WO2022139007A1 - Aluminum alloy for high-toughness casting and manufacturing method therefor - Google Patents

Aluminum alloy for high-toughness casting and manufacturing method therefor Download PDF

Info

Publication number
WO2022139007A1
WO2022139007A1 PCT/KR2020/018860 KR2020018860W WO2022139007A1 WO 2022139007 A1 WO2022139007 A1 WO 2022139007A1 KR 2020018860 W KR2020018860 W KR 2020018860W WO 2022139007 A1 WO2022139007 A1 WO 2022139007A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
casting
alloy
high toughness
content
Prior art date
Application number
PCT/KR2020/018860
Other languages
French (fr)
Korean (ko)
Inventor
손희식
Original Assignee
주식회사 에프티넷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에프티넷 filed Critical 주식회사 에프티넷
Priority to PCT/KR2020/018860 priority Critical patent/WO2022139007A1/en
Publication of WO2022139007A1 publication Critical patent/WO2022139007A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy for casting with high toughness, and more specifically, by adding silicon (Si) and rare earth elements to the alloy for casting, while maintaining the fluidity of the alloy for casting, strength, toughness, corrosion resistance and releasability are improved. It relates to an aluminum alloy for casting of high toughness and a method for manufacturing the same.
  • the alloy for aluminum casting is indicated by the sign of AC (Aluminum Casting), and the alloy for die casting is indicated by the sign of ALDC (Aluminum Die Casting) and is widely used.
  • the tensile strength is high in the range of 300 MPa to 400 MPa, but the elongation is mostly in the range of about 1%, so the toughness is extremely insufficient.
  • the ADLC series has a tensile strength in the range of 200 MPa to 300 MPa, and the elongation is mostly about 3% or less, so it also lacks toughness.
  • Alloy AC4A alloy for casting which has a composition similar to ALDC 3, is also widely used.
  • the Patent Document 1 is referred to as Prior Art 1 from now on, and the contents are as follows.
  • This prior art 1 is a patent document whose rights have expired due to the expiration of the duration.
  • the content of the aluminum alloy composition is 9.5 to 11.5 wt% of silicon (Si), 0.1 to 0.5 wt% of magnesium (Mg), 0.5 to 0.8 wt% of manganese (Mn), 30 to 300 ppm of strontium (Sr), and 0.05 It consists of ⁇ 0.3wt% of zirconium (Zr), additionally 0.15wt% or less of iron (Fe), 0.03wt% or less of copper (Cu), 0.10wt% or less of zinc (Zn) and 0.15wt% or less of titanium (Ti) include
  • the above prior art 1 is an improved alloy of commercial alloys ALDC3 and AC4A. It was applied for in 1995, and although its duration has expired, it has made a partial contribution to the field of aluminum alloy for casting, and has increased the tensile strength to more than 300 MPa while maintaining castability. However, the ductility was somewhat sacrificed, and the corrosion resistance was not improved. In particular, the commercial alloy and prior art 1 lack a lot of releasability with the mold after casting the mold.
  • Patent Document 2 the composition is a document in which the composition is continuously modified based on the commercial alloy and prior art 1.
  • Patent Document 2 has a purpose of sacrificing strength and increasing ductility based on the prior art 1. That is, by reducing the content of magnesium (Mg), the aging hardening effect is abandoned to increase the ductility.
  • Mg magnesium
  • the present invention relates to an aluminum alloy more improved based on the commercial alloys ALDC3 and AC4A and the above prior art 1, and by adding rare earth metals such as cerium (Ce) or lanthanum (La), corrosion resistance and mold release properties are greatly improved.
  • rare earth metals such as cerium (Ce) or lanthanum (La)
  • Ce cerium
  • La lanthanum
  • An object of the present invention for the above problems is to solve all the problems described above in relation to the aluminum alloy for casting and die casting.
  • An object of the present invention is to provide an aluminum alloy composition for casting or die casting having high toughness with high strength, ductility, corrosion resistance, castability and releasability, and a method for manufacturing the same.
  • An aluminum alloy for casting comprising:
  • any one of rare earth metals having atomic numbers 57 (La) to 71 (Lu) or a combination thereof, including lanthanum (La) and cerium (Ce), is in the range of 0.0001 to 3.0 wt%;
  • the remainder provides an aluminum alloy for casting with high toughness, characterized in that it contains; aluminum (Al) and unavoidable impurities.
  • the aluminum alloy is rapidly cooled after heat treatment at 350 to 550° C. for 1 hour to 10 hours, and then aging heat treatment is performed again at 100 to 200° C. for 1 hour to 10 hours. It is characterized in that it is manufactured.
  • the aluminum alloy was comprehensively limited in the content of silcone (Si), more specifically, it would be preferable to select one from 8.0 to 10.0 wt%, 9.0 to 11.0 wt%, or 9.50 to 11.50 wt%.
  • magnesium (Mg) is limited in the aluminum alloy, it will be preferable to select one from 0.30 to 0.60 wt%, 0.40 to 0.60 wt%, or 0.10 to 0.50 wt%.
  • the Mn content of the aluminum alloy is preferably selected from among 0.30 to 0.60 wt%, 0.0001 to 0.30 wt%, or 0.50 to 0.80 wt%.
  • composition in which the content of Fe in the aluminum alloy is 0.55 wt% or less or 0.15 wt% or less.
  • the aluminum alloy is preferably composed by selecting the Ti content in the range of 0.20 wt% or less or 0.15 wt% or less.
  • the aluminum alloy preferably has a content of cerium (Ce) in the range of 0.05 to 1.5 wt%.
  • the content of lanthanum (La) is preferably in the range of 0.05 to 1.5 wt%.
  • the aluminum alloy is characterized in that it further comprises strontium (Sr) selected from the range of 0.0001 to 0.045 wt%, 0.003 to 0.030 wt%, or 0.005 to 0.015 wt%, based on the total weight.
  • strontium selected from the range of 0.0001 to 0.045 wt%, 0.003 to 0.030 wt%, or 0.005 to 0.015 wt%, based on the total weight.
  • the aluminum alloy is an aluminum alloy for high toughness casting, characterized in that it further comprises zirconium (Zr) selected within the range of 0.0001 to 0.30 wt% or 0.05 to 0.30 wt% based on the total weight.
  • Zr zirconium
  • the aluminum alloy is characterized in that the phosphorus (P) component is further added in the form of any one of gallium phosphide, indium phosphide, or a combination thereof, in a weight ratio of 0.0001 to 0.0250 wt% or 0.0001 to 0.0030 wt%.
  • the aluminum alloy preferably further comprises 0.0001 to 0.50 wt% or 0.05 to 0.50 wt% of molybdenum (Mo).
  • the aluminum alloy of the present invention is one selected from Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf or Y
  • an aluminum alloy for high toughness casting can be manufactured.
  • the aluminum alloy is in the range of 0.0001 to 0.50 wt% ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 CeO 2 , La 2 O 3 Or further comprising any one of a combination thereof, characterized in that the oxide is uniformly dispersed in the state of nano-sized particles in the alloy.
  • any one of these combinations is characterized in that the master alloy of aluminum and oxide is made and the master alloy is put into the molten metal.
  • the present invention is basically an improvement of ALDC3, AC4A and prior art 1, and in particular, by adding rare earth elements such as cerium (Ce) and lanthanum (La), corrosion resistance and releasability are greatly improved.
  • rare earth elements such as cerium (Ce) and lanthanum (La)
  • corrosion resistance and releasability are greatly improved.
  • the strength and toughness can be improved by adding zirconium (Zr) in the form of fine nano-sized particles. Due to this, it is possible to greatly expand the applications of aluminum alloys for casting or die casting.
  • 1 is a characteristic graph of measuring mechanical properties among data measuring tensile strength, yield strength, elongation, hardness, corrosion resistance, and releasability of an alloy according to the present invention
  • the content indication in the present invention is a ratio with respect to the total weight of the aluminum alloy. All content indications in the description and claims of the present invention are also the same.
  • the main alloying elements in aluminum alloys are silicon (Si), manganese (Mn), magnesium (Mg), copper (Cu), zinc (Zn), iron (Fe), titanium (Ti), strontium (Sr), and zirconium (Zr). ), molybdenum (Mo) and rare earth elements such as cerium (Ce) and lanthanum (La) have the following effects on the properties of the alloy.
  • Si is a major component that increases the fluidity of the alloy in the molten state during the die casting process. When an appropriate amount is added, the melting point decreases, thereby improving castability and increasing fluidity. However, when it is added excessively, the fluidity deteriorates. In addition, as the content of Si increases, it acts as an element to improve fatigue strength, hardness and wear resistance, but reduces ductility and impact resistance. When coexisting with magnesium (Mg), Mg 2 Si may be formed to improve strength by aging treatment.
  • Mg 2 Si may be formed to improve strength by aging treatment.
  • a preferred range in the present invention is 8.0 to 11.5 wt%, and a more preferred range is 8.0 to 10.0 wt% or 9.0 to 11.0 wt% or 9.5 to 11.5 wt%.
  • Magnesium (Mg) improves mechanical strength by a solid solution effect, and aging strengthening characteristics may occur depending on the coexistence of silicon (Si) and zinc (Zn). Machinability is improved, corrosion resistance to seawater is improved, and solidification shrinkage is reduced. Weldability and surface finish properties are also improved. However, since the fluidity of the molten metal is weakened and the bond with oxygen is particularly strong, care must be taken to introduce oxides. If the content is more than an appropriate amount, the fluidity deteriorates, and if it is added more than that, die casting becomes difficult, and microbubbles are easily generated on the surface of the alloy.
  • a preferred range in the present invention is in the range of 0.1 to 0.5 wt%.
  • a more preferred range is 0.30 to 0.60 wt% or 0.40 to 0.60 wt% or 0.10 to 0.50 wt%.
  • Manganese (Mn) increases the strength of the aluminum alloy.
  • the manganese (Mn) content is less than 0.5wt%, the effect of increasing the strength is small, there is an effect of removing the bad effect of adding iron (Fe) and the effect of refining the grains, and a compound that does not impair corrosion resistance is formed. Therefore, it is possible to improve the strength without lowering the corrosion resistance.
  • an excessive amount of manganese (Mn) may lower the mechanical strength of the aluminum alloy, so care must be taken. In addition, it can cause hot spots in casting, and has the effect of increasing the releasability from the mold.
  • a preferred range in the present invention is 0.0001 to 0.80 wt%, and a more preferred range is 0.30 to 0.60 wt% or 0.0001 to 0.30 wt% or 0.50 to 0.80 wt%.
  • Copper (Cu) is dissolved in the matrix to increase the strength of the aluminum alloy and cause an age hardening effect.
  • the content is less than 0.12wt%, it is difficult to show the effect of adding copper, such as corrosion resistance, and when the content exceeds 0.45wt%, both extrudability and corrosion resistance are reduced at the same time.
  • it exceeds the appropriate amount fluidity will fall.
  • copper (Cu) is more than an appropriate content, precipitates tend to form at grain boundaries, which increases sensitivity to intergranular corrosion and local corrosion, resulting in a side effect of lowering strength. It is known to improve the resistance to stress corrosion cracking in the case of a small addition of 0.15 wt% or less.
  • a preferred range in the present invention is 0.0001 to 0.60 wt%, and a more preferred range is 0.0001 to 0.25 wt% or 0.0001 to 0.60 wt% or 0.0001 to 0.030 wt%.
