EP3521583B1 - Kühlvorrichtung mit mindestens zwei kühlkreisläufen und einer gekühlten füllleitung - Google Patents
Kühlvorrichtung mit mindestens zwei kühlkreisläufen und einer gekühlten füllleitung Download PDFInfo
- Publication number
- EP3521583B1 EP3521583B1 EP19152991.6A EP19152991A EP3521583B1 EP 3521583 B1 EP3521583 B1 EP 3521583B1 EP 19152991 A EP19152991 A EP 19152991A EP 3521583 B1 EP3521583 B1 EP 3521583B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- cooling
- subregion
- cooler
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 146
- 239000002826 coolant Substances 0.000 claims description 163
- 238000013022 venting Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000012080 ambient air Substances 0.000 description 8
- 239000003570 air Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000009423 ventilation Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/029—Expansion reservoirs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/04—Arrangements of liquid pipes or hoses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/028—Deaeration devices
Definitions
- the invention relates to a cooling device with at least two cooling circuits which are connected to a common expansion tank for coolant.
- the invention also relates to a vehicle, preferably a utility vehicle, and / or a stationary system with such a cooling device.
- Cooling circuits are used to remove excess heat from self-heating or externally heated components.
- a coolant e.g. oil, water or a water-cooling water additive mixture
- cooling circuits can often be provided, in particular several cooling circuits that operate at different temperature levels.
- a high-temperature circuit for cooling the internal combustion engine with a high temperature level of over 90 ° C. in normal operation and a low-temperature circuit for cooling the electric drive system with a low temperature level.
- a low-temperature circuit for cooling the electric drive system with a low temperature level.
- vehicles with indirect charge air cooling to use a high-temperature circuit to cool the internal combustion engine with a high temperature level of over 90 ° C in normal operation and a low-temperature circuit to cool the charge air at a low temperature level.
- the coolant that has accumulated in the expansion tank is returned to the corresponding cooling circuit via a filling line that connects the expansion tank with the corresponding cooling circuit.
- the documents are an example in this context DE 199 12 138 A1 , DE 10 2007 052 927 A1 , WO 03/042516 A2 and DE 10 2007 054 855 A1 referenced, all of which show such expansion tanks connected to several cooling circuits.
- a common expansion tank is provided for several cooling circuits operating at different temperature levels, the different temperature coolants can be mixed in the expansion tank. Via the corresponding filling line, warmer coolant would then be introduced from the common expansion tank into a cooling circuit with a lower temperature level, which could restrict its functionality or lead to damage to the components contained therein.
- the approach is also known in the prior art to modify the expansion tank in such a way as to avoid mixing of the coolants.
- the laid-open specification discloses DE 2 063 298 A1 a common expansion tank for a motor vehicle with two separate cooling circuits, which has an absolutely tight partition.
- two separate areas for receiving coolant of a cooling circuit are formed and there is no exchange of coolant between the cooling circuits.
- this approach does not allow pressure equalization between the various cooling circuits and makes it more difficult to fill or introduce additives into the coolant, since all components (nozzles, silicate depot, etc.) have to be designed several times.
- the prior art also uses the approach of mixing the coolant in the various cooling circuits and thus allowing the temperature levels to be adjusted in the common expansion tank, but precooling the coolant at a lower temperature level before it enters the cooling circuit.
- the laid-open specification discloses this DE 10 2015 212 554 A1 a motor vehicle with two Cooling circuits at different temperature levels, in which the coolant in the filling line is passed through a heat exchanger at a lower temperature before entering the cooling circuit.
- heat exchanger heat is transferred from the coolant, which flows in the filling line from the expansion tank to the cooling circuit, to the coolant, which is in the The vent line from the cooling circuit to the expansion tank flows. Since the media flowing through the heat exchanger are therefore coolants in both cases, only a low cooling capacity is achieved due to the relatively small temperature difference between the two media. In addition, there is an undesirable introduction of heat into the overall system.
- a basic idea of the invention is to use an air-cooled heat exchanger for cooling the filling line, which achieves a higher cooling capacity due to the higher temperature difference between ambient air and coolant, and to integrate this heat exchanger into existing components of the cooling circuit in a space-saving manner.
- a cooling device with at least two cooling circuits is provided for this purpose, each of which is connected to a common expansion tank for coolant via at least one ventilation line and at least one filling line.
- Two of the cooling circuits preferably work at different temperature levels.
- An air-cooled heat exchanger is provided on at least one of the filling lines, by means of which the coolant is precooled before it enters the cooling circuit assigned to this filling line.
- the air-cooled heat exchanger can be provided at any point on the filling line, preferably in a central area of the filling line. This means that coolant can first enter a first area of the filling line, then pass through the air-cooled heat exchanger, then flow through a second area of the filling line until it finally enters the cooling circuit.
- cooling circuit can be understood in this context to mean that it consists of a system connected via corresponding pipes, hoses or lines comprises several coolant pumps, coolant coolers and heat exchangers, in which coolant, preferably water, oil or a water-cooling water additive mixture, driven by the coolant pump, circulates almost closed.
- coolant preferably water, oil or a water-cooling water additive mixture
- the cooling circuit preferably absorbs excess heat from self-heating or externally heated components, such as an internal combustion engine, electric motor or battery, via the heat exchanger and releases it to the ambient air by means of the coolant cooler.
- a ventilation line is understood to be a fluid line, e.g. a pipe or hose connection, which connects a cooling circuit, preferably at its geodetically highest point, with the expansion tank, which is preferably arranged at an even higher level. Gases, vapors, expanding coolant and / or a coolant-air mixture can be conveyed from the cooling circuit to the expansion tank via the vent line. In other words, the diverted coolant is mainly transported from the cooling circuit to the expansion tank in the vent line.
- the vent line can consist of a plastic, metal or other suitable material.
- Expansion tanks for coolants are known per se in the prior art and are used, on the one hand, to vent a cooling circuit. In addition, they can compensate for thermally induced changes in the volume of the coolant in a cooling circuit by temporarily storing expanding and thus excess coolant there.
- an expansion tank can have a coolant reservoir in the form of one or more coolant chambers for receiving the expanding coolant.
- the expansion tank can comprise an overpressure and / or underpressure valve for pressure regulation as well as a filler opening for coolant with an associated closure cap.
- the expansion tank can comprise devices for introducing additives into the coolant, for example a silicate deposit.
- a filling line is understood to be a fluid line, for example a pipe or hose connection, which leads from the expansion tank, preferably from a geodetically lower area of the expansion tank, back to the, preferably lower lying, cooling circuit.
- the filling line is used to guide the coolant that has accumulated in the expansion tank back into the cooling circuit, whereby the substance transport in the filling line mainly takes place from the expansion tank to the cooling circuit.
- the cooling circuit is also preferably filled for the first time or re-filled with coolant via the filling line.
- the filling line can be turned off a plastic, metal or other suitable material and preferably flows into the cooling circuit at a point shortly before, ie upstream, the coolant pump.
- cooling circuits are each connected to a common expansion tank for coolant via at least one vent line and at least one filling line.
- all cooling circuits connected to the common expansion tank operate at almost the same temperature level.
- further cooling circuits with their own expansion tanks, filling and venting lines can also be present in the cooling device.
- the exact structural embodiment of the expansion tank (s) is not relevant for the device according to the invention.
- the expansion tank can be designed in one piece or in several parts and comprise one or more coolant chambers.
- the coolant chambers can be connected via through openings and thus enable the coolant of the different cooling circuits to be mixed, or they can be separated from one another by tight partition walls, so that there can be no exchange of coolant between the different cooling circuits in the expansion tank.
- the invention is particularly advantageous if several cooling circuits at different temperatures are connected to an expansion tank and the coolant flows are mixed there.
- an air-cooled heat exchanger is provided, preferably on the filling line of the cooling circuit with a lower temperature level, which pre-cools the coolant before it enters the cooling circuit .
