EP3519346B1 - Behälterbehandlungsanlage - Google Patents

Behälterbehandlungsanlage Download PDF

Info

Publication number
EP3519346B1
EP3519346B1 EP17734710.1A EP17734710A EP3519346B1 EP 3519346 B1 EP3519346 B1 EP 3519346B1 EP 17734710 A EP17734710 A EP 17734710A EP 3519346 B1 EP3519346 B1 EP 3519346B1
Authority
EP
European Patent Office
Prior art keywords
treatment
handling
container
stations
container handling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17734710.1A
Other languages
English (en)
French (fr)
Other versions
EP3519346A1 (de
Inventor
Volker Damerow
Hilmar FICKERT
Ingo Bergmiller
Martin Fetzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KHS GmbH
Original Assignee
KHS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KHS GmbH filed Critical KHS GmbH
Publication of EP3519346A1 publication Critical patent/EP3519346A1/de
Application granted granted Critical
Publication of EP3519346B1 publication Critical patent/EP3519346B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/30Filling of barrels or casks

Definitions

  • the invention represents a modularly constructed complete system for treating containers using different treatment steps such as cleaning, sterilizing, inspecting and filling.
  • cleaning regularly includes several stages, such as emptying, rinsing with water, treatment with one or more alkalis, empty pressure and preloading CO2 or inert gas, treatment with acid, with hot water and steam sterilization.
  • the bottling includes filling processes of the well-known beverage technology for beverages of all kinds, primarily carbonated beverages with and without alcohol.
  • Plants of this type are known as semi-automatic, which are operated manually, and as fully automatic, which are mostly assembled in modules up to very high outputs. What all systems have in common is that they take the so-called work cycles into account in terms of piping and process flow. Such a cycle is defined by the dwell time in the work stations assigned to the individual work steps, such as pre-rinsing, water rinsing, caustic rinsing, acid rinsing, hot water rinsing, holding superheated steam. It is "state of the art" that these cycles are optimally combined on individual treatment stations. For example, up to 8 work steps can be combined in only 3 stations, in that individual treatment stations can perform several functions. At the same time, the treatment stations are connected to supply lines for media, electricity and control signals.
  • Container treatment systems that are designed as fully automatic machines are further subdivided into container treatment systems that, in addition to treating the inside of the tank, also clean the outside, and those that only clean the inside and fill the tank.
  • Container treatment systems which, in addition to treating the inside of the tank, also clean the outside, are referred to as compact systems.
  • Container treatment systems which only clean the inside and fill the containers, are further divided into linear systems and rotary (systems).
  • Rotary machines are generally designed in such a way that separate, circular, rotating treatment rotors are provided both for the internal treatment or internal cleaning of the containers and for filling the containers. This procedure is time-consuming and expensive, and an increase in the performance of such a system is generally not possible.
  • transverse passage Two principles are known for linear systems: the longitudinal passage through the treatment system and the transverse passage through the treatment system, which is also referred to as transverse passage.
  • the containers must pass through a fixed sequence of treatment stations, whereby a container is always moved from one station to the station behind it as soon as the current treatment of the container has been completed and the subsequent station is free.
  • the process times for the different work steps are defined by the degree of contamination of the container on the one hand and the filling profile of the product to be filled on the other.
  • the combination of required treatment steps and their respective process times has a significant impact on the structural design, the size, the complexity and also the costs of such a container treatment plant.
  • a container treatment system according to the preamble of claim 1 is from DE 12 37 968 B famous.
  • Modular container treatment plants are out DE 20 2007 015 871 U1 and GB2261213 famous.
  • the object of the invention to create a container treatment system with a number of treatment stations, which allows very individual adaptation to different, also diverse, treatment tasks in a small space.
  • This object is achieved by a container treatment system having the features of claim 1.
  • Advantageous developments of the invention are the subject matter of the dependent claims.
  • Advantageous developments of the invention are also described in the description and in the drawings.
  • the treatment stations in the container treatment plant are arranged not only next to one another but also one above the other.
  • the system has at least one conveyor for the containers, which has both a horizontal and a vertical transport direction and is designed to equip all treatment stations with containers and/or to remove the containers from the treatment stations.
  • the task of the conveyor can preferably be taken over by a single conveyor, which both supplies and removes the containers.
  • a single conveyor which both supplies and removes the containers.
  • several conveyors can also be provided, with conveyors being able to be provided specifically only for the supply and only for the container removal.