  • Zinc (Zn) can coexist with magnesium (Mg) to improve mechanical properties and significantly improve castability. It also exhibits some effect on age hardening.
  • a preferred range in the present invention is 0.0001 to 0.50 wt%, and a more preferred range is 0.0001 to 0.25 wt% or 0.0001 to 0.50 wt% or 0.0001 to 0.10 wt%.
  • Iron (Fe) is an element that precipitates as an intermetallic compound in an aluminum alloy and improves wear resistance. If the content is less than 0.1wt%, there is almost no wear resistance effect, and if it exceeds 0.3wt%, the particles are coarsened and workability is deteriorated.
  • an Al 3 Fe compound is formed even in a very small amount, and since it is combined with silicon (Si) to form an Al-Fe-Si intermetallic compound, it is a factor of deterioration of mechanical properties. Even a small amount deteriorates the surface gloss and weakens corrosion resistance and ductility.
  • Iron (Fe) prevents sintering in the mold during the die casting process, and the amount added at this time is sufficient if it is 0.5 wt% to 1.0 wt% or less, and if it exceeds 0.5 wt%, the ductility of the alloy tends to decrease.
  • a preferred range in the present invention is 1.30 wt% or less. A more preferred range is 0.55 wt% or less or 0.15 wt% or less.
  • Titanium (Ti) improves mechanical properties as a particle refining element, and has an effect of preventing cracks. If it is less than 0.05 wt%, there is no effect, and if it is 0.2 wt% or more, a decrease in elongation may occur. When added excessively, there is a problem of causing brittleness, so it is preferable to be added within an appropriate range. When it exceeds 0.25 wt%, a coarse intermetallic compound is formed to reduce formability (processability).
  • a preferred range in the present invention is 0.30 wt% or less.
  • a more preferred range is 0.20 wt% or less or 0.15 wt% or less.
  • Strontium (Sr) improves the flowability by changing the shape of the alloy structure, particularly the AlSi structure, from needle to fine spherical shape.
  • sodium (Na) played such a role, but sodium (Na) has high oxidizing properties and acts to lower the melting point of the alloy, and is being replaced with strontium (Sr) in recent years.
  • strontium (Sr) in recent years.
  • a preferred range in the present invention is 0.0001 to 0.045 wt% or 0.003 to 0.030 or 0.005 to 0.015 wt%.
  • Zirconium (Zr) exhibits precipitation hardening and grain refinement effects. If it is less than 0.05wt%, the crystal grain refinement effect is weak, and if it is more than 0.2wt%, it affects the elongation reduction.
  • a preferred range in the present invention is 0.0001 to 0.30 wt% or 0.05 to 0.30 wt%.
  • Molybdenum (Mo) is dissolved in aluminum grains to increase the strength from 0.05wt% addition. At this time, it is characterized in that the elongation is increased without a decrease in other mechanical properties. However, care must be taken because the addition of Mo increases the melting point of the alloy.
  • a preferred range in the present invention is in the range of 0.0001 to 0.50 wt%.
  • a more preferable range is in the range of 0.05 to 0.50 wt%.
  • the greatest feature of the present invention is that a rare earth metal (RE) having an atomic number of 57 (La) to 71 (Lu) containing cerium (Ce) and lanthanum (La) is added to an aluminum alloy in an appropriate amount to improve strength and It has greatly improved ductility and corrosion resistance and releasability.
  • RE rare earth metal
  • corrosion resistance is strengthened by reducing components such as iron (Fe) and nickel (Ni), which are corrosion-resistant elements present in the molten metal during aluminum production.
  • the rare earth metal since the rare earth metal has an effect of increasing the corrosion potential, it is possible to minimize the addition of copper (Cu) or to replace copper (Cu). Therefore, when the copper (Cu) content is increased to increase the corrosion potential, there is an effect of minimizing these side effects, and thus the corrosion resistance is improved.
  • the lifetime of the oxide film is extended and corrosion resistance is improved.
  • the plastic workability of the metal is improved, and there is an effect of improving the brazing properties.
  • rare earth metals increase the surface gloss by changing the alloy surface properties and increase the mold releasability.
  • the application field of the aluminum alloy can be expanded by adding a rare earth metal to improve corrosion resistance and releasability, which are disadvantages of the aluminum alloy for high-strength, high-toughness casting.
  • the preferred range is 0.0001 to 3.0 wt%, and more preferably, the content range of cerium (Ce), lanthanum (La), other rare earths, or a combination thereof is 0.05 to 1.5 wt%.
  • the aluminum alloy is an alloying element widely used in the aluminum industry (Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf or Y) and unavoidable impurities may be further included.
  • phosphorus when the phosphorus component in the form of gallium phosphide or indium phosphide is added in the range of 1 to 250 ppm or 1 to 30 ppm, there is a grain refining effect, and in the case of boron (B), the grain refining effect is also effective.
  • the alloying element zirconium (Zr) may be added in the form of a metal, but may be present in the alloy in the form of a nanoparticle-sized oxide to further enhance the effect of the addition. This is one of the great features of the present invention.
  • the nano-sized particles of zirconium oxide are finely distributed in the aluminum alloy, by the principle of fine particle dispersion strengthening, the movement of dislocations that appear during the deformation of the alloy within the grains is prevented, so that the strength can be improved without reducing the ductility.
  • zirconium (Zr) is added to the alloy as a metal component, the ductility is reduced above a certain concentration, but when it is finely dispersed and distributed in the form of nano-particle oxides, the ductility does not decrease even at a certain amount or more, unlike the metal component. There are features that do not.
  • Zirconium has a melting point of 1,855° C. and is difficult to dissolve in a general aluminum alloy manufacturing process. At this time, zirconium is present as a metal component in the alloy.
  • zirconium (Zr) in the form of a fine oxide in the alloy, either a nanometer-sized zirconium oxide fine powder such as ZrO 2 is added to the aluminum molten metal, or ZrH, ZrH 2 , ZrH 4 In the form of a zirconium hydride powder such as ZrH 4 It can be put into aluminum molten metal. However, since it is difficult to obtain a uniform dispersion state in the method of directly inputting the molten metal, it is more efficient to prepare the Al-ZrO 2 master alloy and then inject the master alloy into the molten metal.
  • the particles When preparing the master alloy, it is preferable to divide the particles into several batches and add them in small amounts so that they can be uniformly dispersed in the master alloy. Similarly SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 The addition of nano-sized particles such as ZrO 2 can produce a similar effect. At this time, the preferred range of the oxide (ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 ) is in the range of 0.0001 to 0.50 wt%.
  • Molybdenum (Mo) has a high melting point, so it is preferable to use an Al-Mo master alloy when added to the molten metal.
  • the aluminum alloy is rapidly cooled after solution heat treatment at 350 to 550° C. for 1 hour to 10 hours, and then subjected to aging heat treatment at 100 to 200° C. for 1 hour to 10 hours to further strengthen the properties of the alloy. can do it
  • the temperature of the molten alloy was controlled in a temperature range of 670 to 850° C. using a crucible electric furnace, and an ingot was manufactured through casting. This ingot was mold-cast through a die-casting device, and a typical range used in aluminum die-casting was used for the process parameters at this time. T6 heat treatment was performed under normal heat treatment conditions.
  • the alloy compositions and heat treatment conditions of Comparative Examples and Examples of the present invention are shown in Table 2.
  • a tensile test was performed according to KS standards. It was carried out according to the test method.
  • SWAAT evaluation was performed according to the ASTM standard, and the results are shown in Table 3.
  • the SWAAT evaluation was performed according to ASTM standard G85.
  • the evaluation of releasability after die casting was evaluated in 5 steps from A (best) to E (lowest) by visually checking the degree of bubble formation, pinhole formation, and wrinkle formation after the casting was removed from the mold after casting.
  • Comparative Example and Example 3 of the present invention show that although the conditions are similar, the case of the present invention is superior.
  • the addition of Sr and Zr shows the effect of increasing the tensile strength
  • the addition of the rare earth shows the improvement of ductility, corrosion resistance and releasability.
  • T6 heat treatment increases tensile strength and yield strength, but decreases ductility somewhat.
  • the metal zirconium is replaced with zirconium oxide, it can be seen that the ductility is improved while minimizing the decrease in strength. This trend can also be confirmed in FIG. 1 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention relates to an aluminum alloy for casting and a manufacturing method therefor, and in a technique for manufacturing an aluminum alloy for high-toughness casting, silicon (Si), a rare earth element and the like are added to an aluminum alloy to improve strength, toughness, corrosion resistance and releasability while maintaining the flowability of an alloy for casting. Specifically, disclosed are: an aluminum alloy that is superior to AC4A- and ALDC3-based alloys, which are aluminum for casting; and a manufacturing method therefor. The aluminum alloy of the present invention comprises 8.0-11.5 wt% of silicon (Si), 0.10-0.60 wt% of magnesium (Mg), 0.0001-0.80 wt% of manganese (Mn), 0.0001-0.60 wt% of copper (Cu), 0.0001-0.50 wt% of zinc (Zn), 1.3 wt% or less of iron (Fe), 0.3 wt% or less of titanium (Ti), and a rare earth element such as cerium (Ce) and lanthanum (La).

Description

고인성 주조용 알루미늄 합금 및 그 제조방법Aluminum alloy for high toughness casting and manufacturing method thereof
본 발명은 고인성 주조용 알루미늄 합금에 관한 것으로서, 보다 구체적으로는 주조용 합금에 실리콘(Si) 및 희토류 원소 등을 첨가함으로써 주조용 합금의 유동성을 유지하면서 강도, 인성, 내식성 및 이형성을 향상시킨 고인성 주조용 알루미늄 합금 및 그 제조방법에 관한 것이다.The present invention relates to an aluminum alloy for casting with high toughness, and more specifically, by adding silicon (Si) and rare earth elements to the alloy for casting, while maintaining the fluidity of the alloy for casting, strength, toughness, corrosion resistance and releasability are improved. It relates to an aluminum alloy for casting of high toughness and a method for manufacturing the same.
알루미늄 주조용 합금은 AC(Aluminium Casting)의 부호로 표시되고 다이캐스팅용 합금은 ALDC(Aluminium Die Casting)의 부호로 표시되어 널리 사용되고 있다.The alloy for aluminum casting is indicated by the sign of AC (Aluminum Casting), and the alloy for die casting is indicated by the sign of ALDC (Aluminum Die Casting) and is widely used.
AC 계열은 주조후 시효열처리를 시행하면, 인장강도가 300MPa에서 400MPa 범위로 높은 편이나 연신율이 대부분 약 1% 범위로서 인성이 극히 부족하다. ADLC 계열은 인장강도가 200MPa에서 300MPa의 범위이고, 연신율이 대부분 약 3% 이하에 속하여 마찬가지로 인성이 부족하다.When aging heat treatment is performed after casting for AC series, the tensile strength is high in the range of 300 MPa to 400 MPa, but the elongation is mostly in the range of about 1%, so the toughness is extremely insufficient. The ADLC series has a tensile strength in the range of 200 MPa to 300 MPa, and the elongation is mostly about 3% or less, so it also lacks toughness.
