EP3524643B1 - Harzfolie auf polyalkylencarbonatbasis - Google Patents

Harzfolie auf polyalkylencarbonatbasis Download PDF

Info

Publication number
EP3524643B1
EP3524643B1 EP17887520.9A EP17887520A EP3524643B1 EP 3524643 B1 EP3524643 B1 EP 3524643B1 EP 17887520 A EP17887520 A EP 17887520A EP 3524643 B1 EP3524643 B1 EP 3524643B1
Authority
EP
European Patent Office
Prior art keywords
resin
polyalkylene carbonate
carbon atoms
carbonate
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17887520.9A
Other languages
English (en)
French (fr)
Other versions
EP3524643A4 (de
EP3524643A2 (de
Inventor
Hyun Min Kim
Hyun Ju Cho
Sung-Kyoung Kim
Seung Young Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority claimed from PCT/KR2017/015580 external-priority patent/WO2018124746A2/ko
Publication of EP3524643A2 publication Critical patent/EP3524643A2/de
Publication of EP3524643A4 publication Critical patent/EP3524643A4/de
Application granted granted Critical
Publication of EP3524643B1 publication Critical patent/EP3524643B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L73/00Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2473/00Characterised by the use of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08J2459/00 - C08J2471/00; Derivatives of such polymers

Definitions

  • the present invention relates to a polyalkylene carbonate-based resin film comprising a polyalkylene carbonate-based resin in which physical properties of a polyalkylene carbonate resin have been complemented.
  • Plastics are used as materials for various articles due to their ease of manufacture and convenience of use, and for example, they are used in various fields such as disposable articles such as packaging films, disposable cups and disposable dishes, as well as building materials and automobile interior materials.
  • a polyalkylene carbonate resin has an advantage that due to its high oxygen barrier property and high elongation property, it can be used for various applications such as food packaging and industrial protective films.
  • the polyalkylene carbonate resin has a problem that a tensile strength is relatively low compared to a high elongation property, and thus a blend resin in which a resin having excellent tensile strength (for example, polylactic acid) is mixed for improving a tensile strength is used.
  • a resin having excellent tensile strength for example, polylactic acid
  • the tensile strength can be improved by an additional resin, but to that extent, the elongation property of the polyalkylene carbonate is deteriorated, and the tear strength (split strength) is also decreased.
  • workability is significantly deteriorated if torn at the time of packaging, and if torn after packaging, scratches are generated on the products during transportation. Therefore, a film having excellent tear strength even while having high tensile strength and elongation is required.
  • compatibility between both polymers should be good in order to complement each other's physical properties.
  • Compatibility means that when two polymers are mixed, the two polymers are uniformly mixed or dispersed. If the compatibility is decreased, physical properties of each polymer are expressed intactly, and thus each other's physical properties cannot be complemented. Therefore, various studies have been made on resins having excellent compatibility with polyalkylene carbonate while exhibiting the above-mentioned physical properties.
  • Korean Patent Laid-open Publication No. 10-2014-0070706 discloses the use of a lactide copolymer which includes at least two block copolymer repeating units in which a hard segment of polylactide repeating units is combined at both terminal ends of a soft segment of polyether polyol repeating units, wherein the block copolymer repeating units are connected to each other via an urethane linking group derived from a polyhydric isocyanate compound.
  • this method has to produce a copolymer having a novel structure, and is problematic in that the cost is increased compared to the use of polylactic acid.
  • JPH101601 A discloses molded articles, including an inflation molding film, comprising a thermoplastic resin composition comprising 30 parts by weight polyketone having a constitutional unit of formula (1), 70 parts by weight polycarbonate, and 5 parts by weight of a block copolymer containing a carboxyl group.
  • the present invention relates to a polyalkylene carbonate film comprising a polyalkylene carbonate resin having improved mechanical properties.
  • one aspect of the present invention provides a polyalkylene carbonate-based film comprising a blend resin in which 75 to 99% by weight of a polyalkylene carbonate resin and 1 to 25% by weight of a polyketone resin are mixed, wherein the film has a tensile strength of 200 kgf/cm 2 to 300 kgf/cm 2 as measured by ASTM D 638.
  • the blend resin may be prepared by mixing 80 to 90% by weight of a polyalkylene carbonate resin and 10 to 20% by weight of a polyketone resin.
  • the polyalkylene carbonate resin may include a repeating unit represented by the following Chemical Formula 1.
