WO2017164601A1 - High-entropy alloy for ultra-low temperature - Google Patents

High-entropy alloy for ultra-low temperature Download PDF

Info

Publication number
WO2017164601A1
WO2017164601A1 PCT/KR2017/002988 KR2017002988W WO2017164601A1 WO 2017164601 A1 WO2017164601 A1 WO 2017164601A1 KR 2017002988 W KR2017002988 W KR 2017002988W WO 2017164601 A1 WO2017164601 A1 WO 2017164601A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
high entropy
alloy
content
phase
Prior art date
Application number
PCT/KR2017/002988
Other languages
French (fr)
Korean (ko)
Inventor
이병주
이성학
김형섭
나영상
홍순익
최원미
전창우
정승문
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170032629A external-priority patent/KR101888299B1/en
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US16/084,581 priority Critical patent/US11168386B2/en
Publication of WO2017164601A1 publication Critical patent/WO2017164601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to a cryogenic high entropy alloy designed using a thermodynamic calculation in a computer simulation technique, an alloy composition having a single-phase microstructure composed of Face Centered Cubic (FCC) at 700 ° C. or higher through a thermodynamic calculation.
  • the present invention relates to a high entropy alloy having excellent cryogenic tensile strength and elongation, by setting a region and allowing the microstructure of the FCC single phase at normal temperature and cryogenic temperature to be quenched after heat treatment at 700 ° C. or higher.
  • High Entropy Alloy (HEA) alloy is a five-element or more multi-element alloy system. Despite being a high alloy system, the high entropy alloy has a high mixed entropy so that no intermetallic compound is formed and the ductility is excellent.
  • Body Centered Cubic (BCC) is a new concept of new material consisting of a single phase.
  • High entropy alloys having a face-centered cubic lattice (FCC) structure not only have excellent fracture toughness at cryogenic temperatures, but also have excellent corrosion resistance, high mechanical strength, and high mechanical properties.
  • Republic of Korea Patent Publication No. 2016-0014130 is a high entropy alloy that can be used as a heat-resistant material Ti 16 . 6 Zr 16 . 6 Hf 16 . 6 Ni 16 . 6 Cu 16 .
  • High entropy alloys such as 6 Co 17 , Ti 16.6 Zr 16.6 Hf 16.6 Ni 16.6 Cu 16.6 Nb 17 have been proposed, and Japanese Laid-Open Patent Publication No. 2002-173732 discloses Cu-Ti-V-Fe-Ni-Zr as the main element. High entropy alloys with high hardness and corrosion resistance are proposed.
  • An object of the present invention is to provide a high entropy alloy having an FCC single phase structure at room temperature and cryogenic temperature, and having low temperature tensile strength and low temperature stretching characteristics, which can be suitably used for cryogenic use.
  • One aspect of the present invention for solving the above problems Co: 3-12 atomic%, Cr: 3-18 atomic%, Fe: 3-50 atomic%, Mn: 3-20 atomic%, Ni: 17-45 Atomic%, V: 3 to 12 atomic% and inevitable impurities, the ratio of the V content to the Ni content (V / Ni) is 0.5 or less, the sum of the V content and Co content is 22 atomic% or less To provide a high entropy alloy.
  • the alloy having such a composition consists of a single phase of FCC without formation of an intermediate phase such as a sigma phase, and exhibits better tensile strength and elongation at cryogenic temperature (77K) than at room temperature (298K).
  • the new high entropy alloys provided by the present invention have high tensile strength and elongation at cryogenic temperatures rather than at room temperature, and thus have high utility as structural materials used in extreme environments such as cryogenic environments.
  • 1 is a phase at 700 ° C. according to the molar fractions of iron (Fe), manganese (Mn) and nickel (Ni) of an alloy comprising 10 atomic percent cobalt (Co) and 15 atomic percent chromium (Cr). Indicates equilibrium information.
  • FIG. 2 shows a change in equilibrium with temperature for an alloy having a composition marked with a star in FIG. 1.
  • FIG. 5 shows a change in equilibrium with temperature of an alloy having a composition indicated by an empty star ( ⁇ ) in FIG.
  • FIG. 6 shows the remaining iron (Fe), manganese (Mn) and nickel (Ni) moles of an alloy containing 10 atomic% cobalt (Co), 10 atomic% chromium (Cr) and 10 atomic% vanadium (V). Phase equilibrium information at 700 ° C. according to the fraction is shown.
  • FIG. 7 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG.
  • FIG. 9 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG. 8.
  • FIG. 11 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG.
  • FIG. 12 shows a binary alloy-based state diagram composed of two elements of six elements of cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
  • FIG 13 is an EBSD inverse pole figure (IPF) map photograph of a high entropy alloy according to the present invention.
  • 15 is an EBSD phase map photograph of a high entropy alloy according to the present invention.
  • Figure 16 shows the results of room temperature (298K) tensile test of the high entropy alloy according to the present invention.
  • Figure 17 shows the cryogenic (77K) tensile test results of the high entropy alloy according to the present invention.
  • FIG. 18 is a photograph of an EBSD inverse pole figure (IPF) map after performing a heat treatment in which a high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours.
  • IPF EBSD inverse pole figure
  • 19 is an X-ray diffraction analysis result after performing a heat treatment in which the high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours.
  • 20 is an EBSD phase map photograph after performing a heat treatment in which a high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours.
  • Figure 1 includes 10 atomic percent cobalt (Co) and 15 atomic percent chromium (Cr), 700 °C according to the mole fraction of iron (Fe), manganese (Mn), nickel (Ni), the remaining components of the alloy Represents phase equilibrium information in.
  • Zones 1 and 2 represent zones that maintain the FCC single phase at 700 ° C. or lower, while zones that maintain two-phase or three-phase equilibrium are indicated in the remaining zone. Alloys having a composition belonging to region 2 of FIG. 1 maintain the FCC single phase from melting temperature up to 700 ° C. to 500 ° C. FIG. The composition at the two-phase equilibrium region and the boundary maintains the FCC single phase up to 700 ° C.
  • the line between the zone 1 and zone 2 is a line representing the boundary between the FCC single-phase zone and the two-phase equilibrium zone calculated at 500 ° C. Alloys having a composition belonging to zone 1 of FIG. Maintain FCC single phase. The composition located at the boundaries of zones 1 and 2 computationally maintains the FCC single phase up to 500 ° C.
  • FIG. 2 shows a change in equilibrium with temperature for an alloy having a composition marked with a star in FIG. 1. Since the alloy with the composition indicated by the star is a composition located at the boundary between the zones 1 and 2 in FIG. 1, it forms the FCC single phase region from the melting temperature to 500 ° C.
  • FIG. 4 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) of FIG. 3 and an empty star ( ⁇ ) of FIG.
  • FIG. 6 shows alloys containing 10 atomic% cobalt (Co), 10 atomic% chromium (Cr), and 10 atomic% vanadium (V), wherein the remaining alloy components are iron (Fe), manganese (Mn), Phase equilibrium information at 700 ° C. according to the nickel (Ni) mole fraction is shown.
  • FIG. 7 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG.
  • FIG. 9 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG. 8.
  • 10 shows the remainder of an alloy comprising 5 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 10 atomic% vanadium (V), iron (Fe), manganese (Mn), nickel (Ni). Phase equilibrium information at 700 ° C. according to mole fraction is shown.
  • 10 means cobalt (Co) of 5 atomic%, chromium (Cr) of 15 atomic%, vanadium (V) of 10 atomic% and iron (Fe) of 0-46 atomic%, 0-32 atomic% Manganese (Mn), alloys of less than 6 members, including 24 to 70 atomic percent nickel (Ni) all maintain the FCC single phase from the melting temperature up to 700 °C.
  • FIG. 11 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star ( ⁇ ) in FIG.
  • FIG. 12 shows a binary alloy-based state diagram composed of two elements of six elements of cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
  • Figure 12 shows the FCC single phase region and the sigma phase region that degrades mechanical properties.
  • ten binary alloy systems containing no vanadium (V) have a small sigma phase region and a broad FCC single phase region.
  • the sigma phase is distributed relatively widely in five binary alloy systems including vanadium (V).
  • the sigma phase is distributed up to a high temperature where the liquid phase is stable.
  • the sigma phase in the nickel (Ni) -vanadium (V) alloy-based state diagram mainly appears in the section where the ratio (V / Ni) of the vanadium (V) content to the nickel (Ni) content is high. In the section where the ratio of vanadium (V) to V content is low, a wide FCC single phase section appears.
  • the present inventors lowered the ratio of V content to Ni content (V / Ni), and the content of cobalt (Co) and vanadium (V) in which a sigma phase appeared in the center of the state diagram.
  • a high entropy alloy consisting of FCC single phase was attempted.
  • the present invention is a high entropy alloy consisting of FCC single phase and excellent cryogenic properties, Co: 3-12 atomic%, Cr: 3-18 atomic%, Fe: 3-50 atomic%, Mn: 3-20 atomic%, Ni : 17 to 45 atomic%, V: 3 to 12 atomic% and inevitable impurities, the ratio of the V content to the Ni content (V / Ni) is 0.5 or less, the sum of the V content and Co content is It has a composition which is 22 atomic% or less.
  • the phase becomes unstable, and if it exceeds 12 atomic%, the manufacturing cost and the possibility of forming an intermediate phase increase, so 3 to 12 atomic% is preferable, and the phase In view of the stability, mechanical properties and manufacturing cost of the more preferable Co content is 7 to 12 atomic%.
  • the content of Cr is less than 3 atomic%, it adversely affects the properties of the alloy, such as corrosion resistance, and when the content of more than 18 atomic% increases the possibility of forming an intermediate phase, 3 to 18 atomic% is preferable, and the phase In view of the stability and mechanical properties of the more preferable content of Cr is 7 to 18 atomic%.
  • the Mn content is more preferably 10 to 20 atomic% in terms of phase stability and mechanical properties.
  • Ni is less than 17 atomic%, the phase becomes unstable, and if the content of more than 45 atomic% becomes disadvantageous in terms of manufacturing cost, 17 to 45 atomic% is preferred, and phase stability and In terms of mechanical properties, more preferable Ni content is 25 to 45 atomic%.
  • V When the content of V is less than 3 atomic%, it is difficult to obtain a reinforcing effect, and when the content of V is higher than 12 atomic%, the possibility of forming an intermediate phase is increased, and 3 to 12 atomic% is preferable, and the phase stability, mechanical properties and In view of the production cost, a more preferable content of V is 5 to 12 atomic%.
  • the sigma phase (sigma phase) may be generated, it may not be able to implement the FCC single-phase structure, so that the 0.5 or less It is preferable.
  • the sum of the content of Co and V is It is preferable to be 22 atomic% or less.
  • composition range of the alloy it is difficult to obtain a solid solution having an FCC single phase when it is out of each composition constituting the alloy.
  • the sum of Fe, Mn, and Ni is preferably less than 70 atomic%.
  • the sum of Fe and Mn is preferably less than 50 atom%.
  • the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 40% or more at cryogenic temperatures (77 K).
  • the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 60% or more at cryogenic temperatures (77 K).
  • the high entropy alloy may have a tensile strength of 700 MPa or more and an elongation of 40% or more at room temperature (298 K).
  • the high entropy alloy may have a tensile strength of 700 MPa or more and an elongation of 60% or more at room temperature (298 K).
  • Table 1 below shows the five compositions selected for the alloy preparation of the regions calculated through the thermodynamic review described above.
  • the ingot prepared as described above was homogenized in the FCC single phase region by maintaining at 1000 ° C. for two hours, and then the homogenized ingot was pickled to remove impurities and oxide layers from the surface.
  • the pickled ingot was cold rolled to a reduction ratio of 75% to prepare a cold rolled sheet.
  • the cold rolled sheet was heat-treated (800 ° C., 2 hours) in the FCC single phase region to remove residual stress, completely recrystallize the crystal grains, and then water cooled.
  • Examples 4 and 5 of Table 1 did not evaluate the microstructure and mechanical properties, but as confirmed in the accompanying Figures 9 and 11, after the heat treatment in the FCC single-phase region (800 °C or more) after quenching (for example In the case of water cooling), it can be seen that a composition capable of forming an FCC single phase at room temperature (298K) and cryogenic temperature (77K).
  • microstructure of the high entropy alloy prepared as described above was analyzed using a scanning electron microscope, X-ray diffractometer and EBSD.
  • FIG. 13 is an EBSD inverse pole figure (IPF) map photograph of three high entropy alloys prepared according to Examples 1 to 3.
  • FIG. Grain size can be measured from the EBSD IPF map.
  • the two alloys, which have undergone 75% cold rolling and recrystallization heat treatment, have grain sizes ranging from 3.6 to 7.1 ⁇ m.
  • the crystalline phases have a polycrystalline form and their sizes are relatively uniform regardless of the alloy composition.
  • FIG. 14 is an X-ray diffraction analysis of three high entropy alloys prepared according to Examples 1 to 3.
  • FIG. All three alloys show the same peak, and the analysis shows that the peaks correspond to the FCC structure.
  • FIG. 15 is an EBSD phase map photograph of three high entropy alloys prepared according to Examples 1 to 3.
  • FIG. The EBSD phase map displays each phase in a different color when two or more different phases are in the microstructure. All three alloys are marked with the same color, which means that the alloy's microstructure consists of a single phase FCC.
  • the high entropy alloys prepared according to Examples 1 to 3 were evaluated for tensile properties at room temperature (298K) through a tensile tester, and FIG. 16 and Table 2 show the results.
  • Example 1 Room temperature (298K) YS (MPa) UTS (MPa) El. (%)
  • Example 1 486 801 60.0
  • Example 2 479 801 44.1
  • Example 3 489 775 40.7
  • the yield strength at room temperature (298K) of the high entropy alloys according to Examples 1 to 3 of the present invention is excellent at 486 to 489 MPa, tensile strength of 775 to 801 MPa, and elongation of 40.7 to 60%. Tensile properties are shown.
  • the tensile properties of the high entropy alloys according to Examples 1 to 3 of the present invention at cryogenic temperatures (77K) have a yield strength of 641 to 671 MPa, a tensile strength of 1028 to 1168 MPa, and an elongation of 44.5 to 81.6. % Showed better tensile properties than at room temperature.
  • alloys it is known that a sigma phase is produced that degrades the mechanical properties of the high entropy alloy depending on the heat treatment conditions, such as 24 hours heat treatment at 1000 ° C.
  • FIG. 18 is a photograph of an EBSD inverse pole figure (IPF) map after performing a heat treatment in which the high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours
  • FIG. 19 shows a high entropy alloy according to the present invention at 24 ° C. 24.
  • X-ray diffraction analysis results after performing a heat treatment for a period of time
  • Figure 20 is a photograph of the EBSD phase map after performing a heat treatment for heating the high entropy alloy according to the present invention at 1000 °C for 24 hours.
  • the size of the crystal grains is very large by the heat treatment, but as shown in Fig. 19, no formation of a second phase such as a sigma phase is observed. That is, it can be said that the high entropy alloy prepared according to the embodiment of the present invention also has excellent stability according to heat treatment conditions compared to the conventionally known high entropy alloy.