- the air-cooled heat exchanger can be designed in a form known per se in the prior art, the heat extracted from the coolant being released to the ambient air at the end.
- the air-cooled heat exchanger can be a tube bundle cooler or a tube cooler.
- the air-cooled heat exchanger can also include cooling fins and / or heat sinks. Since the operating temperature of the cooling circuits in common applications, e.g. in the automotive sector, is usually well above the ambient air temperature - for example, the temperature of a cooling circuit of an internal combustion engine in normal operation is> 90 ° C - the use of air as the heat exchange medium advantageously results in a high temperature difference and thus achieves a high cooling capacity.
- the air-cooled heat exchanger is designed as a first sub-area of a coolant cooler, which is separated from a second sub-area of the coolant cooler. Both the first and the second sub-area have their own inlet and outlet for coolant.
- the coolant cooler can be designed in a form known per se in the prior art, for example as a downdraft or cross-flow cooler.
- the coolant cooler can comprise a plurality of cooling passages or cooling tubes that are cooled by the ambient air flowing past.
- the term separated is to be understood in such a way that the two areas within the coolant cooler are not fluidically connected on the coolant side.
- the coolant cooler understood as a component, can thus assume a double function.
- a partial area of the coolant cooler is used to cool coolant before it enters the cooling circuit.
- a partial area of the coolant cooler is used to cool the coolant that circulates in the cooling circuit.
- the volumes of the two areas of the coolant cooler outside the coolant cooler can be fluidically connected via corresponding lines or the expansion tank. That is to say, coolant can first pass through the first area of the coolant cooler, then enter the cooling circuit and, in the course of the circulation, get there into the second area of the coolant cooler.
- there cannot be any fluidic connection between the two areas of the coolant cooler that is, neither inside nor outside of the coolant cooler.
- the coolant cooler comprises a plurality of tubes, preferably flat tubes. Of these pipes, a first subset is assigned to the first sub-area and a second subset is assigned to the second sub-area, the two pipe sub-sets in the coolant cooler not being fluidically connected and the first sub-set being smaller than the second sub-set.
- the coolant cooler can be designed as a downdraft or cross-flow cooler and can comprise a soldered cooler network consisting of a plurality of flat tubes and cooling fins. A small portion of these flat tubes can be used to cool the coolant in the filling line, while the remaining flat tubes of the coolant cooler are used to cool the coolant in the cooling circuit.
- 10% of the tubes can be used to cool the filling line and the remaining 90% of the tubes can be used to cool the coolant circulating in the cooling circuit.
- the advantage of this embodiment is that a coolant cooler required for the proper functioning of the cooling circuit can be expanded to the dual function according to the claims without great loss of cooling performance.
- the coolant cooler comprises a first cooling section, which is assigned to the first sub-area, and a second cooling section, which is assigned to the second sub-area, the two cooling sections in the coolant cooler not being fluidically connected and the first cooling section being shorter than the second cooling section.
- This embodiment is particularly advantageous if it is a heat exchanger with two or more cooling sections or if the coolant cooler comprises meandering channels.
- the first and second cooling sections can also be of the same length, which is particularly advantageous if the coolant cooler is a downward or cross-flow cooler.
- the first sub-area of the coolant cooler adjoins the second sub-area of the coolant cooler or is arranged adjacently.
- the first and second sub-areas can be in direct mechanical contact with one another, i.e. they can abut one another and thus be regarded as one component, as it were.
- the two areas can only be separated from one another via a partition.
- the cooling fan which is usually installed on the coolant cooler, can also ensure a circulation of the ambient air and thus efficient cooling on the filling line.
- coolant from the expansion tank is supplied to the inlet of the first sub-region of the coolant cooler via the filling line of the associated cooling circuit.
- coolant from the expansion tank first runs through the filling line and then enters the air-cooled heat exchanger, which is designed as a first sub-area of a coolant cooler, via the inlet.
- the coolant is cooled, which then enters the cooling circuit after exiting the heat exchanger, whereby it can pass a further section in the filling line beforehand.
- the outlet of the first sub-area of the coolant cooler is upstream of the inlet of the second sub-area of the coolant cooler. That is, in normal operation, coolant flows from the outlet of the first sub-region of the coolant cooler to the Inlet of the second sub-region of the coolant cooler, the coolant being able to flow through or along further components, for example a coolant pump or the components to be cooled, in the meantime.
- the inlet and / or outlet of the heat exchanger is designed as a hose connector or as a hose coupling.
- the opening for supplying the coolant into the heat exchanger is understood as the inlet, and the opening for the coolant to escape from the heat exchanger as the outlet.
- the heat exchanger can also comprise more than one inlet and more than one outlet.
- the inlet and / or outlet of the heat exchanger can also comprise a pipe coupling and / or flange connection.
- the air-cooled heat exchanger is designed as a separate component which is only provided for cooling the coolant in the filling line.
- the heat exchanger is explicitly not designed as a sub-area of a coolant cooler.
- the heat exchanger can be designed as an air-cooled tube bundle cooler, tube cooler or heat exchanger.
- the heat exchanger can comprise cooling fins and / or heat sinks.
- This embodiment is further characterized in that a coolant cooler of the associated cooling circuit is arranged downstream of the filling line.
- the coolant in the filling line passes through an air-cooled heat exchanger at one point on its way from the expansion tank to the entry into the cooling circuit and then a coolant cooler in the cooling circuit, which is not identical to the aforementioned air-cooled heat exchanger.
- the advantage of this variant is that, due to the spatial separation of the heat exchanger and coolant cooler, no heat transfer can occur between the two components.
- an undesired heat flow of the coolant which is initially warm when entering the heat exchanger, is effectively prevented via the heat exchanger and coolant cooler wall to the cold cooling circuit.
- exactly two cooling circuits operating at different temperature levels are each connected to a common expansion tank for coolant via at least one vent line and at least one filling line.
- the air-cooled heat exchanger is provided on the filling line of the cooling circuit with a lower temperature level in order to precool the coolant from the common expansion tank before it enters the cooling circuit with a lower temperature level. In this way, warm coolant is advantageously prevented from being introduced into the cooling circuit at a lower temperature level.
- the invention also relates to a motor vehicle, preferably a commercial vehicle, with a cooling device as described in this document.
- the cooling device can be used for fuel, oil, charge air, engine and / or battery cooling.
- the motor vehicle can comprise an internal combustion engine and / or electric motor and / or a fuel cell.
- the invention also relates to a stationary system with a cooling device as described in this document.
- the stationary system can also include an internal combustion engine and / or electric motor and / or a fuel cell.
- FIG. 1 an exemplary embodiment of the claimed cooling device 100 is shown schematically.
- This comprises two cooling circuits 10a, 10b, each of which has a ventilation line 1a, 1b and a filling line 2a, 2b with a, designed as a chamber, common expansion tank 3 for coolant are connected.
- the two cooling circuits 10a and 10b have no further fluidic connection to one another.
- the individual cooling circuits 10a and 10b shown here greatly reduced for the sake of clarity, each include a coolant cooler 5a, 5b, a coolant pump 8a, 8b and a heat exchanger 9a, 9b, these components being connected via corresponding pipes 11a, 11b.
- the coolant pumps 8a, 8b pump coolant to the heat exchangers 9a, 9b, which are in contact with self-heating or externally heated components, for example an internal combustion engine.
- the pipes 11a, 11b lead in a manner known per se past the components to be cooled, for example engine components, or are led through them (not shown).
- heat exchangers 9a, 9b heat is transferred from these components to the coolant, which is then pumped on to the respective coolant coolers 5a, 5b, for example a downdraft cooler.
- the coolant coolers 5a, 5b the heat stored in the coolant is finally given off to the ambient air.
- the coolant then flows again to the respective coolant pumps 8a, 8b and the cycle begins again.
- the cooling circuit 10a has a lower operating temperature T 1 than the cooling circuit 10b, as a result of which the coolant present in the expansion tank 3 will also have a mixed temperature between the operating temperatures of the two cooling circuits 10a and 10b. Because of this mixing of coolant in the expansion tank 3, coolant that is “too warm” would consequently be returned to the cooling circuit 10a with a lower temperature level via the filling line 2a.