  • R 1 to R 4 are each independently hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms, at least two of R 1 to R 4 may be connected to each other to form a cycloalkyl group having 3 to 10 carbon atoms, and m is an integer of 10 to 1,000.
  • the polyalkylene carbonate resin may be at least one selected from the group consisting of a polyethylene carbonate resin, a polypropylene carbonate resin, a polypentene carbonate resin, a polyhexene carbonate resin, a polyoctene carbonate resin, a polycyclohexene carbonate resin, and a copolymer resin thereof.
  • the polyalkylene carbonate resin may have a weight average molecular weight of 50,000 g/mol to 500,000 g/mol.
  • the polyketone resin may include a repeating unit represented by the following Chemical Formula 2: in Chemical Formula 2, R is a linear or branched alkylene having 1 to 10 carbon atoms; an arylene having 6 to 30 carbon atoms; an alkyl ether having 1 to 10 carbon atoms; an aryl ether having 6 to 30 carbon atoms; an alkyl ester having 1 to 10 carbon atoms; or an aryl ester having 6 to 30 carbon atoms, and n is an integer of 10 to 1,000.
  • R is a linear or branched alkylene having 1 to 10 carbon atoms; an arylene having 6 to 30 carbon atoms; an alkyl ether having 1 to 10 carbon atoms; an aryl ether having 6 to 30 carbon atoms; an alkyl ester having 1 to 10 carbon atoms; or an aryl ester having 6 to 30 carbon atoms
  • n is an integer of 10 to 1,000.
  • the polyketone resin may be an aliphatic polyketone resin containing ethylene, propylene, isopropylene, or butylene units.
  • the polyketone resin may be a binary copolymer or a ternary copolymer.
  • the polyketone resin may have a weight average molecular weight of 10,000 to 1,000,000 g/mol.
  • the polyketone resin may have a melt index (MI) of 3 to 8.
  • an internal tearing strength of the polyalkylene carbonate-based film according to ASTM D 1004-03 may be 50 kg/cm to 80 kg/cm.
  • an elongation of the polyalkylene carbonate-based film according to ASTM D 638 may be 300% to 500%.
  • the mechanical properties can be improved simultaneously without deteriorating excellent elongation properties possessed by the polyalkylene carbonate resin.
  • the polyalkylene carbonate-based resin film of the present invention is excellent in compatibility between the polyalkylene carbonate resin and the polyketone resin without another compatibilizer.
  • the polyalkylene carbonate resin has a low glass transition temperature (Tg) of about 20°C and is fragile at a temperature equal to or lower than Tg, and has difficulty in producing into a film due to soft tackiness at a temperature equal to or higher than Tg.
  • Tg glass transition temperature
  • the present inventors have found that by including a blend resin in which the polyalkylene carbonate resin and the polyketone resin are mixed in a specific amount, mechanical properties can be remarkably improved while maintaining the inherent excellent physical properties possessed by the polyalkylene carbonate, thereby completing the present invention.
  • the polyalkylene carbonate resin and the polyketone resin are mixed and used in the above-described specific ratio and their tensile strengths satisfy a specific range, it is excellent in compatibility without a compatibilizer commonly used in a blend resin, and thereby, it does not cause a problem that physical properties of the film are deteriorated due to the compatibilizer.
  • the polyalkylene carbonate-based resin film according to one embodiment of the present invention comprises a blend resin in which 75 to 99% by weight of a polyalkylene carbonate resin and 1 to 25% by weight of a polyketone resin are mixed, and as each resin is included within the above content range, both elongation properties and mechanical properties can be realized at excellent levels.
  • the polyalkylene carbonate resin and the polyketone resin are very excellent in compatibility.
  • the blend resin may include 80 to 90% by weight of a polyalkylene carbonate resin and 10 to 20% by weight of a polyketone resin.
  • the above-described effects can be further improved within the above content range.
  • the polyalkylene carbonate resin when the polyalkylene carbonate resin is mixed in a small amount exceeding the content range of 75 to 99% by weight based on the total weight of the blend resin, there may be a problem that the elongation properties are deteriorated. Further, when the polyketone resin is contained in an excessive amount exceeding 1 to 25% by weight based on the total weight of the blend resin, there may be a problem that the tear strength is slightly lowered.
  • the polyalkylene carbonate-based resin film according to one embodiment of the present invention has a tensile strength of 200 kgf/cm 2 to 300 kgf/cm 2 , preferably 230 kgf/cm 2 to 290 kgf/cm 2 as measured according to ASTM D 638.
  • the film has excellent processability and is resistant to scratches and external impact even after applied to a product. Therefore, it is applied to an industrial packaging film within the above tensile strength ranges and exhibits excellent physical properties.