Abstract

The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having a FCC single-phase microstructure at 700°C or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Co: 3-12 at%; Cr: 3-18 at%; Fe: 3-50 at%; Mn: 3-20 at%; Ni: 17-45 at%; V: 3-12 at%; and inevitable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less, and the sum of the V content and the Co content is 22 at% or less.

Description

극저온용 고 엔트로피 합금Cryogenic High Entropy Alloys
본 발명은 전산모사 기법 중 열역학 계산을 이용하여 설계된 극저온용 고 엔트로피 합금에 관한 것으로, 열역학 계산을 통해 700℃ 이상에서 면심입방격자(Face Centered Cubic: FCC)로 이루어진 단상의 미세조직을 가지는 합금 조성 영역을 설정하고, 700℃ 이상에서 열처리 후 급랭할 때에 상온 및 극저온에서 FCC 단상의 미세조직을 가질 수 있도록 함으로써, 특히 극저온 인장 강도 및 연신율이 우수한 고 엔트로피 합금에 관한 것이다.The present invention relates to a cryogenic high entropy alloy designed using a thermodynamic calculation in a computer simulation technique, an alloy composition having a single-phase microstructure composed of Face Centered Cubic (FCC) at 700 ° C. or higher through a thermodynamic calculation. In particular, the present invention relates to a high entropy alloy having excellent cryogenic tensile strength and elongation, by setting a region and allowing the microstructure of the FCC single phase at normal temperature and cryogenic temperature to be quenched after heat treatment at 700 ° C. or higher.
고 엔트로피 (High Entropy Alloy:HEA) 합금은 5원계 이상의 다원소 합금계로써, 고합금계임에도 불구하고 혼합엔트로피가 높아 금속간 화합물이 형성되지 않고 연성이 우수한 면심입방격자(Face Centered Cubic: FCC) 또는 체심입방격자(Body Centered Cubic: BCC) 단상(single phase)으로 구성된 새로운 개념의 신물질이다.High Entropy Alloy (HEA) alloy is a five-element or more multi-element alloy system. Despite being a high alloy system, the high entropy alloy has a high mixed entropy so that no intermetallic compound is formed and the ductility is excellent. Body Centered Cubic (BCC) is a new concept of new material consisting of a single phase.
주 원소 없이 5개 이상의 원소를 비슷한 비율로 합금화했을 때 중간상 없이 단상이 얻어진다는 것이 2004년 High Entropy Alloy(HEA)라는 이름으로 학계에 발표되었고, 최근 급격한 관심으로 관련연구가 폭발적으로 증가하는 추세이다.When alloying five or more elements in a similar proportion without a main element, a single phase was obtained in 2004 under the name of High Entropy Alloy (HEA). .
이 특별한 원자 배열구조가 나타나는 이유나 그 특성은 명확하지 않지만 이러한 구조에서 나타나는 우수한 화학적, 기계적 특성이 보고되고 있고, FCC 단상 CoCrFeMnNi 고 엔트로피 합금은 저온에서 나노 단위의 쌍정(twin)이 발현하여 높은 항복 및 인장강도를 가지며 지금까지 보고된 재료와 비교를 했을 때 가장 높은 인성을 가진 것으로 보고되었다.The reasons for this particular atomic arrangement and its nature are not clear, but the excellent chemical and mechanical properties of these structures have been reported, and FCC single-phase CoCrFeMnNi high entropy alloys exhibit nano yield twins at low temperatures resulting in high yield and It has a tensile strength and is reported to have the highest toughness compared to the materials reported so far.
면심입방격자(FCC) 구조를 가지는 고 엔트로피 합금은 극저온에서 파괴인성이 뛰어날 뿐만 아니라 내식성이 우수하고 고강도, 고연성의 우수한 기계적 물성을 지니고 있어 극저온 재료로써 개발이 촉진되고 있다.High entropy alloys having a face-centered cubic lattice (FCC) structure not only have excellent fracture toughness at cryogenic temperatures, but also have excellent corrosion resistance, high mechanical strength, and high mechanical properties.
한편, 대한민국 공개특허공보 제2016-0014130호에는 내열 재료로 사용될 수 있는 고 엔트로피 합금으로 Ti16 . 6Zr16 . 6Hf16 . 6Ni16 . 6Cu16 . 6Co17, Ti16.6Zr16.6Hf16.6Ni16.6Cu16.6Nb17과 같은 고 엔트로피 합금이 제시되고 있고, 일본 공개특허공보 제2002-173732호에는 Cu-Ti-V-Fe-Ni-Zr을 주원소로 하며 고경도와 내식성이 우수한 고 엔트로피 합금이 제시되어 있다.On the other hand, Republic of Korea Patent Publication No. 2016-0014130 is a high entropy alloy that can be used as a heat-resistant material Ti 16 . 6 Zr 16 . 6 Hf 16 . 6 Ni 16 . 6 Cu 16 . High entropy alloys such as 6 Co 17 , Ti 16.6 Zr 16.6 Hf 16.6 Ni 16.6 Cu 16.6 Nb 17 have been proposed, and Japanese Laid-Open Patent Publication No. 2002-173732 discloses Cu-Ti-V-Fe-Ni-Zr as the main element. High entropy alloys with high hardness and corrosion resistance are proposed.
이와 같이 다양한 고 엔트로피 합금이 개발되고 있으며, 고 엔트로피 합금의 적용 영역을 확장하기 위해서는 제조비용을 낮추며 다양한 특성을 가지는 고 엔트로피 합금의 개발이 요구된다.As described above, various high entropy alloys are being developed, and in order to expand the application area of the high entropy alloy, it is required to develop a high entropy alloy having various characteristics while lowering manufacturing costs.
본 발명은 상온 및 극저온에서 FCC 단상 조직을 가지며 저온 인장강도와 저온 연신특성을 구비하여 극저온용에 적합하게 사용될 수 있는 고 엔트로피 합금을 제공하는 것을 해결하고자 하는 과제로 한다.An object of the present invention is to provide a high entropy alloy having an FCC single phase structure at room temperature and cryogenic temperature, and having low temperature tensile strength and low temperature stretching characteristics, which can be suitably used for cryogenic use.
상기 과제를 해결하기 위한 본 발명의 일 측면은, Co: 3~12원자%, Cr: 3~18원자%, Fe: 3~50원자%, Mn: 3~20원자%, Ni: 17~45원자%, V: 3~12원자%와, 불가피한 불순물을 포함하고, 상기 Ni 함량에 대한 V 함량의 비(V/Ni)는 0.5 이하이고, 상기 V 함량과 Co 함량의 합은 22원자% 이하인, 고엔트로피 합금을 제공하는 것이다.One aspect of the present invention for solving the above problems, Co: 3-12 atomic%, Cr: 3-18 atomic%, Fe: 3-50 atomic%, Mn: 3-20 atomic%, Ni: 17-45 Atomic%, V: 3 to 12 atomic% and inevitable impurities, the ratio of the V content to the Ni content (V / Ni) is 0.5 or less, the sum of the V content and Co content is 22 atomic% or less To provide a high entropy alloy.
이와 같은 조성을 갖는 합금은, 시그마 상과 같은 중간상의 생성 없이 FCC의 단상으로 이루어지며, 상온(298K)에 비해 극저온(77K)에서 더 우수한 인장강도와 연신율을 나타낸다.The alloy having such a composition consists of a single phase of FCC without formation of an intermediate phase such as a sigma phase, and exhibits better tensile strength and elongation at cryogenic temperature (77K) than at room temperature (298K).
본 발명에 의해 제공되는 새로운 고 엔트로피 합금은 상온에서 보다 오히려 극저온에서 인장강도와 연신율이 향상되므로, 특히 극저온 환경과 같은 극한환경에 사용되는 구조용 재료로써 활용 가치가 높다.The new high entropy alloys provided by the present invention have high tensile strength and elongation at cryogenic temperatures rather than at room temperature, and thus have high utility as structural materials used in extreme environments such as cryogenic environments.
또한, 본 발명에 따른 고엔트로피 합금은, 최인접 원자간 거리가 다른 V을 첨가함으로써 기존 소재보다 강화 효과를 쉽게 얻을 수 있다.In addition, in the high entropy alloy according to the present invention, reinforcing effects can be easily obtained than conventional materials by adding V having different nearest interatomic distances.
또한, 고가의 Co 함량을 줄이고 V를 Ni와 Co 함량에 맞추어 적절하게 첨가함으로써, 종래에 비해 저비용으로 제조할 수 있을 뿐 아니라, 시그마 상(sigma phase)의 생성을 억제하고 FCC 단상 조직을 구현하여, 엄격하게 제어된 열처리 공정을 수행하지 않아도 종래의 고 엔트로피 합금에 비해 동등 이상의 기계적 특성을 얻을 수 있게 된다.In addition, by reducing the expensive Co content and appropriately adding V in accordance with the Ni and Co content, not only can be manufactured at a lower cost than in the related art, but also suppresses the generation of sigma phase and implements FCC single phase structure. It is possible to obtain mechanical properties equal to or higher than those of conventional high entropy alloys without performing a strictly controlled heat treatment process.