- an air-cooled heat exchanger 4 is provided in the area of the filling line 2a of the cooling circuit 10a with a lower temperature level.
- This is designed as a first partial area 51 of a coolant cooler 5a, which is separated from a second partial area 52 of the coolant cooler 5a.
- Both the first and the second sub-area 51, 52 have their own inlet 61, 62 and outlet 71, 72 for coolant.
- FIG. 2 shows an embodiment of the air-cooled heat exchanger 4 for pre-cooling the filling line 2a as a first partial area 51 of a coolant cooler 5a.
- the coolant cooler 5a known per se in the prior art, for example in the form of a downdraft cooler, is subdivided via a vertical partition 12 into two subregions 51 and 52 that are separated from one another, that is, are not fluidically connected within the coolant cooler 5a. Coolant flows through each of the two sub-areas 51 and 52, which enters the respective sub-area 51, 52 via the corresponding inlet 61, 62 and leaves the respective sub-area 51, 52 via the corresponding outlet 71, 72 without mixing in between of coolant of the two circuits can take place.
- FIG 3 an embodiment (not according to the invention) is shown in which the air-cooled heat exchanger 4 is designed as a separate component 40 for pre-cooling the filling line 2a. It is therefore explicitly not part or sub-area 51 of a coolant cooler 5a.
- a coolant cooler 5a In the cooling circuit 10a itself, however, there is a coolant cooler 5a, which, however, only serves to cool the coolant in the cooling circuit 10a, while the air-cooled heat exchanger 4 pre-cools the coolant in the filling line 2a before it enters the cooling circuit 10a.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Description
- Die Erfindung betrifft eine Kühlvorrichtung mit mindestens zwei Kühlkreisläufen, die mit einem gemeinsamen Ausgleichsbehälter für Kühlmittel verbunden sind. Insbesondere eine Kühlvorrichtung mit mindestens zwei Kühlkreisläufen, die auf unterschiedlichen Temperaturniveaus arbeiten. Ferner betrifft die Erfindung ein Fahrzeug, vorzugsweise ein Nutzfahrzeug, und/oder eine stationäre Anlage mit einer derartigen Kühlvorrichtung.
- Kühlkreisläufe werden zur Abführung überschüssiger Wärme von sich selbst erhitzenden oder von außen erhitzter Komponenten verwendet. Angetrieben von einer oder mehreren Kühlmittelpumpen zirkuliert dabei ein Kühlmittel, z.B. Öl, Wasser oder ein Wasser-Kühlwasser-Additiv Gemisch, in einem Rohr- und/oder Schlauchleitungssystem, um Wärme von den besagten Komponenten aufzunehmen und anschließend mittels eines Kühlmittelkühlers abzugeben, z.B. an die Umgebungsluft.
- Im Bereich großtechnischer Anlagen oder im Fahrzeugbereich können oftmals mehrere Kühlkreisläufe vorgesehen sein, insbesondere mehrere Kühlkreisläufe, die auf unterschiedlichen Temperaturniveaus arbeiten. Beispielsweise ist es bei Hybridfahrzeugen üblich einen Hochtemperaturkreislauf zur Kühlung des Verbrennungsmotors mit einem hohen Temperaturniveau von über 90 °C im Normalbetrieb sowie einem Niedertemperaturkreislauf zur Kühlung des elektrischen Antriebssystems mit einem niedrigen Temperaturniveau zu verwenden. Ebenfalls ist es beispielsweise üblich bei Fahrzeugen mit einer indirekten Ladeluftkühlung einen Hochtemperaturkreislauf zur Kühlung des Verbrennungsmotors mit einem hohen Temperaturniveau von über 90 °C im Normalbetrieb sowie einem Niedertemperaturkreislauf zur Kühlung der Ladeluft mit einem niedrigen Temperaturniveau zu verwenden.
- Für eine gute und insbesondere effiziente Kühlleistung derartiger Kühlkreisläufe ist es relevant, dass diese möglichst vollständig entlüftet sind. Das heißt, dass sowohl bei der Befüllung des Kühlkreislaufs dort möglicherweise vorhandene Luft möglichst vollständig vom Kühlmittel verdrängt und abgeleitet werden kann, als auch, dass während des Betriebs durch Verdampfungsprozesse entstehende Gase sicher abgeführt werden können. In der Regel erfolgt diese Entlüftung über Ausgleichsbehälter, die mittels einer Entlüftungsleitung mit dem entsprechenden Kühlsystem verbunden sind. Zudem besitzen Ausgleichsbehälter die Aufgabe, eine thermisch bedingte Ausdehnung des Kühlmittels, vor allem während des Betriebs, zu kompensieren. Hierzu sind Ausgleichsbehälter teilweise mit Luft gefüllt, die bei einer Ausdehnung des Kühlmittels komprimiert wird. Die Rückführung des im Ausgleichsbehälter angesammelten Kühlmittels in den entsprechenden Kühlkreislauf erfolgt über eine Füllleitung, die den Ausgleichsbehälter mit dem entsprechenden Kühlkreislauf verbindet. Beispielhaft sei in diesem Zusammenhang auf die Dokumente
DE 199 12 138 A1 ,DE 10 2007 052 927 A1 ,WO 03/042516 A2 DE 10 2007 054 855 A1 verwiesen, welche allesamt derartige, mit mehreren Kühlkreisläufen verbundene, Ausgleichsbehälter zeigen. - Ist aus Kostengründen und/oder um die Befüllung zu erleichtern und/oder aus bauraumtechnischen Gründen ein gemeinsamer Ausgleichsbehälter für mehrere auf unterschiedlichen Temperaturniveaus arbeitende Kühlkreisläufe vorgesehen, so kann im Ausgleichsbehälter eine Vermischung der unterschiedlich temperierten Kühlmittel erfolgen. Über die entsprechende Füllleitung würde dann wärmeres Kühlmittel aus dem gemeinsamen Ausgleichsbehälter in einen Kühlkreislauf mit niedrigerem Temperaturniveau eingebracht werden, was dessen Funktionalität einschränken bzw. zu Schäden an den darin enthaltenen Komponenten führen könnte.
- Neben dem entsprechend größeren Dimensionieren des Kühlkreislaufs mit niedrigem Temperaturniveau, um so die zusätzlich eingebrachte Wärmemenge besser abzuführen, ist im Stand der Technik auch der Ansatz bekannt, den Ausgleichsbehälter so zu modifizieren, um ein Vermischen der Kühlmittel zu meiden. Beispielsweise offenbart die Offenlegungsschrift
DE 2 063 298 A1 einen gemeinsamen Ausgleichsbehälter für ein Kraftfahrzeug mit zwei gesonderten Kühlkreisläufen, der eine absolut dichte Trennwand aufweist. Dadurch werden zwei voneinander gesonderte Bereiche zur Aufnahme von Kühlmittel jeweils eines Kühlkreislaufs gebildet und es findet kein Austausch von Kühlmittel zwischen den Kühlkreisläufen statt. Dieser Ansatz lässt allerdings keinen Druckausgleich zwischen den verschiedenen Kühlkreisläufen zu und erschwert das Befüllen bzw. das Einbringen von Zusatzstoffen in das Kühlmittel, da alle Komponenten (Stutzen, Silikatdepot etc.) mehrfach ausgelegt werden müssen. - Anstelle der Modifikation des Ausgleichsbehälters existiert im Stand der Technik auch der Ansatz eine Kühlmittelvermischung der verschiedenen Kühlkreisläufe und damit ein Angleichen der Temperaturniveaus im gemeinsamen Ausgleichsbehälter zuzulassen, allerdings das Kühlmittel vor dem Eintritt in den Kühlkreislauf mit niedrigerem Temperaturniveau vorzukühlen. Hierzu offenbart die Offenlegungsschrift
DE 10 2015 212 554 A1 ein Kraftfahrzeug mit zwei Kühlkreisläufen auf unterschiedlichen Temperaturniveaus, bei dem das Kühlmittel in der Füllleitung vor dem Eintritt in den Kühlkreislauf mit niedrigerer Temperatur über einen Wärmetauscher geführt wird. Im Wärmetauscher erfolgt dabei ein Wärmeübertrag vom Kühlmittel, das in der Füllleitung vom Ausgleichsbehälter zum Kühlkreislauf fließt, zum Kühlmittel, das in der Entlüftungsleitung vom Kühlkreislauf zum Ausgleichsbehälter fließt. Da es sich somit bei den, den Wärmetauscher durchströmende, Medien in beiden Fällen um Kühlmittel handelt, wird aufgrund der relativ geringen Temperaturdifferenz zwischen beiden Medien jedoch nur eine geringe Kühlleistung erzielt. Zudem kommt es zu einem unerwünschten Wärmeeintrag in das Gesamtsystem. - Es ist daher eine Aufgabe der Erfindung ein im Vergleich zum Stand der Technik verbesserte Vorrichtung bereitzustellen, um das Einbringen großer Wärmemengen in einen Kühlkreislauf, der über eine Füllleitung mit einem von mehreren Kühlkreisläufen genutzten gemeinsamen Ausgleichsbehälter in Kontakt steht, zu vermeiden.
- Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und werden in der folgenden Beschreibung unter teilweiser Bezugnahme auf die Figuren näher erläutert.
- Ein Grundgedanke der Erfindung ist, einen luftgekühlten Wärmeüberträger zur Kühlung der Füllleitung zu verwenden, der aufgrund der höheren Temperaturdifferenz zwischen Umgebungsluft und Kühlmittel eine höhere Kühlleistung erzielt, und diesen Wärmeüberträger platzsparend in vorhandenen Komponenten des Kühlkreislaufs zu integrieren.
- Erfindungsgemäß wird hierzu eine Kühlvorrichtung mit mindestens zwei Kühlkreisläufen bereitgestellt, die jeweils über mindestens eine Entlüftungsleitung und mindestens eine Füllleitung mit einem gemeinsamen Ausgleichsbehälterfür Kühlmittel verbunden sind. Vorzugsweise arbeiten zwei der Kühlkreisläufe dabei auf unterschiedlichen Temperaturniveaus. An mindestens einer der Füllleitungen ist ein luftgekühlter Wärmeübertrager vorgesehen, mittels dem Kühlmittel vor dem Eintritt in den dieser Füllleitung zugeordneten Kühlkreislauf vorgekühlt wird. Der luftgekühlte Wärmeübertrager kann dabei an beliebigen Stelle der Füllleitung, vorzugsweise in einem mittleren Bereich der Füllleitung, vorgesehen sein. Das heißt Kühlmittel kann zunächst in einen ersten Bereich der Füllleitung eintreten, anschließend den luftgekühlten Wärmeübertrager durchlaufen, dann einen zweiten Bereich der Füllleitung durchfließen bis es am Ende in den Kühlkreislauf eintritt.
- Der Begriff "Kühlkreislauf" kann in diesem Zusammenhang so verstanden werden, dass dieser ein über entsprechende Rohre, Schläuche oder Leitungen verbundenes System aus ein oder mehreren Kühlmittelpumpen, Kühlmittelkühler und Wärmetauscher umfasst, in dem Kühlmittel, vorzugsweise Wasser, Öl oder ein Wasser-Kühlwasser-Additiv Gemisch, angetrieben durch die Kühlmittelpumpe nahezu geschlossen zirkuliert. Entsprechend dieser Auslegung werden die vorhandenen Füllleitungen, Ausgleichsbehälter und Entlüftungsleitungen primär nicht als Teil des Kühlkreislaufs verstanden. Vorzugsweise nimmt der Kühlkreislauf dabei über den Wärmetauscher überschüssige Wärme von sich selbst erhitzender oder von außen erhitzter Komponenten, z.B. einem Verbrennungsmotor, Elektromotor oder einer Batterie, auf und gibt diese mittels des Kühlmittelkühlers an die Umgebungsluft ab.
- Als Entlüftungsleitung wird eine Fluidleitung, z.B. eine Rohr- oder Schlauchverbindung, verstanden, welche einen Kühlkreislauf, vorzugsweise an dessen geodätisch höchsten Stelle, mit dem, vorzugsweise noch höher angeordneten, Ausgleichsbehälter verbindet. Über die Entlüftungsleitung können Gase, Dämpfe, expandierendes Kühlmittel und/oder ein Kühlmittel-LuftGemisch vom Kühlkreislauf zum Ausgleichsbehälter befördert werden. Mit anderen Worten findet in der Entlüftungsleitung der Transport von abgezweigten Kühlmittel hauptsächlich vom Kühlkreislauf zum Ausgleichsbehälter statt. Die Entlüftungsleitung kann aus einem Kunststoff, Metall oder sonstigen geeigneten Material bestehen.
- Ausgleichbehälter für Kühlmittel sind an sich im Stand der Technik bekannt und dienen zum einen zur Entlüftung eines Kühlkreislaufs. Zudem können sie thermisch bedingte Volumenänderungen des Kühlmittels eines Kühlkreislauf kompensieren, indem sich expandierendes und damit überschüssiges Kühlmittel dort zwischengelagert wird. Hierzu kann ein Ausgleichsbehälter über ein Kühlmittelreservoir in Form ein oder mehrerer Kühlmittelkammern zur Aufnahme des sich expandierenden Kühlmittels verfügen. Der Ausgleichbehälter kann ein Über- und/oder Unterdruckventil zur Druckregulierung sowie eine Einfüllöffnung für Kühlmittel mit einem dazugehörigen Verschlussdeckel umfassen. Ferner kann der Ausgleichbehälter Einrichtungen zum Einbringen von Zusatzstoffen in das Kühlmittel, beispielsweise ein Silikatdepot umfassen.
- Als Füllleitung wird eine Fluidleitung, z.B. eine Rohr- oder Schlauchverbindung, verstanden, welche vom Ausgleichsbehälter, vorzugsweise von einem geodätisch unten liegenden Bereich des Ausgleichsbehälters, zurück zum, vorzugsweise tiefer liegenden, Kühlkreislauf führt. Die Füllleitung dient dazu, im Ausgleichsbehälter angesammeltes Kühlmittel zurück in den Kühlkreislauf zu führen, wodurch der Stofftransport in der Füllleitung hauptsächlich vom Ausgleichsbehälter zum Kühlkreislauf stattfindet. Vorzugsweise findet über die Füllleitung auch eine Erst- oder Neubefüllung des Kühlkreislaufs mit Kühlmittel statt. Die Füllleitung kann aus einem Kunststoff, Metall oder sonstigen geeigneten Material bestehen und mündet vorzugsweise in den Kühlkreislauf strömungstechnisch an einer Stelle kurz vor, d.h. stromauf, der Kühlmittelpumpe.