  • the polyalkylene carbonate-based resin film according to one embodiment of the present invention may have an internal tearing strength according to ASTM D 1004-03 of 50 kg/cm to 80 kg/cm, preferably 60 kg/cm to 70 kg/cm. When the above-mentioned range is satisfied, the film is not easily torn even when it is applied to a product after processing step of the film and completion of the film, which is preferable.
  • the polyalkylene carbonate-based resin film according to one embodiment of the present invention may have an elongation of 300% to 500%, preferably 350% to 450%, as measured according to ASTM D 638. When the above range is satisfied, the film is excellent in processability and can be applied to various products.
  • the polyalkylene carbonate-based resin film according to one embodiment of the present invention includes a blend resin in which a polyalkylene carbonate resin and a polyketone resin are mixed.
  • the polyalkylene carbonate resin is a noncrystalline polymer. Unlike an aromatic polycarbonate resin, which is a synthetic resin of a similar type, not only the polyalkylene carbonate resin is biodegradable and thermally decomposed at low temperatures, but also it is completely decomposed into carbon dioxide and water and there is no carbon residue. Moreover, the polyalkylene carbonate resin exhibits excellent elongation properties and has an advantage that it can be easily applied to industrial packaging materials.
  • the polyalkylene carbonate resin may contain a repeating unit represented by the following Chemical Formula 1.
  • R 1 to R 4 are each independently hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a cycloalkyl group having 3 to 20 carbon atoms; at least two of R 1 to R 4 may be connected to each other to form a cycloalkyl group having 3 to 10 carbon atoms, and m is an integer of 10 to 1,000.
  • the degree of polymerization (m) of the repeating unit represented by Chemical Formula 1 may be about 10 to about 1,000, preferably about 50 to about 500.
  • the weight average molecular weight of the polyalkylene carbonate containing the repeating unit may be 50,000 to 500,000, and preferably 10,000 to 100,000. When the above-mentioned range is satisfied, it is mixed with the polyketone resin and can exhibit excellent compatibility, which is preferable.
  • the polyalkylene carbonate resin may be a homopolymer containing a repeating unit represented by Chemical Formula 1; or a copolymer containing two or more kinds of repeating units belonging to the category of Chemical Formula 1, a copolymer containing an alkylene oxide repeating unit or the like together with the repeating unit represented by Chemical Formula 1.
  • the polyalkylene carbonate resin may be a copolymer containing at least about 40% by weight, preferably at least about 60% by weight, and more preferably at least about 80% by weight of at least one of the repeating units represented by Chemical Formula 1.
  • the method for preparing the polyalkylene carbonate is not particularly limited, and for example, the polyalkylene carbonate can be obtained by copolymerizing an epoxide-based compound with carbon dioxide. Alternatively, the polyalkylene carbonate can be obtained by a ring-opening polymerization of a cyclic carbonate. The copolymerization of the alkylene oxide and carbon dioxide may be carried out in the presence of a metal complex such as zinc, aluminum or cobalt.
  • a metal complex such as zinc, aluminum or cobalt.
  • the epoxide-based compound may be ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, 1-hexene oxide, 1-octene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide or butadiene monoxide or the like, or alternatively two or more kinds of various epoxide-based compounds selected among them, but the present invention is not limited thereto.
  • the polyalkylene carbonate resin may be, for example, a polyethylene carbonate resin, a polypropylene carbonate resin, a polypentene carbonate resin, a polyhexene carbonate resin, a polyoctene carbonate resin, a polycyclohexene carbonate resin, or a copolymer resin thereof, but is not limited thereto.
  • the polyketone resin is a resin which is excellent in mechanical properties and low in moisture absorption, and thus has little dimensional change and little change in physical properties due to moisture absorption.
  • the polyketone resin can be mixed with the above-mentioned polyalkylene carbonate resin within a specific amount range to realize excellent elongation properties and tear strength properties.
  • the polyketone resin may include a repeating unit represented by Chemical Formula 2.
  • R is a linear or branched alkylene having 1 to 10 carbon atoms; an arylene having 6 to 30 carbon atoms; an alkyl ether having 1 to 10 carbon atoms; an aryl ether having 6 to 30 carbon atoms; an alkyl ester having 1 to 10 carbon atoms; or an aryl ester having 6 to 30 carbon atoms
  • n is an integer of 10 to 1,000.
  • the preparation method of the polyketone resin is not particularly limited, and for example, the polyketone resin is prepared by the reaction of carbon monoxide and a compound containing an unsaturated double bond. Recently, it can be prepared in the form of an alternating copolymer in which repeating units composed of carbon monoxide and at least one or more ethylenically unsaturated hydrocarbon are alternately connected.
  • the melt index (MI) of the polyketone resin may be 3 to 8, preferably 5 to 7.
  • compatibility with the polyalkylene carbonate is excellent, and the processing processablity of the film can be improved.
  • the polyketone resin is an aliphatic polyketone containing ethylene, propylene, isopropylene, or butylene units. It is more preferable to use form of a binary copolymer or a ternary copolymer containing at least one of these repeating units.
  • the polyketone resin may have a weight average molecular weight of about 10,000 to about 1,000,000 g/mol, preferably about 50,000 to about 500,000 g/mol. When the weight average molecular weight is satisfied, it is preferable from the viewpoint of the processability at the time of production and improvement of mechanical properties of the film. Further, when the above range is satisfied, the polyketone resin can be mixed with the polyalkylene carbonate resin to exhibit excellent compatibility, which is preferable.
  • the polyalkylene carbonate resin film may further contain about 1 to about 30 parts by weight of the polylactide resin based on 100 parts by weight of the polyalkylene carbonate resin.
  • the thermal stability of the polyalkylene carbonate resin can be improved, and thereby kneading with the polyketone resin can be carried out more stably.
  • the polylactide resin is contained in an excessively smaller amount than the above range, decomposition of the polyalkylene carbonate may occur at the time of kneading polyketone and polyalkylene carbonate at high temperature.
  • the polylactide is contained in an excessively large amount than the above range, there may be a problem that the inherent physical properties of the polyalkylene carbonate are deteriorated.
  • the polyalkylene carbonate-based resin film of the present invention includes a polyalkylene carbonate resin, a polyketone resin, and a polylactide resin in a specific ratio, it has less blocking phenomenon during processing and is also excellent in thermal stability, while having excellent mechanical properties. Accordingly, it can be preferably used for a semi-permanent use such as sheets, food packaging films, floor materials, electronic product packages, or automobile interior materials.
  • lactides may be classified into L-lactide composed of L-lactic acid, D-lactide composed of D-lactic acid and meso-lactide composed of one L-form and one D-form. Further, a mixture of L-lactide and D-lactide in a ratio of 50: 50 is referred to as D,L-lactide or rac-lactide.
  • L-lactide or D-lactide having high optical purity among these lactides, is polymerized, L- or D-polylactide (PLLA or PDLA) having high stereoregularity is obtained, and that the polylactide obtained in this way is rapidly crystallized and has high crystallinity compared to polylactide having low optical purity.
  • the "lactide monomers" is defined as including all types of lactides regardless of the difference in characteristics of lactides according to the types thereof and the difference in characteristics of polylactides derived therefrom.
  • the molecular structure of the polylactide may be that polymerized from L-lactic acid, D-lactic acid or L,D-lactic acid.
  • the polylactide may be prepared by a process including the step of forming the repeating units described below by the ring-opening polymerization of lactide monomers.
  • the polymer obtained after the completion of the ring-opening polymerization and the repeating unit formation process may be referred to as the polylactide.
  • the category of lactide monomers may include all types of lactides as described above.
  • the polylactide may have the degree of polymerization of preferably about 50 to about 500, and may have a weight average molecular weight of about 10,000 to about 1,000,000 g/mol.
  • the polyalkylene cabonate resin composition may maintain the inherent physical properties of the polyalkylene carbonate, and obtain excellent thermal stability effect even during processing at a high temperature.
  • polylactide may include all the polymers obtained after the completion of the ring-opening polymerization and the repeating unit formation process, for example, unpurified or purified polymers obtained after the completion of the ring-opening polymerization, polymers included in a liquid or solid resin composition before the formation of a product, polymers included in plastic or textile after the formation of a product, and the like.
  • a method of directly polycondensing lactic acid and a method of ring-opening polymerizing lactide monomers in the presence of an organic metal catalyst are known.
  • the method of ring-opening polymerizing lactide monomers is complicated and needs high cost compared to the polycondensation because lactide monomers must be first prepared from lactic acid, but a polylactide resin having a relatively large molecular weight can be easily obtained by the ring-opening polymerization of lactide monomers using a organic metal catalyst, and the polymerization rate thereof can be easily adjusted. Therefore, this method is commercially widely available.
  • the polyalkylene carbonate-based resin film according to the present invention includes a blend resin having the above-mentioned composition, and the mixing method of the blend resin can be used without particular limitation as long as it is a method commonly used in the art. Specifically, mixing can be carried out by a Henzel mixer, a ribbon blender, a blender or the like to thereby obtain a uniform mixture. Further, as the melt kneading method, a VAN Antonie Louis Barye mixer, a single-screw compressor, a twin-screw compressor or the like can be used.
  • the blend resin can be prepared into a film through injection molding, compression molding, injection-compression molding, gas injection molding, foam injection molding, inflation, T-die, calendar, blow molding, vacuum molding, extrusion molding, and the like.
  • it can be prepared into a film according to T-die method.
  • the thickness of the polyalkylene carbonate-based resin film according to the present invention is not particularly limited, and may be suitably selected in the range required to maintain the elongation properties and mechanical properties described above. Preferably, it may have a thickness of 0.1 ⁇ m to 1,000 ⁇ m, or a thickness of 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 50 ⁇ m.
  • the polyalkylene carbonate-based resin film according to the present invention contains a blend resin of the above-mentioned components and has a specific physical property value, it can realize excellent mechanical properties without deteriorating elongation properties. Therefore, the production processability of the film is excellent, and scratches, breakage or cracks do not occur after application of the product, and thus can be advantageously applied to industrial packaging materials.
  • Preparation Example 1 Preparation of polyalkylene carbonate resin (A1, PEC)
  • a polyethylene carbonate resin was prepared by copolymerizing ethylene oxide and carbon dioxide using a diethyl-zinc catalyst through the following method ( Journal of Polymer Science B 1969, 7, 287 ; Journal of Controlled release 1997, 49, 263 ).
  • Polylactide (NatureWorks PLA 3001D) was mixed with the polyethylene carbonate prepared above to prepare pellets so that the content of polylactide was 5 wt%.
  • Polyketone resin Hyosung, M620A 20% was uniformly mixed with the polyethylene carbonate resin 80% (containing 5 wt% of NatureWorks PLA 3001 D) and dried in a vacuum oven at 40°C for 12 hours.
  • a T-die film producing device was attached to a twin-screw extruder and the resultant product was extruded at about 165°C to 185°C to prepare a 20 mm T-die film.
  • a T-die film was prepared in the same manner as in Example 1, except for that the components and content shown in Table 1 below were used.
  • NatureWorks 4032D was used as the PLA resin.
  • Example 1 A1/80 B1/20 - Example 2 A1/90 B1/10 - Comparative Example 1 A1/100 - - Comparative Example 2 A1/80 - C1/20 Comparative Example 3 A1/50 B1/50 -
  • the tear strength, tensile strength and elongation were measured by the following method using UTM (Universal Testing Machine, Instron). The results are shown in Table 2 below.
  • Example 1 and Comparative Example 2 a strand was produced using a die in a twin-screw extruder. SEM images of the prepared strand were taken to confirm a domain shape of the blend resin. The results are shown in FIGS. 1 and 2 .
  • [Table 2] Category Tensile strength (kgf/cm 2 ) Elongation (%) Tear strength(kg/cm) Example 1 277 417 63 Example 2 220 502 54 Comparative Example 1 88 806 25 Comparative Example 2 167 283 45 Comparative Example 3 Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible. Film production is impossible
  • Example 1 where PEC and PK are mixed and used within the range of the content according to the present invention, it can realize remarkably excellent mechanical properties (tensile strength and tear strength) as compared with Comparative Examples.
  • excellent tensile strength and tear strength are achieved within the elongation range of 300% to 500%, which is a proper elongation range required for an industrial packaging film.
  • Comparative Example 2 it is a conventional technique in which PLA is combined to complement the physical properties of PEC. Referring to the image of FIG. 2 , it can be confirmed that the compatibility is lowered and a clear interface exists. When the compatibility is lowered, the respective physical properties of the blend resin are expressed intactly when applied to the product, and thus there is a problem that each other's physical properties cannot be sufficiently complemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Claims (10)

  1. Polyalkylencarbonat-basierter Film, umfassend ein Mischharz, in dem 75 bis 99 Gew.-% eines Polyalkylencarbonatharzes und 1-25 Gew.-% eines Polyketonharzes gemischt sind,
    wobei der Film eine Zugfestigkeit von 200 kgf/cm2 bis 300 kgf/cm2, gemessen nach ASTM D 638, hat.
  2. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Mischharz durch Mischen von 80 bis 99 Gewichtsteilen eines Polyalkylenharzes und 10 bis 20 Gewichtsteilen eines Polyketonharzes hergestellt wird.
  3. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Polyalkylencarbonatharz eine Wiederholungseinheit einschließt, dargestellt durch die folgende chemische Formel 1
    Figure imgb0008
    in der chemischen Formel 1 sind R1 bis R4 jeweils unabhängig Wasserstoff, eine lineare oder verzweigte Alkylgruppe mit 1 bis 20 Kohlenstoffatomen, eine Arylgruppe mit 6 bis 20 Kohlenstoffatomen, eine Alkenylgruppe mit 2 bis 20 Kohlenstoffatomen oder eine Cycloalkylgruppe mit 3 bis 20 Kohlenstoffatomen, zumindest zwei von R1 bis R4 können miteinander verbunden sein, um eine Cycloalkylgruppe mit 3 bis 10 Kohlenstoffatomen zu bilden, und M ist eine ganze Zahl von 10 bis 1.000.
  4. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Polyalkylencarbonatharz zumeist eines ist, ausgewählt aus der Gruppe, bestehend aus Polyethylencarbonatharz, Polypropylencarbonatharz, Polypentencarbonatharz, Polyhexencarbonatharz, Polyoktencarbonatharz, Polycyclohexencarbonatharz und einem Copolymerharz davon.
  5. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Polyalkylencarbonatharz ein Gewichtsmittel des Molekulargewichts von 50.000 g/mol bis 500.000 g/mol hat, gemessen mittels Gelpermeationschromatographie GPC.
  6. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Polyketonharz eine Wiederholungseinheit einschließt, dargestellt durch die folgende chemische Formel 2:
    Figure imgb0009
    in der chemischen Formel 2,
    ist R ein lineares oder verzweigtes Alkylen mit 1 bis 10 Kohlenstoffatomen; ein Arylen mit 6 bis 30 Kohlenstoffatomen; ein Alkylether mit 1 bis 10 Kohlenstoffatomen; ein Arylether mit 6 bis 30 Kohlenstoffatomen; ein Alkylester mit 1 bis 10 Kohlenstoffatomen; oder ein Arylester mit 6 bis 30 Kohlenstoffatomen, und
    ist n eine ganze Zahl von 10 bis 1.000.
  7. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Polyketonharz ein aliphatisches Polyketonharz ist, das Ethylen, Propylen, Isopropylen oder Butyleneinheiten enthält.
  8. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei das Polyketonharz ein binäres Copolymer oder ein tertiäres Copolymer ist.
  9. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei eine innere Reißfestigkeit des Polycarbonatharz-basierten Films, nach ASTM D 1004-03, 50 kg/cm bis 80 kg/cm ist.
  10. Polyalkylencarbonat-basierter Film nach Anspruch 1, wobei eine Dehnung des Polyalkylencarbonat-basierten Films, nach ASTM D 638, 300% bis 500% ist.
EP17887520.9A 2016-12-27 2017-12-27 Harzfolie auf polyalkylencarbonatbasis Active EP3524643B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20160180486 2016-12-27
KR1020170180266A KR102278533B1 (ko) 2016-12-27 2017-12-26 폴리알킬렌 카보네이트계 수지 필름
PCT/KR2017/015580 WO2018124746A2 (ko) 2016-12-27 2017-12-27 폴리알킬렌 카보네이트계 수지 필름

Publications (3)

Publication Number Publication Date
EP3524643A2 EP3524643A2 (de) 2019-08-14
EP3524643A4 EP3524643A4 (de) 2019-11-13
EP3524643B1 true EP3524643B1 (de) 2020-10-14

Family

ID=62920391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17887520.9A Active EP3524643B1 (de) 2016-12-27 2017-12-27 Harzfolie auf polyalkylencarbonatbasis

Country Status (5)

Country Link
US (1) US10941261B2 (de)
EP (1) EP3524643B1 (de)
JP (1) JP6731548B2 (de)
KR (1) KR102278533B1 (de)
CN (1) CN110088197B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095843A1 (de) 2015-05-21 2016-11-23 Neste Oyj Verfahren zur herstellung von bio-kohlenwasserstoffen durch thermisches cracken eines bio-erneuerbaren rohstoffes enthaltend mindestens 65 gew.% isoparaffine
KR20180076350A (ko) * 2016-12-27 2018-07-05 주식회사 엘지화학 폴리알킬렌 카보네이트 수지 조성물 및 폴리알킬렌 카보네이트 수지 성형품
KR102448024B1 (ko) * 2017-03-29 2022-09-28 에스케이이노베이션 주식회사 고분자 조성물 및 이를 이용한 필름
CN115785642B (zh) * 2022-12-14 2024-05-14 无锡赢同新材料科技有限公司 一种耐低温高模量电磁屏蔽材料及其制备方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303759A (en) * 1980-09-12 1981-12-01 Air Products And Chemicals, Inc. Polyalkylenecarbonate compositions with improved thermal stability and method for making same
US4880908A (en) * 1988-04-11 1989-11-14 Shell Oil Company Polymer blend of carbon monoxide/olefin copolymer and polycarbonate
CN1025567C (zh) 1988-10-06 1994-08-03 拜尔公司 特新聚碳酸酯与其他热塑性塑料成弹性体的混合物其制法和用途
ES2227697T3 (es) 1996-06-05 2005-04-01 Arkema Resinas termoplasticas flexibles con resistencia mejorada a la traccion.
JPH101601A (ja) * 1996-06-18 1998-01-06 Kuraray Co Ltd 熱可塑性樹脂組成物
ES2149678B1 (es) 1997-03-06 2001-05-16 Ciba Sc Holding Ag Estabilizacion de policarbonatos, poliesteres y policetonas.
JP2001272400A (ja) 2000-03-24 2001-10-05 Sekisui Chem Co Ltd 吸着剤を用いた測定方法
JP3455964B2 (ja) 2000-08-02 2003-10-14 三井化学株式会社 樹脂組成物およびその用途
CN1249162C (zh) 2000-08-02 2006-04-05 三井化学株式会社 树脂组合物及其用途
US20070134411A1 (en) 2005-12-14 2007-06-14 General Electric Company Method for making compositions containing microcapsules and compositions made thereof
KR101016276B1 (ko) * 2006-09-11 2011-02-22 아사히 가세이 가부시키가이샤 고분자 전해질과 그 제조방법, 및 전기 화학 소자
US20080274360A1 (en) 2007-05-04 2008-11-06 General Electric Company Polyaryl ether ketone - polycarbonate copolymer blends
US8003016B2 (en) 2007-09-28 2011-08-23 Sabic Innovative Plastics Ip B.V. Thermoplastic composition with improved positive temperature coefficient behavior and method for making thereof
KR101098242B1 (ko) 2009-07-30 2011-12-23 주식회사 효성 폴리케톤 블렌드 및 그 제조방법
KR20140039804A (ko) 2012-09-25 2014-04-02 에스케이이노베이션 주식회사 기계적 물성 및 유연성이 우수한 폴리(알킬렌 카보네이트) 수지 조성물
KR101601939B1 (ko) 2012-11-16 2016-03-09 주식회사 엘지화학 폴리알킬렌 카보네이트 및 락타이드 공중합체를 포함하는 수지 조성물
KR101478655B1 (ko) * 2013-03-27 2015-01-02 주식회사 엘지화학 폴리알킬렌 카보네이트를 포함하는 수지 조성물
EP2848652A1 (de) 2013-09-17 2015-03-18 Rhodia Operations Polyamidbasierte Zusammensetzung enthaltend Polyketon und Kautschuk
WO2016072642A2 (ko) 2014-11-07 2016-05-12 (주) 효성 내충격성이 우수한 폴리케톤 수지 조성물
KR101706052B1 (ko) * 2014-11-19 2017-02-14 주식회사 효성 폴리카보네이트가 포함된 폴리케톤 조성물
KR101793669B1 (ko) 2015-03-06 2017-11-03 주식회사 엘지화학 폴리알킬렌카보네이트/폴리락트산 복합체
KR101777562B1 (ko) 2015-11-27 2017-09-13 (주)휴이노베이션 친환경 및 저연 특성이 탁월한 폴리케톤계 수지 및 폴리알킬렌 카보네이트계 수지를 포함하는 난연 조성물
KR101659069B1 (ko) * 2015-12-23 2016-09-22 주식회사 엘지화학 폴리알킬렌 카보네이트와 폴리락타이드를 포함하는 에멀젼 조성물 및 이로부터 제조된 생분해성 성형품
CN106589882A (zh) 2016-11-29 2017-04-26 中广核俊尔新材料有限公司 一种聚碳酸酯聚酮合金及其制备方法
KR102103001B1 (ko) 2016-12-27 2020-04-21 주식회사 엘지화학 폴리케톤 수지 조성물 및 폴리케톤 수지 성형품
KR20180076350A (ko) 2016-12-27 2018-07-05 주식회사 엘지화학 폴리알킬렌 카보네이트 수지 조성물 및 폴리알킬렌 카보네이트 수지 성형품
CN110446755B (zh) * 2017-03-29 2022-02-11 Sk新技术株式会社 高分子组合物及利用其的薄膜
WO2018212488A1 (ko) * 2017-05-17 2018-11-22 효성화학 주식회사 폴리케톤 얼로이 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102278533B1 (ko) 2021-07-16
KR20180076351A (ko) 2018-07-05
EP3524643A4 (de) 2019-11-13
CN110088197B (zh) 2021-12-28
CN110088197A (zh) 2019-08-02
EP3524643A2 (de) 2019-08-14
US20200056003A1 (en) 2020-02-20
JP2019531381A (ja) 2019-10-31
US10941261B2 (en) 2021-03-09
JP6731548B2 (ja) 2020-07-29