  • the at least one transporter can reach more container stations with a certain route, or a certain number of container stations with a shorter route.
  • the travel time also decreases analogously with the travel distance, which is very desirable in the practical application of such container treatment systems.
  • the treatment stations are designed as treatment modules and can be exchanged in held at least one horizontally and vertically extending supporting frame of the treatment plant.
  • the treatment modules arranged next to and one above the other are thus arranged in a support frame in which the treatment modules preferably have a standardized size and standardized media connections or interfaces such as fluid supply lines and the like as well as electrical connections.
  • an existing treatment module can be replaced by another at any point on the support frame, for example if a module fails.
  • a fluid interface connected to the central fluid lines of the container treatment system and having at least one coupling flange that interacts with a complementary coupling flange of the treatment module connected to the fluid lines of the treatment module is arranged on the support frame at each operating position of a treatment module.
  • the fluid interface provided on the support frame offers all the necessary media for each treatment module, such as hydraulic water, hydraulic oil, compressed air, lubricating oil.
  • the fluid interface can also make the product to be filled available.
  • container stations prefferably be provided on both sides of the at least one conveyor, with the treatment stations arranged on the same side of the conveyor also being able to be arranged next to one another or one above the other.
  • the entire system is more compact, the transport routes are shorter and the three-dimensional extension of the system means that many different treatment tasks such as pre-rinsing, external cleaning, filling and sterilization can be carried out in a compact space.
  • some of the treatment stations can only serve as buffer storage to temporarily accommodate containers if one
  • Container station should result in delays or to provide a sufficient number of containers for a break or the like.
  • the new constellation of the functional units eliminates the known disadvantages, such as rigid cycle times, high space requirement, many conveyors and at the same time allows all known linear and rotary systems to be replaced in a modular way.
  • the container treatment stations are arranged in floors one above the other, with preferably all treatment stations located on one floor being arranged at the same height level, i.e. in the same horizontal plane.
  • the treatment stations are preferably arranged in at least two mutually parallel vertical planes, with these parallel vertical planes being located on both sides of the at least one conveyor.
  • the treatment stations are in turn arranged next to one another and one above the other within a parallel vertical plane. In this way, all treatment stations arranged on both sides of the conveyor are at the same distance from the conveyor. This allows the transport routes to be mapped as a combination of straight lines, which considerably simplifies the corresponding programming.
  • the conveyor reaches all container treatment stations arranged next to and one above the other with only very short travel distances.
  • the conveyor can move containers horizontally from a treatment station in one parallel vertical plane directly horizontally to a container treatment station in the other parallel vertical plane, without having to move up or down.
  • the container treatment stations located on the same "floors" are therefore preferably not offset vertically from one another.
  • the transporter is designed in the manner of a movable truck, which extends between the two parallel vertical planes of Container treatment stations moved, whereby the horizontal transport path is covered by the horizontal movement of the carriage and the vertical transport path is covered by the lifting functionality.
  • the horizontal and vertical transport functions are preferably realized simultaneously, which additionally shortens the transport distances.
  • the carriage is preferably rail-guided.
  • the conveyor can also contain a handling robot or other known handling devices.
  • the treatment modules are preferably held and/or secured in or on the support frame by means of a plug-in connection.
  • a connection can be established quickly and allows a reproducible fixed installation position of the treatment module.
  • Such technology is for example in the EP 2 059 446 B1 described.
  • each treatment module in the support frame is preferably secured by means of a latching device. This means that a defined operating position of the treatment module is reached, which is important because the points at which the containers, such as KEGs, are treated in the treatment modules are usually precisely defined and an imprecise operating position of a treatment module could lead to operational disruptions.
  • One support frame is preferably provided for each treatment module.
  • two or more treatment modules can also be arranged in one support frame or one treatment module in at least two support frames.
  • the coupling flange and the complementary coupling flange are preferably arranged in such a way that they automatically couple to one another in a fluid-tight manner when the treatment module is moved into the operating position.
  • the assembly of the treatment module is significantly simplified because the mechanical coupling of the treatment module in the operating position on the support frame is coupled with the simultaneous coupling of the coupling flanges. A treatment module can therefore be exchanged very quickly and without great assembly effort.
  • an electrical interface connected to electrical lines of the container treatment system at each operating position of a treatment module in or on the support frame.
  • a complementary interface for electrical lines of the treatment module is arranged on the treatment module, which interface can be connected to the interface of the container treatment system.
  • This electrical interface is preferably designed in such a way that it couples automatically when the treatment module is pushed into the operating position.