- Wie bereits erwähnt sind erfindungsgemäß mindestens zwei, vorzugsweise unterschiedlich temperierte, Kühlkreisläufe jeweils über mindestens eine Entlüftungsleitung und mindestens eine Füllleitung mit einem gemeinsamen Ausgleichsbehälterfür Kühlmittel verbunden. Es kann jedoch auch vorgesehen sein, dass alle an den gemeinsamen Ausgleichsbehälter angeschlossenen Kühlkreisläufe nahezu auf demselben Temperaturniveau arbeiten. Zusätzlich können in der Kühlvorrichtung auch noch weitere Kühlkreise mit eigenen Ausgleichsbehältern, Füll- und Entlüftungsleitungen vorhanden sein. Die exakte konstruktive Ausführungsform des oder der Ausgleichsbehälter ist dabei für die erfindungsgemäße Vorrichtung nicht relevant. So kann der Ausgleichsbehälter einstückig oder mehrteilig ausgebildet sein und ein oder mehrere Kühlmittelkammern umfassen. Die Kühlmittelkammern können über Durchgangsöffnungen in Verbindung stehen und damit ein Vermischen von Kühlmittel der verschiedenen Kühlkreisläufe ermöglichen oder durch dichte Trennwände voneinander abgeteilt sein, wodurch es im Ausgleichsbehälter zu keinem Austausch von Kühlmittel zwischen den verschiedenen Kühlkreisläufen kommen kann. Die Erfindung ist jedoch besonders vorteilhaft, falls mehrere verschieden temperierte Kühlkreisläufe mit einem Ausgleichsbehälter verbunden sind und dort ein Durchmischen der Kühlmittelströme auftritt. Um das damit einhergehende Einbringen von "zu warmen" Kühlmittel aus dem gemeinsamen Ausgleichsbehälter in einen Kühlkreislauf mit niedrigerem Temperaturniveau zu verhindern, ist ein luftgekühlter Wärmeübertrager, vorzugsweise an der Füllleitung des Kühlkreislaufs mit niedrigerem Temperaturniveau, vorgesehen, der Kühlmittel vor dem Eintritt in den Kühlkreislauf vorgekühlt.
- Der luftgekühlter Wärmeübertrager kann dabei in einer im Stand der Technik an sich bekannten Form ausgeführt sein, wobei die dem Kühlmittel entzogene Wärme am Ende an die Umgebungsluft abgegeben wird. Beispielsweise kann es sich bei dem luftgekühlten Wärmeübertrager um einen Rohrbündelkühler oder Rohrkühler handeln. Der luftgekühlte Wärmeübertrager kann zudem Kühlrippen und/oder Kühlkörper umfassen. Da die Betriebstemperatur der Kühlkreisläufe bei üblichen Anwendungen, z.B. im Automobilbereich, meist deutlich über der Umgebungslufttemperatur liegen - beispielsweise beträgt die Temperatur eines Kühlkreis eines Verbrennungsmotor im Normalbetrieb > 90 °C - wird durch die Verwendung von Luft als Wärmetauschmedium auf vorteilhafte Weise eine hohe Temperaturdifferenz und damit eine hohe Kühlleistung erreicht.
- Um den luftgekühlten Wärmeübertrager in den vorhandenen Bauraum zu integrieren, ist erfindungsgemäss der luftgekühlte Wärmeübertrager als ein erster Teilbereich eines Kühlmittelkühlers ausgebildet, der von einem zweiten Teilbereich des Kühlmittelkühlers abgetrennt ist. Dabei verfügen sowohl der erste als auch der zweite Teilbereich über einen eigenen Einlass und Auslass für Kühlmittel. Der Kühlmittelkühler kann dabei in einer an sich im Stand der Technik bekannten Form, beispielsweise als Fallstrom- oder Querstromkühler, ausgebildet sein. Der Kühlmittelkühler kann mehrere Kühlpassagen oder Kühlrohre umfassen, die von der vorbeiströmenden Umgebungsluft gekühlt werden. Der Begriff abgetrennt ist dabei so zu verstehen, das die beiden Bereiche innerhalb des Kühlmittelkühlers strömungstechnisch auf der Kühlmittelseite nicht verbunden sind. Das heißt es findet innerhalb des Kühlmittelkühlers kein Austausch von Kühlmittel zwischen den beiden Bereichen statt. Die Trennung kann mittels Trennwände oder Trennrippen erreicht werden. Insgesamt kann der als ein Bauteil verstandene Kühlmittelkühler damit eine Doppelfunktion einnehmen. Einerseits wird ein Teilbereich des Kühlmittelkühler zur Kühlung von Kühlmittel vor dessen Eintritt in den Kühlkreislauf genutzt. Zum anderen wird ein Teilbereich des Kühlmittelkühlers zur Kühlung von Kühlmittel, das im Kühlkreislauf zirkuliert, verwendet. Ferner können die Volumina der beiden Bereiche des Kühlmittelkühlers außerhalb des Kühlmittelkühlers über entsprechende Leitungen oder den Ausgleichsbehälter strömungstechnisch verbunden sein. Das heißt, Kühlmittel kann zunächst den ersten Bereich des Kühlmittelkühlers durchlaufen, anschließend in den Kühlkreis eintreten und im Zuge der Zirkulation dort in den zweiten Bereich des Kühlmittelkühlers gelangen. Es kann jedoch auch keinerlei strömungstechnische Verbindung zwischen den beiden Bereichen des Kühlmittelkühlers, das heißt weder innerhalb noch außerhalb des Kühlmittelkühlers, existieren.
- Eine Weiterentwicklung der Ausführung sieht vor, dass der Kühlmittelkühler dabei eine Mehrzahl an Rohren, vorzugsweise Flachrohre, umfasst. Von diesen Rohren ist eine erste Teilmenge dem ersten Teilbereich und eine zweite Teilmenge dem zweiten Teilbereich zugeordnet, wobei die beiden Rohrteilmengen im Kühlmittelkühler strömungstechnisch nicht verbunden sind und die erste Teilmenge kleiner als die zweite Teilmenge ist. So kann beispielsweise der Kühlmittelkühler als Fallstrom- oder Querstromkühler ausgebildet sein und ein gelötetes Kühlernetz, bestehend aus einer Mehrzahl an Flachrohren und Kühlrippen, umfassen. Von diesen Flachrohren kann eine kleine Teilmenge zur Kühlung des Kühlmittels in der Füllleitung verwendet werden, während die restlichen Flachrohre des Kühlmittelkühlers zur Kühlung des Kühlmittels im Kühlkreislauf verwendet werden. Beispielsweise können 10 % der Rohre zur Kühlung der Füllleitung verwendet werden und die restlichen 90 % der Rohre zur Kühlung des im Kühlkreislauf zirkulierenden Kühlmittels. Der Vorteil an dieser Ausführungsform ist, das ein für die ordnungsgemäße Funktion des Kühlkreislaufs benötigter Kühlmittelkühler ohne große Einbußen der Kühlleistung auf die anspruchsgemäße Doppelfunktion erweitert werden kann.
- Alternativ umfasst der Kühlmittelkühler eine erste Kühlstrecke, die dem ersten Teilbereich zugeordnet ist, und eine zweite Kühlstrecke, die dem zweiten Teilbereich zugeordnet ist, wobei die beiden Kühlstrecken im Kühlmittelkühler strömungstechnisch nicht verbunden sind und die erste Kühlstrecke kürzer als die zweite Kühlstrecke ist. Diese Ausführungsform ist besonders vorteilhaft, falls es sich um einen Wärmetauscher mit zwei oder mehr Kühlstrecken handelt oder falls der Kühlmittelkühler Mäanderkanäle umfasst. Die erste und zweite Kühlstrecke können jedoch auch gleich lang sein, was besonders vorteilhaft ist, falls es sich bei dem Kühlmittelkühler um einen Fall- bzw. Querstromkühler handelt.
- Nach einer weiteren Weiterentwicklung grenzt der erste Teilbereich des Kühlmittelkühlers an den zweiten Teilbereich des Kühlmittelkühlers an oder ist benachbart angeordnet. Der erste und zweite Teilbereich können dabei in direkten mechanischen Kontakt zueinander stehen, d.h. aneinander anstoßen und damit als quasi ein Bauteil aufgefasst werden. Beispielsweise können die beiden Bereiche lediglich über eine Trennwand voneinander getrennt werden. Der Vorteil daran ist, dass somit eine bauraumsparende Vorkühlung der Füllleitung erreicht werden kann. Zudem kann durch die benachbarte Anordnung der Teilbereiche der am Kühlmittelkühler meist verbaute Kühlerlüfter somit auch für eine Zirkulation der Umgebungsluft und damit eine effiziente Kühlung an der Füllleitung sorgen.