현재 알루미늄 다이캐스팅용 합금으로 널리 사용되고 있는 Al-Si-Mg 계 합금으로는 ALDC 3종이 있으며, 실리콘과 마그네슘의 첨가로 시효경화 효과가 나타난다.Currently, there are three types of Al-Si-Mg-based alloys widely used as alloys for aluminum die casting.
ALDC 3종과 유사한 조성인 주조용 합금 AC4A 합금도 널리 사용되고 있다.Alloy AC4A alloy for casting, which has a composition similar to ALDC 3, is also widely used.
합금의 인성이 작을 경우, 구조물에 충격이 발생할 때 쉽게 합금의 파괴가 일어나므로 충격이 발생하는 분야에서는 합금의 인성과 연신율이 중요하다. 통상적으로 인성과 연신율은 비례관계에 있는 편이므로 연신율은 인성의 간이 지표로 사용될 수 있다.When the toughness of the alloy is small, the alloy is easily fractured when an impact is applied to the structure. In general, since toughness and elongation are in a proportional relationship, elongation can be used as a simple indicator of toughness.
또한 알루미늄 합금에서 표면에 국부 부식이 발생하여 틈 또는 응력 부식 균열이 생길 경우, 이 틈 또는 균열에 응력이 집중되어 합금의 파괴가 쉽게 일어날 수 있으므로 알루미늄 합금은 내식성도 중요하다. 한편, 알루미늄 주물은 주조 또는 다이캐스팅 공정에서 금형과의 이형성도 중요하므로 주조용 알루미늄 합금에서 이형성도 중요한 특성 중의 하나이다.In addition, when a crack or stress corrosion crack occurs due to local corrosion on the surface of the aluminum alloy, the stress is concentrated in the crack or crack and the alloy is easily destroyed, so corrosion resistance of the aluminum alloy is also important. On the other hand, since releasability with a mold is also important for aluminum casting in a casting or die casting process, releasability is also one of important characteristics in an aluminum alloy for casting.
따라서 300MPa 이상의 인장강도를 갖고, 인성, 연신율, 내식성, 주조성 및 이형성이 우수한 주조용 알루미늄 합금에 대한 필요성이 지속적으로 요구되고 있다.Therefore, there is a continuous need for an aluminum alloy for casting that has a tensile strength of 300 MPa or more, and has excellent toughness, elongation, corrosion resistance, castability and releasability.
상용합금으로는 KS 규격에 따라 아래 [표 1]에 나타난 바와 같은 합금들이 있다.As commercial alloys, there are alloys as shown in [Table 1] below according to the KS standard.
상용합금commercial alloy
종 류type 조성 (wt%)Composition (wt%)
CuCu SiSi MgMg ZnZn FeFe MnMn NiNi SnSn PbPb TiTi CrCr AlAl
ALDC3ALDC3 0.6이하0.6 or less 9.0~
11.0
9.0~
11.0
0.4~ 0.60.4 to 0.6 0.5
이하
0.5
below
1.3
이하
1.3
below
0.3
이하
0.3
below
0.5
이하
0.5
below
0.1
이하
0.1
below
0.15
이하
0.15
below
0.3
이하
0.3
below
-- 나머지Remainder
AC4AAC4A 0.25이하0.25 or less 8.0~
10.0
8.0~
10.0
0.3~ 0.60.3 to 0.6 0.25
이하
0.25
below
0.55
이하
0.55
below
0.3~ 0.60.3 to 0.6 0.1
이하
0.1
below
0.05
이하
0.05
below
0.10
이하
0.10
below
0.2
이하
0.2
below
0.15이하0.15 or less 나머지Remainder
상기 특허문헌 1은 이후부터 선행기술 1이라 칭하고, 그 내용은 다음과 같다. 이 선행기술 1은 존속기간이 만료되어 권리가 소멸된 특허 문헌이다. 그 내용은 알루미늄 합금 조성은 9.5~11.5wt%의 실리콘(Si), 0.1~0.5wt%의 마그네슘(Mg), 0.5~0.8wt%의 망간(Mn), 30~300ppm의 스트론튬(Sr) 및 0.05~0.3wt%의 지르코늄(Zr)으로 이루어져 있으며, 추가적으로 철(Fe) 0.15wt% 이하, 구리(Cu) 0.03wt% 이하, 아연(Zn) 0.10wt% 이하 및 티타늄(Ti) 0.15 wt%이하를 포함한다.The Patent Document 1 is referred to as Prior Art 1 from now on, and the contents are as follows. This prior art 1 is a patent document whose rights have expired due to the expiration of the duration. The content of the aluminum alloy composition is 9.5 to 11.5 wt% of silicon (Si), 0.1 to 0.5 wt% of magnesium (Mg), 0.5 to 0.8 wt% of manganese (Mn), 30 to 300 ppm of strontium (Sr), and 0.05 It consists of ~0.3wt% of zirconium (Zr), additionally 0.15wt% or less of iron (Fe), 0.03wt% or less of copper (Cu), 0.10wt% or less of zinc (Zn) and 0.15wt% or less of titanium (Ti) include
위 선행기술 1은 상용합금 ALDC3 과 AC4A을 개량한 합금으로 1995년도에 출원되어 비록 존속기간이 만료되었으나 주조용 알루미늄 합금 분야에서 일부 기여를 하였고, 주조성을 유지하면서 인장강도를 300MPa 이상으로 증가시켰다. 그러나 연성이 다소 희생되었고, 내식성이 향상되지 못하였다. 특히 상기 상용합금과 선행기술 1은 금형주조 후 주형과의 이형성이 많이 부족하다. The above prior art 1 is an improved alloy of commercial alloys ALDC3 and AC4A. It was applied for in 1995, and although its duration has expired, it has made a partial contribution to the field of aluminum alloy for casting, and has increased the tensile strength to more than 300 MPa while maintaining castability. However, the ductility was somewhat sacrificed, and the corrosion resistance was not improved. In particular, the commercial alloy and prior art 1 lack a lot of releasability with the mold after casting the mold.
따라서 연성, 내식성 및 이형성 개선의 필요성이 크게 요구되는 상태이다. 이후 이 합금 조성을 토대로 여러 가지로 변형된 알루미늄 합금들이 나타났으나, 현재까지 강도, 연성, 내식성, 주조성 및 이형성을 동시에 만족시키는 합금에 대한 연구 개발은 지속되고 있다.Therefore, the need for improvement of ductility, corrosion resistance and releasability is in a state of great demand. Since then, various modified aluminum alloys have appeared based on the alloy composition, but research and development on alloys that simultaneously satisfy strength, ductility, corrosion resistance, castability, and releasability are continuing.
상기 특허문헌 2와 특허문헌 3 경우, 조성이 상기 상용합금 및 선행기술 1을 기본으로 지속적으로 변형되고 있는 문헌이다. 특허문헌 2는 선행기술 1을 토대로 강도를 희생하고 연성을 증가기키는 데에 그 목적이 있다. 즉 마그네슘(Mg)의 함량을 감소시켜 시효경화 효과를 포기하여 연성을 증가시키고 있다.In the case of Patent Document 2 and Patent Document 3, the composition is a document in which the composition is continuously modified based on the commercial alloy and prior art 1. Patent Document 2 has a purpose of sacrificing strength and increasing ductility based on the prior art 1. That is, by reducing the content of magnesium (Mg), the aging hardening effect is abandoned to increase the ductility.
본 발명은 상기 상용합금 ALDC3, AC4A 및 위 선행기술 1을 토대로 하여 보다 개량된 알루미늄 합금에 관한 것으로, 세륨(Ce) 또는 란타늄(La)과 같은 희토류 금속을 첨가하여 내식성과 금형으로부터의 이형성을 크게 개선하였다는 점과 지르코늄(Zr)을 미세 나노 크기 입자의 형태로 합금에 첨가하여 강도와 인성을 개선하였다는 점에서 큰 차이가 있다. The present invention relates to an aluminum alloy more improved based on the commercial alloys ALDC3 and AC4A and the above prior art 1, and by adding rare earth metals such as cerium (Ce) or lanthanum (La), corrosion resistance and mold release properties are greatly improved. There is a big difference in that the strength and toughness were improved by adding zirconium (Zr) to the alloy in the form of fine nano-sized particles.
위와 같은 문제에 대한 본 발명의 목적은, 주조용 및 다이캐스팅용 알루미늄 합금과 관련하여 상술한 제반의 문제점을 해결하려는 것이다. 본 발명의 목적은 높은 강도, 연성, 내식성, 주조성 및 이형성이 우수한 고인성을 갖는 주조 또는 다이캐스팅용 알루미늄 합금 조성과 그 제조 방법을 제공하는데 있다.An object of the present invention for the above problems is to solve all the problems described above in relation to the aluminum alloy for casting and die casting. SUMMARY OF THE INVENTION An object of the present invention is to provide an aluminum alloy composition for casting or die casting having high toughness with high strength, ductility, corrosion resistance, castability and releasability, and a method for manufacturing the same.
상술한 목적을 달성화기 위한 본 발명의 구성은, The configuration of the present invention for achieving the above object is,
주물용 알루미늄 합금으로서,An aluminum alloy for casting, comprising:
8.0~11.5wt%의 실리콘(Si); 0.10~0.60wt%의 마그네슘(Mg); 0.0001~0.80wt%의 망간(Mn); 0.0001~0.60wt%의 구리(Cu); 0.0001~0.50wt%의 아연(Zn); 1.3wt% 이하의 철(Fe); 0.30wt% 이하의 티타늄 (Ti); 란타늄(La)과 세륨(Ce)을 포함한 원자번호 57번(La) 내지 71번(Lu)의 희토류금속 또는 이들의 조합 중 어느 하나의 함량이 0.0001~3.0wt%의 범위; 나머지는 알루미늄(Al)과 불가피한 불순물;을 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금을 제공한다. 8.0 to 11.5 wt% of silicon (Si); 0.10-0.60 wt% of magnesium (Mg); 0.0001 to 0.80 wt% of manganese (Mn); 0.0001 to 0.60 wt% of copper (Cu); 0.0001 to 0.50 wt% of zinc (Zn); 1.3 wt% or less of iron (Fe); 0.30 wt% or less of titanium (Ti); The content of any one of rare earth metals having atomic numbers 57 (La) to 71 (Lu) or a combination thereof, including lanthanum (La) and cerium (Ce), is in the range of 0.0001 to 3.0 wt%; The remainder provides an aluminum alloy for casting with high toughness, characterized in that it contains; aluminum (Al) and unavoidable impurities.
이와 같이 구성되는 본 발명을 알루미늄 합금을 제조하기 위해 상기 알루미늄 합금은 350~550℃에서 1시간 내지 10시간 열처리후 급속 냉각되고, 그 후 다시 100~200℃에서 1시간 내지 10시간 시효 열처리를 실시하여서 제조하는 것을 특징으로 한다.In order to manufacture the aluminum alloy according to the present invention configured as described above, the aluminum alloy is rapidly cooled after heat treatment at 350 to 550° C. for 1 hour to 10 hours, and then aging heat treatment is performed again at 100 to 200° C. for 1 hour to 10 hours. It is characterized in that it is manufactured.