도 1은 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.1 is a phase at 700 ° C. according to the molar fractions of iron (Fe), manganese (Mn) and nickel (Ni) of an alloy comprising 10 atomic percent cobalt (Co) and 15 atomic percent chromium (Cr). Indicates equilibrium information.
도 2는 도 1에서 별(★)로 표시된 조성을 가지는 합금에 대해, 온도에 따른 평형상의 변화를 나타낸다.FIG. 2 shows a change in equilibrium with temperature for an alloy having a composition marked with a star in FIG. 1.
도 3은 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.3 shows the remaining iron (Fe), manganese (Mn) and nickel (Ni) moles of an alloy containing 10 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 10 atomic% vanadium (V). Phase equilibrium information at 700 ° C. according to the fraction is shown.
도 4는 도 3의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.4 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 5는 도 3의 빈 별(☆)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 5 shows a change in equilibrium with temperature of an alloy having a composition indicated by an empty star (☆) in FIG.
도 6은 10원자%의 코발트(Co)와 10원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.FIG. 6 shows the remaining iron (Fe), manganese (Mn) and nickel (Ni) moles of an alloy containing 10 atomic% cobalt (Co), 10 atomic% chromium (Cr) and 10 atomic% vanadium (V). Phase equilibrium information at 700 ° C. according to the fraction is shown.
도 7은 도 6의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 7 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 8은 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 5원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.8 shows the remaining iron (Fe), manganese (Mn) and nickel (Ni) moles of an alloy containing 10 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 5 atomic% vanadium (V). Phase equilibrium information at 700 ° C. according to the fraction is shown.
도 9는 도 8의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 9 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG. 8.
도 10은 5원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.10 shows the remaining iron (Fe), manganese (Mn) and nickel (Ni) moles of an alloy containing 5 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 10 atomic% vanadium (V). Phase equilibrium information at 700 ° C. according to the fraction is shown.
도 11은 도 10의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 11 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 12는 코발트(Co), 크롬(Cr), 철(Fe), 망간(Mn), 니켈(Ni), 바나듐(V) 6 개의 원소 중 두 개 원소로 구성된 2원 합금계 상태도를 나타낸다.FIG. 12 shows a binary alloy-based state diagram composed of two elements of six elements of cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V).
도 13은 본 발명에 따른 고 엔트로피 합금의 EBSD IPF(inverse pole figure) map 사진이다.13 is an EBSD inverse pole figure (IPF) map photograph of a high entropy alloy according to the present invention.
도 14는 본 발명에 따른 고 엔트로피 합금의 X-선 회절분석 결과이다.14 is an X-ray diffraction analysis of the high entropy alloy according to the present invention.
도 15는 본 발명에 따른 고 엔트로피 합금의 EBSD phase map 사진이다.15 is an EBSD phase map photograph of a high entropy alloy according to the present invention.
도 16은 본 발명에 따른 고 엔트로피 합금의 상온(298K) 인장시험 결과를 나타낸다.Figure 16 shows the results of room temperature (298K) tensile test of the high entropy alloy according to the present invention.
도 17은 본 발명에 따른 고 엔트로피 합금의 극저온(77K) 인장시험 결과를 나타낸다.Figure 17 shows the cryogenic (77K) tensile test results of the high entropy alloy according to the present invention.
도 18은 본 발명에 따른 고 엔트로피 합금을 1000℃에서 24시간 동안 가열한 열처리를 수행한 후의 EBSD IPF(inverse pole figure) map 사진이다.18 is a photograph of an EBSD inverse pole figure (IPF) map after performing a heat treatment in which a high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours.
도 19는 본 발명에 따른 고 엔트로피 합금을 1000℃에서 24시간 동안 가열한 열처리를 수행한 후의 X-선 회절분석 결과이다.19 is an X-ray diffraction analysis result after performing a heat treatment in which the high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours.
도 20은 본 발명에 따른 고 엔트로피 합금을 1000℃에서 24시간 동안 가열한 열처리를 수행한 후의 EBSD phase map 사진이다.20 is an EBSD phase map photograph after performing a heat treatment in which a high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
도 1은 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)을 포함하고, 합금의 나머지 성분인 철(Fe), 망간(Mn), 니켈(Ni)의 몰 분율에 따른 700℃에서의 상평형 정보를 나타낸다.Figure 1 includes 10 atomic percent cobalt (Co) and 15 atomic percent chromium (Cr), 700 ℃ according to the mole fraction of iron (Fe), manganese (Mn), nickel (Ni), the remaining components of the alloy Represents phase equilibrium information in.
영역 1과 2는 700℃ 이하에서 FCC 단상을 유지하는 영역을 나타내고 나머지 영역에는 2상 또는 3상 평형을 유지하는 영역이 표시되어 있다. 도 1의 영역 2에 속하는 조성을 가지는 합금들은 용해 온도부터 700℃ 이하, 500℃까지 FCC 단상을 유지한다. 이때 2상 평형 영역과 경계 부분에 위치한 조성은 계산상으로 700℃까지 FCC 단상을 유지한다. Zones 1 and 2 represent zones that maintain the FCC single phase at 700 ° C. or lower, while zones that maintain two-phase or three-phase equilibrium are indicated in the remaining zone. Alloys having a composition belonging to region 2 of FIG. 1 maintain the FCC single phase from melting temperature up to 700 ° C. to 500 ° C. FIG. The composition at the two-phase equilibrium region and the boundary maintains the FCC single phase up to 700 ° C.
영역 1과 영역 2의 경계가 되는 선은 500℃에서 계산한, FCC 단상 영역과 2상 평형 영역의 경계를 나타내는 선으로, 도 1의 영역 1에 속하는 조성을 가지는 합금들은 용해 온도부터 500℃ 이하까지 FCC 단상을 유지한다. 영역 1과 2의 경계선에 위치한 조성은 계산상으로 500℃까지 FCC 단상을 유지한다.The line between the zone 1 and zone 2 is a line representing the boundary between the FCC single-phase zone and the two-phase equilibrium zone calculated at 500 ° C. Alloys having a composition belonging to zone 1 of FIG. Maintain FCC single phase. The composition located at the boundaries of zones 1 and 2 computationally maintains the FCC single phase up to 500 ° C.
도 2는 도 1에서 별(★)로 표시된 조성을 가지는 합금에 대해, 온도에 따른 평형상의 변화를 나타낸다. 별(★)로 표시된 조성을 가지는 합금은 도 1에서 영역 1과 2의 경계에 위치한 조성이기 때문에, 용해 온도부터 500℃까지 FCC 단상 영역을 이룬다.FIG. 2 shows a change in equilibrium with temperature for an alloy having a composition marked with a star in FIG. 1. Since the alloy with the composition indicated by the star is a composition located at the boundary between the zones 1 and 2 in FIG. 1, it forms the FCC single phase region from the melting temperature to 500 ° C.
도 1이 의미하는 바는 10원자%의 코발트(Co)와 15원자%의 크롬(Cr) 그리고 0~65원자%의 철(Fe), 0~45원자%의 망간(Mn), 5~75원자%의 니켈(Ni)을 포함하는 5원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.1 means that 10 atomic percent cobalt (Co) and 15 atomic percent chromium (Cr) and 0 to 65 atomic percent iron (Fe), 0 to 45 atomic percent manganese (Mn), 5 to 75 All five-membered and lower alloys containing atomic percent nickel (Ni) maintain the FCC single phase from the melting temperature up to 700 ° C.
도 3은 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금에 있어서 나머지 합금 성분인, 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.3 shows iron (Fe), manganese (Mn), which are the remaining alloy components in an alloy containing 10 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 10 atomic% vanadium (V); Phase equilibrium information at 700 ° C. according to the nickel (Ni) mole fraction is shown.
도 3이 의미하는 바는 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 10원자%의 바나듐(V) 그리고 0~47원자%의 철(Fe), 0~27원자%의 망간(Mn), 18~65원자%의 니켈(Ni)을 포함하는 6원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.3 means 10 atomic% cobalt (Co), 15 atomic% chromium (Cr), 10 atomic% vanadium (V) and 0-47 atomic% iron (Fe), 0-27 atomic% All alloys of six-membered or less, including manganese (Mn) and 18-65 atomic percent nickel (Ni), maintain the FCC single phase from the melting temperature up to 700 ° C.
도 4는 도 3의 별(★), 그리고 도 5는 도 3의 빈 별(☆)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.4 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) of FIG. 3 and an empty star (☆) of FIG.
도 6은 10원자%의 코발트(Co)와 10원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금에 있어서, 나머지 합금성분인 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.FIG. 6 shows alloys containing 10 atomic% cobalt (Co), 10 atomic% chromium (Cr), and 10 atomic% vanadium (V), wherein the remaining alloy components are iron (Fe), manganese (Mn), Phase equilibrium information at 700 ° C. according to the nickel (Ni) mole fraction is shown.
도 6이 의미하는 바는 10원자%의 코발트(Co)와 10원자%의 크롬(Cr)과 10원자%의 바나듐(V) 그리고 0~52원자%의 철(Fe), 0~42원자%의 망간(Mn), 17~70원자%의 니켈(Ni)을 포함하는 6원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.6 means 10 atomic% cobalt (Co), 10 atomic% chromium (Cr), 10 atomic% vanadium (V) and 0-52 atomic% iron (Fe), 0-42 atomic% All alloys of six-membered or less, including manganese (Mn) and 17-70 atomic percent nickel (Ni), maintain FCC single phase from melting temperature up to 700 ℃.
도 7은 도 6의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 7 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 8은 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 5원자%의 바나듐(V)을 포함하는 합금의 나머지 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.8 shows the remaining iron (Fe), manganese (Mn) and nickel (Ni) moles of an alloy containing 10 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 5 atomic% vanadium (V). Phase equilibrium information at 700 ° C. according to the fraction is shown.
도 8이 의미하는 바는 10원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 5원자%의 바나듐(V) 그리고 0~56원자%의 철(Fe), 0~42원자%의 망간(Mn), 9~70원자%의 니켈(Ni)을 포함하는 6원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.8 means that 10 atomic percent cobalt (Co), 15 atomic percent chromium (Cr), 5 atomic percent vanadium (V) and 0 to 56 atomic percent iron (Fe), 0 to 42 atomic percent All six-membered and lower alloys, including manganese (Mn) and 9 to 70 atomic percent nickel (Ni), maintain the FCC single phase from the melting temperature up to 700 ° C.
도 9는 도 8의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 9 illustrates a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG. 8.
도 10은 5원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 10원자%의 바나듐(V)을 포함하는 합금의 나머지, 철(Fe), 망간(Mn), 니켈(Ni) 몰 분율에 따른, 700℃에서의 상평형 정보를 나타낸다.10 shows the remainder of an alloy comprising 5 atomic% cobalt (Co), 15 atomic% chromium (Cr) and 10 atomic% vanadium (V), iron (Fe), manganese (Mn), nickel (Ni). Phase equilibrium information at 700 ° C. according to mole fraction is shown.
도 10이 의미하는 바는 5원자%의 코발트(Co)와 15원자%의 크롬(Cr)과 10원자%의 바나듐(V) 그리고 0~46원자%의 철(Fe), 0~32원자%의 망간(Mn), 24~70원자%의 니켈(Ni)을 포함하는 6원계 이하의 합금들은 모두 용해 온도부터 700℃ 이하까지 FCC 단상을 유지한다는 것이다.10 means cobalt (Co) of 5 atomic%, chromium (Cr) of 15 atomic%, vanadium (V) of 10 atomic% and iron (Fe) of 0-46 atomic%, 0-32 atomic% Manganese (Mn), alloys of less than 6 members, including 24 to 70 atomic percent nickel (Ni) all maintain the FCC single phase from the melting temperature up to 700 ℃.
도 11은 도 10의 별(★)로 표시된 조성을 가지는 합금의 온도에 따른 평형상의 변화를 나타낸다.FIG. 11 shows a change in equilibrium with temperature of an alloy having a composition indicated by a star (★) in FIG.
도 12는 코발트(Co), 크롬(Cr), 철(Fe), 망간(Mn), 니켈(Ni), 바나듐(V) 6 개의 원소 중 두 개 원소로 구성된 2원 합금계 상태도를 나타낸다. 도 12에는 FCC 단상영역과 기계적 특성을 열화시키는 시그마 상(sigma phase) 영역이 나타나 있다.FIG. 12 shows a binary alloy-based state diagram composed of two elements of six elements of cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and vanadium (V). Figure 12 shows the FCC single phase region and the sigma phase region that degrades mechanical properties.
도 12에 나타난 바와 같이, 바나듐(V)을 포함하지 않는 10개의 2원 합금계에는 시그마 상(sigma phase) 영역이 적고 FCC 단상영역이 넓게 분포하고 있다. 반면, 바나듐(V)을 포함하는 5개의 2원 합금계에는 시그마 상(sigma phase)이 비교적 넓게 분포한다. 특히 코발트(Co)-바나듐(V), 니켈(Ni)-바나듐(V) 2원계의 경우는 액상이 안정한 고온까지 시그마 상(sigma phase)이 분포한다. 하지만 니켈(Ni)-바나듐(V) 합금계 상태도에서 시그마 상(sigma phase)은 니켈(Ni) 함량에 대한 바나듐(V) 함량의 비(V/Ni)가 높은 구간에서 주로 나타나고, 니켈(Ni) 함량에 대한 바나듐(V) 함량의 비(V/Ni)가 낮은 구간에는 넓은 FCC 단상 구간이 나타난다.As shown in FIG. 12, ten binary alloy systems containing no vanadium (V) have a small sigma phase region and a broad FCC single phase region. On the other hand, the sigma phase is distributed relatively widely in five binary alloy systems including vanadium (V). In particular, in the case of cobalt (Co) -vanadium (V) and nickel (Ni) -vanadium (V) binary systems, the sigma phase is distributed up to a high temperature where the liquid phase is stable. However, the sigma phase in the nickel (Ni) -vanadium (V) alloy-based state diagram mainly appears in the section where the ratio (V / Ni) of the vanadium (V) content to the nickel (Ni) content is high. In the section where the ratio of vanadium (V) to V content is low, a wide FCC single phase section appears.
이상과 같은 열역학적 정보를 통해, 본 발명자들은 Ni 함량에 대한 V 함량의 비(V/Ni)를 낮추고, 시그마 상(sigma phase)이 상태도 중앙에 나타나는 코발트(Co)와 바나듐(V)의 함량을 낮추는 방법을 통해, FCC 단상으로 이루어진 고 엔트로피 합금을 구현하고자 하였다.Through the above thermodynamic information, the present inventors lowered the ratio of V content to Ni content (V / Ni), and the content of cobalt (Co) and vanadium (V) in which a sigma phase appeared in the center of the state diagram. By lowering the method, a high entropy alloy consisting of FCC single phase was attempted.
본 발명은 FCC 단상으로 이루어지며 극저온 특성이 우수한 고 엔트로피 합금으로, Co: 3~12원자%, Cr: 3~18원자%, Fe: 3~50원자%, Mn: 3~20원자%, Ni: 17~45원자%, V: 3~12원자%와, 불가피한 불순물을 포함하고, 상기 Ni 함량에 대한 V 함량의 비(V/Ni)는 0.5 이하이고, 상기 V 함량과 Co 함량의 합은 22원자% 이하인 조성을 갖는 것을 특징으로 한다.The present invention is a high entropy alloy consisting of FCC single phase and excellent cryogenic properties, Co: 3-12 atomic%, Cr: 3-18 atomic%, Fe: 3-50 atomic%, Mn: 3-20 atomic%, Ni : 17 to 45 atomic%, V: 3 to 12 atomic% and inevitable impurities, the ratio of the V content to the Ni content (V / Ni) is 0.5 or less, the sum of the V content and Co content is It has a composition which is 22 atomic% or less.
상기 Co의 함량은, 3원자% 미만일 경우 상(phase)이 불안정해 지고, 12원자% 초과일 경우에는 제조비용 및 중간상 형성 가능성이 증가하므로, 3~12원자%가 바람직하며, 상(phase)의 안정성, 기계적 특성 및 제조비용의 관점에서 보다 바람직한 Co의 함량은 7~12원자%이다.When the content of Co is less than 3 atomic%, the phase becomes unstable, and if it exceeds 12 atomic%, the manufacturing cost and the possibility of forming an intermediate phase increase, so 3 to 12 atomic% is preferable, and the phase In view of the stability, mechanical properties and manufacturing cost of the more preferable Co content is 7 to 12 atomic%.
