WO2021025499A1 - High-strength and high-formability beta titanium alloy - Google Patents

High-strength and high-formability beta titanium alloy Download PDF

Info

Publication number
WO2021025499A1
WO2021025499A1 PCT/KR2020/010427 KR2020010427W WO2021025499A1 WO 2021025499 A1 WO2021025499 A1 WO 2021025499A1 KR 2020010427 W KR2020010427 W KR 2020010427W WO 2021025499 A1 WO2021025499 A1 WO 2021025499A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
titanium alloy
present
phase
beta titanium
Prior art date
Application number
PCT/KR2020/010427
Other languages
French (fr)
Korean (ko)
Inventor
이상원
박찬희
염종택
홍재근
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2021025499A1 publication Critical patent/WO2021025499A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a titanium alloy having high strength and excellent formability at the same time and having a low manufacturing cost.
  • Titanium (Ti, titanium) alloys have low density, high strength, excellent specific strength, and biocompatibility, and are therefore used in many industrial fields.
  • titanium alloys contain a lot of commercially pure (CP) titanium in a pure (or commercially pure) state, an alpha + beta titanium alloy in which a high temperature beta phase and a low temperature alpha phase coexist, and a beta stabilizing element. It is divided into beta titanium alloys, etc.
  • beta titanium alloys are widely used in the field of structural materials requiring high strength, such as landing gears for aircraft.
  • TWIP twining induced plasticity
  • TRIP transformation induced plasticity
  • Molybdenum Mo, molybdenum
  • Molybdenum has been known as a key element capable of simultaneously achieving the TWIP and TRIP effects in a beta titanium alloy. Therefore, in the conventional beta titanium alloy, most of Mo was added in an amount of 8 to 15% by weight (hereinafter referred to as'wt.%' or'%') to realize the TWIP and TRIP effects at the same time.
  • the melting point of Mo is much higher than that of the known titanium, so that it is difficult to manufacture an ingot having a uniform microstructure.
  • the Mo generates segregation during casting or melting, thereby creating a non-uniform microstructure in both macroscopic and microscopic ways.
  • the present invention is to provide a new beta titanium alloy having no segregation compared to the existing beta titanium and having a uniform microstructure and excellent economical efficiency in which high strength and high formability characteristics can be realized.
  • Ti-Mo-Fe-Cr-Al-based titanium alloy according to an embodiment of the present invention for achieving the above object, in weight %, Ti-(1% ⁇ Mo ⁇ 4%)-(1% ⁇ Fe Ti-Mo-Fe-Cr-Al type containing ⁇ 3%)-(1% ⁇ Cr ⁇ 4%)-(0% ⁇ Al ⁇ 4%) and having an Mo equivalent of 12.0 or more, excellent in strength and formability It is a beta titanium alloy.
  • the alloy is Ti-Mo-Fe-Cr-Al-based beta titanium having excellent strength and formability, including O ⁇ 0.2% by weight %.
  • the alloy is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability, in which the microstructure before deformation includes an alpha phase in the beta phase matrix.
  • the average grain size of the beta matrix is within 200 ⁇ m, Ti-Mo-Fe-Cr-Al-based beta titanium alloy excellent in strength and formability.
  • the alloy is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability, wherein the microstructure after deformation includes tween and martensite together with the beta phase matrix and the alpha phase.
  • the alloy has a tensile strength of 850 MPa or more, and is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability.
  • the alloy is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability, in which the product of the elongation of 15% or more and the tensile strength (MPa) and the elongation (%) is 15,000 MPa% or more.
  • a new Ti-Mo-Fe-Cr-Al-based beta titanium alloy capable of securing mechanical properties equivalent to or higher than that of a beta titanium alloy with a high amount of Mo added (more than 8% Mo) while replacing expensive Mo.
  • the Ti-Mo-Fe-Cr-Al-based beta titanium alloy of the present invention increases the stability of the beta phase by including a part of the alpha phase, thereby generating TWIP and TRIP even with a small amount of Mo added, resulting in high tensile strength properties and excellent elongation at the same time. There is an advantage that can be secured.
  • FIG. 1 is a view showing a method of manufacturing a Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
  • FIG. 4 shows a microstructure of a 2-1-2 beta titanium alloy, which is a comparative example of the present invention, quenched after solution treatment.
  • FIG. 5 is a photograph of a microstructure of a 2-2-1 beta titanium alloy, which is a comparative example of the present invention, quenched after solution treatment.
  • Example 7 is a photograph of a microstructure of Example 2-5-1 beta titanium alloy of the present invention before deformation (quickly cooled after solution treatment) and 2% deformation.
  • Example 8 is a microstructure photograph of Example 2-2-2 of the present invention before deformation (quick-cooled after solution treatment) and 15% of the beta titanium alloy.
  • FIG. 9 is a view showing tensile strength and elongation of Ti-Mo-Fe-Cr-Al beta titanium alloys of all Examples and Comparative Examples of the present invention.
  • first, second, A, B, (a), (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, order, or number of the component is not limited by the term.
  • a component is described as being “connected”, “coupled” or “connected” to another component, the component may be directly connected or connected to that other component, but other components between each component It is to be understood that is “interposed”, or that each component may be “connected”, “coupled” or “connected” through other components.
  • Titanium is a polymorphous element with two crystal structures: a high temperature beta phase with a body centered cublic (BCC) structure and a low temperature alpha phase with a hexagonal closed packed (HCP) structure. to be.
  • BCC body centered cublic
  • HCP hexagonal closed packed
  • the beta transus temperature which is the temperature at which the high temperature beta phase is transformed into the low temperature alpha phase, decreases.
  • the degree of stabilization of the beta phase varies depending on the alloying element added, and the degree of stabilization of the beta phase for each alloying element based on Mo (molybdenum) is referred to as the following Mo equivalency.
  • the Mo equivalent value is determined by the composition and composition range of the titanium alloy, but is a value obtained by normalizing various alloying elements and composition ranges of each component with one parameter. Therefore, the Mo equivalent value may be a parameter value capable of determining the phase stability, deformation mechanism, and mechanical properties of the titanium alloy.
  • Al is a representative alloying element that stabilizes the low-temperature alpha phase in a titanium alloy.
  • Al is calculated to have a negative value unlike other beta-stabilizing element values.
  • transition metals are alloying elements that stabilize the high temperature beta phase in titanium alloys.
  • transition metals are calculated to have a positive value, unlike Al.
  • the conventional beta titanium alloys for realizing the TWIP and TRIP effects at the same time contain at least 8 to 15% of Mo and almost no alpha stabilizing elements such as Al. Therefore, as calculated from the Mo equivalents, the conventional beta titanium alloy has a very high amount of Mo equivalents of at least 12, preferably at least 15.
  • the beta titanium alloy of the present invention is one technical feature in terms of composition that the Mo content is significantly reduced compared to the existing high Mo (hereinafter, high Mo) beta titanium alloy.
  • beta titanium alloy of the present invention is another technical feature in terms of composition in that Mo is substituted with other alloying elements in order to simultaneously realize the TWIP and TRIP effects.
  • the beta titanium alloy of the present invention is another technical feature in terms of composition in that the beta titanium alloy contains Al, which is an alpha stabilizing element rather than in the beta titanium alloy for high strength.
  • the beta titanium alloy of the present invention contains Al as an essential component.
  • the reason for adding Al in the present invention is as follows.
  • titanium alloys are strengthened by interstitial oxygen strengthening, solid solution strengthening, precipitation strengthening, and dislocation density or grain refinement strengthening mechanisms.
  • titanium alloys aluminum is the most representative solid solution strengthening element in titanium alloys.
  • aluminum When aluminum is added to titanium, aluminum is mainly dissolved in the alpha phase and strengthens the alpha phase. In addition, aluminum can increase oxidation resistance and creep resistance in titanium alloys.
  • the amount of Al added is more than 4%, the formability of the beta titanium alloy is deteriorated, and further, excessive addition of Al has a problem in that Ti 3 Al phase formation may be promoted.
  • beta titanium alloy of the present invention contains Mo as an essential component.
  • Mo is an element capable of simultaneously implementing the TWIP and TRIP effects of the beta titanium alloy of the present invention.
  • the beta titanium alloy of the present invention is characterized in that Mo is added by 1% or more and less than 4%.
  • the amount of Mo added is less than 1%, the TWIP and TRIP effects cannot be simultaneously realized, making it difficult to secure excellent mechanical properties of the beta titanium alloy.
  • the beta titanium alloy of the present invention contains other beta stabilizing elements in addition to Mo. Therefore, if more than 4% of Mo is added together with other beta stabilizing elements other than Mo, the beta stability of the beta titanium alloy of the present invention is too high, so that TWIP and TRIP do not occur when the beta titanium alloy is deformed, and only slip occurs. Accordingly, there is a problem that the strength and formability of the beta titanium alloy of the present invention are deteriorated.
  • beta titanium alloy of the present invention contains Cr and Fe as essential components in addition to Mo.
  • Both Cr and Fe replace Mo and are additive elements that allow TWIP and TRIP to occur simultaneously when the beta titanium alloy of the present invention is deformed.
  • the beta titanium alloy of the present invention contains O (oxygen).
  • Oxygen is an element that can be regarded as a kind of impurity that is unavoidably included in generally pure titanium (commercially pure) and all titanium alloys.
  • the beta titanium alloy of the present invention contains at most 0.2% or less of oxygen.
  • the beta titanium alloy of the present invention is based on the above compositional characteristics, in weight %, Ti-(1% ⁇ Mo ⁇ 4%)-(1% ⁇ Fe ⁇ 3%)-(1% ⁇ Cr ⁇ 4% )-(0% ⁇ Al ⁇ 4%).
  • the Ti-Mo-Fe-Cr-Al-based beta titanium alloy of the present invention can be manufactured by various manufacturing methods. However, similar to a conventional titanium alloy, the mechanical properties of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention are also affected by the microstructure.
  • FIG. 1 is a view showing a method of manufacturing a Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
  • the manufacturing method according to an embodiment of the present invention first performs a hot forging process for breaking an as-cast structure.
  • beta forging is performed in the beta single-phase region based on the beta transus temperature, which is the lowest temperature at which the high-temperature beta-phase single-phase region appears, and forging is performed in a region above the alpha + beta below the beta transus temperature. It includes the alpha + beta forging process performed.
  • hot forging means, in alpha + beta forging, the forging temperature must be higher than the recrystallization temperature.
  • Beta forging in the present invention is preferably carried out at a temperature 50 ⁇ 100 °C higher than the beta transus temperature.
  • the beta single-phase region cannot be guaranteed.
  • it is performed above the beta transus temperature there is a problem that grain growth is excessively promoted due to an excessively high temperature, thereby deteriorating all mechanical properties of the final alloy.
  • Alpha + beta forging in the present invention is preferably carried out at a temperature 30 ⁇ 50 °C lower than the beta transus temperature.
  • the solution treatment process is a process of heating a hot-forged beta matrix or alpha + beta matrix alloy at a high temperature.
  • the solution treatment according to an embodiment of the present invention is performed in a temperature range above alpha + beta. This is because the solution treatment in the above alpha + beta region is effective in suppressing grain growth compared to the solution treatment in the beta single phase region. Furthermore, the solution treatment of the above alpha+beta region in the present invention enhances the alpha phase stabilizing alloy element and the beta stabilizing alloy element in the alpha phase and beta phase, respectively, so that TWIP and TRIP are generated when deformed even with a small Mo content. Because it can promote.
  • solution treatment in the present invention is not necessarily limited to a region above alpha + beta. If crystal grain growth can be suppressed, and furthermore, solution treatment in the beta region can be applied under conditions in which a large amount of beta stabilizing elements are added in the composition range of the Ti-Mo-Fe-Cr-Al titanium alloy of the present invention. .
  • the solution treatment process in an embodiment of the present invention is preferably 20 to 90 °C lower than the beta transus temperature.
  • solution treatment temperature is higher than the upper limit value, there is a problem that almost all of the alpha phase generated in hot forging in the alpha + beta region is removed due to an excessively high solution treatment temperature.
  • the solution treatment temperature is lower than the lower limit, the fraction of the beta phase decreases and further, the beta stabilizing element is excessively concentrated in the beta phase, so that TWIP and TRIP do not occur during deformation, and only slip occurs, resulting in a decrease in mechanical properties. There is a problem.
  • the quenching process after the solution treatment is a process for maintaining the microstructure during the solution treatment process, more specifically, the high-temperature beta phase as it is at room temperature.
  • the beta phase maintained at room temperature through the rapid cooling generates TWIP and TRIP effects upon subsequent deformation, high strength and high formability of the beta titanium alloy of the present invention can be secured.
  • Table 1 is a table summarizing components and composition ranges corresponding to Examples and Comparative Examples of the Ti-Mo-Fe-Cr-Al-based beta titanium alloy of the present invention.
  • compositions 1-1 to 1-3 in Table 1 correspond to the composition of the comparative example of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
  • compositions 2-1-1 to 2-5-1 in Table 1 correspond to the compositions of the examples of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
  • Table 2 summarizes the mechanical properties and heat treatment conditions of the examples and comparative examples of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention in Table 1, and the proportion of the alpha phase and the Mo equivalent in the beta phase. It is a table.
  • Comparative Example 1-1 of Table 1 exhibits remarkably low ductility because TWIP and TRIP do not occur.
  • Comparative Example 1-2 of Table 1 that does not contain Al and Comparative Example 1-3 of Table 1 that contains 4% Mo also exhibits low strength and/or elongation properties.
  • FIG. 2 shows the product of tensile strength (UTS, ultimate tensile strength, MPa) and elongation (%) according to the Mo composition range of the examples and comparative examples of Tables 1 and 2 of the present invention.
  • a beta titanium alloy having a composition range of 1% or more and less than 4% of Mo has a very high tensile strength*elongation value.
  • the beta titanium alloy corresponding to Comparative Example 1-2 does not contain Al, it has a lower tensile strength * elongation value than the beta titanium alloy corresponding to the embodiment of the present invention.
  • the Mo equivalent value is known as a value that determines the phase stability, deformation mechanism, and mechanical properties of a titanium alloy.
  • the beta-titanium alloy to which the present invention belongs is intended to improve mechanical properties and workability by generating TWIP and TRIP effects.
  • the TWIP and TRIP effects occur during processing in the beta phase. Therefore, in the beta titanium alloy of the present invention, the composition of the beta phase in the final microstructure is an important factor determining the occurrence of the TWIP and TRIP effects.
  • the composition of the beta phase in the final microstructure is determined according to the conditions of the hot forging and solution treatment as well as the composition (or nominal composition) of the whole alloy. For example, as quantitatively illustrated in 2-2-2 to 2-2-4, 2-3-3 to 2-3-4, 2-4-2 to 2-4-5, etc. in Table 2, , Even in the same alloy composition, the lower the alpha + beta solution treatment temperature, the more the beta stabilizing element is concentrated in the beta phase, and the Mo equivalent value in the beta phase increases.
  • the Ti-Mo-Fe-Cr-Al beta titanium alloy of the present invention was measured to have remarkably excellent mechanical properties in the range of the beta phase Mo equivalent value of 12.0 or more.
  • the Ti-Mo-Fe-Cr-Al beta titanium alloy corresponding to the comparative examples of 2-1-1 and 2-1-2 in the range of Mo equivalent values lower than 12.0 has relatively low beta phase stability, and thus Accordingly, during rapid cooling after solution treatment, the beta phase is transformed into martensite, and TWIP and TRIP do not occur. As a result, the Ti-Mo-Fe-Cr-Al beta titanium alloy corresponding to the comparative example is deteriorated in mechanical properties.
  • Comparative Examples 2-1-1 and 2-1-2 beta titanium alloys as described in Table 1 the composition of the alloy Ti-Mo-Fe-Cr-Al beta titanium corresponding to the embodiment of the present invention It satisfies all of the composition and composition range of the alloy.
  • Comparative Examples 2-1-1 and 2-1-2 beta titanium alloys were measured to have Mo equivalents in the beta phase after solution treatment as described in Table 2 to have 7.6 and 9.2, respectively, and as a result, yield strength and It was determined that the elongation was low.
  • FIG. 4 shows a microstructure of a 2-1-2 beta titanium alloy, which is a comparative example of the present invention, quenched after solution treatment.
  • the 2-1-2 beta titanium alloy which is a comparative example of the present invention, has low beta phase stability due to a low Mo equivalent in the beta phase, so that the beta phase cannot be maintained during rapid cooling, and the transformation from the beta phase to martensite Occurred.
  • Comparative Example 2-2-1 has lower mechanical strength than Examples 2-2-2 to 2-2-4 having the same alloy composition is due to the microstructure of Comparative Example 2-2-1.
  • Comparative Example 2-2-1 has very coarse grains.
  • the coarse crystal grains of Comparative Example 2-2-1 originate from the solution treatment temperature in Table 2.
  • the comparative example 2-2-1 was quenched after solution treatment in a beta single-phase region of 840° C. higher than 820° C., which is a beta transus temperature determined from the alloy composition and composition range. Accordingly, it is determined that Comparative Example 2-2-1 has a microstructure having coarse grains by solution treatment in the beta single phase region, resulting in low mechanical strength.
  • all of the beta titanium alloys corresponding to the embodiment of the present invention contain an alpha phase.
  • the beta-titanium alloys of the embodiment of the present invention are rapidly cooled after solution treatment in the alpha + beta or higher region to include all of the alpha phase. This is not only effectively suppressed the crystal grain growth of the beta titanium alloys of the embodiment of the present invention during the solution treatment, but also the beta stabilizing element is concentrated to the beta phase to stabilize the beta phase, and the beta phase may cause TWIP and TRIP phenomena during subsequent deformation. Means.
  • all of the beta titanium alloys of the examples of the present invention were measured to have a tensile strength of at least 850 MPa or more.
  • FIG. 7 is a photo of a microstructure of 2-5-1 beta titanium alloy according to an embodiment of the present invention before deformation (quickly cooled after solution treatment) and 2% deformation.
  • FIG. 8 is a microstructure photograph of a 2-2-2 beta titanium alloy, which is an example of the present invention, before deformation (quickly cooled after solution treatment) and 15% deformed.
  • the beta titanium alloy of the embodiment of the present invention has an alpha phase uniformly present in the beta phase matrix before deformation, and the crystal grain size of the beta phase does not exceed a maximum of 200 ⁇ m. Can be seen.
  • FIG. 9 is a view showing tensile strength and elongation of Ti-Mo-Fe-Cr-Al beta titanium alloys of all Examples and Comparative Examples of the present invention described in Tables 1 and 2 above.
  • the beta titanium alloys corresponding to the embodiment of the present invention all have a tensile strength of 850 MPa or more and an elongation of 15% or more, whereas the beta titanium alloys corresponding to the comparative example are at least one of tensile strength or elongation One property was measured to be poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Forging (AREA)

Abstract

The present invention relates to a beta titanium alloy having high strength and high formability while having a low manufacturing cost, and to a manufacturing method for the titanium alloy. According to one example of the present invention, a Ti-Mo-Fe-Cr-Al based beta titanium alloy is characterized by comprising, in wt%, Ti-(1%≤Mo<4%)-(1%≤Fe<3%)-(1%≤Cr<4%)-(0%<Al≤4%), wherein an equivalent weight of Mo is 12.0 or more.

Description

고강도 고성형성 베타 타이타늄 합금High strength, high formability beta titanium alloy
본 발명은 높은 강도와 우수한 성형성을 동시에 가지면서 제조 비용이 낮은 타이타늄 합금에 관한 것이다. The present invention relates to a titanium alloy having high strength and excellent formability at the same time and having a low manufacturing cost.
타이타늄(Ti, titanium) 합금은 낮은 밀도와 높은 강도, 우수한 비강도(specific strength) 및 생체 적합성(biocompatibility)을 가지므로 많은 산업분야에 이용되고 있다.Titanium (Ti, titanium) alloys have low density, high strength, excellent specific strength, and biocompatibility, and are therefore used in many industrial fields.
현재 많이 사용되는 타이타늄 합금은 순수한(또는 상업적으로 순수한) 상태의 CP(commercially pure) 타이타늄, 고온 베타(beta)상과 저온 알파(alpha) 상이 공존하는 알파+베타 타이타늄 합금, 그리고 베타 안정화 원소를 많이 포함한 베타 타이타늄 합금 등으로 구분된다.Currently widely used titanium alloys contain a lot of commercially pure (CP) titanium in a pure (or commercially pure) state, an alpha + beta titanium alloy in which a high temperature beta phase and a low temperature alpha phase coexist, and a beta stabilizing element. It is divided into beta titanium alloys, etc.
상기 타이타늄 합금들 가운데 베타 타이타늄 합금은 항공기용 랜딩 기어와 같은 높은 강도를 요구하는 구조용 재료 분야에 많이 사용되고 있다.Among the titanium alloys, beta titanium alloys are widely used in the field of structural materials requiring high strength, such as landing gears for aircraft.
최근 들어 고강도뿐만 아니라 고성형성 특성이 동시에 구현될 수 있는 베타 타이타늄 합금에 대한 수요가 증대되어 이에 대한 연구가 활발히 진행되고 있다.In recent years, the demand for a beta titanium alloy that can realize not only high strength but also high formability characteristics at the same time has increased, and thus research on this has been actively conducted.
그 중에서도 변형 중에 쌍정이 발생하여 강도와 가공성을 높이는 TWIP(twining induced plasticity, 쌍정유기변태) 현상과 변형 중에 고온상이 마르텐사이트로 변태되는 TRIP(transformation induced plasticity, 변태유기소성)를 동시에 발생시키는 변형 기구(mechanism)를 베타 타이타늄 합금에 활용하려는 시도가 활발히 진행되고 있다.Among them, a transformation mechanism that simultaneously generates TWIP (twining induced plasticity), which increases strength and workability by generating twins during deformation, and TRIP (transformation induced plasticity), in which the high temperature phase transforms into martensite during deformation Attempts to utilize (mechanism) in beta titanium alloys are being actively conducted.
상기의 TWIP과 TRIP 효과가 베타 타이타늄 합금에 적용 가능하면, 베타 타이타늄 합금의 고강도와 고성형성이 동시에 구현될 수 있기 때문이다.This is because, if the above TWIP and TRIP effects are applicable to the beta titanium alloy, the high strength and high formability of the beta titanium alloy can be simultaneously implemented.
몰리브덴(Mo, molybdenum)은 베타 타이타늄 합금에 있어서 상기 TWIP과 TRIP 효과를 동시에 달성할 수 있는 핵심 원소로 알려져 왔다. 따라서 종래의 베타 타이타늄 합금은 대부분 Mo를 8~15 중량 %(이하 'wt. %' 또는 '%'라 한다) 이상 첨가하여 상기 TWIP과 TRIP 효과를 동시에 구현하고자 하였다.Molybdenum (Mo, molybdenum) has been known as a key element capable of simultaneously achieving the TWIP and TRIP effects in a beta titanium alloy. Therefore, in the conventional beta titanium alloy, most of Mo was added in an amount of 8 to 15% by weight (hereinafter referred to as'wt.%' or'%') to realize the TWIP and TRIP effects at the same time.
그런데 상기 Mo는 기지인 타이타늄보다 융점이 매우 높아서 균일한 미세조직을 가지는 잉곳(ingot) 제조가 어렵다는 문제가 있다. 더 나아가 상기 Mo는 주조 또는 용해 시 편석(segregation)을 발생시켜 거시적(macroscopic) 및 미시적(microscopic)으로 불균일한 미세조직을 만드는 문제가 있다.However, there is a problem that the melting point of Mo is much higher than that of the known titanium, so that it is difficult to manufacture an ingot having a uniform microstructure. Furthermore, the Mo generates segregation during casting or melting, thereby creating a non-uniform microstructure in both macroscopic and microscopic ways.
Mo 첨가 베타 타이타늄 합금의 상기 편석 및 불균일한 미세조직 문제는 결국 후속 공정(예를 들면 TMP(thermal mechanical process)나 균질화 열처리)을 통해 해결해야 하고, 이는 다시 생산성 및 경제성 문제를 유발한다. 더 나아가 상기 Mo는 타이타늄 합금에 첨가되는 다른 합금 원소들 대비 고가의 원소이므로 타이타늄 합금의 경제성을 떨어뜨리는 문제가 있다.The segregation and non-uniform microstructure problem of the Mo-added beta titanium alloy must be solved through a subsequent process (for example, thermal mechanical process (TMP) or homogenization heat treatment), which in turn causes productivity and economic problems. Furthermore, since Mo is an element that is more expensive than other alloying elements added to the titanium alloy, there is a problem of deteriorating the economic efficiency of the titanium alloy.
따라서 Mo 첨가량을 줄이면서도 상기 TWIP과 TRIP 효과를 동시에 확보할 수 있는 베타 타이타늄 합금에 대한 개발 요구가 증대되고 있다.Accordingly, there is an increasing need for development of a beta titanium alloy capable of simultaneously securing the TWIP and TRIP effects while reducing the amount of Mo added.
본 발명의 목적은 이에 따라 고가의 Mo를 대체하면서 동시에 비용이 낮은 새로운 베타 타이타늄 합금을 제공하는 것이다.It is an object of the present invention accordingly to provide a new beta titanium alloy having a low cost while replacing expensive Mo.
구체적으로 본 발명의 목적은 Mo는 기존 베타 타이타늄 합금보다 획기적으로 적게 포함하면서 상기 TWIP과 TRIP 효과를 동시에 구현할 수 있는 새로운 베타 타이타늄 합금을 제공하는 것이다.Specifically, it is an object of the present invention to provide a new beta titanium alloy capable of simultaneously implementing the TWIP and TRIP effects while containing significantly less Mo than the existing beta titanium alloy.
보다 구체적으로 본 발명은 기존 베타 타이타늄 대비 편석이 없고 균일한 미세조직을 가지면서 고강도와 고성형성 특성이 구현 가능한 경제성이 우수한 새로운 베타 타이타늄 합금을 제공하는 것이다.More specifically, the present invention is to provide a new beta titanium alloy having no segregation compared to the existing beta titanium and having a uniform microstructure and excellent economical efficiency in which high strength and high formability characteristics can be realized.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention that are not mentioned can be understood by the following description, and will be more clearly understood by examples of the present invention. In addition, it will be easily understood that the objects and advantages of the present invention can be realized by the means shown in the claims and combinations thereof.
상기의 목적을 달성하기 위한 본 발명의 일 실시예에 따른 Ti-Mo-Fe-Cr-Al계 타이타늄 합금은, 중량 %로, Ti-(1%≤Mo<4%)-(1%≤Fe<3%)-(1%≤Cr<4%)-(0%<Al≤4%)를 포함하며, Mo 당량이 12.0 이상인, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금이다.Ti-Mo-Fe-Cr-Al-based titanium alloy according to an embodiment of the present invention for achieving the above object, in weight %, Ti-(1%≤Mo<4%)-(1%≤Fe Ti-Mo-Fe-Cr-Al type containing <3%)-(1%≤Cr<4%)-(0%<Al≤4%) and having an Mo equivalent of 12.0 or more, excellent in strength and formability It is a beta titanium alloy.
바람직하게는 상기 합금은 중량 %로 O≤0.2% 를 포함하는, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄이다Preferably, the alloy is Ti-Mo-Fe-Cr-Al-based beta titanium having excellent strength and formability, including O≤0.2% by weight %.
바람직하게는 상기 합금은 변형 전 미세조직이 베타상 기지 내에 알파상을 포함하는, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금이다.Preferably, the alloy is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability, in which the microstructure before deformation includes an alpha phase in the beta phase matrix.
특히, 상기 베타 기지의 결정립 평균 크기는 200 ㎛ 이내인, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금이다. In particular, the average grain size of the beta matrix is within 200 ㎛, Ti-Mo-Fe-Cr-Al-based beta titanium alloy excellent in strength and formability.
바람직하게는 상기 합금은 변형 후 미세조직이 베타상 기지와 알파상과 함께 트윈 및 마르텐사이트를 포함하는, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금이다.Preferably, the alloy is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability, wherein the microstructure after deformation includes tween and martensite together with the beta phase matrix and the alpha phase.
바람직하게는 상기 합금의 인장강도는 850 MPa 이상인, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금이다.Preferably, the alloy has a tensile strength of 850 MPa or more, and is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability.
이 때 상기 합금은 15% 이상의 연신율과, 인장강도(MPa)와 연신율(%)의 곱이 15,000 MPa%이상인, 강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금이다.At this time, the alloy is a Ti-Mo-Fe-Cr-Al-based beta titanium alloy having excellent strength and formability, in which the product of the elongation of 15% or more and the tensile strength (MPa) and the elongation (%) is 15,000 MPa% or more.
본 발명에 의하면 고가의 Mo을 대체하면서 기존의 Mo 첨가량이 높은(8% 이상의 Mo) 베타 타이타늄 합금보다 동등 이상의 기계적 특성을 확보할 수 있는 새로운 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금을 제공할 수 있는 장점이 있다. According to the present invention, a new Ti-Mo-Fe-Cr-Al-based beta titanium alloy capable of securing mechanical properties equivalent to or higher than that of a beta titanium alloy with a high amount of Mo added (more than 8% Mo) while replacing expensive Mo. There is an advantage it can provide.