상술한 본 발명의 구성에 있어서,In the configuration of the present invention described above,
상기 알루미늄 합금은 실시콘(Si)의 함량을 포괄적으로 한정하였으나, 보다 구체적으로는 8.0~10.0wt% 또는 9.0~11.0wt% 또는 9.50~11.50wt% 중에서 하나를 선택하여 조성함이 바람직할 것이다.Although the aluminum alloy was comprehensively limited in the content of silcone (Si), more specifically, it would be preferable to select one from 8.0 to 10.0 wt%, 9.0 to 11.0 wt%, or 9.50 to 11.50 wt%.
또, 상기 알루미늄 합금은 마그네슘(Mg)의 함량이 한정되어 있으나, 보다 바람직하게는 0.30~0.60wt% 또는 0.40~0.60wt% 또는 0.10~0.50wt%에서 하나를 선택하여 조성함이 바람직할 것이다.In addition, although the content of magnesium (Mg) is limited in the aluminum alloy, it will be preferable to select one from 0.30 to 0.60 wt%, 0.40 to 0.60 wt%, or 0.10 to 0.50 wt%.
마찬가지로, 상기 알루미늄 합금의 Mn의 함량은 0.30~0.60wt% 또는 0.0001~0.30wt% 또는 0.50~0.80wt% 중 하나를 선택하여 조성함이 바람직하다.Likewise, the Mn content of the aluminum alloy is preferably selected from among 0.30 to 0.60 wt%, 0.0001 to 0.30 wt%, or 0.50 to 0.80 wt%.
또, 상기 알루미늄 합금에서 Cu의 함량이 0.0001~0.25wt% 또는 0.0001~0.60wt% 또는 0.0001~0.030wt% 중 하나를 선택하여 조성함이 바람직하다.In addition, it is preferable to select one of 0.0001 to 0.25 wt%, 0.0001 to 0.60 wt%, or 0.0001 to 0.030 wt% of Cu in the aluminum alloy.
상기 알루미늄 합금에서 Zn의 함량이 0.0001~0.25wt% 또는 0.0001~0.50wt% 또는 0.0001~0.10wt% 중 하나를 선택하여 조성함이 바람직하다.It is preferable to select one of 0.0001-0.25wt%, 0.0001-0.50wt%, or 0.0001-0.10wt% of Zn in the aluminum alloy.
상기 알루미늄 합금에서 Fe의 함량이 0.55wt% 이하 또는 0.15wt% 이하의 범위로 선택하여 조성함이 바람직하다.It is preferable to select the composition in which the content of Fe in the aluminum alloy is 0.55 wt% or less or 0.15 wt% or less.
상기 알루미늄 합금은 Ti의 함량이 0.20wt% 이하 또는 0.15wt% 이하의 범위로 선택하여 조성함이 바람직하다.The aluminum alloy is preferably composed by selecting the Ti content in the range of 0.20 wt% or less or 0.15 wt% or less.
상기 알루미늄 합금은 세륨(Ce)의 함량이 0.05~1.5wt%의 범위로 됨이 바람직하다.The aluminum alloy preferably has a content of cerium (Ce) in the range of 0.05 to 1.5 wt%.
상기 알루미늄 합금은 란타늄(La)의 함량이 0.05~1.5wt%의 범위로 됨이 바람직하다.In the aluminum alloy, the content of lanthanum (La) is preferably in the range of 0.05 to 1.5 wt%.
상기 알루미늄 합금은 총중량에 대해 0.0001~0.045wt% 또는 0.003~0.030wt% 또는 0.005~0.015wt% 범위 중에서 선택된 스트론튬(Sr)을 더 포함하는 것을 특징으로 한다.The aluminum alloy is characterized in that it further comprises strontium (Sr) selected from the range of 0.0001 to 0.045 wt%, 0.003 to 0.030 wt%, or 0.005 to 0.015 wt%, based on the total weight.
상기 알루미늄 합금은 총중량에 대해 0.0001~0.30wt% 또는 0.05~0.30wt%의 범위 내에서 선택된 지르코늄(Zr)을 더 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that it further comprises zirconium (Zr) selected within the range of 0.0001 to 0.30 wt% or 0.05 to 0.30 wt% based on the total weight.
상기 알루미늄 합금은 인(P) 성분이 0.0001~0.0250wt% 또는 0.0001~0.0030wt%의 중량비율인, 인화갈륨, 인화인듐 또는 이들의 조합 중 어느 하나의 형태로 더 첨가하는 것을 특징으로 한다.The aluminum alloy is characterized in that the phosphorus (P) component is further added in the form of any one of gallium phosphide, indium phosphide, or a combination thereof, in a weight ratio of 0.0001 to 0.0250 wt% or 0.0001 to 0.0030 wt%.
상기 알루미늄 합금은 0.0001~0.50wt% 또는 0.05~0.50wt%의 몰리브데늄(Mo)을 더 포함하는 것을 특징으로 함이 바람직하다.The aluminum alloy preferably further comprises 0.0001 to 0.50 wt% or 0.05 to 0.50 wt% of molybdenum (Mo).
한편, 본 발명의 알루미늄 합금은 Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf 또는 Y 중 선택된 1종 이상을 더 포함하여 구성함으로써 고인성 주조용 알루미늄 합금을 제조할 수 있다.On the other hand, the aluminum alloy of the present invention is one selected from Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf or Y By further comprising more than one species, an aluminum alloy for high toughness casting can be manufactured.
상기 알루미늄 합금은 0.0001~0.50wt%의 범위로 ZrO2, SiO2, Al2O3, Y2O3 CeO2, La2O3 또는 이들의 조합 중 어느 하나를 더 포함하고, 상기 산화물이 합금 내에 나노 크기 입자의 상태로 균일하게 분산되어 존재하는 것을 특징으로 한다. 이러한 구성에 있어서, ZrO2, SiO2, Al2O3, Y2O3, CeO2, La2O3 또는 이들의 조합 중 어느 하나의 투입은 알루미늄과 산화물의 모합금이 만들어지고 이 모합금이 용탕에 투입되는 것이 특징이다.The aluminum alloy is in the range of 0.0001 to 0.50 wt% ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 CeO 2 , La 2 O 3 Or further comprising any one of a combination thereof, characterized in that the oxide is uniformly dispersed in the state of nano-sized particles in the alloy. In this configuration, ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 Or any one of these combinations is characterized in that the master alloy of aluminum and oxide is made and the master alloy is put into the molten metal.
본 발명은 기본적으로 ALDC3, AC4A 및 선행기술 1을 개량한 것으로, 특히 세륨(Ce)과 란타늄(La) 등의 희토류 원소를 첨가하여 내식성과 이형성을 크게 개선한 것이다. 또한 지르코늄(Zr)을 미세 나노 크기 입자의 형태로 투입하여 강도와 인성을 개선할 수 있다. 이로 인해 주조 또는 다이캐스팅용 알루미늄 합금의 응용처를 크게 넓히는 것이 가능하다.The present invention is basically an improvement of ALDC3, AC4A and prior art 1, and in particular, by adding rare earth elements such as cerium (Ce) and lanthanum (La), corrosion resistance and releasability are greatly improved. In addition, the strength and toughness can be improved by adding zirconium (Zr) in the form of fine nano-sized particles. Due to this, it is possible to greatly expand the applications of aluminum alloys for casting or die casting.
도 1은 본 발명에 의한 합금의 인장강도, 항복강도, 연신율, 경도, 내식성 및 이형성을 측정한 데이터 중 기계적 성질을 측정한 특성 그래프.1 is a characteristic graph of measuring mechanical properties among data measuring tensile strength, yield strength, elongation, hardness, corrosion resistance, and releasability of an alloy according to the present invention;
이하 본 발명에 의한 알루미늄 합금 조성 및 그의 제조 공정에 관해서 설명한다. 본 명세서에 기재된 실시예는 본 발명의 가장 바람직한 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 한편 본 발명에서의 함량표시는 알루미늄 합금 전체 중량에 대한 비율이다. 본 발명의 설명 및 청구항에서의 모든 함량표시도 같다.Hereinafter, an aluminum alloy composition according to the present invention and a manufacturing process thereof will be described. Since the embodiments described in this specification are only the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention, there may be various equivalents and modifications that can be substituted for them at the time of the present application. should understand On the other hand, the content indication in the present invention is a ratio with respect to the total weight of the aluminum alloy. All content indications in the description and claims of the present invention are also the same.
금속합금의 조성 개발의 경우 합금원소 조성이 0.005% 정도의 변화가 생겨도 합금기술 분야의 특수성 때문에 물성에 현저한 변화가 발생하는 것은 잘 알려진 사실이다.In the case of composition development of metal alloys, it is a well-known fact that, even if the composition of alloy elements changes by 0.005%, significant changes occur in physical properties due to the specificity of the alloy technology field.
합금원소의 종류도 주기율표상의 금속 종류만큼 많기 때문에 합금 조성의 개발은 수많은 조합이 발생할 수 있다. 따라서 합금원소 종류 및 조성의 미세한 변화도 신규 합금의 특성을 현저하게 개선할 수 있으므로 합금조성의 개발 분야에서 미세한 성분과 조성의 변화도 매우 중요한 의미가 있다.Since there are as many types of alloying elements as there are types of metals on the periodic table, numerous combinations can occur in the development of alloy compositions. Therefore, even minute changes in the type and composition of alloy elements can significantly improve the properties of the new alloy, so minute changes in composition and composition are very important in the field of alloy composition development.
합금 원소의 첨가 영향Effect of addition of alloying elements
알루미늄 합금에서 주요 합금원소인 실리콘(Si), 망간(Mn), 마그네슘(Mg), 구리(Cu), 아연(Zn), 철(Fe), 티타늄(Ti), 스트론튬(Sr), 지르코늄(Zr), 몰리브데늄(Mo)과 세륨(Ce), 란타늄(La) 등의 희토류가 합금의 특성에 미치는 영향은 다음과 같다.The main alloying elements in aluminum alloys are silicon (Si), manganese (Mn), magnesium (Mg), copper (Cu), zinc (Zn), iron (Fe), titanium (Ti), strontium (Sr), and zirconium (Zr). ), molybdenum (Mo) and rare earth elements such as cerium (Ce) and lanthanum (La) have the following effects on the properties of the alloy.
실리콘(Si)Silicon (Si)
실리콘(Si)은 다이캐스팅(Die Casting) 공정 도중 용융 상태에서 합금의 유동성을 증가시키는 주요 성분으로서, 적정량 첨가시 융점이 감소하여 주조성이 향상되고 유동성이 증가한다. 그러나 과다하게 첨가될 경우에는 유동성이 나빠진다. 또 Si의 함량이 많아질수록 피로강도, 경도 및 내마모성을 향상시키는 원소로 작용하나, 연성과 내충격성은 저하시킨다. 마그네슘(Mg)과 공존할 경우 Mg2Si를 형성하여 시효처리에 의해 강도가 향상될 수 있다. Silicon (Si) is a major component that increases the fluidity of the alloy in the molten state during the die casting process. When an appropriate amount is added, the melting point decreases, thereby improving castability and increasing fluidity. However, when it is added excessively, the fluidity deteriorates. In addition, as the content of Si increases, it acts as an element to improve fatigue strength, hardness and wear resistance, but reduces ductility and impact resistance. When coexisting with magnesium (Mg), Mg 2 Si may be formed to improve strength by aging treatment.
본 발명에서의 바람직한 범위는 8.0~11.5wt%의 범위이며, 더욱 바람직한 범위는 8.0~10.0wt% 또는 9.0~11.0wt% 또는 9.5~11.5wt%의 범위이다.A preferred range in the present invention is 8.0 to 11.5 wt%, and a more preferred range is 8.0 to 10.0 wt% or 9.0 to 11.0 wt% or 9.5 to 11.5 wt%.