- Nach einer Ausführungsform wird dem Einlass des ersten Teilbereichs des Kühlmittelkühlers Kühlmittel aus dem Ausgleichsbehälter über die Füllleitung des zugeordneten Kühlkreislaufs zugeführt. Mit anderen Worten durchläuft Kühlmittel aus dem Ausgleichsbehälter zunächst die Füllleitung und tritt anschließend über den Einlass in den luftgekühlten Wärmeübertrager ein, welcher als erster Teilbereich eines Kühlmittelkühlers ausgebildet ist. Durch das Durchlaufen des Wärmeübertragers, respektive des ersten Teilbereichs des Kühlmittelkühlers, erfolgt ein Abkühlen des Kühlmittels, welches dann nach dem Austritt aus dem Wärmeübertrager in den Kühlkreislauf eintritt, wobei es zuvor noch eine weitere Strecke in der Füllleitung passieren kann.
- Ferner ist bevorzugt vorgesehen, dass der Auslass des ersten Teilbereichs des Kühlmittelkühlers stromauf zum Einlass des zweiten Teilbereichs des Kühlmittelkühlers liegt. Das heißt, im Normalbetrieb fließt Kühlmittel vom Auslass des ersten Teilbereichs des Kühlmittelkühlers zum Einlass des zweiten Teilbereichs des Kühlmittelkühlers, wobei das Kühlmittel in der Zwischenzeit weitere Bauteile, beispielsweise eine Kühlmittelpumpe oder die zu kühlenden Bauteile, durchfließen oder entlang fließen kann.
- Um eine zuverlässige und stabile Schlauchverbindung zwischen Füllleitung und Wärmeübertrager sicherzustellen ist in einer bevorzugten Ausführungsform vorgesehen, dass der Ein- und/oder Auslass des Wärmeübertragers als Schlauchstutzen oder als Schlauchkupplung ausgeführt ist. Als Einlass wird dabei die Öffnung zur Zufuhr des Kühlmittels in den Wärmeübertrager, als Auslass die Öffnung zum Entweichen des Kühlmittels aus dem Wärmeübertrager verstanden werden. Der Wärmeübertrager kann zudem mehr als einen Einlass und mehr als einen Auslass umfassen. Ferner kann der Ein- und/oder Auslass des Wärmeübertragers auch eine Rohrkupplung und/oder Flanschverbindung umfassen.
- Gemäß einer weiteren Ausführungsform (nicht erfindungsgemäss) ist der luftgekühlte Wärmeübertrager als separates Bauteil ausgebildet, das nur zur Kühlung des Kühlmittels in der Füllleitung vorgesehen ist. D.h. der Wärmeübertrager ist explizit nicht als Teilbereich eines Kühlmittelkühlers ausgebildet. Der Wärmeübertrager kann dabei als luftgekühlter Rohrbündelkühler, Rohrkühler oder Wärmetauscher ausgebildet sein. Des Weiteren kann der Wärmeübertrager Kühlrippen und/oder Kühlkörper umfassen. Ferner ist diese Ausführungsform dadurch gekennzeichnet, dass stromab zur Füllleitung ein Kühlmittelkühler des zugeordneten Kühlkreislaufs angeordnet ist. Mit anderen Worten durchläuft das Kühlmittel in der Füllleitung auf seinem Weg vom Ausgleichsbehälter bis zum Eintritt in den Kühlkreislauf zunächst an einer Stelle einen luftgekühlten Wärmeübertrager und anschließend im Kühlkreislauf einen Kühlmittelkühler, der mit dem vorgenannten luftgekühlten Wärmeübertrager nicht identisch ist. Der Vorteil dieser Variante ist, dass aufgrund der räumlichen Trennung von Wärmeübertrager und Kühlmittelkühler kein Wärmeübertrag zwischen beiden Bauteilen auftreten kann. Im Gegensatz zur Ausführungsform des Wärmeübertragers und Kühlmittelkühlers als eine in direktem Kontakt stehende Baugruppe wird somit ein unerwünschter Wärmestrom des beim Eintritt in den Wärmeübertrager zunächst noch warmen Kühlmittels über die Wärmeübertrager- und Kühlmittelkühlerwandung zum kalten Kühlkreislauf effektiv unterbunden.
- Nach einer Ausführungsform der Erfindung sind genau zwei auf unterschiedlichen Temperaturniveaus arbeitende Kühlkreisläufe jeweils über mindestens eine Entlüftungsleitung und mindestens eine Füllleitung mit einem gemeinsamen Ausgleichsbehälterfür Kühlmittel verbunden.
- Dabei ist an der Füllleitung des Kühlkreislaufs mit niedrigerem Temperaturniveau der luftgekühlte Wärmeübertrager vorgesehen, um Kühlmittel aus dem gemeinsamen Ausgleichsbehälter vor dem Eintritt in den Kühlkreislauf mit niedrigerem Temperaturniveau vorzukühlen. Auf vorteilhafte Weise wird so ein Einbringen von warmen Kühlmittel in den Kühlkreislauf mit niedrigerem Temperaturniveau verhindert.
- Die Erfindung betrifft ferner ein Kraftfahrzeug, vorzugsweise Nutzfahrzeug, mit einer Kühlvorrichtung, wie sie in diesem Dokument beschrieben ist. Die Kühlvorrichtung kann dabei zur Kraftstoff-, Öl-, Ladeluft-, Motor- und/oder Batteriekühlung verwendet werden. Ferner kann das Kraftfahrzeug einen Verbrennungsmotor und/oder Elektromotor und/oder eine Brennstoffzelle umfassen.
- Des Weiteren betrifft die Erfindung eine stationäre Anlage mit einer Kühlvorrichtung, wie sie in diesem Dokument beschrieben ist. Die stationäre Anlage kann dabei ebenfalls einen Verbrennungsmotor und/oder Elektromotor und/oder eine Brennstoffzelle umfassen.
- Die zuvor beschriebenen bevorzugten Ausführungsformen und Merkmale der Erfindung sind beliebig miteinander kombinierbar. Weitere Einzelheiten und Vorteile der Erfindung werden im Folgenden unter Bezug auf die beigefügte Zeichnung beschrieben. Es zeigen:
- Figur 1
- eine schematische Darstellung einer Kühlvorrichtung mit zwei Kühlkreisläufen, die mit einem gemeinsamen Ausgleichsbehälter verbunden sind, nach einem bevorzugten Ausführungsbeispiel der Erfindung, wobei einer der Kühlkreisläufe einen luftgekühlten Wärmeübertrager zur Vorkühlung der Füllleitung nach einer Ausführungsform der Erfindung umfasst;
- Figur 2
- eine Ausführungsform des luftgekühlten Wärmeübertragers zur Vorkühlung der Füllleitung als einen ersten Teilbereich eines Kühlmittelkühlers, gemäß eines Ausführungsbeispiels der Erfindung; und
- Figur 3
- eine Ausführungsform des luftgekühlten Wärmeübertragers als ein separates Bauteil zur Vorkühlung der Fülllleitung (nicht erfindungsgemäss).