특히 본 발명의 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금은 알파상을 일부 포함함으로써 베타상의 안정성을 높여 적은 Mo 첨가량에도 TWIP 및 TRIP 현상을 발생시켜 높은 인장강도 특성과 함께 우수한 연신율을 동시에 확보할 수 있는 장점이 있다.Particularly, the Ti-Mo-Fe-Cr-Al-based beta titanium alloy of the present invention increases the stability of the beta phase by including a part of the alpha phase, thereby generating TWIP and TRIP even with a small amount of Mo added, resulting in high tensile strength properties and excellent elongation at the same time. There is an advantage that can be secured.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, specific effects of the present invention will be described together while describing specific details for carrying out the present invention.
도 1은 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금을 제조하는 방법을 나타내는 도면이다.1 is a view showing a method of manufacturing a Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
도 2는 본 발명의 실시예 및 비교예 베타 타이타늄 합금들의 Mo 조성범위에 따른 인장강도(UTS, ultimate tensile strength, MPa)와 연신율(%)의 곱을 도시한 것이다.2 shows the product of the tensile strength (UTS, ultimate tensile strength, MPa) and the elongation (%) according to the Mo composition range of the beta titanium alloys of Examples and Comparative Examples of the present invention.
도 3은 본 발명의 실시예 및 비교예 베타 타이타늄 합금들에서 용체화 처리 및 급냉 후의 베타상에서의 Mo 당량 값에 따른 인장강도(UTS, ultimate tensile strength, MPa)와 연신율(%)의 곱을 도시한 것이다. 3 shows the product of tensile strength (UTS, ultimate tensile strength, MPa) and elongation (%) according to the value of Mo equivalent in the beta phase after solution treatment and quenching in the beta titanium alloys of Examples and Comparative Examples of the present invention. will be.
도 4는 본 발명의 비교예인 2-1-2 베타 타이타늄 합금의 용체화 처리 후 급냉된 미세조직을 나타낸다.4 shows a microstructure of a 2-1-2 beta titanium alloy, which is a comparative example of the present invention, quenched after solution treatment.
도 5는 본 발명의 비교예인 2-2-1 베타 타이타늄 합금의 용체화 처리 후 급냉된 미세조직 사진이다.5 is a photograph of a microstructure of a 2-2-1 beta titanium alloy, which is a comparative example of the present invention, quenched after solution treatment.
도 6은 본 발명의 실시예 및 비교예 베타 타이타늄 합금들의 알파상 분율에 따른 인장강도(UTS, ultimate tensile strength, MPa) 값을 도시한 것이다.6 shows the tensile strength (UTS, ultimate tensile strength, MPa) value according to the alpha phase fraction of the beta titanium alloys of Examples and Comparative Examples of the present invention.
도 7은 본 발명의 실시예 2-5-1 베타 타이타늄 합금의 변형 전(용체화 처리 후 급냉된)과 2% 변형된 미세조직 사진이다.7 is a photograph of a microstructure of Example 2-5-1 beta titanium alloy of the present invention before deformation (quickly cooled after solution treatment) and 2% deformation.
도 8은 본 발명의 실시예 2-2-2 베타 타이타늄 합금의 변형 전(용체화 처리 후 급냉된)과 15% 변형된 미세조직 사진이다. 8 is a microstructure photograph of Example 2-2-2 of the present invention before deformation (quick-cooled after solution treatment) and 15% of the beta titanium alloy.
도 9는 본 발명의 모든 실시예 및 비교예의 Ti-Mo-Fe-Cr-Al 베타 타이타늄 합금들의 인장강도와 연신율을 나타낸 도면이다.9 is a view showing tensile strength and elongation of Ti-Mo-Fe-Cr-Al beta titanium alloys of all Examples and Comparative Examples of the present invention.
이하, 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings so that those of ordinary skill in the art may easily implement the present invention. The present invention may be implemented in various different forms, and is not limited to the embodiments described herein.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.In order to clearly describe the present invention, parts irrelevant to the description have been omitted, and the same reference numerals are assigned to the same or similar components throughout the specification. Further, some embodiments of the present invention will be described in detail with reference to exemplary drawings. In adding reference numerals to elements of each drawing, the same elements may have the same numerals as possible even if they are indicated on different drawings. In addition, in describing the present invention, when it is determined that a detailed description of a related known configuration or function may obscure the subject matter of the present invention, a detailed description thereof may be omitted.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the constituent elements of the present invention, terms such as first, second, A, B, (a), (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, order, or number of the component is not limited by the term. When a component is described as being "connected", "coupled" or "connected" to another component, the component may be directly connected or connected to that other component, but other components between each component It is to be understood that is "interposed", or that each component may be "connected", "coupled" or "connected" through other components.
타이타늄은 체심입방격자(body centered cublic, BCC) 구조를 가지는 고온의 베타상과 육방체밀격자(hexagonal closed packed, HCP) 구조를 가지는 저온의 알파상을 두 가지 결정구조를 가지는 동소변태(polymorphous) 원소이다.Titanium is a polymorphous element with two crystal structures: a high temperature beta phase with a body centered cublic (BCC) structure and a low temperature alpha phase with a hexagonal closed packed (HCP) structure. to be.
상기 타이타늄에 전이금속이 첨가되면, 상기 타이타늄의 고온 베타상이 안정해지는 영역이 넓어지게 된다. 다시 말하면 고온 베타상이 저온 알파상으로 상변태되는 온도인 베타 트랜서스(beta transus) 온도가 감소하게 된다.When a transition metal is added to the titanium, a region in which the high-temperature beta phase of the titanium is stabilized is widened. In other words, the beta transus temperature, which is the temperature at which the high temperature beta phase is transformed into the low temperature alpha phase, decreases.
이 때 각 첨가되는 합금원소에 따라 베타상이 안정화되는 정도가 달라지는데, Mo(molybdenum)을 기준으로 각 합금원소 별로 베타상 안정화 정도를 나타낸 것을 다음과 같은 Mo 당량(Mo equivalency)이라 한다. At this time, the degree of stabilization of the beta phase varies depending on the alloying element added, and the degree of stabilization of the beta phase for each alloying element based on Mo (molybdenum) is referred to as the following Mo equivalency.
[Mo] eq = [Mo] + 0.67 [V] + 0.44 [W] + 0.28 [Nb] + 0.22 [Ta] + 2.9 [Fe] + 1.6 [Cr] + 1.25 [Ni] + 1.7 [Mn] + 1.7 [Co] - 1.0 [Al][Mo] eq = [Mo] + 0.67 [V] + 0.44 [W] + 0.28 [Nb] + 0.22 [Ta] + 2.9 [Fe] + 1.6 [Cr] + 1.25 [Ni] + 1.7 [Mn] + 1.7 [Co] - 1.0 [Al]
상기 Mo 당량 값은 타이타늄 합금의 성분 및 조성 범위에 의해 결정되지만, 다양한 합금 원소들 및 각 성분들의 조성범위들을 하나의 파라미터로 normalize 시킨 값이다. 따라서 상기 Mo 당량 값은 타이타늄 합금의 상 안정성, 변형 메커니즘 및 기계적 물성을 결정할 수 있는 파라미터 값이 될 수 있다.The Mo equivalent value is determined by the composition and composition range of the titanium alloy, but is a value obtained by normalizing various alloying elements and composition ranges of each component with one parameter. Therefore, the Mo equivalent value may be a parameter value capable of determining the phase stability, deformation mechanism, and mechanical properties of the titanium alloy.
한편 Al은 타이타늄 합금에서 저온 알파상을 안정화시키는 대표적인 합금 원소이다. Meanwhile, Al is a representative alloying element that stabilizes the low-temperature alpha phase in a titanium alloy.
따라서 상기 Mo 당량을 계산할 때, Al은 다른 베타 안정화 원소 값과는 달리 음(negative)의 값을 가지는 것으로 계산된다.Therefore, when calculating the Mo equivalent, Al is calculated to have a negative value unlike other beta-stabilizing element values.
반면 대부분의 전이 금속은 타이타늄 합금에서 고온 베타상을 안정화시키는 합금원소이다.On the other hand, most transition metals are alloying elements that stabilize the high temperature beta phase in titanium alloys.
따라서 상기 Mo 당량을 계산할 때, 전이금속들은 Al과는 달리 양(positive)의 값을 가지는 것으로 계산된다.Therefore, when calculating the Mo equivalent, transition metals are calculated to have a positive value, unlike Al.
상기 TWIP과 TRIP 효과를 동시에 구현하기 위한 종래의 베타 타이타늄 합금은 Mo를 최소 8~15% 이상 포함하고 동시에 Al 등과 같은 알파 안정화 원소는 거의 포함하지 아니한다. 따라서 상기 Mo 당량에서 계산되는 바와 같이 종래의 베타 타이타늄 합금은 Mo 당량이 최소 12 이상 바람직하게는 거의 15 이상 매우 높은 양의 값을 가진다. Conventional beta titanium alloys for realizing the TWIP and TRIP effects at the same time contain at least 8 to 15% of Mo and almost no alpha stabilizing elements such as Al. Therefore, as calculated from the Mo equivalents, the conventional beta titanium alloy has a very high amount of Mo equivalents of at least 12, preferably at least 15.
본 발명의 베타 타이타늄 합금은 기존의 높은 Mo(이하 high Mo) 베타 타이타늄 합금보다 Mo 함량을 대폭적으로 줄인 것을 조성 측면에서 하나의 기술적 특징으로 한다.The beta titanium alloy of the present invention is one technical feature in terms of composition that the Mo content is significantly reduced compared to the existing high Mo (hereinafter, high Mo) beta titanium alloy.
나아가 본 발명의 베타 타이타늄 합금은 상기 TWIP과 TRIP 효과를 동시에 구현하기 위해 상기 Mo을 다른 합금 원소들로 치환한 것을 조성 측면에서 다른 하나의 기술적 특징으로 한다.Further, the beta titanium alloy of the present invention is another technical feature in terms of composition in that Mo is substituted with other alloying elements in order to simultaneously realize the TWIP and TRIP effects.
더 나아가 본 발명의 베타 타이타늄 합금은 고강도화를 위해 베타 타이타늄 합금에서 오히려 알파 안정화 원소인 Al 등을 포함하는 것을 조성 측면에서 또 다른 하나의 기술적 특징으로 한다.Furthermore, the beta titanium alloy of the present invention is another technical feature in terms of composition in that the beta titanium alloy contains Al, which is an alpha stabilizing element rather than in the beta titanium alloy for high strength.
이하 본 발명의 베타 타이타늄 합금의 성분 및 조성 범위에 대한 기술적 특징을 살펴보기로 한다.Hereinafter, the technical characteristics of the component and composition range of the beta titanium alloy of the present invention will be described.
본 발명의 베타 타이타늄 합금은 Al을 필수 성분으로 포함한다.The beta titanium alloy of the present invention contains Al as an essential component.
본 발명에서 Al을 첨가하는 이유는 다음과 같다.The reason for adding Al in the present invention is as follows.
일반적으로 타이타늄 합금은 침입형 산소에 의한 강화, 고용 강화, 석출 강화 및 전위 밀도 또는 결정립 미세화 강화 메커니즘에 의해 강화된다.In general, titanium alloys are strengthened by interstitial oxygen strengthening, solid solution strengthening, precipitation strengthening, and dislocation density or grain refinement strengthening mechanisms.
상기 강화 메커니즘 가운데 침입형 산소에 의한 강화는 취성을 유발시킬 수 있기 때문에 바람직하지 못하다.Among the above strengthening mechanisms, strengthening by interstitial oxygen is not preferable because it may cause brittleness.
반면 알루미늄은 타이타늄 합금에서 가장 대표적인 고용 강화 원소이다.On the other hand, aluminum is the most representative solid solution strengthening element in titanium alloys.
알루미늄이 타이타늄에 첨가되면, 알루미늄은 주로 알파상에 고용되어 알파상을 강화시킨다. 또한 알루미늄은 타이타늄 합금에서 산화 저항성과 크립 저항성도 높일 수 있다.When aluminum is added to titanium, aluminum is mainly dissolved in the alpha phase and strengthens the alpha phase. In addition, aluminum can increase oxidation resistance and creep resistance in titanium alloys.
만일 Al의 첨가량이 4%보다 많으면 베타 타이타늄 합금의 성형성이 저하되고 더 나아가 과도한 Al의 첨가는 Ti 3Al 상 형성을 조장할 수 있는 문제가 있다. If the amount of Al added is more than 4%, the formability of the beta titanium alloy is deteriorated, and further, excessive addition of Al has a problem in that Ti 3 Al phase formation may be promoted.
또한 본 발명의 베타 타이타늄 합금은 Mo를 필수 성분으로 포함한다.In addition, the beta titanium alloy of the present invention contains Mo as an essential component.
Mo는 본 발명의 베타 타이타늄 합금이 TWIP과 TRIP 효과를 동시에 구현할 수 있는 원소이다.Mo is an element capable of simultaneously implementing the TWIP and TRIP effects of the beta titanium alloy of the present invention.
이를 위해 본 발명의 베타 타이타늄 합금은 Mo를 1% 이상 4% 미만 첨가하는 것을 기술적 특징으로 한다. To this end, the beta titanium alloy of the present invention is characterized in that Mo is added by 1% or more and less than 4%.
만일 Mo의 첨가량이 1%보다 적으면, 상기 TWIP과 TRIP 효과를 동시에 구현할 수 없어 베타 타이타늄 합금의 우수한 기계적 물성 확보가 어려워 진다.If the amount of Mo added is less than 1%, the TWIP and TRIP effects cannot be simultaneously realized, making it difficult to secure excellent mechanical properties of the beta titanium alloy.
반면 Mo의 첨가량이 4% 이상이면, 주조성이 저하되어 잉곳 제조가 어렵고 Mo의 편석 문제가 발생한다. 더 나아가 본 발명의 베타 타이타늄 합금은 Mo 이외에도 다른 베타 안정화 원소가 포함된다. 따라서 Mo 이외의 다른 베타 안정화 원소와 함께 Mo가 4% 이상 첨가되면, 본 발명의 베타 타이타늄 합금의 베타 안정성이 너무 높아져서 베타 타이타늄 합금의 변형 시 TWIP과 TRIP이 발생하지 않고 슬립(slip)만이 일어나게 되어 그로 인해 본 발명의 베타 타이타늄 합금의 강도 및 성형성이 저하되는 문제가 있다.On the other hand, when the addition amount of Mo is 4% or more, castability decreases, making it difficult to manufacture an ingot, and a problem of segregation of Mo occurs. Furthermore, the beta titanium alloy of the present invention contains other beta stabilizing elements in addition to Mo. Therefore, if more than 4% of Mo is added together with other beta stabilizing elements other than Mo, the beta stability of the beta titanium alloy of the present invention is too high, so that TWIP and TRIP do not occur when the beta titanium alloy is deformed, and only slip occurs. Accordingly, there is a problem that the strength and formability of the beta titanium alloy of the present invention are deteriorated.
또한 본 발명의 베타 타이타늄 합금은 Mo 이외에도 Cr과 Fe를 필수 성분으로 포함한다.In addition, the beta titanium alloy of the present invention contains Cr and Fe as essential components in addition to Mo.
상기 Cr과 Fe는 모두 Mo를 대체하며 본 발명의 베타 타이타늄 합금이 변형될 때 TWIP과 TRIP이 동시에 발생할 수 있게 하는 첨가 원소이다.Both Cr and Fe replace Mo and are additive elements that allow TWIP and TRIP to occur simultaneously when the beta titanium alloy of the present invention is deformed.
상기 Cr과 Fe의 각각의 첨가량이 1%보다 적으면, 상기 TWIP과 TRIP 효과를 동시에 구현할 수 없어 베타 타이타늄 합금의 우수한 기계적 물성 확보가 어려워 진다.If the amount of each of Cr and Fe is less than 1%, the TWIP and TRIP effects cannot be realized at the same time, making it difficult to secure excellent mechanical properties of the beta titanium alloy.
반면 Cr의 첨가량이 4% 초과이거나 Fe의 첨가량이 3% 초과이면, 용해 중 조성 편석 문제를 유발하여 주조성이 저하되어 잉곳 제조가 어렵게 되는 문제가 발생한다.On the other hand, when the addition amount of Cr exceeds 4% or the addition amount of Fe exceeds 3%, it causes a composition segregation problem during melting, resulting in lower castability, which makes it difficult to manufacture an ingot.
한편 본 발명의 베타 타이타늄 합금은 O(산소)를 포함한다.Meanwhile, the beta titanium alloy of the present invention contains O (oxygen).
산소는 일반적으로 순수한 타이타늄(commercially pure) 및 모든 타이타늄 합금에서 피할 수 없게 포함되는 일종의 불순물로 간주될 수 있는 원소이다.Oxygen is an element that can be regarded as a kind of impurity that is unavoidably included in generally pure titanium (commercially pure) and all titanium alloys.
산소가 타이타늄 또는 타이타늄 합금에 포함되면, 타이타늄 또는 타이타늄 합금에서는 산소에 의한 침입형 강화 효과로 인해 강도가 증가한다.When oxygen is included in the titanium or titanium alloy, the strength increases due to the interstitial strengthening effect by oxygen in the titanium or titanium alloy.
다만 산소가 과도하게 첨가되면 타이타늄 또는 타이타늄 합금의 성형성이 저하된다. 따라서 본 발명의 베타 타이타늄 합금은 최대 0.2% 이하의 산소를 포함한다.However, if oxygen is excessively added, the formability of titanium or titanium alloy is deteriorated. Therefore, the beta titanium alloy of the present invention contains at most 0.2% or less of oxygen.
본 발명의 베타 타이타늄 합금은 상기의 조성적 특징을 바탕으로 하여 중량 %로, Ti-(1%≤Mo<4%)-(1%≤Fe<3%)-(1%≤Cr<4%)-(0%<Al≤4%)의 성분 및 조성 범위를 가진다.The beta titanium alloy of the present invention is based on the above compositional characteristics, in weight %, Ti-(1%≤Mo<4%)-(1%≤Fe<3%)-(1%≤Cr<4% )-(0%<Al≤4%).
한편 본 발명의 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금은 다양한 제조 방법에 의해 제조 가능하다. 다만 통상적인 타이타늄 합금과 유사하게 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금의 기계적 특성 역시 미세조직에 의해 영향을 받는다.Meanwhile, the Ti-Mo-Fe-Cr-Al-based beta titanium alloy of the present invention can be manufactured by various manufacturing methods. However, similar to a conventional titanium alloy, the mechanical properties of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention are also affected by the microstructure.
도 1은 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금을 제조하는 방법을 나타내는 도면이다.1 is a view showing a method of manufacturing a Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
도 1에서 도시하는 바와 같이, 본 발명의 일 실시예에 따른 제조 방법은 먼저 주조 조직(as-cast) 조직을 깨뜨리기 위한 열간 단조(hot forging) 공정을 수행한다.As shown in FIG. 1, the manufacturing method according to an embodiment of the present invention first performs a hot forging process for breaking an as-cast structure.
상기 단조 공정은 고온 베타상 단상 영역이 나타나는 최저 온도인 베타 트랜서스(beta transus) 온도를 기준으로 베타 단상 영역에서 단조를 수행하는 베타 단조와 베타 트랜서스 온도 이하의 알파+베타 이상 영역에서 단조를 수행하는 알파+베타 단조 공정을 포함한다. 다만 열간 단조라는 용어에서 의미하는 바와 같이 알파+베타 단조에서도 단조 온도는 재결정 온도 이상이어야 한다. In the forging process, beta forging is performed in the beta single-phase region based on the beta transus temperature, which is the lowest temperature at which the high-temperature beta-phase single-phase region appears, and forging is performed in a region above the alpha + beta below the beta transus temperature. It includes the alpha + beta forging process performed. However, as the term “hot forging” means, in alpha + beta forging, the forging temperature must be higher than the recrystallization temperature.
본 발명에서의 베타 단조는 베타 트랜서스 온도보다 50~100℃ 높은 온도에서 수행되는 것이 바람직하다.Beta forging in the present invention is preferably carried out at a temperature 50 ~ 100 ℃ higher than the beta transus temperature.
만일 베타 트랜서스 온도 근처에서 수행되는 경우, 베타 단상 영역을 담보할 수 없다. 반면 베타 트랜서스 온도 이상에서 수행되면 지나치게 높은 온도로 인해 결정립 성장이 지나치게 조장되어 최종 합금의 기계적 특성 모두가 저하되는 문제가 있다.If it is performed near the beta transus temperature, the beta single-phase region cannot be guaranteed. On the other hand, if it is performed above the beta transus temperature, there is a problem that grain growth is excessively promoted due to an excessively high temperature, thereby deteriorating all mechanical properties of the final alloy.
본 발명에서의 알파+베타 단조는 베타 트랜서스 온도보다 30~50℃ 낮은 온도에서 수행되는 것이 바람직하다.Alpha + beta forging in the present invention is preferably carried out at a temperature 30 ~ 50 ℃ lower than the beta transus temperature.
만일 베타 트랜서스 온도 근처에서 수행되는 경우, 알파+베타 이상 영역을 담보할 수 없다. 반면 베타 트랜서스 온도보다 지나치게 낮은 온도에서 수행되면 단조 중에 재결정이 발생하지 아니하는 문제가 있다.If it is performed near the beta transus temperature, it is not possible to guarantee a region above the alpha + beta. On the other hand, if it is performed at a temperature too low than the beta transus temperature, there is a problem that recrystallization does not occur during forging.
한편 본 발명의 일 실시예에 따른 제조 방법에서의 열간 단조 공정에서는 업셋(upset) 단조 및/또는 사이드 단조 등의 모든 단조 공법이 적용 가능하다.Meanwhile, in the hot forging process in the manufacturing method according to an embodiment of the present invention, all forging methods such as upset forging and/or side forging can be applied.
본 발명에서의 상기 열간 단조 공정 이후에는 용체화 처리 공정이 진행된다.After the hot forging process in the present invention, a solution treatment process is performed.
용체화 처리 공정은 용어 그대로 열간 단조된 베타 기지 또는 알파+베타 기지의 합금을 높은 온도에서 가열하는 공정이다. As a term, the solution treatment process is a process of heating a hot-forged beta matrix or alpha + beta matrix alloy at a high temperature.
본 발명의 일 실시예에 따른 상기 용체화 처리는 알파+베타 이상 영역의 온도 범위에서 진행되는 것이 바람직하다. 상기 알파+베타 이상 영역에서의 용체화 처리는 베타 단상 영역의 용체화 처리 대비 결정립 성장을 억제하는데 효과적이기 때문이다. 더 나아가 본 발명에서의 알파+베타 이상 영역의 용체화 처리는 알파상 안정화 합금 원소와 베타 안정화 합금 원소를 각각 알파상과 베타상에 농축(enrichment)시켜 적은 Mo 함량에도 변형 시 TWIP과 TRIP 발생을 조장할 수 있기 때문이다.It is preferable that the solution treatment according to an embodiment of the present invention is performed in a temperature range above alpha + beta. This is because the solution treatment in the above alpha + beta region is effective in suppressing grain growth compared to the solution treatment in the beta single phase region. Furthermore, the solution treatment of the above alpha+beta region in the present invention enhances the alpha phase stabilizing alloy element and the beta stabilizing alloy element in the alpha phase and beta phase, respectively, so that TWIP and TRIP are generated when deformed even with a small Mo content. Because it can promote.
다만 본 발명에서의 용체화 처리가 반드시 알파+베타 이상 영역으로 한정되지는 않는다. 만일 결정립 성장을 억제할 수 있고, 더 나아가 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금의 조성 범위 가운데 베타 안정화 원소가 많이 첨가되는 조건에서는 베타 영역에서의 용체화 처리도 적용될 수 있다. However, the solution treatment in the present invention is not necessarily limited to a region above alpha + beta. If crystal grain growth can be suppressed, and furthermore, solution treatment in the beta region can be applied under conditions in which a large amount of beta stabilizing elements are added in the composition range of the Ti-Mo-Fe-Cr-Al titanium alloy of the present invention. .
본 발명의 일 실시예에서의 상기 용체화 처리 공정은 베타 트랜서스 온도보다 20~90℃ 낮은 것이 바람직하다.The solution treatment process in an embodiment of the present invention is preferably 20 to 90 ℃ lower than the beta transus temperature.
만일 상기 용체화 처리 온도가 상한 값보다 높으면 지나치게 높은 용체화 처리 온도로 인해 알파+베타 영역에서의 열간 단조에서 생성된 알파상이 거의 모두 제거되는 문제가 있다. If the solution treatment temperature is higher than the upper limit value, there is a problem that almost all of the alpha phase generated in hot forging in the alpha + beta region is removed due to an excessively high solution treatment temperature.
나아가 지나치게 높은 용체화 처리 온도로 인해 결정립 성장이 일어날 수 있는 문제가 있다. Furthermore, there is a problem in that crystal grain growth may occur due to an excessively high solution treatment temperature.
더 나아가 지나치게 높은 용체화 처리 온도는 베타 안정화 원소의 베타 상으로의 농축을 충분하게 담보하지 못하여 냉각 중 베타상이 마르텐사이트로 변태됨으로써 TWIP 및 TRIP 현상이 일어나지 못하게 되는 문제가 있다.Furthermore, too high a solution treatment temperature does not sufficiently ensure the concentration of the beta-stabilizing element into the beta phase, so that the beta phase is transformed into martensite during cooling, thereby preventing TWIP and TRIP from occurring.
반면 용체화 처리 온도가 하한 값보다 낮으면, 베타상의 분율이 감소하고 더 나아가 베타상에 베타 안정화 원소가 지나치게 농축되어 변형 시 TWIP과 TRIP이 발생하지 않고 슬립(slip)만이 일어나게 되어 기계적 특성이 저하되는 문제가 있다.On the other hand, if the solution treatment temperature is lower than the lower limit, the fraction of the beta phase decreases and further, the beta stabilizing element is excessively concentrated in the beta phase, so that TWIP and TRIP do not occur during deformation, and only slip occurs, resulting in a decrease in mechanical properties. There is a problem.
본 발명에서의 상기 용체화 처리 공정 이후에는 급냉 공정이 진행된다.After the solution treatment process in the present invention, a rapid cooling process is performed.
상기 용체화 처리 후의 급냉 공정은 용체화 처리 공정 시의 미세조직, 보다 구체적으로는 고온 베타상을 상온에서도 그대로 유지하기 위한 공정이다. 상기 급냉을 통해 상온까지 유지된 베타상이 후속 변형 시 TWIP 및 TRIP 효과를 발생시킴으로써, 본 발명의 베타 타이타늄 합금의 고강도 및 고성형성이 확보될 수 있다. The quenching process after the solution treatment is a process for maintaining the microstructure during the solution treatment process, more specifically, the high-temperature beta phase as it is at room temperature. When the beta phase maintained at room temperature through the rapid cooling generates TWIP and TRIP effects upon subsequent deformation, high strength and high formability of the beta titanium alloy of the present invention can be secured.
이하 다음과 같은 실험예들을 통해 본 발명의 일 실시예에 따른 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금을 보다 구체적으로 살펴보고자 한다.Hereinafter, a Ti-Mo-Fe-Cr-Al-based beta titanium alloy according to an embodiment of the present invention will be described in more detail through the following experimental examples.
<실험예><Experimental Example>
표 1은 본 발명의 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금의 실시예 및 비교예에 해당하는 성분 및 조성 범위들을 정리한 표이다.Table 1 is a table summarizing components and composition ranges corresponding to Examples and Comparative Examples of the Ti-Mo-Fe-Cr-Al-based beta titanium alloy of the present invention.
<표 1><Table 1>
Figure PCTKR2020010427-appb-img-000001
Figure PCTKR2020010427-appb-img-000001
상기 표 1에서의 조성 1-1 내지 1-3은 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금의 비교예의 조성에 해당된다. 반면 상기 표 1에서의 조성 2-1-1 내지 2-5-1은 모두 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금의 실시예의 조성에 해당된다.Compositions 1-1 to 1-3 in Table 1 correspond to the composition of the comparative example of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention. On the other hand, the compositions 2-1-1 to 2-5-1 in Table 1 correspond to the compositions of the examples of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention.
표 2는 상기 표 1에서의 본 발명의 Ti-Mo-Fe-Cr-Al계 타이타늄 합금의 실시예와 비교예의 기계적 특성과 열처리 조건, 그리고 그에 따른 알파상의 분율과 베타상에서의 Mo 당량을 정리한 표이다.Table 2 summarizes the mechanical properties and heat treatment conditions of the examples and comparative examples of the Ti-Mo-Fe-Cr-Al-based titanium alloy of the present invention in Table 1, and the proportion of the alpha phase and the Mo equivalent in the beta phase. It is a table.
<표 2><Table 2>
Figure PCTKR2020010427-appb-img-000002
Figure PCTKR2020010427-appb-img-000002
상기 표 1의 비교예 1-1의 Mo를 포함하지 않은 타이타늄 합금은 TWIP 및 TRIP 현상이 일어나지 않아 연성이 현저하게 낮은 특성을 보인다. 또한 Al을 포함하지 않는 상기 표 1의 비교예 1-2와 Mo를 4% 포함한 상기 표1의 비교예 1-3도 강도 및/또는 연신율이 낮은 특성을 보인다.The titanium alloy that does not contain Mo of Comparative Example 1-1 of Table 1 exhibits remarkably low ductility because TWIP and TRIP do not occur. In addition, Comparative Example 1-2 of Table 1 that does not contain Al and Comparative Example 1-3 of Table 1 that contains 4% Mo also exhibits low strength and/or elongation properties.
도 2는 본 발명의 표 1 및 표 2의 실시예 및 비교예 베타 타이타늄 합금들의 Mo 조성범위에 따른 인장강도(UTS, ultimate tensile strength, MPa)와 연신율(%)의 곱을 도시한 것이다.FIG. 2 shows the product of tensile strength (UTS, ultimate tensile strength, MPa) and elongation (%) according to the Mo composition range of the examples and comparative examples of Tables 1 and 2 of the present invention.
도 2에서 도시하는 바와 같이, Mo의 조성범위가 1% 이상 4% 미만의 조성범위를 가지는 베타 타이타늄 합금은 인장강도*연신율 값이 매우 높음을 알 수 있다. 다만 1-2의 비교예에 해당하는 베타 타이타늄 합금은 Al을 포함하지 않아서 본 발명의 실시예에 해당하는 베타 타이타늄 합금 대비 낮은 인장강도*연신율 값을 가진다.As shown in Fig. 2, it can be seen that a beta titanium alloy having a composition range of 1% or more and less than 4% of Mo has a very high tensile strength*elongation value. However, since the beta titanium alloy corresponding to Comparative Example 1-2 does not contain Al, it has a lower tensile strength * elongation value than the beta titanium alloy corresponding to the embodiment of the present invention.
도 3은 본 발명의 표 1 및 표 2의 실시예 및 비교예 베타 타이타늄 합금들에서 용체화 처리 및 급냉 후의 베타상에서의 Mo 당량 값에 따른 인장강도(UTS, ultimate tensile strength, MPa)와 연신율(%)의 곱을 도시한 것이다. 3 is a tensile strength (UTS, ultimate tensile strength, MPa) and elongation according to the value of Mo equivalent in the beta phase after solution treatment and quenching in the beta titanium alloys of Examples and Comparative Examples of Tables 1 and 2 of the present invention ( %).
일반적으로 Mo 당량 값은 타이타늄 합금의 상안정성과 변형메커니즘 및 기계적 물성을 결정하는 값으로 알려져 있다. In general, the Mo equivalent value is known as a value that determines the phase stability, deformation mechanism, and mechanical properties of a titanium alloy.
특히 본 발명이 속하는 베타 타이타늄 합금은 TWIP 및 TRIP 효과를 발생시켜서 기계적 특성 및 가공성의 향상을 도모한다. 이때 상기 TWIP 및 TRIP 효과는 베타상에서 가공 중에 발생한다. 따라서 본 발명의 베타 타이타늄 합금에서는 최종 미세조직에서의 베타상의 조성이 상기 TWIP 및 TRIP 효과의 발생을 결정하는 중요 인자이다. 상기 최종 미세조직에서의 베타상의 조성은 합금 전체의 조성(또는 nominal 조성)뿐만 아니라 열간 단조 및 용체화 처리 조건에 따라 결정된다. 예를 들면 표 2에서의 2-2-2 내지 2-2-4, 2-3-3 내지 2-3-4, 2-4-2 내지 2-4-5 등에서도 정량적으로 예시하는 바와 같이, 동일한 합금 조성에서도 알파+베타 용체화 처리 온도가 낮을수록 베타 안정화 원소가 베타상으로 더 농축되어 베타상에서의 Mo 당량 값은 높아진다.Particularly, the beta-titanium alloy to which the present invention belongs is intended to improve mechanical properties and workability by generating TWIP and TRIP effects. At this time, the TWIP and TRIP effects occur during processing in the beta phase. Therefore, in the beta titanium alloy of the present invention, the composition of the beta phase in the final microstructure is an important factor determining the occurrence of the TWIP and TRIP effects. The composition of the beta phase in the final microstructure is determined according to the conditions of the hot forging and solution treatment as well as the composition (or nominal composition) of the whole alloy. For example, as quantitatively illustrated in 2-2-2 to 2-2-4, 2-3-3 to 2-3-4, 2-4-2 to 2-4-5, etc. in Table 2, , Even in the same alloy composition, the lower the alpha + beta solution treatment temperature, the more the beta stabilizing element is concentrated in the beta phase, and the Mo equivalent value in the beta phase increases.
도 3에서 도시하는 바와 같이, 본 발명의 Ti-Mo-Fe-Cr-Al 베타 타이타늄 합금은 베타상의 Mo 당량 값이 12.0 이상인 범위에서 현저하게 우수한 기계적 특성을 가지는 것으로 측정되었다. As shown in FIG. 3, the Ti-Mo-Fe-Cr-Al beta titanium alloy of the present invention was measured to have remarkably excellent mechanical properties in the range of the beta phase Mo equivalent value of 12.0 or more.
반면 Mo 당량 값이 12.0 보다 낮은 범위의 2-1-1 및 2-1-2의 비교예에 해당하는 Ti-Mo-Fe-Cr-Al 베타 타이타늄 합금은 베타상 안정성이 상대적으로 낮아지고, 그에 따라 용체화 처리 후 급냉 시 베타상이 마르텐사이트로 변태되어 TWIP 및 TRIP이 발생되지 않게 된다. 그 결과 상기 비교예에 해당하는 Ti-Mo-Fe-Cr-Al 베타 타이타늄 합금은 기계적 특성이 저하된다.On the other hand, the Ti-Mo-Fe-Cr-Al beta titanium alloy corresponding to the comparative examples of 2-1-1 and 2-1-2 in the range of Mo equivalent values lower than 12.0 has relatively low beta phase stability, and thus Accordingly, during rapid cooling after solution treatment, the beta phase is transformed into martensite, and TWIP and TRIP do not occur. As a result, the Ti-Mo-Fe-Cr-Al beta titanium alloy corresponding to the comparative example is deteriorated in mechanical properties.
구체적인 예로써, 비교예 2-1-1 및 2-1-2 베타 타이타늄 합금은 표 1에서 기재된 바와 같이 합금의 조성은 본 발명의 실시예에 해당하는 Ti-Mo-Fe-Cr-Al 베타 타이타늄 합금의 성분 및 조성범위를 모두 만족한다. 반면 상기 비교예 2-1-1 및 2-1-2 베타 타이타늄 합금은 표 2에서 기재된 바와 같이 용체화 처리 후 베타상에서의 Mo 당량은 각각 7.6 및 9.2를 가지는 것으로 측정되었고, 그 결과 항복강도와 연신율이 낮은 것으로 측정되었다.As a specific example, Comparative Examples 2-1-1 and 2-1-2 beta titanium alloys as described in Table 1, the composition of the alloy Ti-Mo-Fe-Cr-Al beta titanium corresponding to the embodiment of the present invention It satisfies all of the composition and composition range of the alloy. On the other hand, Comparative Examples 2-1-1 and 2-1-2 beta titanium alloys were measured to have Mo equivalents in the beta phase after solution treatment as described in Table 2 to have 7.6 and 9.2, respectively, and as a result, yield strength and It was determined that the elongation was low.
도 4는 본 발명의 비교예인 2-1-2 베타 타이타늄 합금의 용체화 처리 후 급냉된 미세조직을 나타낸다.4 shows a microstructure of a 2-1-2 beta titanium alloy, which is a comparative example of the present invention, quenched after solution treatment.
도 4에서 도시한 바와 같이, 본 발명의 비교예인 2-1-2 베타 타이타늄 합금은 베타상에서의 낮은 Mo 당량으로 인해 베타상 안정성이 낮아서 급냉 시 베타상이 유지되지 못하고 베타상으로부터 마르텐사이트로의 변태가 발생하였다.As shown in FIG. 4, the 2-1-2 beta titanium alloy, which is a comparative example of the present invention, has low beta phase stability due to a low Mo equivalent in the beta phase, so that the beta phase cannot be maintained during rapid cooling, and the transformation from the beta phase to martensite Occurred.
한편 도 3에서는 본 발명의 비교예에 해당하는 2-2-1은 본 발명의 베타 타이타늄의 일부 실시예 대비 인장강도(UTS, ultimate tensile strength)와 연신율(%)의 곱이 우수한 것으로 측정되었다. 그러나 상기 비교예 2-2-1은, 표 2에서의 기계적 특성 평가 결과에서 나타나듯이, 베타 타이타늄 합금이 가져야 하는 최소 기계적 강도도 만족시키지 못하는 매우 낮은 기계적 강도를 가진다.Meanwhile, in FIG. 3, 2-2-1 corresponding to the comparative example of the present invention was measured to be superior in product of the ultimate tensile strength (UTS) and elongation (%) compared to some examples of the beta titanium of the present invention. However, Comparative Example 2-2-1, as shown in the mechanical property evaluation results in Table 2, has a very low mechanical strength that does not satisfy the minimum mechanical strength required of the beta titanium alloy.
상기 비교예 2-2-1이 동일한 합금 조성을 가지는 실시예인 2-2-2 내지 2-2-4보다 낮은 기계적 강도를 가지는 원인은 비교예 2-2-1의 미세조직에서 기인한다.The reason that Comparative Example 2-2-1 has lower mechanical strength than Examples 2-2-2 to 2-2-4 having the same alloy composition is due to the microstructure of Comparative Example 2-2-1.
도 5는 본 발명의 비교예인 2-2-1의 미세조직 사진이다.5 is a microstructure photograph of 2-2-1, which is a comparative example of the present invention.
도 5에서 도시하는 바와 같이 상기 비교예 2-2-1은 매우 조대한 결정립을 가진다. 상기 비교예 2-2-1의 조대한 결정립은 표 2에서의 용체화 처리 온도에서 기인한다. 상기 비교예 2-2-1은 합금 성분 및 조성 범위로부터 결정되는 베타 트랜서스 온도인 820℃보다 높은 840℃의 베타 단상 영역에서 용체화 처리 후 급냉되었다. 이에 따라 상기 비교예 2-2-1은 베타 단상 영역의 용체화 처리에 의해 조대화된 결정립을 가지는 미세조직을 가지게 되어 그 결과 낮은 기계적 강도를 가지게 된 것으로 판단된다.As shown in Fig. 5, Comparative Example 2-2-1 has very coarse grains. The coarse crystal grains of Comparative Example 2-2-1 originate from the solution treatment temperature in Table 2. The comparative example 2-2-1 was quenched after solution treatment in a beta single-phase region of 840° C. higher than 820° C., which is a beta transus temperature determined from the alloy composition and composition range. Accordingly, it is determined that Comparative Example 2-2-1 has a microstructure having coarse grains by solution treatment in the beta single phase region, resulting in low mechanical strength.
도 6은 본 발명의 표 1 및 표 2의 실시예 및 비교예 베타 타이타늄 합금들의 알파상 분율에 따른 인장강도(UTS, ultimate tensile strength) 값을 도시한 것이다.6 shows the ultimate tensile strength (UTS) value according to the alpha phase fraction of the beta titanium alloys of Examples and Comparative Examples of Tables 1 and 2 of the present invention.
도 6에서 도시한 바와 같이, 본 발명의 실시예에 해당하는 베타 타이타늄 합금들은 모두 알파상을 포함하고 있다. 다시 말하면, 본 발명의 실시예의 베타 타이타늄 합금들은 표 2에서 나타나는 바와 같이 알파+베타 이상 영역에서 용체화 처리 후 급냉되어 알파상을 모두 포함한다. 이는 용체화 처리 시 본 발명의 실시예 베타 타이타늄 합금들의 결정립 성장이 효과적으로 억제되었을 뿐만 아니라 베타 안정화 원소가 베타상으로 농축되어 베타상이 안정화되고, 후속 변형 시 베타상이 TWIP 및 TRIP 현상을 발생시킬 수 있음을 의미한다. 그 결과 본 발명의 실시예의 베타 타이타늄 합금은 모두 최소 850MPa 이상의 인장강도를 가지는 것으로 측정되었다.As shown in FIG. 6, all of the beta titanium alloys corresponding to the embodiment of the present invention contain an alpha phase. In other words, as shown in Table 2, the beta-titanium alloys of the embodiment of the present invention are rapidly cooled after solution treatment in the alpha + beta or higher region to include all of the alpha phase. This is not only effectively suppressed the crystal grain growth of the beta titanium alloys of the embodiment of the present invention during the solution treatment, but also the beta stabilizing element is concentrated to the beta phase to stabilize the beta phase, and the beta phase may cause TWIP and TRIP phenomena during subsequent deformation. Means. As a result, all of the beta titanium alloys of the examples of the present invention were measured to have a tensile strength of at least 850 MPa or more.
도 7은 본 발명의 실시예인 2-5-1 베타 타이타늄 합금의 변형 전(용체화 처리 후 급냉된)과 2% 변형된 미세조직 사진이다.7 is a photo of a microstructure of 2-5-1 beta titanium alloy according to an embodiment of the present invention before deformation (quickly cooled after solution treatment) and 2% deformation.
도 8은 본 발명의 실시예인 2-2-2 베타 타이타늄 합금의 변형 전(용체화 처리 후 급냉된)과 15% 변형된 미세조직 사진이다. 8 is a microstructure photograph of a 2-2-2 beta titanium alloy, which is an example of the present invention, before deformation (quickly cooled after solution treatment) and 15% deformed.
먼저 도 7 및 8의 변형 전 미세조직 사진이 도시하는 바와 같이, 본 발명의 실시예의 베타 타이타늄 합금은 변형 전에는 베타상 기지 내에 알파상이 균일하게 존재하며, 베타상의 결정립 크기도 최대 200㎛를 넘지 않음을 알 수 있다.First, as shown in the microstructure photographs before deformation of FIGS. 7 and 8, the beta titanium alloy of the embodiment of the present invention has an alpha phase uniformly present in the beta phase matrix before deformation, and the crystal grain size of the beta phase does not exceed a maximum of 200 μm. Can be seen.
상기 변형 전 본 발명의 실시예의 베타 타이타늄 합금이 소성변형 되면, 도 7 및 8에서 도시하는 바와 같이, 베타상 내에 변형에 의한 트윈(twin)과 마르텐사이트(martensite)가 발생하게 된다. 이와 같은 트윈과 마르텐사이트의 존재는 각각 TWIP과 TRIP 현상이 본 발명의 실시예의 베타 타이타늄 합금에서 발생함을 직접적으로 입증하는 증거가 된다.When the beta titanium alloy of the embodiment of the present invention is plastically deformed before the deformation, twins and martensite are generated in the beta phase due to deformation as shown in FIGS. 7 and 8. The presence of tween and martensite, respectively, is evidence that directly proves that the TWIP and TRIP phenomena occur in the beta titanium alloy of the embodiment of the present invention.
한편 도 7 및 8을 비교해 보면, 변형량이 증가할수록 본 발명의 실시예의 베타 타이타늄 합금에서의 TWIP과 TRIP 현상이 더 많이 발생하여 그 결과 트윈과 마르텐사이트가 더 많이 존재하게 됨을 알 수 있다.On the other hand, comparing FIGS. 7 and 8, it can be seen that as the amount of deformation increases, more TWIP and TRIP phenomena occur in the beta titanium alloy of the embodiment of the present invention, and as a result, more tween and martensite exist.
도 9는 상기 표 1 및 2에서 기재된 본 발명의 모든 실시예 및 비교예의 Ti-Mo-Fe-Cr-Al 베타 타이타늄 합금들의 인장강도와 연신율을 나타낸 도면이다.9 is a view showing tensile strength and elongation of Ti-Mo-Fe-Cr-Al beta titanium alloys of all Examples and Comparative Examples of the present invention described in Tables 1 and 2 above.
도 9에서 도시하는 바와 같이, 본 발명의 실시예에 해당하는 베타 타이타늄 합금들은 모두 850 MPa 이상의 인장강도와 15% 이상의 연신율을 가지는 반면 비교예에 해당하는 베타 타이타늄 합금들은 인장강도 또는 연신율 중 적어도 어느 하나의 특성이 열악한 것으로 측정되었다.As shown in Figure 9, the beta titanium alloys corresponding to the embodiment of the present invention all have a tensile strength of 850 MPa or more and an elongation of 15% or more, whereas the beta titanium alloys corresponding to the comparative example are at least one of tensile strength or elongation One property was measured to be poor.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above with reference to the drawings illustrated for the present invention, the present invention is not limited by the embodiments and drawings disclosed in the present specification, and various by a person skilled in the art within the scope of the technical idea of the present invention. It is obvious that transformation can be made. In addition, even if not explicitly described and described the effect of the configuration of the present invention while describing the embodiments of the present invention, it is natural that the predictable effect by the configuration should also be recognized.

Claims (7)

  1. 중량 %로, Ti-(1%≤Mo<4%)-(1%≤Fe<3%)-(1%≤Cr<4%)-(0%<Al≤4%)를 포함하며,In weight %, Ti-(1%≤Mo<4%)-(1%≤Fe<3%)-(1%≤Cr<4%)-(0%<Al≤4%),
    Mo 당량이 12.0 이상인,Mo equivalent is 12.0 or more,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
  2. 제1항에 있어서,The method of claim 1,
    상기 합금은 중량 %로 O≤0.2% 를 포함하는,The alloy contains O≤0.2% by weight%,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
  3. 제1항에 있어서,The method of claim 1,
    상기 합금은 변형 전 미세조직이 베타상 기지 내에 알파상을 포함하는,The alloy includes an alpha phase in the beta phase matrix in the microstructure before deformation,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
  4. 제3항에 있어서,The method of claim 3,
    상기 베타 기지의 결정립 평균 크기는 200㎛ 이내인,The average crystal grain size of the beta matrix is within 200㎛ ,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
  5. 제1항에 있어서,The method of claim 1,
    상기 합금은 변형 후 미세조직이 베타상 기지와 알파상과 함께 트윈 및 마르텐사이트를 포함하는,The alloy includes tween and martensite with a beta-phase matrix and an alpha-phase microstructure after deformation,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
  6. 제1항에 있어서,The method of claim 1,
    상기 합금의 인장강도는 850 MPa 이상인,The tensile strength of the alloy is 850 MPa or more,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
  7. 제6항에 있어서,The method of claim 6,
    상기 합금은 15% 이상의 연신율과,The alloy has an elongation of 15% or more,
    인장강도(MPa)와 연신율(%)의 곱이 15,000 이상인,The product of tensile strength (MPa) and elongation (%) is 15,000 or more,
    강도와 성형성이 우수한 Ti-Mo-Fe-Cr-Al계 베타 타이타늄 합금.Ti-Mo-Fe-Cr-Al-based beta titanium alloy with excellent strength and formability.
PCT/KR2020/010427 2019-08-08 2020-08-06 High-strength and high-formability beta titanium alloy WO2021025499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190096522A KR102318721B1 (en) 2019-08-08 2019-08-08 Beta titanium alloys with excellent mechanical properties and ductility
KR10-2019-0096522 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021025499A1 true WO2021025499A1 (en) 2021-02-11

Family

ID=74502769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010427 WO2021025499A1 (en) 2019-08-08 2020-08-06 High-strength and high-formability beta titanium alloy

Country Status (2)

Country Link
KR (1) KR102318721B1 (en)
WO (1) WO2021025499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657417A (en) * 2022-05-07 2022-06-24 北京航空航天大学 High-strength plastic titanium alloy suitable for cold deformation processing and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240000209A (en) * 2022-06-23 2024-01-02 한국재료연구원 High strength and ductility titanium alloys with excellent formability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320570A (en) * 2004-05-07 2005-11-17 Kobe Steel Ltd alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY
KR20130134014A (en) * 2012-05-30 2013-12-10 한국기계연구원 Beta type titanium alloy with low elastic modulus and high strength
KR20140110523A (en) * 2013-03-08 2014-09-17 포항공과대학교 산학협력단 Ultrafine-grained multi-phase titanium alloy with excellent strength and ductility and manufacturing method for the same
KR101835408B1 (en) * 2016-10-14 2018-03-09 한국기계연구원 Titanium alloy with excellent mechanical property and method for manufacturing the same
KR101963428B1 (en) * 2017-10-13 2019-03-28 한국기계연구원 Titanium alloy and fabrication method of titanium alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302429A (en) * 1996-05-09 1997-11-25 Sumitomo Metal Ind Ltd Titanium alloy for living body
JP3297011B2 (en) * 1998-05-26 2002-07-02 株式会社神戸製鋼所 High strength titanium alloy with excellent cold rollability
KR101346808B1 (en) * 2010-12-13 2014-01-03 한국기계연구원 The Titanium alloy improved mechanical properties and the manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320570A (en) * 2004-05-07 2005-11-17 Kobe Steel Ltd alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY
KR20130134014A (en) * 2012-05-30 2013-12-10 한국기계연구원 Beta type titanium alloy with low elastic modulus and high strength
KR20140110523A (en) * 2013-03-08 2014-09-17 포항공과대학교 산학협력단 Ultrafine-grained multi-phase titanium alloy with excellent strength and ductility and manufacturing method for the same
KR101835408B1 (en) * 2016-10-14 2018-03-09 한국기계연구원 Titanium alloy with excellent mechanical property and method for manufacturing the same
KR101963428B1 (en) * 2017-10-13 2019-03-28 한국기계연구원 Titanium alloy and fabrication method of titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657417A (en) * 2022-05-07 2022-06-24 北京航空航天大学 High-strength plastic titanium alloy suitable for cold deformation processing and preparation method thereof
CN114657417B (en) * 2022-05-07 2022-12-23 北京航空航天大学 High-strength plastic titanium alloy suitable for cold deformation processing and preparation method thereof

Also Published As

Publication number Publication date
KR102318721B1 (en) 2021-10-29
KR20210018663A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
WO2020085697A1 (en) Medium-entropy alloy having high strength and high toughness, and manufacturing method therefor
WO2020013524A1 (en) Lightweight medium-entropy alloys using spinodal decomposition
WO2021025499A1 (en) High-strength and high-formability beta titanium alloy
US4618382A (en) Superplastic aluminium alloy sheets
CA1292134C (en) A1-mg-si extrusion alloy and method
WO2022139007A1 (en) Aluminum alloy for high-toughness casting and manufacturing method therefor
JP7060640B2 (en) TiAl alloy and its manufacturing method
EP0062469A1 (en) Method for producing fine-grained, high strength aluminum alloy material
WO2020080660A1 (en) Medium-entropy alloy and manufacturing method therefor
GB2337762A (en) Silicon containing titanium alloys and processing methods therefore
WO2017164601A1 (en) High-entropy alloy for ultra-low temperature
US11920231B2 (en) Creep resistant titanium alloys
WO2020085755A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
WO2017131260A1 (en) Method for manufacturing nuclear fuel zirconium part by using multi-stage hot-rolling
CA3095429A1 (en) High temperature titanium alloys
WO2021100959A1 (en) Austenitic stainless steel containing large amount of uniformly distributed nano sized precipitates and manufacturing method therefor
JPH0641623B2 (en) Controlled expansion alloy
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
WO2021002683A1 (en) Low-cost ti-al-fe-sn-based titanium alloy having excellent mechanical properties
JPH10317114A (en) Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
WO2022239886A1 (en) Pure titanium having high strength and high ductility, and preparation method therefor
WO2013105699A1 (en) Manufacturing method of titanium alloy with high-strength and high-formability and its titanium alloy
WO2020085586A1 (en) Titanium alloy with high strength and high ductility comprising elements with melting points of 1,900℃ or lower
WO2016117768A1 (en) Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851126

Country of ref document: EP

Kind code of ref document: A1