마그네슘(Mg)Magnesium (Mg)
마그네슘(Mg)은 고용효과에 의해 기계적 강도를 향상시키고 실리콘(Si)와 아연(Zn)의 공존 여부에 따라 시효 강화 특성이 생길 수 있다. 절삭 가공성이 우수해지며 특히 해수에 대한 내식성이 양호해지고 응고 수축율이 적어진다. 용접성 및 표면 마감 특성도 좋아진다. 그러나 용탕의 유동성이 약화되고 특히 산소와의 결합력이 강해서 산화물 유입에 주의해야 한다. 함량이 적정량 이상일 경우에는 유동성이 나빠지고, 그보다 더 많이 첨가될 경우에는 다이캐스팅이 어려워지고, 합금 표면에서 미세기포가 발생하기 쉬워진다. Magnesium (Mg) improves mechanical strength by a solid solution effect, and aging strengthening characteristics may occur depending on the coexistence of silicon (Si) and zinc (Zn). Machinability is improved, corrosion resistance to seawater is improved, and solidification shrinkage is reduced. Weldability and surface finish properties are also improved. However, since the fluidity of the molten metal is weakened and the bond with oxygen is particularly strong, care must be taken to introduce oxides. If the content is more than an appropriate amount, the fluidity deteriorates, and if it is added more than that, die casting becomes difficult, and microbubbles are easily generated on the surface of the alloy.
본 발명에서의 바람직한 범위는 0.1~0.5wt%의 범위이다. 더욱 바람직한 범위는 0.30~0.60wt% 또는 0.40~0.60wt% 또는 0.10~0.50wt%의 범위이다.A preferred range in the present invention is in the range of 0.1 to 0.5 wt%. A more preferred range is 0.30 to 0.60 wt% or 0.40 to 0.60 wt% or 0.10 to 0.50 wt%.
망간(Mn)Manganese (Mn)
망간(Mn)은 알루미늄 합금의 강도를 증가시킨다. 망간(Mn) 함유량이 0.5wt% 미만이면 강도가 증가하는 효과는 작고, 철(Fe) 첨가의 나쁜 효과를 제거하는 효과와 결정립 미세화 효과가 있으며, 내식성을 해치지 않는 화합물을 형성하게 된다. 따라서 내식성을 저하시키지 않고 강도향상이 가능하다. 그러나 과량의 망간(Mn)은 알루미늄 합금의 기계적 강도를 낮출 수 있으므로 주의해야 한다. 또한 주물에서는 Hot Spot의 원인이 되기도 하며, 금형으로부터의 이형성을 증가시키는 효과가 있다.Manganese (Mn) increases the strength of the aluminum alloy. When the manganese (Mn) content is less than 0.5wt%, the effect of increasing the strength is small, there is an effect of removing the bad effect of adding iron (Fe) and the effect of refining the grains, and a compound that does not impair corrosion resistance is formed. Therefore, it is possible to improve the strength without lowering the corrosion resistance. However, an excessive amount of manganese (Mn) may lower the mechanical strength of the aluminum alloy, so care must be taken. In addition, it can cause hot spots in casting, and has the effect of increasing the releasability from the mold.
본 발명에서의 바람직한 범위는 0.0001~0.80wt%의 범위이며 더욱 바람직한 범위는 0.30~0.60wt% 또는 0.0001~0.30wt% 또는 0.50~0.80wt%의 범위이다.A preferred range in the present invention is 0.0001 to 0.80 wt%, and a more preferred range is 0.30 to 0.60 wt% or 0.0001 to 0.30 wt% or 0.50 to 0.80 wt%.
구리(Cu)Copper (Cu)
구리(Cu)는 기지(Matrix)에 고용하여 알루미늄 합금의 강도를 증가시키고 시효 경화효과를 일으킨다. 함량이 0.12wt% 미만일 경우 내식성 등 구리를 첨가한 효과가 나타나기 어려우며, 그 함량이 0.45wt%를 초과할 경우에는 압출성과 내식성이 동시에 저하된다. 적정량을 초과할 경우에는 유동성이 저하된다. 구리(Cu)가 적정함량 이상일 경우 입계에 석출물이 형성되는 경향이 있어 입계 부식 및 국부 부식에 대한 민감성이 높아져서 강도가 낮아지는 부작용이 발생하는 것으로 알려져 있다. 0.15wt% 이하로 소량 첨가의 경우 응력 부식균열에 대한 저항성을 향상시키는 것으로 알려져 있다.Copper (Cu) is dissolved in the matrix to increase the strength of the aluminum alloy and cause an age hardening effect. When the content is less than 0.12wt%, it is difficult to show the effect of adding copper, such as corrosion resistance, and when the content exceeds 0.45wt%, both extrudability and corrosion resistance are reduced at the same time. When it exceeds the appropriate amount, fluidity will fall. It is known that when copper (Cu) is more than an appropriate content, precipitates tend to form at grain boundaries, which increases sensitivity to intergranular corrosion and local corrosion, resulting in a side effect of lowering strength. It is known to improve the resistance to stress corrosion cracking in the case of a small addition of 0.15 wt% or less.
본 발명에서의 바람직한 범위는 0.0001~0.60wt%의 범위이며 더욱 바람직한 범위는 0.0001~0.25wt% 또는 0.0001~0.60wt% 또는 0.0001~0.030wt%의 범위이다.A preferred range in the present invention is 0.0001 to 0.60 wt%, and a more preferred range is 0.0001 to 0.25 wt% or 0.0001 to 0.60 wt% or 0.0001 to 0.030 wt%.
아연(Zn)Zinc (Zn)
아연(Zn)은 마그네슘(Mg)과 공존하여 기계적 성질을 향상시키며, 주조성을 크게 개선시킬 수 있다. 시효경화에도 어느 정도 효과를 나타낸다.Zinc (Zn) can coexist with magnesium (Mg) to improve mechanical properties and significantly improve castability. It also exhibits some effect on age hardening.
본 발명에서의 바람직한 범위는 0.0001~0.50wt%의 범위이며 더욱 바람직한 범위는 0.0001~0.25wt% 또는 0.0001~0.50wt% 또는 0.0001-0.10wt%의 범위이다.A preferred range in the present invention is 0.0001 to 0.50 wt%, and a more preferred range is 0.0001 to 0.25 wt% or 0.0001 to 0.50 wt% or 0.0001 to 0.10 wt%.
철(Fe)iron (Fe)
철(Fe)은 알루미늄 합금에서 금속간 화합물로서 석출되고 내마모성을 향상시키는 원소이다. 그 함량이 0.1wt% 미만에는 내마모 효과가 거의 없고 0.3wt%를 초과하면 입자가 조대화 되어 가공성이 떨어진다.Iron (Fe) is an element that precipitates as an intermetallic compound in an aluminum alloy and improves wear resistance. If the content is less than 0.1wt%, there is almost no wear resistance effect, and if it exceeds 0.3wt%, the particles are coarsened and workability is deteriorated.
또한 극히 소량으로도 Al3Fe 화합물을 형성하며, 실리콘(Si)과 결합하여 Al-Fe-Si금속간 화합물을 형성하므로 기계적 성질의 저하 요인이 된다. 소량으로도 표면 광택이 나빠지며, 내식성 및 연성을 취약하게 한다. Also, an Al 3 Fe compound is formed even in a very small amount, and since it is combined with silicon (Si) to form an Al-Fe-Si intermetallic compound, it is a factor of deterioration of mechanical properties. Even a small amount deteriorates the surface gloss and weakens corrosion resistance and ductility.
철(Fe)은 다이캐스팅 공정 중에 금형에 소착되는 것을 방지하며, 이때 첨가되는 양은 0.5wt% 내지 1.0wt% 이하이면 충분하고, 0.5wt%를 초과하면 합금의 연성을 감소시키는 경향이 있다.Iron (Fe) prevents sintering in the mold during the die casting process, and the amount added at this time is sufficient if it is 0.5 wt% to 1.0 wt% or less, and if it exceeds 0.5 wt%, the ductility of the alloy tends to decrease.
본 발명에서의 바람직한 범위는 1.30wt% 이하의 범위이다. 더욱 바람직한 범위는 0.55wt% 이하 또는 0.15wt% 이하의 범위이다.A preferred range in the present invention is 1.30 wt% or less. A more preferred range is 0.55 wt% or less or 0.15 wt% or less.
티타늄(Ti)Titanium (Ti)
티타늄(Ti)은 입자 미세화 원소로서 기계적 성질을 향상시키며, 크랙 방지 효과가 있다. 0.05wt% 미만에서는 효과가 없고, 0.2wt% 이상에서는 연신율의 저하가 생길 수 있다. 과다하게 첨가될 경우에는 취성을 유발하는 문제가 있으므로 적정한 범위내에서 첨가되는 것이 바람직하다. 0.25wt%를 초과하면 조대한 금속간 화합물을 형성하여 성형성(가공성)을 감소시킨다. Titanium (Ti) improves mechanical properties as a particle refining element, and has an effect of preventing cracks. If it is less than 0.05 wt%, there is no effect, and if it is 0.2 wt% or more, a decrease in elongation may occur. When added excessively, there is a problem of causing brittleness, so it is preferable to be added within an appropriate range. When it exceeds 0.25 wt%, a coarse intermetallic compound is formed to reduce formability (processability).
본 발명에서의 바람직한 범위는 0.30wt% 이하의 범위이다. 더욱 바람직한 범위는 0.20wt% 이하 또는 0.15wt% 이하의 범위이다.A preferred range in the present invention is 0.30 wt% or less. A more preferred range is 0.20 wt% or less or 0.15 wt% or less.
스트론튬(Sr)Strontium (Sr)
스트론튬(Sr)은 조정제로서, 합금 조직, 특히 AlSi 조직의 형태를 침상에서 미세한 구형으로 변형시켜서 흐름성을 좋게 해준다. 기존에는 나트륨(Na)이 이와 같은 역할을 하였으나, 나트륨(Na)은 산화성이 높고, 합금의 녹는점을 낮추는 작용을 하여 근래에는 스트론튬(Sr)으로 대체되고 있다. 그러나, 과다하게 투입될 경우에는 기계적 강도가 낮아지는 단점이 있으므로 주의하여야 한다. 또 금형에서의 이형성을 좋게 한다.Strontium (Sr), as a modifier, improves the flowability by changing the shape of the alloy structure, particularly the AlSi structure, from needle to fine spherical shape. In the past, sodium (Na) played such a role, but sodium (Na) has high oxidizing properties and acts to lower the melting point of the alloy, and is being replaced with strontium (Sr) in recent years. However, care must be taken because there is a disadvantage in that mechanical strength is lowered when excessively added. In addition, it improves the releasability in the mold.
80ppm 첨가부터 효과가 나타나며 350ppm 이상에서는 용접시 기포 형성을 일으킬 수 있으므로 주의해야 한다. 450ppm 이상에서는 연신율이 감소한다.The effect appears from the addition of 80ppm, and if it is over 350ppm, it may cause the formation of bubbles during welding, so be careful. Above 450 ppm, the elongation decreases.