- In
Figur 1 ist schematisch eine beispielhafte Ausführungsform der beanspruchten Kühlvorrichtung 100 gezeigt. Diese umfasst zwei Kühlkreisläufe 10a, 10b, die jeweils über eine Entlüftungsleitung 1a, 1b und eine Füllleitung 2a, 2b mit einen, als eine Kammer ausgebildeten, gemeinsamen Ausgleichsbehälter 3 für Kühlmittel verbunden sind. Darüber hinaus besitzen die beiden Kühlkreisläufe 10a und 10b jedoch keine weitere strömungstechnische Verbindung zueinander. Die einzelnen, der Übersicht halber hier stark reduziert dargestellten Kühlkreisläufe 10a und 10b umfassen dabei jeweils einen Kühlmittelkühler 5a, 5b, eine Kühlmittelpumpe 8a, 8b sowie einen Wärmetauscher 9a, 9b, wobei diese Komponenten über entsprechende Rohrleitungen 11a, 11b verbunden sind. Während des Betriebs pumpen die Kühlmittelpumpen 8a, 8b Kühlmittel zu den Wärmetauschern 9a, 9b, welche in Kontakt zu sich selbst erhitzenden oder von außen erhitzter Komponenten stehen, beispielsweise einem Verbrennungsmotor. Die Rohrleitungen 11a, 11b führen dabei in an sich bekannter Weise an den zu kühlenden Komponenten, z.B. Motorkomponenten, vorbei oder sind durch diese hindurchgeführt (nicht dargestellt). In den Wärmetauschern 9a, 9b wird Wärme von diesen Komponenten an das Kühlmittel übertragen, welches dann zu den jeweiligen Kühlmittelkühlern 5a, 5b, z.B. einem Fallstromkühler, weitergepumpt wird. In den Kühlmittelkühlern 5a, 5b wird die im Kühlmittel gespeicherte Wärme schließlich an die Umgebungsluft abgegeben. Im Anschluss fließt das Kühlmittel abermals zu den jeweiligen Kühlmittelpumpen 8a, 8b und der Kreislauf beginnt von Neuem. - Kommt es während des Betriebs zu einer Erwärmung und damit Expansion des Kühlmittels in den Kühlkreisläufen 10a, 10b, so wird dieses überschüssige Kühlmittel mittels den Entlüftungsleitungen 1a, 1b zum gemeinsamen Ausgleichsbehälter 3 geführt. Im Ausgleichsbehälter 3 findet dann eine Vermischung der Kühlmittel aus beiden Kühlkreisläufen 10a und 10b statt. Im vorliegenden Fall besitzt der Kühlkreislauf 10a dabei eine niedrigere Betriebstemperatur T1 als der Kühlkreislauf 10b, wodurch sich im Ausgleichsbehälter 3 zudem eine Mischtemperatur des darin vorhandenen Kühlmittels einstellen wird, die zwischen den Betriebstemperaturen der beiden Kühlkreisläufe 10a und 10b liegt. Aufgrund dieser Kühlmitteldurchmischung im Ausgleichsbehälter 3 würde folglich dem Kühlkreislauf 10a mit niedrigerem Temperaturniveau über die Füllleitung 2a "zu warmes" Kühlmittel zurückgeführt werden. Um dies zu verhindern, ist im Bereich der Füllleitung 2a des Kühlkreislaufs 10a mit niedrigerem Temperaturniveau ein luftgekühlter Wärmeübertrager 4 vorgesehen. Dieser ist dabei als ein erster Teilbereich 51 eines Kühlmittelkühlers 5a ausgebildet, der von einem zweiten Teilbereich 52 des Kühlmittelkühlers 5a abgetrennt ist. Dabei verfügen sowohl der erste als auch der zweite Teilbereich 51, 52 über einen eigenen Einlass 61, 62 und Auslass 71, 72 für Kühlmittel. Auf bauraumsparende Weise wird somit eine Vorkühlung des über die Füllleitung 2a in den Kühlkreislauf 10a geleiteten und aufgrund der vorherigen Vermischung im Ausgleichsbehälter 3 "zu warmen" Kühlmittels erreicht.
-
Figur 2 zeigt eine Ausführungsform des luftgekühlten Wärmeübertragers 4 zur Vorkühlung der Füllleitung 2a als einen ersten Teilbereich 51 eines Kühlmittelkühlers 5a. Der an sich im Stand der Technik bekannte Kühlmittelkühler 5a, beispielsweise in Form eines Fallstromkühlers, ist dabei über eine vertikale Trennwand 12 in zwei voneinander abgetrennte, das heißt strömungstechnisch innerhalb des Kühlmittelkühlers 5a nicht verbundene, Teilbereiche 51 und 52 unterteilt. Jeder der beiden Teilbereiche 51 und 52 wird dabei von Kühlmittel durchströmt, welches in den jeweiligen Teilbereich 51, 52 über den entsprechenden Einlass 61, 62 eintritt und den jeweiligen Teilbereich 51, 52 über den entsprechenden Auslass 71, 72 verlässt, ohne das dazwischen ein Vermischen von Kühlmittel der beiden Kreisläufe stattfinden kann. - In
Figur 3 ist eine Ausführungsform (nicht erfindungsgemäss) dargestellt, bei der der luftgekühlte Wärmeübertrager 4 als separates Bauteil 40 zur Vorkühlung der Füllleitung 2a ausgeführt ist. Damit ist er explizit nicht Teil oder Teilbereich 51 eines Kühlmittelkühlers 5a. Im Kühlkreislauf 10a selbst ist allerdings ein Kühlmittelkühler 5a vorhanden, welcher jedoch nur zur Kühlung des Kühlmittels im Kühlkreislauf 10a dient, während der luftgekühlte Wärmeübertrager 4 das Kühlmittel in der Füllleitung 2a vor dessen Eintritt in den Kühlkreislauf 10a vorkühlt. -
- 1a, 1b
- Entlüftungsleitung
- 2a, 2b
- Füllleitung
- 3
- Ausgleichsbehälter
- 4
- Luftgekühlter Wärmeübertrager
- 5a, 5b
- Kühlmittelkühler
- 8a, 8b
- Kühlmittelpumpe
- 9a, 9b
- Wärmetauscher
- 10a, 10b
- Kühlkreislauf
- 11a, 11b
- Rohrleitung
- 12
- Trennwand
- 40
- Separater luftgekühlter Wärmeübertrager
- 51, 52
- Erster/zweiter Teilbereich
- 61, 62
- Einlass
- 71, 72
- Auslass
- 100
- Kühlvorrichtung
- T1, T2
- Kühlkreislauf-Betriebstemperatur
Claims (8)
- Kühlvorrichtung (100) mit mindestens zwei Kühlkreisläufen (10a, 10b), die jeweils über eine Entlüftungsleitung (1a, 1b) und eine Füllleitung (2a, 2b) mit einem gemeinsamen Ausgleichsbehälter (3) für Kühlmittel verbunden sind, dadurch gekennzeichnet, dass an mindestens einer der Füllleitungen (2a) ein luftgekühlter Wärmeübertrager (4) vorgesehen ist, mittels dem Kühlmittel vor dem Eintritt in den dieser Füllleitung (2a) zugeordneten Kühlkreislauf (10a) vorgekühlt wird, wobei der luftgekühlte Wärmeübertrager (4) als ein erster Teilbereich (51) eines Kühlmittelkühlers (5a) ausgebildet ist, der von einem zweiten Teilbereich (52) des Kühlmittelkühlers (5a) abgetrennt ist, wobei sowohl der erste als auch der zweite Teilbereich (51, 52) über einen eigenen Einlass (61, 62) und Auslass (71, 72) für Kühlmittel verfügen.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlmittelkühler (5a)a) eine Mehrzahl an Rohren, vorzugsweise Flachrohre, umfasst, von denen eine erste Teilmenge dem ersten Teilbereich (51) zugeordnet ist und eine zweite Teilmenge dem zweiten Teilbereich (52) zugeordnet ist, wobei die beiden Rohrteilmengen im Kühlmittelkühler (5a) strömungstechnisch nicht verbunden sind und die erste Teilmenge kleiner als die zweite Teilmenge ist, und/oderb) eine erste Kühlstrecke, die dem ersten Teilbereich (51) zugeordnet ist, und eine zweite Kühlstrecke, die dem zweiten Teilbereich (52) zugeordnet ist, umfasst, wobei die beiden Kühlstrecken im Kühlmittelkühler (5a) strömungstechnisch nicht verbunden sind und die erste Kühlstrecke kürzer als die zweite Kühlstrecke ist.
- Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der erste Teilbereich (51) des Kühlmittelkühlers (5a) an den zweiten Teilbereich (52) des Kühlmittelkühlers (5a) angrenzt oder benachbart angeordnet ist.
- Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass dem Einlass (61) des ersten Teilbereichs (51) des Kühlmittelkühlers (5a) Kühlmittel aus dem Ausgleichsbehälter (3) über die Füllleitung (2a) des zugeordneten Kühlkreislaufs (10a) zugeführt wird.
- Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Auslass (71) des ersten Teilbereichs (51) des Kühlmittelkühlers (5a) stromauf zum Einlass (62) des zweiten Teilbereichs (52) des Kühlmittelkühlers (5a) liegt.
- Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Ein- und/oder Auslass (61, 71) des luftgekühlten Wärmeübertragers (4) als Schlauchstutzen oder als Schlauchkupplung ausgeführt ist.
- Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass genau zwei auf unterschiedlichen Temperaturniveaus arbeitende Kühlkreisläufe (10a, 10b) jeweils über mindestens eine Entlüftungsleitung (1a, 1b) und mindestens eine Füllleitung (2a, 2b) mit einem gemeinsamen Ausgleichsbehälter (3) für Kühlmittel verbunden sind, wobei der luftgekühlte Wärmeübertrager (4) an der Füllleitung (2a) des Kühlkreislaufs (10a) mit niedrigerem Temperaturniveau vorgesehen ist, um Kühlmittel aus dem gemeinsamen Ausgleichsbehälter (3) vor dem Eintritt in den Kühlkreislauf (10a) mit niedrigerem Temperaturniveau vorzukühlen.
- Kraftfahrzeug, vorzugsweise Nutzfahrzeug, und/oder stationäre Anlage mit einer Kühlvorrichtung (100) nach einem der Ansprüche 1 bis 7.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018102258.1A DE102018102258A1 (de) | 2018-02-01 | 2018-02-01 | Kühlvorrichtung mit mindestens zwei Kühlkreisläufen und einer gekühlten Füllleitung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3521583A1 EP3521583A1 (de) | 2019-08-07 |
EP3521583B1 true EP3521583B1 (de) | 2021-09-01 |
Family
ID=65200605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19152991.6A Active EP3521583B1 (de) | 2018-02-01 | 2019-01-22 | Kühlvorrichtung mit mindestens zwei kühlkreisläufen und einer gekühlten füllleitung |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3521583B1 (de) |
DE (1) | DE102018102258A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE544139C2 (en) | 2020-05-19 | 2022-01-11 | Scania Cv Ab | Cooling system and vehicle comprising such a cooling system |
DE102022117844A1 (de) | 2022-07-18 | 2024-01-18 | Man Truck & Bus Se | Kraftfahrzeug aufweisend Temperiervorrichtung |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2063298C3 (de) | 1970-12-22 | 1974-10-31 | Sueddeutsche Kuehlerfabrik Julius Fr. Behr, 7000 Stuttgart | Entlüftung für zwei getrennte Kühlkreise einer Brennkraftmaschine, insbesondere einer Dieselmaschine für Lokomotiven |
FR2482906A1 (fr) * | 1980-05-20 | 1981-11-27 | Ferodo Sa | Perfectionnements aux systemes de refroidissement de moteurs de vehicules a radiateur associe a un vase d'expansion |
DE4231846C2 (de) * | 1992-09-23 | 1995-04-13 | Bayerische Motoren Werke Ag | Verdampfungskühlsystem für eine Brennkraftmaschine |
DE19854544B4 (de) * | 1998-11-26 | 2004-06-17 | Mtu Friedrichshafen Gmbh | Kühlsystem für eine aufgeladene Brennkraftmaschine |
DE19912138B4 (de) * | 1999-03-18 | 2004-07-29 | Daimlerchrysler Ag | Kühlanlage für eine Brennkraftmaschine |
FR2832186B1 (fr) * | 2001-11-13 | 2004-05-07 | Valeo Thermique Moteur Sa | Systeme de gestion de l'energie thermique d'un moteur thermique comprenant deux reseaux |
DE10210132A1 (de) * | 2002-03-08 | 2003-09-18 | Behr Gmbh & Co | Kreislauf zur Kühlung von Ladeluft und Verfahren zum Betreiben eines derartigen Kreislaufs |
DE102007052927A1 (de) * | 2007-11-07 | 2009-05-14 | Daimler Ag | Kühlmittelkreislauf für eine Brennkraftmaschine |
DE102007054855A1 (de) * | 2007-11-16 | 2009-05-28 | Bayerische Motoren Werke Aktiengesellschaft | Ausgleichsbehälter für wenigstens zwei Wärmeübertragungsmittelkreisläufe, Wärmeübertragungsmittelkreislauf sowie Kraftfahrzeug |
US9999845B2 (en) * | 2015-04-14 | 2018-06-19 | GM Global Technology Operations LLC | System and method for de-aerating coolant in closed coolant system |
DE102015212554A1 (de) | 2015-07-06 | 2017-01-12 | Bayerische Motoren Werke Aktiengesellschaft | Kraftfahrzeug mit wenigstens einem Kühlmittelkreislauf |
-
2018
- 2018-02-01 DE DE102018102258.1A patent/DE102018102258A1/de not_active Withdrawn
-
2019
- 2019-01-22 EP EP19152991.6A patent/EP3521583B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
EP3521583A1 (de) | 2019-08-07 |
DE102018102258A1 (de) | 2019-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69915896T2 (de) | Mono-Endkammer für eine Zweikreiswärmetauscheranlage | |
DE102015111407B4 (de) | Kühlsystem für ein Fahrzeug | |
DE102008036277A1 (de) | Kühlanlage mit isolierten Kühlkreisläufen | |
EP4328427A2 (de) | Ausgleichsbehälter für kühlkreisläufe mit unterschiedlichem temperaturniveau und druckaddition | |
EP3521583B1 (de) | Kühlvorrichtung mit mindestens zwei kühlkreisläufen und einer gekühlten füllleitung | |
DE102008017113A1 (de) | Verdampfer | |
EP1283334A1 (de) | Kühlsystem für Kraftfahrzeugantriebe | |
DE102011004606A1 (de) | Abgaskühler | |
EP2751502B1 (de) | Verdampfer-waermetauscher-einheit | |
WO2017076766A1 (de) | Wärmeübertragermodul | |
DE102018112057A1 (de) | Kühlkreislauf für die direkte Kühlung von spannungsführenden Bauteilen elektrischer Komponenten eines Fahrzeugs mit Kühlflüssigkeit | |
DE102007027719A1 (de) | Brennkraftmaschine mit einem Heizungskreislauf und einem Kühlkreislauf | |
DE112005000862T5 (de) | Wärmetauscher | |
DE102020100895B3 (de) | Ausgleichsbehälter für einen Kühlkreislauf einer Antriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Antriebseinrichtung | |
DE102013011563B4 (de) | Kühlkreislauf einer Brennkraftmaschine sowie Verfahren zum Betreiben eines Kühlkreislaufs | |
DE102011107281A1 (de) | Chiller | |
DE102015224236A1 (de) | Wärmeübertrager | |
EP3161402B1 (de) | Wärmeübertrager | |
DE102021133181B4 (de) | Traktionsbatterie für ein elektrisch oder teilelektrisch angetriebenes Fahrzeug | |
DE102007002789A1 (de) | Kühlmittelanordnung mit drei Kühlmittelkühlern | |
DE102016213801A1 (de) | Wärmeübertrager | |
EP1950518B1 (de) | Verfahren und Vorrichtung zum Temperieren eines Mediums | |
DE102016116431B4 (de) | Kühlvorrichtung für eine Abgasrückführung | |
DE102014012799A1 (de) | Kühlsystem für ein Fahrzeug, insbesondere einen Kraftwagen | |
DE102007044739A1 (de) | Wärmeübertrager insbesondere eines Kraftfahrzeuges mit einem Kühlrohre umfassenden Wärmeübertragerblock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200204 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200625 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210312 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20210701 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1426468 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019002150 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220101 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220103 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019002150 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
26N | No opposition filed |
Effective date: 20220602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220122 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230122 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240125 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190122 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240125 Year of fee payment: 6 Ref country code: IT Payment date: 20240123 Year of fee payment: 6 Ref country code: FR Payment date: 20240125 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |