 제조방법은, 몰리브데늄(Mo) 2.0중량% 이상 10.0중량% 이하, 철(Fe) 0.5중량% 이상 6.5중량% 이하, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 타이타늄 합금의 제조방법으로, 원료를 용해하여 상기 합금 조성의 용탕을 만드는 단계와, 상기 용탕을 주조하여 잉곳을 만드는 단계와, 상기 잉곳을 소정 형상의 성형품으로 공형압연하는 단계를 포함하는 것을 특징으로 한다.In addition, the method for producing an alloy according to the present invention consists of 2.0% by weight or more and 10.0% by weight or less of molybdenum (Mo), 0.5% by weight or more and 6.5% by weight or less of iron (Fe), and the remaining titanium (Ti) and inevitable impurities. A method for manufacturing a titanium alloy, comprising the steps of melting raw materials to make a molten metal of the alloy composition, casting the molten metal to make an ingot, and forming the ingot into a molded product of a predetermined shape. do.
상기 합금의 제조방법에 있어서, 상기 원료를 용해하는 공정은 바람직하게 진공아크 재용해방법(VAR)으로 이루어질 수 있다.In the method of manufacturing the alloy, the process of melting the raw material may preferably be performed by a vacuum arc remelting method (VAR).
상기 합금의 제조방법에 있어서, 상기 용해제조된 제품의 열처리 공정은 750℃ ~ 950℃ 범위에서 30분 ~ 4시간 이루어지는 것이 바람직하다. In the method of manufacturing the alloy, the heat treatment process for the melt-manufactured product is preferably performed in the range of 750°C to 950°C for 30 minutes to 4 hours.
상기 합금의 제조방법에 있어서, 상기 공형압연(swaging) 공정은 상온 또는 500℃이하에서 1 ~ 10패스를 실시하는 것일 수 있다.In the method of manufacturing the alloy, the swaging process may be performed in 1 to 10 passes at room temperature or below 500°C.
[실시예][Example]
본 발명의 실시예로서 아래 표 1과 같은 조성의 조성물을 진공아크 재용해방법(VAR)을 이용하여 용해하여 제조하였다. 이때, 모든 합금에서 산소(O), 질소(N), 탄소(C), 수소(H)와 같은 불순물은 0.65중량% 미만이 되도록 하였다.As an example of the present invention, a composition having the composition shown in Table 1 below was prepared by dissolving using the vacuum arc re-dissolution (VAR) method. At this time, impurities such as oxygen (O), nitrogen (N), carbon (C), and hydrogen (H) in all alloys were kept to less than 0.65% by weight.
[표 1][Table 1]
Figure PCTKR2023009396-appb-img-000001
Figure PCTKR2023009396-appb-img-000001
상기 표 1의 조성으로 진공아크 재용해한 타이타늄(Ti) 합금 조성물을 주조하여 잉곳(ingot)을 만들었다. 직경 16mm ~ 20mm, 길이 500mm 이상의 치수를 갖는 봉형으로 제조한 타이타늄(Ti) 합금을 850℃에서 1시간 동안 유지한 후 로냉(furnace cooling)하는 열처리를 수행하였으며, 이후 3 ~ 8패스의 공형압연(swaging)을 통해, 직경 12mm 봉재로 제조하였다.An ingot was made by casting a titanium (Ti) alloy composition re-melted in a vacuum arc with the composition shown in Table 1 above. Titanium (Ti) alloy manufactured into a rod shape with a diameter of 16 mm to 20 mm and a length of 500 mm or more was maintained at 850°C for 1 hour and subjected to furnace cooling, followed by 3 to 8 passes of form rolling ( It was manufactured into a bar with a diameter of 12 mm through swaging.
미세조직microstructure
제조된 합금 잉곳을 길이방향에 수직한 단면과 평행한 단면으로 절단하여 사포 2400번까지 마크로 연마를 한 후, 다이아몬드 연마제(diamond paste)를 활용하여 마이크로 연마를 수행하였다. 이와 같은 기계적 연마를 수행한 후, 크롤용액(Kroll etchant; H2O 100㎖ +HNO3 5㎖ + HF 3㎖)으로 에칭하여 미세조직을 주사전자현미경(SEM)을 이용하여 관찰하였다. 도 1에 확인되는 바와 같은 주조조직을 가지며, 타이타늄 합금은 β상을 기본조직으로, 소량의 α상, α'상, α"상, 또는 ω상을 포함한다. The manufactured alloy ingot was cut into a cross section perpendicular to the longitudinal direction and a cross section parallel to the longitudinal direction, macro polished with sandpaper no. 2400, and then micro polished using diamond paste. After performing this mechanical polishing, it was etched with Kroll etchant (100 ml of H 2 O + 5 ml of HNO 3 + 3 ml of HF), and the microstructure was observed using a scanning electron microscope (SEM). It has a cast structure as shown in Figure 1, and titanium alloy has a β phase as its basic structure and includes a small amount of α phase, α' phase, α" phase, or ω phase.
기계적 특성mechanical properties
아래 표 2는 주조된 잉곳에 대해 비커스 경도, 연신율 및 인장강도 시험결과를 나타낸 것이다.Table 2 below shows the Vickers hardness, elongation, and tensile strength test results for the cast ingots.
[표 2][Table 2]
Figure PCTKR2023009396-appb-img-000002
Figure PCTKR2023009396-appb-img-000002
상기 표 2에 나타난 바와 같이, 잉곳 상태인 실시예 1 ~ 6의 인장강도는 900 ~ 1050MPa, 연신율은 0 ~ 4%, 비커스 경도는 300 ~ 430Hv 수준이었다.As shown in Table 2, the tensile strength of Examples 1 to 6 in the ingot state was 900 to 1050 MPa, the elongation was 0 to 4%, and the Vickers hardness was 300 to 430 Hv.
도 2는 주조된 잉곳의 실시예 1 ~ 6의 비커스 경도에 대한 인장강도의 상관관계를 나타낸 것이고, 도 3은 주조된 잉곳의 실시예 1 ~ 6의 비커스 경도에 대한 연신율의 상관관계를 나타낸 것이다. 도 4는 주조된 잉곳에 있어서, 몰리브데늄(Mo)의 함량을 5중량%로 고정하였을 때 철(Fe)의 함량 변화에 대한 비커스 경도, 연신율 및 인장강도의 변화를 나타낸 것이고, 도 5는 주조된 잉곳에 있어서, 철(Fe)의 함량을 2중량%로 고정하였을 때 몰리브데늄(Mo)의 함량 변화에 대한 경도, 연신율 및 인장강도의 변화를 나타낸 것이다.Figure 2 shows the correlation of tensile strength with Vickers hardness of cast ingots of Examples 1 to 6, and Figure 3 shows the correlation of elongation with Vickers hardness of cast ingots of Examples 1 to 6. . Figure 4 shows the change in Vickers hardness, elongation, and tensile strength with respect to the change in iron (Fe) content in the cast ingot when the molybdenum (Mo) content is fixed at 5% by weight, and Figure 5 shows In the cast ingot, the change in hardness, elongation, and tensile strength in response to the change in molybdenum (Mo) content is shown when the iron (Fe) content is fixed at 2% by weight.