본 발명에서의 바람직한 범위는 0.0001~0.045wt% 또는 0.003~0.030 또는 0.005~0.015wt%의 범위이다.A preferred range in the present invention is 0.0001 to 0.045 wt% or 0.003 to 0.030 or 0.005 to 0.015 wt%.
지르코늄(Zr)Zirconium (Zr)
지르코늄(Zr)은 석출경화와 결정립 미세화 효과를 나타낸다. 0.05wt% 이하이면 결정립 미세화 효과가 약하며, 0.2wt% 이상이면 신율 저하에 영향을 미친다.Zirconium (Zr) exhibits precipitation hardening and grain refinement effects. If it is less than 0.05wt%, the crystal grain refinement effect is weak, and if it is more than 0.2wt%, it affects the elongation reduction.
본 발명에서의 바람직한 범위는 0.0001~0.30wt% 또는 0.05~0.30wt%의 범위이다.A preferred range in the present invention is 0.0001 to 0.30 wt% or 0.05 to 0.30 wt%.
몰리브데늄(Mo)Molybdenum (Mo)
몰리브데늄(Mo)은 알루미늄 결정립에 용해되어 0.05wt% 첨가부터 강도를 증가시킨다. 이때 다른 기계적 성질의 감소 없이 연신율이 증가되는 것이 특징이다. 그러나 Mo의 첨가는 합금의 융점을 증가시키므로 주의하여야 한다. Molybdenum (Mo) is dissolved in aluminum grains to increase the strength from 0.05wt% addition. At this time, it is characterized in that the elongation is increased without a decrease in other mechanical properties. However, care must be taken because the addition of Mo increases the melting point of the alloy.
본 발명에서의 바람직한 범위는 0.0001~0.50wt%의 범위이다. 더욱 바람직한 범위는 0.05~0.50wt%의 범위이다.A preferred range in the present invention is in the range of 0.0001 to 0.50 wt%. A more preferable range is in the range of 0.05 to 0.50 wt%.
희토류 금속rare earth metal
본 발명의 가장 큰 특징은 세륨(Ce) 및 란타늄(La)을 포함하는 원자번호 57(La) 내지 71번(Lu)의 희토류 금속(RE : Rare Earth metal)을 알루미늄 합금에 적정량 첨가하여 강도 및 연성의 증가와 내식성과 이형성을 크게 향상 시킨 것이다.The greatest feature of the present invention is that a rare earth metal (RE) having an atomic number of 57 (La) to 71 (Lu) containing cerium (Ce) and lanthanum (La) is added to an aluminum alloy in an appropriate amount to improve strength and It has greatly improved ductility and corrosion resistance and releasability.
세륨(Ce) 및 란타늄(La)을 포함하는 원자번호 57(La) 내지 71번(Lu)의 희토류 금속은 기지(matrix) 내에 석출된 석출물로 인한 국부부식을 감소시키는 작용을 한다. 또한 알루미늄 제조시 용탕내에 존재하는 내식성 취약 원소인 철(Fe), 니켈(Ni) 등의 성분을 감소시켜 내식성을 강화한다. Rare earth metals having atomic numbers 57 (La) to 71 (Lu), including cerium (Ce) and lanthanum (La), act to reduce local corrosion caused by precipitates deposited in a matrix. In addition, corrosion resistance is strengthened by reducing components such as iron (Fe) and nickel (Ni), which are corrosion-resistant elements present in the molten metal during aluminum production.
또한 희토류 금속은 부식전위를 상승시키는 효과가 있으므로, 구리(Cu)의 첨가를 최소화시키거나 구리(Cu)를 대체하는 것도 가능하다. 따라서 부식전위의 상승을 위해 구리(Cu) 함량이 높아질 경우 이러한 부작용을 최소화하는 효과가 있으므로 내식성을 개선하게 된다.In addition, since the rare earth metal has an effect of increasing the corrosion potential, it is possible to minimize the addition of copper (Cu) or to replace copper (Cu). Therefore, when the copper (Cu) content is increased to increase the corrosion potential, there is an effect of minimizing these side effects, and thus the corrosion resistance is improved.
이외에, 입계 또는 표면에서 형성된 산화막의 연성과 밀착성을 개선함으로써 산화막의 수명을 연장하여 내식성을 개선한다. 또한 알루미늄 합금의 강도와 연성을 증가시켜 금속의 소성 가공성을 개선하며, 브레이징 특성을 개선하는 효과도 있다. 또한 희토류 금속은 합금 표면특성을 변화시켜 표면 광택을 증가시키고, 금형과의 이형성을 증가시킨다. In addition, by improving the ductility and adhesion of the oxide film formed at the grain boundary or the surface, the lifetime of the oxide film is extended and corrosion resistance is improved. In addition, by increasing the strength and ductility of the aluminum alloy, the plastic workability of the metal is improved, and there is an effect of improving the brazing properties. In addition, rare earth metals increase the surface gloss by changing the alloy surface properties and increase the mold releasability.
희토류 금속은 그 유익한 성질 때문에 많은 연구개발이 진행되고 있으나, 개발활동이 주로 마그네슘(합금)의 내식성 증가 분야와 알루미늄 합금 표면에 화성코팅(conversion coating)에 의한 내식성 증가 분야에 집중되어 왔다.A lot of research and development is being carried out on rare earth metals due to their beneficial properties, but development activities have been mainly focused on the field of increasing the corrosion resistance of magnesium (alloy) and the field of increasing the corrosion resistance by conversion coating on the surface of aluminum alloy.
그러나 본 발명에서는 고강도 고인성 주조용 알루미늄 합금의 단점인 내식성 및 이형성의 향상을 위하여 희토류 금속을 첨가함으로서 알루미늄 합금의 적용 분야를 확장 가능하게 하였다.However, in the present invention, the application field of the aluminum alloy can be expanded by adding a rare earth metal to improve corrosion resistance and releasability, which are disadvantages of the aluminum alloy for high-strength, high-toughness casting.
본 발명에서의 바람직한 범위는 0.0001 내지 3.0wt%의 범위이며, 더욱 바람직하게는 세륨(Ce), 란타늄(La), 그 외 희토류 또는 이들의 조합의 함량 범위는 0.05~1.5wt%이다.In the present invention, the preferred range is 0.0001 to 3.0 wt%, and more preferably, the content range of cerium (Ce), lanthanum (La), other rare earths, or a combination thereof is 0.05 to 1.5 wt%.
기타 원소other elements
전술한 모든 경우에서 알루미늄 합금은 알루미늄 산업에서 널리 이용되고 있는 합금원소(Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf 또는 Y)와 불가피한 불순물을 추가적으로 더 포함할 수 있다. 특히 인(P)의 경우 인화갈륨 또는 인화인듐의 형태로 이 중 인 성분이 1~250ppm 또는 1~30ppm의 범위로 첨가될 경우, 결정립 미세화 효과가 있으며, 붕소(B)의 경우도 결정립 미세화 효과가 있다.In all of the above cases, the aluminum alloy is an alloying element widely used in the aluminum industry (Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf or Y) and unavoidable impurities may be further included. In particular, in the case of phosphorus (P), when the phosphorus component in the form of gallium phosphide or indium phosphide is added in the range of 1 to 250 ppm or 1 to 30 ppm, there is a grain refining effect, and in the case of boron (B), the grain refining effect is also effective. there is
본 발명에서는 합금원소 지르코늄(Zr)을 금속의 형태로 첨가할 수도 있지만, 첨가효과를 더욱 강화하기 위해 나노입자 크기의 산화물 형태로 합금 내에 존재시킬 수 있다. 이는 본 발명의 큰 특징 중에 하나이다.In the present invention, the alloying element zirconium (Zr) may be added in the form of a metal, but may be present in the alloy in the form of a nanoparticle-sized oxide to further enhance the effect of the addition. This is one of the great features of the present invention.
나노 크기 입자 지르코늄 산화물이 알루미늄 합금 내에 미세하게 분포되면, 미세 입자 분산강화의 원리에 의하여 결정립 내에서 합금의 변형과정에서 나타나는 전위(dislocation)의 이동을 방해하여 연성의 감소없이 강도를 개선할 수 있다. 또한 지르코늄(Zr)을 금속성분으로 합금에 첨가할 경우 일정 농도 이상에서는 연성이 감소되나 나노 입자 산화물의 형태로 결정립 내에 미세하게 분산되어 분포할 경우 금속 성분과는 달리 일정 함량 이상에서도 연성이 감소되지 않는 특징이 있다. When the nano-sized particles of zirconium oxide are finely distributed in the aluminum alloy, by the principle of fine particle dispersion strengthening, the movement of dislocations that appear during the deformation of the alloy within the grains is prevented, so that the strength can be improved without reducing the ductility. . In addition, when zirconium (Zr) is added to the alloy as a metal component, the ductility is reduced above a certain concentration, but when it is finely dispersed and distributed in the form of nano-particle oxides, the ductility does not decrease even at a certain amount or more, unlike the metal component. There are features that do not.
지르코늄(Zr)은 녹는 점이 1,855℃로서 일반적인 알루미늄 합금 제조 공정에서는 용해되기 어려워, 지르코늄(Zr)은 Al-Zr 모합금(master alloy) 형태로 알루미늄 용탕에 투입된다. 이때 지르코늄은 합금 내에 금속성분으로 존재하게 된다.Zirconium (Zr) has a melting point of 1,855° C. and is difficult to dissolve in a general aluminum alloy manufacturing process. At this time, zirconium is present as a metal component in the alloy.
한편 지르코늄(Zr)을 합금내에 미세 산화물 형태로 존재시키기 위해서는 나노미터 크기의 ZrO2 등의 지르코늄 산화물 미세 분말을 알루미늄 용탕에 첨가하거나, 또는 ZrH, ZrH2, ZrH4 등의 지르코늄 수소화물 분말의 형태로 알루미늄 용탕에 투입할 수 있다. 그러나 용탕에 직접 투입하는 방법은 균일한 분산 상태를 얻기 어려우므로, Al-ZrO2 의 모합금을 만든 후 이 모합금을 용탕에 투입하는 것이 더욱 효율적이다. 모합금 제조시 입자의 투입은 여러 번으로 나누어서 소량씩 투입하여 모합금에 균일하게 분산될 수 있도록 하는 것이 바람직하다. 마찬가지로 SiO2, Al2O3, Y2O3, CeO2, La2O3 와 같은 나노 크기 입자의 첨가도 ZrO2와 유사한 효과를 낼 수 있다. 이때 산화물(ZrO2, SiO2, Al2O3, Y2O3, CeO2, La2O3)의 바람직한 범위는 0.0001~0.50wt% 범위이다.On the other hand, in order to make zirconium (Zr) exist in the form of a fine oxide in the alloy, either a nanometer-sized zirconium oxide fine powder such as ZrO 2 is added to the aluminum molten metal, or ZrH, ZrH 2 , ZrH 4 In the form of a zirconium hydride powder such as ZrH 4 It can be put into aluminum molten metal. However, since it is difficult to obtain a uniform dispersion state in the method of directly inputting the molten metal, it is more efficient to prepare the Al-ZrO 2 master alloy and then inject the master alloy into the molten metal. When preparing the master alloy, it is preferable to divide the particles into several batches and add them in small amounts so that they can be uniformly dispersed in the master alloy. Similarly SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 The addition of nano-sized particles such as ZrO 2 can produce a similar effect. At this time, the preferred range of the oxide (ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 ) is in the range of 0.0001 to 0.50 wt%.
몰리브데늄(Mo)의 경우도 융점이 높아 용탕에 첨가시 Al-Mo 모합금을 활용하는 것이 바람직하다.Molybdenum (Mo) has a high melting point, so it is preferable to use an Al-Mo master alloy when added to the molten metal.
한편 본 발명에서, 알루미늄 합금을 350~550℃에서 1시간 내지 10시간 용체화 열처리 후 급속 냉각하고, 그 후 다시 100~200℃에서 1시간 내지 10시간 시효 열처리를 실시하면 합금의 특성을 더욱 강화시킬 수 있다. Meanwhile, in the present invention, the aluminum alloy is rapidly cooled after solution heat treatment at 350 to 550° C. for 1 hour to 10 hours, and then subjected to aging heat treatment at 100 to 200° C. for 1 hour to 10 hours to further strengthen the properties of the alloy. can do it
(실시예)(Example)
본 발명에 따른 합금의 제조는 도가니 전기로를 사용하여 합금 용탕의 온도를 670 내지 850℃의 온도범위에서 제어하고 주조를 통하여 잉곳(ingot)으로 제조하였다. 이 잉곳을 다이캐스팅 장치를 통해 금형 주조하였으며, 이때의 공정변수는 알루미늄 다이캐스팅에서 사용되는 통상적인 범위를 사용하였다. T6 열처리는 통상적인 열처리 조건에서 실시되었다. 본 발명의 비교예와 실시예의 합금조성과 열처리 조건을 표 2에 표기하였다.For the production of the alloy according to the present invention, the temperature of the molten alloy was controlled in a temperature range of 670 to 850° C. using a crucible electric furnace, and an ingot was manufactured through casting. This ingot was mold-cast through a die-casting device, and a typical range used in aluminum die-casting was used for the process parameters at this time. T6 heat treatment was performed under normal heat treatment conditions. The alloy compositions and heat treatment conditions of Comparative Examples and Examples of the present invention are shown in Table 2.
구 분division 조 성 (wt%)Composition (wt%) 열처리heat treatment
SiSi MgMg MnMn CuCu ZnZn FeFe TiTi SrSr Zr/ZrO2 Zr/ZrO 2 ReRe AlAl
비교예comparative example   
AC4AAC4A 9.5 9.5 0.50 0.50 0.50 0.50 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 -- - - - - 나머지Remainder T6T6
실시예Example  
1One 9.5 9.5 0.50 0.50 0.50 0.50 0.10 0.10 0.10 0.10 0.100.10 0.05 0.05 0.01 0.01 0.15 0.15 - - 나머지Remainder - -
22 9.5 9.5 0.50 0.50 0.50 0.50 0.10 0.10 0.10 0.10 0.100.10 0.05 0.05 0.01 0.01 0.15 0.15 Ce 0.15
La 0.15
Ce 0.15
La 0.15
나머지Remainder - -
33 9.5 9.5 0.50 0.50 0.50 0.50 0.10 0.10 0.10 0.10 0.100.10 0.05 0.05 0.01 0.01 0.15 0.15 Ce 0.15
La 0.15
Ce 0.15
La 0.15
나머지 Remainder T6T6
44 9.5 9.5 0.50 0.50 0.50 0.50 0.10 0.10 0.10 0.10 0.100.10 0.05 0.05 0.01 0.01 (ZrO2)
0.15
(ZrO 2 )
0.15
Ce 0.15
La 0.15
Ce 0.15
La 0.15
나머지Remainder T6T6
※ RE(Rare Earth Element) : 희토류 원소, Ce 및 La 등※ RE (Rare Earth Element): Rare earth elements, Ce and La, etc.
이와 같이 제조된 합금의 인장강도, 항복강도, 연신율, 경도, 내식성 및 이형성을 측정하여 표 3에 표기하였으며, 그 중 기계적 성질에 대한 측정 결과를 도 1에 나타내었다.Tensile strength, yield strength, elongation, hardness, corrosion resistance, and releasability of the alloy thus prepared were measured and indicated in Table 3, among which the measurement results for mechanical properties are shown in FIG.
인장강도, 항복강도 및 연신율을 평가하기 위하여 KS 규격에 따른 인장시험을 실시하였다.(KS B 0801 금속 재료 인장 규격 및 KS B 0802 금속 재료 인장 시험 방법) 경도시험은 KS B 0805 금속 재료의 브리넬 경도 시험 방법에 따라 수행하였다. 내식 특성을 평가하기 위해 ASTM 규격에 따른 SWAAT 평가를 실시하였으며 그 결과를 표 3에 함께 나타내었다. SWAAT 평가는 ASTM 표준 G85에 따라 시험을 수행하였다. 다이캐스팅 후 이형성의 평가는 주조 후 주물을 금형에서 떼어낸 후 기포 형성 정도, 핀홀 형성 정도 및 주름 발생 정도를 육안으로 확인하여 5단계로 A(최상) 내지 E(최하) 단계로 평가하였다.In order to evaluate tensile strength, yield strength and elongation, a tensile test was performed according to KS standards. It was carried out according to the test method. In order to evaluate the corrosion resistance properties, SWAAT evaluation was performed according to the ASTM standard, and the results are shown in Table 3. The SWAAT evaluation was performed according to ASTM standard G85. The evaluation of releasability after die casting was evaluated in 5 steps from A (best) to E (lowest) by visually checking the degree of bubble formation, pinhole formation, and wrinkle formation after the casting was removed from the mold after casting.
구분division 인장강도
(MPa)
The tensile strength
(MPa)
항복강도
(MPa)
yield strength
(MPa)
연신율
(%)
elongation
(%)
경도
(HB)
Hardness
(HB)
내식성
SWAAT
Leak time (hr.)
corrosion resistance
SWAAT
Leak time (hr.)
이형성atypia
비교예comparative example   
AC4AAC4A 240 240 220 220 2.5 2.5 90 90 440440 DD
실시예Example
1One 294 294 137 137 7.97.9 96 96 480480 C C
22 306 306 153 153 8.5 8.5 105 105 730730 BB
33 348 348 284 284 7.1 7.1 117 117 850850 A A
44 340 340 275 275 10.0 10.0 113 113 870870 AA
※ 이형성 : A(최상), B(상), C(중), D(하), E(최하)※ Releasability: A (best), B (upper), C (middle), D (lower), E (lowest)
표 3에 따르면, 비교예와 본 발명의 실시예 3은 조건이 유사한 경우이나, 본 발명의 경우가 우수하다는 것을 보여준다. 또한 본 발명의 실시예 1로부터 4까지를 살펴보면, Sr과 Zr의 첨가는 인장강도를 증가시키는 효과를 나타내며, 희토류의 첨가는 연성, 내식성 및 이형성의 개선을 나타낸다. T6 열처리는 잘 알려진 바와 같이 인장강도, 항복강도를 증가시키나 연성을 다소 저하시킨다. 금속 지르코늄을 지르코늄 산화물로 대체하였을 경우는 강도의 저하를 최소화하면서 연성을 개선시키는 것을 알 수 있다. 이러한 추세는 도 1 에서도 확인할 수 있다.According to Table 3, Comparative Example and Example 3 of the present invention show that although the conditions are similar, the case of the present invention is superior. Also, referring to Examples 1 to 4 of the present invention, the addition of Sr and Zr shows the effect of increasing the tensile strength, and the addition of the rare earth shows the improvement of ductility, corrosion resistance and releasability. As is well known, T6 heat treatment increases tensile strength and yield strength, but decreases ductility somewhat. When the metal zirconium is replaced with zirconium oxide, it can be seen that the ductility is improved while minimizing the decrease in strength. This trend can also be confirmed in FIG. 1 .

Claims (18)

  1. 주조용 알루미늄 합금에 있어서,In the aluminum alloy for casting,
    8.0~11.5wt%의 실리콘(Si); 8.0 to 11.5 wt% of silicon (Si);
    0.10~0.60wt%의 마그네슘(Mg); 0.10-0.60 wt% of magnesium (Mg);
    0.0001~0.80wt%의 망간(Mn); 0.0001 to 0.80 wt% of manganese (Mn);
    0.0001~0.60wt%의 구리(Cu);0.0001 to 0.60 wt% of copper (Cu);
    0.0001~0.50wt%의 아연(Zn);0.0001 to 0.50 wt% of zinc (Zn);
    1.3wt% 이하의 철(Fe);1.3 wt% or less of iron (Fe);
    0.30wt% 이하의 티타늄 (Ti);0.30 wt% or less of titanium (Ti);
    란타늄(La)과 세륨(Ce)을 포함하는 원자번호 57번(La) 내지 71번(Lu)의 희토류금속 또는 이들의 조합 중 어느 하나의 함량이 0.0001~3.0wt%의 범위;The content of any one of rare earth metals having atomic numbers 57 (La) to 71 (Lu) including lanthanum (La) and cerium (Ce) or a combination thereof is in the range of 0.0001 to 3.0 wt%;
    나머지는 알루미늄(Al)과 불가피한 불순물;The remainder is aluminum (Al) and unavoidable impurities;
    을 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.It characterized in that it comprises a, high toughness casting aluminum alloy.
  2. 제1항에 있어서, The method of claim 1,
    상기 알루미늄 합금은 실리콘(Si)의 함량이 8.0~10.0wt% 또는 9.0~11.0wt% 또는 9.50~11.50wt%인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of silicon (Si) is 8.0 to 10.0 wt% or 9.0 to 11.0 wt% or 9.50 to 11.50 wt%.
  3. 제1항에 있어서, The method of claim 1,
    상기 알루미늄 합금은 마그네슘(Mg)의 함량이 0.30~0.60wt% 또는 0.40~0.60wt% 또는 0.10~0.50wt%인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금. The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of magnesium (Mg) is 0.30-0.60wt% or 0.40-0.60wt% or 0.10-0.50wt%.
  4. 제1항에 있어서, The method of claim 1,
    상기 알루미늄 합금은 망간(Mn)의 함량이 0.30~0.60wt% 또는 0.0001~0.30wt% 또는 0.50~0.80wt%인 것을 특징으로 하는, 고인성 주물용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of manganese (Mn) is 0.30 to 0.60 wt% or 0.0001 to 0.30 wt% or 0.50 to 0.80 wt%.
  5. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 구리(Cu)의 함량이 0.0001~0.25wt% 또는 0.0001~0.60wt% 또는 0.0001~0.030wt%인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of copper (Cu) is 0.0001 to 0.25wt% or 0.0001 to 0.60wt% or 0.0001 to 0.030wt%.
  6. 제1항에 있어서,According to claim 1,
    상기 알루미늄 합금은 아연(Zn)의 함량이 0.0001~0.25wt% 또는 0.0001~0.50wt% 또는 0.0001~0.10wt%인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of zinc (Zn) is 0.0001 to 0.25 wt% or 0.0001 to 0.50 wt% or 0.0001 to 0.10 wt%.
  7. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 철(Fe)의 함량이 0.55wt% 이하 또는 0.15wt% 이하의 범위인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of iron (Fe) is in the range of 0.55 wt% or less or 0.15 wt% or less.
  8. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 티타늄(Ti)의 함량이 0.20wt% 이하 또는 0.15wt% 이하의 범위인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of titanium (Ti) is in the range of 0.20 wt% or less or 0.15 wt% or less.
  9. 제1항에 있어서,According to claim 1,
    상기 알루미늄 합금은 세륨(Ce)의 함량이 0.05~1.5wt%의 범위인 것을 특징으로 하는, 고내식 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high corrosion resistance casting, characterized in that the content of cerium (Ce) is in the range of 0.05 to 1.5 wt%.
  10. 제1항에 있어서,According to claim 1,
    상기 알루미늄 합금은 란타늄(La)의 함량이 0.05~1.5wt%의 범위인 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that the content of lanthanum (La) is in the range of 0.05 to 1.5 wt%.
  11. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 0.0001~0.045wt% 또는 0.003~0.030wt% 또는 0.005~0.015wt%의 스트론튬(Sr)을 더 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that it further comprises strontium (Sr) of 0.0001 to 0.045 wt% or 0.003 to 0.030 wt% or 0.005 to 0.015 wt%.
  12. 제1항에 있어서,According to claim 1,
    상기 알루미늄 합금은 0.0001~0.30wt% 또는 0.05~0.30wt%의 지르코늄(Zr)을 더 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금. The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that it further comprises zirconium (Zr) of 0.0001 to 0.30 wt% or 0.05 to 0.30 wt%.
  13. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 인(P) 성분이 0.0001~0.0250wt% 또는 0.0001~0.0030wt%에 상당하는 양으로, 인화갈륨(InP), 인화인듐(GaP) 또는 이들의 조합 중 어느 하나를 더 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy further comprises any one of gallium phosphide (InP), indium phosphide (GaP) or a combination thereof in an amount corresponding to 0.0001 to 0.0250 wt% or 0.0001 to 0.0030 wt% of the phosphorus (P) component Characterized by, an aluminum alloy for high toughness casting.
  14. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 0.0001~0.50wt% 또는 0.05~0.50wt%의 몰리브데늄(Mo)을 더 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy is an aluminum alloy for high toughness casting, characterized in that it further comprises 0.0001 to 0.50 wt% or 0.05 to 0.50 wt% of molybdenum (Mo).
  15. 제1항에 있어서,According to claim 1,
    상기 알루미늄 합금은 Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf 또는 Y 중 선택된 1종 이상을 더 포함하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy further includes at least one selected from Cr, V, Ni, In, Pb, Bi, Ca, Na, P, B, Ag, Pd, Sb, Sc, Nb, Co, Mo, Be, Hf, or Y. Characterized in that it comprises, an aluminum alloy for high toughness casting.
  16. 제1항에 있어서,According to claim 1,
    상기 알루미늄 합금은 0.0001~0.50wt%의 범위로 ZrO2, SiO2, Al2O3, Y2O3 , CeO2, La2O3 또는 이들의 조합 중 어느 하나를 더 포함하고, 이들 산화물이 합금 내에 나노 크기 입자의 상태로 균일하게 분산되어 존재하는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.The aluminum alloy further includes any one of ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 or a combination thereof in the range of 0.0001 to 0.50 wt%, and these oxides are An aluminum alloy for high toughness casting, characterized in that it is uniformly dispersed in the state of nano-sized particles in the alloy.
  17. 제16항 있어서, 17. The method of claim 16,
    ZrO2, SiO2, Al2O3, Y2O3, CeO2, La2O3 또는 이들의 조합 중 어느 하나의 투입은 알루미늄과 이들의 산화물의 모합금이 만들어지고 이 모합금이 용탕에 투입되는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금.ZrO 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , CeO 2 , La 2 O 3 or any one of a combination thereof produces a master alloy of aluminum and its oxides, and the master alloy is added to the molten metal. Characterized in that the input, high toughness casting aluminum alloy.
  18. 제1항에 있어서, According to claim 1,
    상기 알루미늄 합금은 350~550℃에서 1시간 내지 10시간 열처리후 급속 냉각되고, 그 후 다시 100~200℃에서 1시간 내지 10시간 시효 열처리가 실시되는 것을 특징으로 하는, 고인성 주조용 알루미늄 합금의 제조방법.The aluminum alloy is rapidly cooled after heat treatment at 350 to 550° C. for 1 hour to 10 hours, and then aging heat treatment is performed again at 100 to 200° C. for 1 hour to 10 hours. manufacturing method.
PCT/KR2020/018860 2020-12-22 2020-12-22 Aluminum alloy for high-toughness casting and manufacturing method therefor WO2022139007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/018860 WO2022139007A1 (en) 2020-12-22 2020-12-22 Aluminum alloy for high-toughness casting and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/018860 WO2022139007A1 (en) 2020-12-22 2020-12-22 Aluminum alloy for high-toughness casting and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2022139007A1 true WO2022139007A1 (en) 2022-06-30

Family

ID=82159907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018860 WO2022139007A1 (en) 2020-12-22 2020-12-22 Aluminum alloy for high-toughness casting and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2022139007A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261682A (en) * 2022-08-12 2022-11-01 苏州大学 Cast aluminum alloy and preparation method thereof
CN115386771A (en) * 2022-10-27 2022-11-25 广州致远新材料科技有限公司 Aluminum alloy material, preparation method thereof and die-casting method of barrier gate transmission structural member
CN115418535A (en) * 2022-08-23 2022-12-02 一汽解放汽车有限公司 Aluminum alloy material, preparation method and application thereof, and aluminum alloy product
CN115505799A (en) * 2022-09-23 2022-12-23 重庆慧鼎华创信息科技有限公司 High-strength and high-toughness gravity casting aluminum alloy and preparation method and application thereof
CN116240432A (en) * 2023-02-08 2023-06-09 上海交通大学 Die-casting aluminum alloy free of heat treatment, preparation method and application
CN117187628A (en) * 2023-09-13 2023-12-08 山西瑞格金属新材料有限公司 Brazing heat treatment-free aluminum alloy for die casting and preparation method thereof
CN117778827A (en) * 2024-02-22 2024-03-29 鸿劲新材料研究(南通)有限公司 Novel high-temperature-resistant engine cylinder cover aluminum alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156398A (en) * 1991-12-06 1993-06-22 Nippon Light Metal Co Ltd Aluminum alloy for casting excellent in corrosion resistance
WO2016027550A1 (en) * 2014-08-19 2016-02-25 株式会社オートネットワーク技術研究所 Method for producing aluminum wire
KR20170124963A (en) * 2016-05-03 2017-11-13 손희식 Corrosion resistant aluminium alloy for casting
KR20180000180A (en) * 2016-06-22 2018-01-02 자동차부품연구원 Method of fabricating Al-Si alloy
KR20180126559A (en) * 2016-04-19 2018-11-27 라인펠덴 알로이스 게엠베하 운트 콤파니 코만디드게젤샤프트 Die casting alloy
KR20210010235A (en) * 2019-07-19 2021-01-27 주식회사 에프티넷 Aluminium casting alloy with high toughness and method of there

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156398A (en) * 1991-12-06 1993-06-22 Nippon Light Metal Co Ltd Aluminum alloy for casting excellent in corrosion resistance
WO2016027550A1 (en) * 2014-08-19 2016-02-25 株式会社オートネットワーク技術研究所 Method for producing aluminum wire
KR20180126559A (en) * 2016-04-19 2018-11-27 라인펠덴 알로이스 게엠베하 운트 콤파니 코만디드게젤샤프트 Die casting alloy
KR20170124963A (en) * 2016-05-03 2017-11-13 손희식 Corrosion resistant aluminium alloy for casting
KR20180000180A (en) * 2016-06-22 2018-01-02 자동차부품연구원 Method of fabricating Al-Si alloy
KR20210010235A (en) * 2019-07-19 2021-01-27 주식회사 에프티넷 Aluminium casting alloy with high toughness and method of there

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261682A (en) * 2022-08-12 2022-11-01 苏州大学 Cast aluminum alloy and preparation method thereof
CN115418535A (en) * 2022-08-23 2022-12-02 一汽解放汽车有限公司 Aluminum alloy material, preparation method and application thereof, and aluminum alloy product
CN115505799A (en) * 2022-09-23 2022-12-23 重庆慧鼎华创信息科技有限公司 High-strength and high-toughness gravity casting aluminum alloy and preparation method and application thereof
CN115386771A (en) * 2022-10-27 2022-11-25 广州致远新材料科技有限公司 Aluminum alloy material, preparation method thereof and die-casting method of barrier gate transmission structural member
CN116240432A (en) * 2023-02-08 2023-06-09 上海交通大学 Die-casting aluminum alloy free of heat treatment, preparation method and application
CN116240432B (en) * 2023-02-08 2024-05-28 上海交通大学 Die-casting aluminum alloy free of heat treatment, preparation method and application
CN117187628A (en) * 2023-09-13 2023-12-08 山西瑞格金属新材料有限公司 Brazing heat treatment-free aluminum alloy for die casting and preparation method thereof
CN117187628B (en) * 2023-09-13 2024-06-04 山西瑞格金属新材料有限公司 Brazing heat treatment-free aluminum alloy for die casting and preparation method thereof
CN117778827A (en) * 2024-02-22 2024-03-29 鸿劲新材料研究(南通)有限公司 Novel high-temperature-resistant engine cylinder cover aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2022139007A1 (en) Aluminum alloy for high-toughness casting and manufacturing method therefor
WO2017191961A1 (en) Highly corrosion-resistant aluminum alloy for casting
WO2020113713A1 (en) High strength and ductility casted aluminum-silicon alloy, manufacturing method for same, and applications thereof
WO2020040602A1 (en) Aluminium alloy for die casting, method for manufacturing same, and die casting method
WO2022124448A1 (en) Highly corrosion-resistant magnesium-added aluminum alloy for casting
WO2013180338A1 (en) Beta titanium alloy with low elasticity and high strength
KR20060110292A (en) Castable magnesium alloys
WO2013022144A1 (en) Copper alloy material for continuous casting mold and process for producing same
CN112941377B (en) Er-containing cast heat-resistant Al-Si-Cu-Mg alloy
CN114134375B (en) Stress corrosion resistant Al-Zn-Mg-Cu alloy and preparation method thereof
WO2022237073A1 (en) Aluminum alloy material, and aluminum alloy wire and preparation method therefor
KR102364642B1 (en) Aluminium die-casting alloy with high strength by addition of Si and Zn and manufacturing or the same
EP3216884B1 (en) Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom
CN110218917B (en) Alloy aluminum bar containing rare earth elements and preparation process thereof
KR102285860B1 (en) Aluminium casting alloy with high toughness and method of there
CN111155003A (en) High-strength high-toughness high-magnesium aluminum alloy and preparation method thereof
WO2000043560A1 (en) Aluminum-magnesium-silicon alloy
CN111118358B (en) Er-containing castable wrought Al-Cu alloy
CN113462914A (en) Corrosion-resistant aluminum ingot and preparation method thereof
WO2019164062A1 (en) Ni-based superalloy for high-temperature fastening member, and manufacturing method therefor
EP3778945A1 (en) Al-si-mg-based aluminum alloy
CN112030041B (en) MonelK500A alloy with corrosion resistance in oxygen-containing hydrofluoric acid
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
JPH01165733A (en) High strength and high electric conductive copper alloy
WO2024143788A1 (en) Ultra-high strength aluminum alloy sheet material and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967078

Country of ref document: EP

Kind code of ref document: A1