상기 Cr의 함량은, 3원자% 미만일 경우 내식성 등의 합금의 물성에 불리하게 작용하고, 18원자% 초과일 경우에는 중간상 형성 가능성이 높아지므로, 3~18원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Cr의 함량은 7~18원자%이다.When the content of Cr is less than 3 atomic%, it adversely affects the properties of the alloy, such as corrosion resistance, and when the content of more than 18 atomic% increases the possibility of forming an intermediate phase, 3 to 18 atomic% is preferable, and the phase In view of the stability and mechanical properties of the more preferable content of Cr is 7 to 18 atomic%.
상기 Fe의 함량은, 3원자% 미만일 경우 제조비용 측면에서 불리해 지고, 50원자% 초과일 경우에는 상(phase)이 불안정해지므로, 3~50원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Fe의 함량은 18~35원자%이다.When the content of Fe is less than 3 atomic%, it becomes disadvantageous in terms of manufacturing cost, and when it exceeds 50 atomic%, the phase becomes unstable, so 3 to 50 atomic% is preferable, and phase stability In view of the mechanical properties and the more preferable content of Fe is 18 to 35 atomic%.
상기 Mn의 함량은, 3원자% 미만일 경우 제조비용 측면에서 불리해 지고, 20원자% 초과일 경우에는 상(phase)이 불안정해질 뿐 아니라 제조과정에 산화물 형성될 수 있으므로, 3~20원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Mn의 함량은 10~20원자%이다.When the content of Mn is less than 3 atomic%, it becomes disadvantageous in terms of manufacturing cost, and when it exceeds 20 atomic%, not only the phase becomes unstable but also oxide may be formed in the manufacturing process, so that 3 to 20 atomic% Preferably, the Mn content is more preferably 10 to 20 atomic% in terms of phase stability and mechanical properties.
상기 Ni의 함량은, 17원자% 미만일 경우 상(phase)이 불안정해지고, 45원자% 초과일 경우에는 제조비용 측면에서 불리해지므로, 17~45원자%가 바람직하며, 상(phase)의 안정성과 기계적 특성의 관점에서 보다 바람직한 Ni의 함량은 25~45원자%이다.The content of Ni is less than 17 atomic%, the phase becomes unstable, and if the content of more than 45 atomic% becomes disadvantageous in terms of manufacturing cost, 17 to 45 atomic% is preferred, and phase stability and In terms of mechanical properties, more preferable Ni content is 25 to 45 atomic%.
상기 V의 함량은, 3원자% 미만일 경우 강화효과를 얻기 힘들고, 12원자% 초과일 경우에는 중간상 형성 가능성이 높아지므로, 3~12원자%가 바람직하며, 상(phase)의 안정성, 기계적 특성 및 제조비용의 관점에서 보다 바람직한 V의 함량은 5~12원자%이다.When the content of V is less than 3 atomic%, it is difficult to obtain a reinforcing effect, and when the content of V is higher than 12 atomic%, the possibility of forming an intermediate phase is increased, and 3 to 12 atomic% is preferable, and the phase stability, mechanical properties and In view of the production cost, a more preferable content of V is 5 to 12 atomic%.
또한, 상기 Ni 함량에 대한 V 함량의 비(V/Ni)는 0.5를 초과할 경우, 시그마 상(sigma phase)이 생성될 수 있어, FCC 단상 조직을 구현하지 못할 수 있으므로, 0.5 이하가 되도록 하는 것이 바람직하다.In addition, when the ratio of the V content to the Ni content (V / Ni) exceeds 0.5, the sigma phase (sigma phase) may be generated, it may not be able to implement the FCC single-phase structure, so that the 0.5 or less It is preferable.
또한, 본 발명에서는, 고가의 Co의 함량을 줄이면서도 FCC 단상 조직을 구현하기 위하여, Co의 함량을 최소화함으로써 Co-V 합금계의 영향을 감소시키고 있으며, 이를 위해 Co와 V의 함량의 합은 22 원자% 이하가 되도록 하는 것이 바람직하다.In addition, in the present invention, in order to realize the FCC single phase structure while reducing the content of expensive Co, by reducing the content of Co to reduce the effect of the Co-V alloy system, for this purpose the sum of the content of Co and V is It is preferable to be 22 atomic% or less.
상기 합금을 구성하는 각 조성을 벗어날 경우 FCC 단상을 갖는 고용체를 얻기 어려우므로, 상기 합금의 조성범위를 유지하는 것이 바람직하다.It is preferable to maintain the composition range of the alloy because it is difficult to obtain a solid solution having an FCC single phase when it is out of each composition constituting the alloy.
또한, 상기 고 엔트로피 합금에 있어서, Co, Cr, V 함량은 각각 10원자% 이상일 때, 더 나은 특성을 나타내기 때문에, 상기 Fe, Mn 및 Ni의 합은 70원자% 미만인 것이 바람직하다.In addition, in the high entropy alloy, since the Co, Cr, and V contents are 10 atomic% or more, respectively, they show better properties, and therefore, the sum of Fe, Mn, and Ni is preferably less than 70 atomic%.
또한, 상기 고 엔트로피 합금에 있어서, Ni의 함량은 20 원자% 이상일 때 최적의 특성을 나타내기 때문에, 상기 Fe와 Mn의 합은 50원자% 미만인 것이 바람직하다.In addition, in the high entropy alloy, since the content of Ni exhibits optimum properties when it is 20 atom% or more, the sum of Fe and Mn is preferably less than 50 atom%.
또한, 상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 40% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 40% or more at cryogenic temperatures (77 K).
또한, 상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 60% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 1000 MPa or more and an elongation of 60% or more at cryogenic temperatures (77 K).
또한, 상기 고 엔트로피 합금은 상온(298K)에서 인장강도가 700MPa 이상이고, 연신율이 40% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 700 MPa or more and an elongation of 40% or more at room temperature (298 K).
또한, 상기 고 엔트로피 합금은 상온(298K)에서 인장강도가 700MPa 이상이고, 연신율이 60% 이상일 수 있다.In addition, the high entropy alloy may have a tensile strength of 700 MPa or more and an elongation of 60% or more at room temperature (298 K).
이하에서는 본 발명의 바람직한 실시예에 기초하여 본 발명을 보다 상세하게 설명하나, 본 발명이 본 발명의 바람직한 실시예에 제한되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail based on the preferred embodiments of the present invention, but the present invention should not be construed as being limited to the preferred embodiments of the present invention.
[실시예]EXAMPLE
고 엔트로피 합금 제조High Entropy Alloy Manufacturing
하기 표 1은 전술한 열역학적 검토를 통해 계산된 영역의 합금 제조를 위해 선택된 5가지 조성을 나타낸 것이다.Table 1 below shows the five compositions selected for the alloy preparation of the regions calculated through the thermodynamic review described above.
조성(원자%)Subsidy (atomic%)
CoCo CrCr FeFe MnMn NiNi VV
실시예 1Example 1 1010 1515 3030 1010 2525 1010
실시예 2Example 2 1010 1515 2525 1010 3030 1010
실시예 3Example 3 1010 1010 2525 1212 3333 1010
실시예 4Example 4 1010 1515 2020 2020 3030 55
실시예 5Example 5 55 1515 2020 1010 4040 1010
99.9% 이상의 고순도 Co, Cr, Fe, Mn, Ni, V을 상기 표 1의 조성이 되도록 준비한 후, 진공 유도 용해 장비를 이용하여 1500℃ 이상에서 합금을 용해하여 공지의 방법으로 잉고트를 제조하였다.After preparing high purity Co, Cr, Fe, Mn, Ni, V of 99.9% or more to the composition of Table 1, an ingot was manufactured by a known method by dissolving the alloy at 1500 ° C. or more using a vacuum induction melting equipment.
이와 같이 제조된 잉고트는 FCC 단상 영역에서, 1000℃에서 두 시간 동안 유지시킴으로써 조직을 균질화시킨 후, 균질화 처리된 잉고트를 산세하여 표면의 불순물과 산화층을 제거하였다.The ingot prepared as described above was homogenized in the FCC single phase region by maintaining at 1000 ° C. for two hours, and then the homogenized ingot was pickled to remove impurities and oxide layers from the surface.
산세 처리된 잉고트를 압하율 75%로 냉간압연하여 냉간압연 판재를 제조하였다.The pickled ingot was cold rolled to a reduction ratio of 75% to prepare a cold rolled sheet.