인장강도(UTS)와 연신율(%)을 고려할 때, 몰리브데늄(Mo)의 함량이 3.2중량% ~ 7.0중량%의 범위로 포함되는 것이 바람직하고, 철(Fe)의 함량은 1.5 ~ 4.5중량의 범위로 포함되는 것이 바람직함을 알 수 있다.Considering the tensile strength (UTS) and elongation (%), it is preferable that the molybdenum (Mo) content is in the range of 3.2 wt% to 7.0 wt%, and the iron (Fe) content is 1.5 to 4.5 wt. It can be seen that it is desirable to be included in the range of.
아래 표 3은 공형압연 처리가 완료된 제품에 대해 비커스 경도, 연신율 및 인장강도 시험결과를 나타낸 것이다.Table 3 below shows the Vickers hardness, elongation, and tensile strength test results for products that have completed the shape rolling process.
[표 3][Table 3]
Figure PCTKR2023009396-appb-img-000003
Figure PCTKR2023009396-appb-img-000003
상기 표 3에 나타난 바와 같이, 단조공정과 공형압연공정을 거친 실시예 7 ~ 12의 인장강도는 750 ~ 1300MPa, 연신율은 0 ~ 6%, 비커스 경도는 300 ~ 400Hv 수준으로, 인장강도와 연신율의 측면에서 잉곳 상태인 실시예 1~6에 비해 향상되었음을 알 수 있다.As shown in Table 3, the tensile strength of Examples 7 to 12, which went through the forging process and the hollow rolling process, was 750 to 1300 MPa, the elongation was 0 to 6%, and the Vickers hardness was 300 to 400 Hv, and the tensile strength and elongation were at the level of 300 to 400 Hv. From the side, it can be seen that it is improved compared to Examples 1 to 6, which are in the ingot state.
도 6은 공형압연된 시편의 실시예 7 ~ 12의 비커스 경도에 대한 인장강도의 상관관계를 나타낸 것이고, 도 7은 공형압연된 시편의 실시예 7 ~ 12의 비커스 경도에 대한 연신율의 상관관계를 나타낸 것이다. 도 8은 공형압연된 시편에 있어서, 몰리브데늄(Mo)의 함량을 5중량%로 고정하였을 때 철(Fe)의 함량 변화에 대한 경도, 연신율 및 인장강도의 변화를 나타낸 것이고, 도 9는 공형압연된 시편에 있어서, 철(Fe)의 함량을 2중량%로 고정하였을 때 몰리브데늄(Mo)의 함량 변화에 대한 경도, 연신율 및 인장강도의 변화를 나타낸 것이다.Figure 6 shows the correlation of tensile strength with Vickers hardness of Examples 7 to 12 of the die-rolled specimens, and Figure 7 shows the correlation of elongation with the Vickers hardness of Examples 7 to 12 of the die-rolled specimens. It is shown. Figure 8 shows the change in hardness, elongation, and tensile strength in response to the change in iron (Fe) content when the molybdenum (Mo) content is fixed at 5% by weight in a shape-rolled specimen, and Figure 9 shows In a die-rolled specimen, the change in hardness, elongation, and tensile strength in response to the change in molybdenum (Mo) content is shown when the iron (Fe) content is fixed at 2% by weight.
공형압연된 실시예 7 ~ 12의 경우, 잉곳상태에 비해 인장강도(UTS)와 연신율(%)의 측면에서, 몰리브데늄(Mo) 함량 3.2중량% ~ 7.0중량%, 철(Fe) 함량 1.5 ~ 4.5중량를 동시에 만족하는 조성 범위가 그렇지 않은 조성 범위에 비해 현저한 개선이 있음을 알 수 있다.In the case of co-rolled Examples 7 to 12, in terms of tensile strength (UTS) and elongation (%) compared to the ingot state, the molybdenum (Mo) content was 3.2% by weight to 7.0% by weight, and the iron (Fe) content was 1.5%. It can be seen that the composition range that simultaneously satisfies ~ 4.5 weight shows significant improvement compared to the composition range that does not.

Claims (12)

  1. 몰리브데늄(Mo) 2.0중량% ~ 10.0중량%,Molybdenum (Mo) 2.0% by weight ~ 10.0% by weight,
    철(Fe) 0.5중량% ~ 6.5중량%,Iron (Fe) 0.5% by weight ~ 6.5% by weight,
    나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 타이타늄 합금.Titanium alloy consisting of the remaining titanium (Ti) and inevitable impurities.
  2. 제 1 항에 있어서,According to claim 1,
    상기 몰리브데늄(Mo)의 함량은 3.0중량% ~ 9.5중량%인, 타이타늄 합금.A titanium alloy in which the content of molybdenum (Mo) is 3.0% by weight to 9.5% by weight.
  3. 제 1 항에 있어서,According to claim 1,
    상기 몰리브데늄(Mo)의 함량은 3.2 중량% ~ 7.0중량%인, 타이타늄 합금.A titanium alloy in which the content of molybdenum (Mo) is 3.2% by weight to 7.0% by weight.
  4. 제 1 항에 있어서,According to claim 1,
    상기 철(Fe)의 함량은 1.0 중량% ~ 5.5 중량%인, 타이타늄 합금.A titanium alloy wherein the iron (Fe) content is 1.0% by weight to 5.5% by weight.
  5. 제 1 항에 있어서,According to claim 1,
    상기 철(Fe)의 함량은 1.5중량% ~ 4.5 중량인, 타이타늄 합금.A titanium alloy wherein the iron (Fe) content is 1.5% by weight to 4.5% by weight.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 타이타늄 합금의 인장강도는 900MPa 이상이고, 연신율이 1% 이상인, 타이타늄 합금.The titanium alloy has a tensile strength of 900 MPa or more and an elongation of 1% or more.
  7. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 타이타늄 합금의 인장강도는 1100MPa 이상이고, 연신율이 4% 이상인, 타이타늄 합금.The titanium alloy has a tensile strength of 1100 MPa or more and an elongation of 4% or more.
  8. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 타이타늄 합금의 미세조직은 β상으로 이루어진 기본조직과, 소량의 α상, α'상, α"상 또는 ω상을 포함하는, 타이타늄 합금.The microstructure of the titanium alloy includes a basic structure consisting of a β phase and a small amount of α phase, α' phase, α" phase, or ω phase.
  9. 몰리브데늄(Mo) 2.0중량% 이상 10.0중량% 이하, 철(Fe) 0.5중량% 이상 6.5중량% 이하, 나머지 타이타늄(Ti)과 불가피한 불순물로 이루어지는 타이타늄 합금의 제조방법으로,A method for producing a titanium alloy consisting of molybdenum (Mo) 2.0% by weight and 10.0% by weight, iron (Fe) 0.5% by weight and 6.5% by weight, the remainder titanium (Ti) and inevitable impurities,
    원료를 용해하여 상기 합금 조성의 용탕을 만드는 단계와,melting raw materials to produce molten metal of the alloy composition;
    상기 용탕을 주조하여 잉곳을 만드는 단계와,Making an ingot by casting the molten metal,
    상기 잉곳을 고온에서 열처리하는 단계와,heat treating the ingot at high temperature;
    상기 열처리된 소재를 소정 형상의 성형품으로 공형압연하는 단계를 포함하는, 타이타늄 합금의 제조방법.A method of producing a titanium alloy, comprising the step of ball rolling the heat-treated material into a molded product of a predetermined shape.
  10. 제 9 항에 있어서,According to clause 9,
    상기 원료를 용해하는 공정은 진공아크 재용해방법(VAR)으로 이루어지는, 타이타늄 합금의 제조방법.A method of manufacturing a titanium alloy in which the process of dissolving the raw material is performed by a vacuum arc remelting method (VAR).
  11. 제 9 항에 있어서,According to clause 9,
    상기 열처리 공정은 750℃ ~ 950℃에서 30분 ~ 4시간 이루어지는, 타이타늄 합금의 제조방법.A method of manufacturing a titanium alloy, wherein the heat treatment process is performed at 750°C to 950°C for 30 minutes to 4 hours.
  12. 제 9 항에 있어서,According to clause 9,
    상기 공형압연은 상온 또는 500℃ 이하에서, 1 ~ 10패스를 실시하는, 타이타늄 합금의 제조방법.A method of manufacturing a titanium alloy in which the form rolling is performed in 1 to 10 passes at room temperature or below 500°C.
PCT/KR2023/009396 2022-10-21 2023-07-04 Titanium alloy and manufacturing method therefor WO2024085348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0136711 2022-10-21
KR1020220136711A KR20240056276A (en) 2022-10-21 2022-10-21 Titanium alloy and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2024085348A1 true WO2024085348A1 (en) 2024-04-25

Family

ID=90738024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009396 WO2024085348A1 (en) 2022-10-21 2023-07-04 Titanium alloy and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20240056276A (en)
WO (1) WO2024085348A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120065780A (en) * 2010-12-13 2012-06-21 한국기계연구원 The titanium alloy improved mechanical properties and the manufacturing method thereof
WO2012115187A1 (en) * 2011-02-23 2012-08-30 独立行政法人物質・材料研究機構 Ti-mo alloy and method for producing same
KR20120115497A (en) * 2010-01-22 2012-10-18 에이티아이 프로퍼티즈, 인코퍼레이티드 Production of high strength titanium alloys
KR20130134014A (en) * 2012-05-30 2013-12-10 한국기계연구원 Beta type titanium alloy with low elastic modulus and high strength

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185447B (en) 2011-05-09 2012-11-21 佛山市顺德区泛仕达机电有限公司 Novel inner rotor permanent magnet motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115497A (en) * 2010-01-22 2012-10-18 에이티아이 프로퍼티즈, 인코퍼레이티드 Production of high strength titanium alloys
KR20120065780A (en) * 2010-12-13 2012-06-21 한국기계연구원 The titanium alloy improved mechanical properties and the manufacturing method thereof
WO2012115187A1 (en) * 2011-02-23 2012-08-30 独立行政法人物質・材料研究機構 Ti-mo alloy and method for producing same
KR20130134014A (en) * 2012-05-30 2013-12-10 한국기계연구원 Beta type titanium alloy with low elastic modulus and high strength

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYO-WOON HWANG: "Effect of Molybdenum Content on Microstructure and Mechanical Properties of Ti-Mo-Fe Alloys by Powder Metallurgy", APPLIED SCIENCES, MDPI SWITZERLAND, vol. 12, no. 14, 19 July 2022 (2022-07-19), pages 7257, XP093160758, ISSN: 2076-3417, DOI: 10.3390/app12147257 *
YONGJAE LEE, JI-HWAN PARK, LEE DONG-GEUN: "황효운 등. Fe 함량에 따른 Ti-Mo-Fe 분말합금의 미세조직 및 기계적 특성 변화. 한국분말야금학회지.Effect of Iron Content on Microstructure and Mechanical Properties of Ti-Mo-Fe P/M Alloys. Journal of Korean Powder Metallurgy Institute.)", JOURNAL OF KOREAN POWDER METALLURGY INSTITUTE., vol. 29, no. 4, 08-2022, pages 325 - 331 *

Also Published As

Publication number Publication date
KR20240056276A (en) 2024-04-30

Similar Documents

Publication Publication Date Title
US7722805B2 (en) Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
Fujii Strengthening of α+ β titanium alloys by thermomechanical processing
WO2013180338A1 (en) Beta titanium alloy with low elasticity and high strength
Sakaguchi et al. Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr
US20130209824A1 (en) Titanium alloys
US20060045789A1 (en) High strength low cost titanium and method for making same
CN111020295B (en) High-performance biodegradable Zn-Cu-Li-X alloy and preparation and application methods thereof
CN107460370A (en) A kind of low-cost high-strength high-ductility metastable β Titanium-alloy and preparation method thereof
EP1786943A2 (en) Near-beta titanium alloy heat treated casting
CN1902331A (en) Beta-titanium alloy, method for producing a hot-rolled product based on said alloy and the uses thereof
KR101835408B1 (en) Titanium alloy with excellent mechanical property and method for manufacturing the same
WO2014073754A1 (en) Ultrahigh strength and ultralow elastic modulus titanium alloy showing linear elastic deformation behavior
CN108374105A (en) Wearable device titanium alloy and preparation method thereof
US20070102073A1 (en) Near-beta titanium alloy heat treated casting
JP3907177B2 (en) Fe-based shape memory alloy and manufacturing method thereof
WO2024085348A1 (en) Titanium alloy and manufacturing method therefor
CN111020342B (en) Method for preparing antibacterial titanium alloy through deformation strengthening
CN108456805A (en) A kind of beta titanium alloy and its manufacturing method for being implanted into bone
WO2023128355A1 (en) High-strength, high-formability titanium alloy using molybdenum and ferrochrome and method for manufacturing same
CN112662914A (en) Low-elastic-modulus high-plasticity titanium alloy and preparation method and application thereof
WO2023128356A1 (en) Method for manufacturing high-strength titanium alloy by using ferrochrome, and high-strength titanium alloy
WO2019240395A1 (en) Titanium alloy having low modulus of elasticity and high yield strength
CN112877566A (en) Low-clearance medical titanium alloy TC4ELI and preparation method thereof
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JPH02129331A (en) Beta-type titanium alloy having excellent cold workability