Similar Documents

Publication Publication Date Title
EP3524643B1 (de) Harzfolie auf polyalkylencarbonatbasis
EP2980158B1 (de) Harzzusammensetzung mit polyalkylencarbonat
CN109689787B (zh) 聚酮树脂组合物和聚酮树脂成型制品
KR102365124B1 (ko) 폴리알킬렌 카보네이트 수지 조성물 및 폴리알킬렌 카보네이트 수지 성형품
JP6328236B2 (ja) ポリアルキレンカーボネートを含む樹脂組成物
EP3795615B1 (de) Polyalkylencarbonatharz, verfahren zu seiner herstellung und daraus hergestelltes formteil
WO2018124743A2 (ko) 폴리알킬렌 카보네이트 수지 조성물 및 폴리알킬렌 카보네이트 수지 성형품
WO2018124746A2 (ko) 폴리알킬렌 카보네이트계 수지 필름

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190506

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20191014

RIC1 Information provided on ipc code assigned before grant

Ipc: C08J 5/18 20060101ALI20191008BHEP

Ipc: C08L 69/00 20060101AFI20191008BHEP

Ipc: C08L 73/00 20060101ALI20191008BHEP

Ipc: C08G 64/02 20060101ALI20191008BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20200825

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1323515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017025676

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1323515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201014

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017025676

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

26N No opposition filed

Effective date: 20210715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201227

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 7

Ref country code: DE

Payment date: 20231120

Year of fee payment: 7