이와 같이 냉간압연된 판재를 FCC 단상 영역에서 열처리(800℃, 2시간)하여 잔류응력을 제거하고, 결정립을 완전하게 재결정시킨 후, 수냉하였다.The cold rolled sheet was heat-treated (800 ° C., 2 hours) in the FCC single phase region to remove residual stress, completely recrystallize the crystal grains, and then water cooled.
상기 표 1의 실시예 4 및 5에 대해서는 미세조직 및 기계적 특성을 평가하지 않았으나, 첨부된 도 9 및 11에서 확인되는 바와 같이, FCC 단상 영역(800℃ 이상)에서 열처리 한 후 급랭(예를 들어 수냉)할 시에, 상온(298K) 및 극저온(77K)에서 FCC 단상을 형성할 수 있는 조성임을 알 수 있다.Examples 4 and 5 of Table 1 did not evaluate the microstructure and mechanical properties, but as confirmed in the accompanying Figures 9 and 11, after the heat treatment in the FCC single-phase region (800 ℃ or more) after quenching (for example In the case of water cooling), it can be seen that a composition capable of forming an FCC single phase at room temperature (298K) and cryogenic temperature (77K).
미세조직Microstructure
이상과 같이 제조된 고 엔트로피 합금의 미세조직을 주사전자현미경, X-선회절분석기 및 EBSD를 사용하여 분석하였다.The microstructure of the high entropy alloy prepared as described above was analyzed using a scanning electron microscope, X-ray diffractometer and EBSD.
도 13은 실시예 1~3에 따라 제조된 고 엔트로피 합금 3종의 EBSD IPF(inverse pole figure) 맵 사진이다. EBSD IPF 맵으로부터 결정립 크기를 측정할 수 있으며, 75% 압하율의 냉간압연과 재결정 열처리 과정을 거친 두 합금은 3.6~7.1㎛의 결정립 크기를 가지고 있다. 결정상들은 다결정 형태를 띠고 있으며, 그 크기는 합금 조성에 관계없이 비교적 균일하다.FIG. 13 is an EBSD inverse pole figure (IPF) map photograph of three high entropy alloys prepared according to Examples 1 to 3. FIG. Grain size can be measured from the EBSD IPF map. The two alloys, which have undergone 75% cold rolling and recrystallization heat treatment, have grain sizes ranging from 3.6 to 7.1 µm. The crystalline phases have a polycrystalline form and their sizes are relatively uniform regardless of the alloy composition.
도 14는 실시예 1 ~ 3에 따라 제조된 고 엔트로피 합금 3종의 X-선 회절분석 결과이다. 세 합금 모두 동일한 피크를 나타내고 있으며, 이를 분석한 결과, 모두 FCC 구조에 해당하는 피크임이 확인되었다.14 is an X-ray diffraction analysis of three high entropy alloys prepared according to Examples 1 to 3. FIG. All three alloys show the same peak, and the analysis shows that the peaks correspond to the FCC structure.
도 15는 실시예 1 ~ 3에 따라 제조된 고 엔트로피 합금 3종의 EBSD phase 맵 사진이다. EBSD phase 맵은 서로 다른 2개 이상의 상이 미세조직 내에 있을 때, 각각의 상을 서로 다른 색으로 표시한다. 세 합금 모두 동일한 하나의 색으로 표시되며, 이는 합금의 미세조직이 FCC 단상으로 이루어져 있음을 의미한다.15 is an EBSD phase map photograph of three high entropy alloys prepared according to Examples 1 to 3. FIG. The EBSD phase map displays each phase in a different color when two or more different phases are in the microstructure. All three alloys are marked with the same color, which means that the alloy's microstructure consists of a single phase FCC.
상온 및 극저온 기계적 특성 평가Evaluation of room temperature and cryogenic mechanical properties
실시예 1 ~ 3에 따라 제조된 고 엔트로피 합금을 인장시험기를 통하여 상온(298K)에서의 인장특성을 평가하였으며, 도 16과 표 2는 그 결과를 나타낸 것이다.The high entropy alloys prepared according to Examples 1 to 3 were evaluated for tensile properties at room temperature (298K) through a tensile tester, and FIG. 16 and Table 2 show the results.
상온(298K)Room temperature (298K)
YS(MPa)YS (MPa) UTS(MPa)UTS (MPa) El.(%)El. (%)
실시예 1Example 1 486486 801801 60.060.0
실시예 2Example 2 479479 801801 44.144.1
실시예 3Example 3 489489 775775 40.740.7
표 2에서 확인되는 바와 같이, 본 발명의 실시예 1 ~ 3에 따른 고 엔트로피 합금의 상온(298K)에서의 항복 강도는 486 ~ 489MPa, 인장 강도가 775 ~ 801MPa, 연신율이 40.7~60%로 우수한 인장 특성을 나타낸다.As confirmed in Table 2, the yield strength at room temperature (298K) of the high entropy alloys according to Examples 1 to 3 of the present invention is excellent at 486 to 489 MPa, tensile strength of 775 to 801 MPa, and elongation of 40.7 to 60%. Tensile properties are shown.
도 17과 아래 표 3은 극저온 챔버와 인장시험기를 통하여 극저온(77K)에서의 인장특성을 평가한 결과를 나타낸 것이다.17 and Table 3 below show the results of evaluating the tensile properties at cryogenic temperatures (77K) through the cryogenic chamber and the tensile tester.
극저온(77K)Cryogenic Temperature (77K)
YS(MPa)YS (MPa) UTS(MPa)UTS (MPa) El.(%)El. (%)
실시예 1Example 1 661661 11681168 81.681.6
실시예 2Example 2 671671 11381138 61.661.6
실시예 3Example 3 641641 10281028 44.544.5
표 3에서 확인되는 바와 같이, 본 발명의 실시예 1 ~ 3에 따른 고 엔트로피 합금의 극저온(77K)에서의 인장 특성은 항복 강도가 641 ~ 671MPa, 인장 강도가 1028 ~ 1168MPa, 연신율이 44.5 ~ 81.6%로 상온에서보다 더욱 우수한 인장 특성을 나타내었다.As can be seen from Table 3, the tensile properties of the high entropy alloys according to Examples 1 to 3 of the present invention at cryogenic temperatures (77K) have a yield strength of 641 to 671 MPa, a tensile strength of 1028 to 1168 MPa, and an elongation of 44.5 to 81.6. % Showed better tensile properties than at room temperature.
열처리 조건에 따른 상 안정성 평가Phase stability evaluation according to heat treatment condition
비특허문헌(Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, Journal of Alloys and Compounds 628 (2015) 170-185)에 개시된 바와 같이, CoCrFeMnNiVx(x=0.25, 0.5, 0.75, 1) 합금의 경우, 1000℃에서 24시간 열처리하는 것과 같이, 열처리 조건에 따라 고 엔트로피 합금의 기계적 특성을 저하시키는 시그마 상(sigma phase)가 생성된다고 알려져있다.CoCrFeMnNiVx (x = 0.25, 0.5, 0.75, 1), as disclosed in the Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, Journal of Alloys and Compounds 628 (2015) 170-185). In the case of alloys, it is known that a sigma phase is produced that degrades the mechanical properties of the high entropy alloy depending on the heat treatment conditions, such as 24 hours heat treatment at 1000 ° C.
본 발명에 따른 고 엔트로피 합금이 1000℃에서 24시간 동안 가열하는 열처리를 수행하였을 때, 시그마 상의 생성 여부를 확인하였으며, 그 결과를 도 18~20에 나타내었다.When the high entropy alloy according to the present invention was subjected to a heat treatment for heating at 1000 ° C. for 24 hours, it was confirmed whether a sigma phase was produced and the results are shown in FIGS. 18 to 20.
도 18은 본 발명에 따른 고 엔트로피 합금을 1000℃에서 24시간 동안 가열한 열처리를 수행한 후의 EBSD IPF(inverse pole figure) map 사진이고, 도 19는 본 발명에 따른 고 엔트로피 합금을 1000℃에서 24시간 동안 가열한 열처리를 수행한 후의 X-선 회절분석 결과이고, 도 20은 본 발명에 따른 고 엔트로피 합금을 1000℃에서 24시간 동안 가열한 열처리를 수행한 후의 EBSD phase map 사진이다.18 is a photograph of an EBSD inverse pole figure (IPF) map after performing a heat treatment in which the high entropy alloy according to the present invention is heated at 1000 ° C. for 24 hours, and FIG. 19 shows a high entropy alloy according to the present invention at 24 ° C. 24. X-ray diffraction analysis results after performing a heat treatment for a period of time, Figure 20 is a photograph of the EBSD phase map after performing a heat treatment for heating the high entropy alloy according to the present invention at 1000 ℃ for 24 hours.
도 18 및 도 20에 나타난 바와 같이, 열처리에 의해 결정립의 크기는 매우 커진 상태이나, 도 19에 나타난 바와 같이, 시그마 상(sigma phase)와 같은 제2상의 생성이 관찰되지 않는다. 즉, 본 발명의 실시예에 따라 제조된 고 엔트로피 합금이 종래 알려진 고 엔트로피 합금에 비해 열처리 조건에 따른 안정성도 우수하다고 할 수 있다.As shown in Figs. 18 and 20, the size of the crystal grains is very large by the heat treatment, but as shown in Fig. 19, no formation of a second phase such as a sigma phase is observed. That is, it can be said that the high entropy alloy prepared according to the embodiment of the present invention also has excellent stability according to heat treatment conditions compared to the conventionally known high entropy alloy.

Claims (9)

  1. Co: 3~12원자%, Cr: 3~18원자%, Fe: 3~50원자%, Mn: 3~20원자%, Ni: 17~45원자%, V: 3~12원자%와, 불가피한 불순물을 포함하고,Co: 3-12 atomic%, Cr: 3-18 atomic%, Fe: 3-50 atomic%, Mn: 3-20 atomic%, Ni: 17-45 atomic%, V: 3-12 atomic% Contains impurities,
    상기 Ni 함량에 대한 V 함량의 비(V/Ni)는 0.5 이하이고,The ratio of V content to Ni content (V / Ni) is 0.5 or less,
    상기 V 함량과 Co 함량의 합은 22원자% 이하인, 고엔트로피 합금.The sum of the V content and the Co content is 22 atomic% or less, high entropy alloy.
  2. 제1항에 있어서,The method of claim 1,
    상기 고엔트로피 합금은 면심입방구조(Face Centered Cubic)의 단상(single phase)으로 이루어진, 고 엔트로피 합금.The high entropy alloy is a high entropy alloy, consisting of a single phase (face-centered Cubic).
  3. 제1항에 있어서,The method of claim 1,
    상기 Fe와 Mn의 함량의 합이 50원자% 미만인, 고 엔트로피 합금.The sum of the content of Fe and Mn is less than 50 atomic%, high entropy alloy.
  4. 제1항에 있어서,The method of claim 1,
    상기 Fe, Mn 및 Ni의 함량의 합이 70원자% 미만인, 고 엔트로피 합금.The high entropy alloy, wherein the sum of the contents of Fe, Mn and Ni is less than 70 atomic%.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 40% 이상인, 고 엔트로피 합금.The high entropy alloy has a tensile strength of at least 1000 MPa and an elongation of at least 40% at cryogenic temperatures (77K).
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 고 엔트로피 합금은 극저온(77K)에서 인장강도가 1000MPa 이상이고, 연신율이 60% 이상인, 고 엔트로피 합금.The high entropy alloy has a tensile strength of at least 1000 MPa and an elongation of at least 60% at cryogenic temperatures (77K).
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 고 엔트로피 합금은 상온(298K)에서 인장강도가 700MPa 이상이고, 연신율이 40% 이상인, 고 엔트로피 합금.The high entropy alloy has a tensile strength of 700 MPa or more and elongation of 40% or more at room temperature (298 K).
  8. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 고 엔트로피 합금은 상온(298K)에서 인장강도가 700MPa 이상이고, 연신율이 60% 이상인, 고 엔트로피 합금.The high entropy alloy has a tensile strength of 700 MPa or more and an elongation of 60% or more at room temperature (298 K).
  9. 제1항 내지 제4항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 고 엔트로피 합금은 1000℃에서 24시간 동안 열처리하는 조건에서, 시그마 상이 생성되지 않는, 고 엔트로피 합금.The high entropy alloy is a high entropy alloy, the sigma phase is not produced under the conditions of heat treatment for 24 hours at 1000 ℃.
PCT/KR2017/002988 2016-03-21 2017-03-21 High-entropy alloy for ultra-low temperature WO2017164601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/084,581 US11168386B2 (en) 2016-03-21 2017-03-21 High-entropy alloy for ultra-low temperature

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0033418 2016-03-21
KR20160033418 2016-03-21
KR10-2017-0032629 2017-03-15
KR1020170032629A KR101888299B1 (en) 2016-03-21 2017-03-15 Cryogenic High Entropy Alloy

Publications (1)

Publication Number Publication Date
WO2017164601A1 true WO2017164601A1 (en) 2017-09-28

Family

ID=59900532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002988 WO2017164601A1 (en) 2016-03-21 2017-03-21 High-entropy alloy for ultra-low temperature

Country Status (1)

Country Link
WO (1) WO2017164601A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998714A (en) * 2018-06-07 2018-12-14 东南大学 A kind of design and preparation method of two-phase medium entropy alloy
CN109868405A (en) * 2019-03-27 2019-06-11 上海工程技术大学 High-entropy alloy CoCrFeMnNi and its powder by atomization method reparation technology
WO2019127610A1 (en) * 2017-12-29 2019-07-04 北京理工大学 Precipitation-enhanced alcrfeniv system high-entropy alloy and preparation method therefor
CN111270172A (en) * 2019-03-18 2020-06-12 沈阳工业大学 Method for improving performance of high-entropy alloy by utilizing graded cryogenic treatment
CN111593248A (en) * 2019-02-21 2020-08-28 中国科学院理化技术研究所 High-entropy alloy and preparation thereof, coating comprising alloy and preparation
CN113046585A (en) * 2021-03-17 2021-06-29 江苏理工学院 Preparation method and application of high-entropy alloy for extremely cold environment
CN114672714A (en) * 2022-02-28 2022-06-28 华南理工大学 High-entropy hydrogen storage alloy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
KR20090030198A (en) * 2007-09-19 2009-03-24 인더스트리얼 테크놀로지 리써치 인스티튜트 Ultra-hard composite material and method for manufacturing the same
US20160025386A1 (en) * 2014-07-28 2016-01-28 Ut-Battelle, Llc High Entropy NiMn-based Magnetic Refrigerant Materials
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
KR20160014130A (en) * 2014-07-28 2016-02-11 세종대학교산학협력단 High entropy alloy having excellent strength and ductility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
KR20090030198A (en) * 2007-09-19 2009-03-24 인더스트리얼 테크놀로지 리써치 인스티튜트 Ultra-hard composite material and method for manufacturing the same
JP2016023352A (en) * 2014-07-23 2016-02-08 株式会社日立製作所 Alloy structure
US20160025386A1 (en) * 2014-07-28 2016-01-28 Ut-Battelle, Llc High Entropy NiMn-based Magnetic Refrigerant Materials
KR20160014130A (en) * 2014-07-28 2016-02-11 세종대학교산학협력단 High entropy alloy having excellent strength and ductility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127610A1 (en) * 2017-12-29 2019-07-04 北京理工大学 Precipitation-enhanced alcrfeniv system high-entropy alloy and preparation method therefor
CN108998714A (en) * 2018-06-07 2018-12-14 东南大学 A kind of design and preparation method of two-phase medium entropy alloy
CN111593248A (en) * 2019-02-21 2020-08-28 中国科学院理化技术研究所 High-entropy alloy and preparation thereof, coating comprising alloy and preparation
CN111270172A (en) * 2019-03-18 2020-06-12 沈阳工业大学 Method for improving performance of high-entropy alloy by utilizing graded cryogenic treatment
CN109868405A (en) * 2019-03-27 2019-06-11 上海工程技术大学 High-entropy alloy CoCrFeMnNi and its powder by atomization method reparation technology
CN113046585A (en) * 2021-03-17 2021-06-29 江苏理工学院 Preparation method and application of high-entropy alloy for extremely cold environment
CN113046585B (en) * 2021-03-17 2022-05-13 江苏理工学院 Preparation method and application of high-entropy alloy for extremely cold environment
CN114672714A (en) * 2022-02-28 2022-06-28 华南理工大学 High-entropy hydrogen storage alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2017164601A1 (en) High-entropy alloy for ultra-low temperature
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2020085697A1 (en) Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
KR101888299B1 (en) Cryogenic High Entropy Alloy
WO2017164602A1 (en) Cr-fe-mn-ni-v-based high-entropy alloy
WO2019022283A1 (en) Medium-entropy alloy having excellent cryogenic characteristics
KR20170110019A (en) High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium
US20080011395A1 (en) Near Beta-Type Titanium Alloy
WO2015099363A1 (en) Low-temperature ingot steel having excellent surface processing quality
WO2020080660A1 (en) Medium-entropy alloy and manufacturing method therefor
WO2012087045A2 (en) Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
WO2019039743A1 (en) V-cr-fe-ni based high-strength high-entropy alloy
WO2020209485A1 (en) Cu-co-si-fe-p-based copper alloy having excellent bending workability and method for preparing same
WO2020085755A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
WO2016105002A1 (en) Low-temperature steel sheet with excellent surface processing quality and method for manufacturing same
US11851735B2 (en) High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof
JP4756974B2 (en) Ni3 (Si, Ti) -based foil and method for producing the same
WO2019083103A1 (en) Transformation-induced plasticity high-entropy alloy, and manufacturing method therefor
WO2021100959A1 (en) Austenitic stainless steel containing large amount of uniformly distributed nano sized precipitates and manufacturing method therefor
KR102179460B1 (en) High entropy alloy and manufacturing method of the same
WO2017131260A1 (en) Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
WO2021025499A1 (en) High-strength and high-formability beta titanium alloy
WO2023128356A1 (en) Method for manufacturing high-strength titanium alloy by using ferrochrome, and high-strength titanium alloy
EP0285952B1 (en) Superconductor cable
CA1093437A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decompositon

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770571

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770571

Country of ref document: EP

Kind code of ref document: A1