  • each treatment module is connected via an electric bus system to a controller of the container treatment plant, and a first connection element is arranged on the support frame in a fixed location relative to the operating position of each treatment module, which interacts with a complementary second connection element arranged on the treatment module in such a way that when it is pushed in/ coupling the treatment module into the support frame, contact the first and second connection elements with one another, at the latest when the treatment module has reached its operating position in the support frame.
  • an electrical control system of the treatment module is automatically coupled to an electrical control system of the treatment facility when the treatment module is moved into the operating position on the support frame.
  • the frames of the treatment stations can be plugged together with the support structures formed on the support frame in the operating position of the treatment stations. In this way, a stable mounting of the components on the support frame of the container treatment plant is ensured.
  • At least some of the treatment stations act as buffers, so that different processing times in upstream and/or downstream container treatment systems or disruptions in the production process can be compensated for by the buffer, which acts as a buffer.
  • At least some of the treatment stations preferably have their own control electronics, which optionally allow the activities of the treatment stations to be carried out largely independently of the other treatment stations.
  • At least one of the treatment stations is preferably designed as a cleaning station and at least one as a filling station, which represents the usual treatment stations when filling a container.
  • the core of the invention is a floor-by-floor arrangement of the functional processing stations (also called cleaning and filling heads) one above the other, with a central multi-directional conveyor system for loading the processing stations.
  • the treatment plant according to the invention with a multi-directional conveyor system saves up to 200 m of conveyor.
  • the covering area is reduced accordingly by approx. 80%, the number of drives is reduced by approx. 60%, for example.
  • the invention considerably increases the number of degrees of freedom in the arrangement of the treatment stations, in order to ensure that the successive working cycles run as smoothly as possible.
  • the system can be built with several levels, e.g. two to five levels one above the other, whereby a higher number of levels further optimizes the savings.
  • the system is suitable for low throughputs of 30 containers/hour up to 1,300 containers/hour. Reusable containers and/or disposable containers can even be run simultaneously on the treatment plant according to the invention.
  • a core of the system is the intelligent control of the conveyor.
  • the treatment plant preferably has an intelligent multi-path transport system that takes over the complete container transport within the plant between a container feed and removal and the treatment modules.
  • Such an intelligent container feed to the treatment modules based on the principle of high-bay warehouses allows all the necessary degrees of freedom in the container feed and removal with maximum performance.
  • the novel container cleaning and filling system concept of the treatment system according to the invention uses, in addition to the modular structure of the treatment stations, the basic principles of an automatic loading and unloading system of a high-bay warehouse.
  • the invention makes it possible to implement a flexible treatment sequence, i.e. one that can be changed at any time, from treatment stations in the shortest possible time.
  • the modularity of the treatment system preferably ranges from treatment functions to the container types.
  • Any treatment system no matter how small, can be upgraded at any time without having to discard treatment modules that have already been purchased and/or without requiring new control programs.
  • the constellation of the treatment modules also allows modular piping for the media, sterile air, CO2, lye, acid, hot water, cold water, sterilization media, preferably on an outside or rear side of the treatment modules facing away from the conveyor.
  • the treatment modules have a frame that can be connected to the frame of other treatment modules, with the connected frames of the treatment modules forming the supporting frame of the treatment system.
  • a support frame is preferably assigned to a treatment station.
  • two or more treatment stations can share one support frame or one treatment station can have a plurality of support frames.
  • the system can theoretically process any output between 10 and 2000 containers per hour, based on a 50 liter barrel, which is understandable due to the modular arrangement. If a running rail of the conveyor is designed for the expected future performance when a system is commissioned, a customer can retrofit individual treatment modules at any time in order to increase the system performance.
  • the transporter can be designed in any way, for example as an industrial truck guided on rails for one or more containers.
  • the transporter can have separate conveyor systems for the horizontal and vertical transport of the containers.
  • the conveyor systems can have different degrees of automation, from manual conveyors to fully automatic conveyor robots.
  • the supply connections of the treatment stations include fluid and media connections, in particular standardized interfaces, electrical connections and also electrical control connections, e.g. bus systems, which are preferably standardized as described above and can be coupled automatically. These are preferably arranged on a side of the treatment stations, especially treatment modules, that faces away from the conveyor.
  • treatment station container treatment station—treatment module—container treatment module—treatment head; Treatment plant - container treatment plant -plant -container treatment machine - treatment machine; traversing car -lift truck;
  • the treatment module 11 has a frame 12 and a treatment assembly 14, which is used, for example, to fill or to clean or sterilize a container, depending on the task.
  • the frames 12 of a plurality of treatment modules 11 arranged next to one another and one above the other can be connected to form a common supporting frame, as is shown in FIGS figures 4 and 5 is shown. Therefore, no separate support frame needs to be installed for the system. In addition, the support frame grows with the number of treatment modules installed
  • a treatment module 11 different types of containers can preferably be handled, such as bottles, cans, kegs and barrels.
  • the treatment module 11 contains a standardized interface for different media, an electrical interface and a control interface. These interfaces are standardized.
  • Such a treatment module can be connected at any point in a container treatment plant, without additional infrastructure costs, such as new piping, connections, etc.
  • the connections are preferably fluid-tight, self-coupling when installing a treatment module in its operating position.
  • the left treatment module 16 is a pre-cleaning station, while the center treatment module 18 is a main cleaning station.
  • the right treatment module 20 is a filling station.
  • a container treatment system 10 with an arrangement of these treatment modules 16, 18, 20 is in Figures 3 to 5 shown.
  • FIGs 3 and 4 only a lower horizontal plane of the treatment plant is shown. In reality, several of these levels can be superimposed, as shown in figure 5 is shown.
  • the frames 12 of the treatment modules 11, 16, 18, 20 are connected to one another and thus form a common supporting frame which increases with the number of treatment modules 11, 16, 18, 20 installed.
  • the treatment modules can also be used in a separate support frame of the system 10.
  • the treatment modules 16, 18, 20 are in the in figure 5 shown example arranged in two floors one above the other. The number of floors can, of course, be greater according to need.
  • the treatment modules 16, 18, 20 arranged on the different floors are aligned along two mutually parallel vertical planes E1, E2.
  • a conveyor 22 is arranged between the two vertical planes E1, E2, which has at least one transfer carriage 26, which is preferably guided on rails 24 and is used to transport the containers 28 between the different treatment modules 16, 18, 20. Due to the alignment according to the vertical planes, the treatment modules 16, 18, 20 arranged on both sides of the conveyor have the same distance to the conveyor, which simplifies the transport logistics, ie the delivery and removal of containers to the treatment stations.
  • a particularly advantageous embodiment provides that the conveyor is arranged or runs in a vertical height plane which corresponds approximately to the center of the vertical extent of the treatment stations arranged one above the other. This procedure reduces the sum of the travel distances during vertical movements of the conveyor.
  • This arrangement of the conveyor can be selected regardless of whether treatment stations are arranged on one side or on both sides of the conveyor.
  • a loading station 30 for empty containers which is connected to a feed conveyor 32, is arranged at the left edge of the level E2.
  • a delivery station 34 for receiving full containers 28 which station is connected to a discharge conveyor 36.
  • the carriage 26 two containers 28 at the same time be included, whereby a simultaneous treatment of two containers is possible.
  • the loading station and the delivery station and also the transfer carriage 26 can be made longer, so that three or four containers can also be picked up by the transfer carriage 26 at the same time.
  • the transfer carriage 26 also has a lifting functionality, so that, as shown in figure 5 is shown, also treatment modules can be loaded and unloaded in several floors one above the other.
  • the fact that the treatment modules 16, 18, 20 are arranged next to one another and one above the other results in a much more compact design, which also enables shorter transport routes.
  • the treatment modules 16, 18, 20 with their frames 12 can be exchanged in the container treatment system 0, that is, they can be removed. All supply connections of the treatment modules 11, 16, 18, 20 are preferably arranged on the side of the treatment modules facing away from the conveyor 22 and thus do not interfere with the loading and unloading access of the transfer carriage 26. They are also easily accessible from the outside of the vertical planes facing away from one another Maintenance work.
  • the frames 12 of the treatment modules 11 are connected to a separate support frame, not shown, preferably via plug-in connections with a latching device for defining the operating position of each treatment module.
  • Media connections such as product to be filled, water, hydraulic oil, compressed air as well as electrical or control-electrical connections are preferably formed via standardized interfaces, which automatically couple to each other in a fluid-tight manner when pushed into the treatment module in the operating position, so that every type of treatment module is automatically coupled to all necessary connections .
  • the containers 28 are fed to the various treatment modules 16, 18, 20 in the required treatment sequence.
  • the transfer carriage 26 transports the container 28 to the treatment module that follows in the treatment sequence.
  • One processing operation is filling with product in the filling station
  • the containers are also sealed, either automatically by being uncoupled or removed from a treatment station, or by active sealing at a separate sealing station, for example by pressing in a fitting or by unscrewing a screw cap. After sealing, the container is fed to the delivery station 34 by the traversing carriage and discharged via the discharge conveyor 36 .
  • Containers 28 that do not pass the integrated quality control are ejected via the transfer carriage 26 at the end of the running rail 24 . It is clear that above the two horizontal planes of the figure 5 still a third or further horizontal levels of treatment modules can be arranged so that the vertical levels E1, E2 extend further upwards. Instead of one carriage, several carriages can also be arranged simultaneously between the two vertical planes E1, E2.
  • the levels can also be operated with two conveyors from their outsides facing away from each other. In this case, the media connections of the treatment modules in the two vertical planes preferably face one another.
  • more than two vertical planes E1, E2 can be arranged side by side, in which case at least one conveyor is preferably arranged between each two vertical planes.

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

  • Die Erfindung stellt eine modular aufgebaute Komplettanlage zur Behandlung von Behältern mittels unterschiedlicher Behandlungsschritte wie z.B. Reinigen, Sterilisieren, Inspizieren und Befüllen dar. Die Behälter können Fässer, System-Kegs, Großdosen jeder Art als auch Einweg-oder Mehrweg-Container sein.
  • In der einschlägigen Industrie sind verschiedene Systeme bekannt, die die genannten Behälter auf je unterschiedliche Art und Weisen reinigt, und abfüllt. Das Reinigen umfasst regelmäßig, dem Grad der Behälterverschmutzung entsprechend mehrere Stufen, wie z.B. Entleeren, Wasserspülung, Behandlung mit ein oder mehreren Laugen, Leerdrücken und Vorspannen mit
    CO2 oder Inertgas, Behandlung mit Säure, mit Heißwasser und Dampfsterilisation. Das Abfüllen umfasst Füllverfahren der bekannten Getränketechnologie für Getränke jeder Art vornehmlich karbonisierte Getränke mit und ohne Alkohol.
  • Anlagen dieser Art sind bekannt als Halbautomaten, die manuell betrieben werden und als Vollautomaten, die meist modular bis hin zu sehr großen Leistungen zusammengestellt werden. Allen Anlagen ist gemein, dass sie in puncto Verrohrung und Prozessablauf Rücksicht auf die sogenannten Arbeitszyklen nehmen. Ein solcher Zyklus ist definiert durch die Verweilzeit in den einzelnen Arbeitsschritten zugeordneten Arbeitsstationen, wie Vorspülen, Wasserspülen, Laugespülen, Säurespülen, Heißwasserspülen, Heißdampf halten. Dabei ist "state of the art", dass diese Zyklen optimiert auf einzelnen Behandlungsstationen kombiniert werden. Man fasst z.B. bis zu 8 Arbeitsschritte auf nur 3 Stationen zusammen, indem einzelne Behandlungsstationen mehrere Funktionen ausüben können. Gleichzeitig werden die Behandlungsstationen mit Versorgungsleitungen für Medien, Elektrizität und Steuerungssignalen verbunden.
  • Üblicherweise werden nur derartige Anschlüsse vorgesehen, die für die entsprechende Behandlungsstation erforderlich sind, was Kosten spart. Auf der anderen Seite sind hierdurch spätere Änderungen der gesamten Behandlungsanlage aufwendig.
  • Behälterbehandlungsanlagen, welche als Vollautomaten ausgeführt wurden, werden weiter unterteilt Behälterbehandlungsanlagen, welche neben der Behälterinnenbehandlung auch die Außenreinigung übernehmen, und solche die nur die Innenreinigung und die Befüllung der Behälter durchführen. Behälterbehandlungsanlagen, welche neben der Behälterinnenbehandlung auch die Außenreinigung übernehmen, werden als Kompaktanlagen bezeichnet.
  • Behälterbehandlungsanlagen, welche nur die Innenreinigung und die Befüllung der Behälter durchführen, werden weiter unterschieden in Linearanlagen und Rundläufer(anlagen).
  • Rundläufer(anlagen) werden in der Regel so ausgeführt, dass sowohl für die Innenbehandlung bzw. Innenreinigung der Behälter, als auch für die Befüllung der Behälter jeweils separate, kreisförmig ausgebildete, rotierende Behandlungskreisel vorgesehen sind. Diese Vorgehensweise ist aufwändig und teuer, eine Leistungssteigerung einer solchen Anlage ist in der Regel nicht möglich.
  • Bei Linearanlagen sind zwei Prinzipien bekannt: Der Längsdurchlauf durch die Behandlungsanlage und der Querdurchlauf durch die Behandlungsanlage, welcher auch als Transversaldurchlauf bezeichnet wird.
  • Beim Längsdurchlauf durchlaufen die Behälter zwingend eine fest vorgegebene Reihenfolge von Behandlungsstationen, wobei ein Behälter immer von einer Station zur dahinterliegenden Station bewegt wird, sobald die aktuelle Behandlung des Behälters abgeschlossen ist, und die anschließende Station frei ist.
  • Beim Transversaldurchlauf sind identische Behandlungsstationen mehrfach vorhanden, wobei zwischen den identischen und unterschiedlichen Behandlungsstationen Transportvorrichtungen angeordnet sind. Durch diese konstruktive Ausbildung kann ein Behälter nach dem Abschluss der aktuellen Behandlung auf eine beliebige, "freie" von mehreren gleichartigen Behandlungsstationen geschoben werden, wodurch die Mengenleistung einer solchen Anlage deutlich über der Mengenleistung einer Anlage mit Längsdurchlauf liegt.
  • Durch den Verschmutzungsgrad der Behälter einerseits und durch die Abfüllprofile des abzufüllenden Produktes andererseits definieren sich die Prozesszeiten für die unterschiedlichen Arbeitsschritte. Die Kombination aus erforderlichen Behandlungsschritten und deren jeweiligen Prozesszeiten hat erhebliche Auswirkungen auf die konstruktive Auslegung, die Größe, die Komplexität und auch die Kosten einer solchen Behälterbehandlungsanlage.
  • Mit zunehmender Komplexität steigen aber auch die Anforderungen an Konstrukteure, Softwareentwickler und auch Monteure und Inbetriebnehmer, was die Kosten einer solchen Anlage noch weiter erhöht.
  • Weitere, wesentliche Nachteile bekannter Anlagen sind: viele Transporteure, viele Kreuzungen von Transporteuren, komplexe Rohrführungen von bis zu 10 Leitungen pro Behandlungsstation, ein hoher Platzbedarf, dadurch hoher Bedien-, Wartungs- und Reparaturaufwand.
  • Eine Behälterbehandlungsanlage gemäß dem Oberbegriff des Anspruchs 1 ist aus der DE 12 37 968 B bekannt.
  • Modulare Behälterbehandlungsanlagen sind aus DE 20 2007 015 871 U1 und GB2261213 bekannt.
  • Es ist daher Aufgabe der Erfindung, eine Behälterbehandlungsanlage mit mehreren Behandlungsstationen zu schaffen, die eine sehr individuelle Anpassung an unterschiedliche, auch vielfältige Behandlungsaufgaben auf engem Raum erlaubt. Diese Aufgabe wird gelöst durch eine Behälterbehandlungsanlage mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche. Vorteilhafte Weiterbildungen der Erfindung sind ebenfalls in der Beschreibung und in den Zeichnungen beschrieben. Erfindungsgemäß sind in der Behälterbehandlungsanlage die Behandlungsstationen nicht nur nebeneinander sondern auch übereinander angeordnet. Des Weiteren hat die Anlage wenigstens einen Transporteur für die Behälter, der sowohl eine horizontale als auch eine vertikale Transportrichtung aufweist und konzipiert ist, alle Behandlungsstationen mit Behältern zu bestücken und/oder die Behälter von den Behandlungsstationen abzuführen.
  • Die Aufgabe des Transporteurs kann vorzugsweise von einem einzigen Transporteur übernommen werden, welcher die Behälter sowohl zuführt als auch abführt. Es können alternativ jedoch auch mehrere Transporteure vorgesehen sein, wobei Transporteure speziell nur für die Zufuhr und nur für die Behälterabfuhr vorgesehen sein können.
  • Werden nun die Behälterstationen nicht nur nebeneinander, sondern zusätzlich auch übereinander angeordnet, so kann der mindestens eine Transporteur mit einer bestimmten Fahrstrecke mehr Behälterstationen erreichen, bzw. eine bestimmte Anzahl von Behälterstationen bei kürzerer Fahrstrecke. Mit der Fahrstrecke verkürzt sich analog auch die Fahrzeit, was in der praktischen Anwendung solcher Behälterbehandlungsanlagen sehr gewünscht ist.
  • Erfindungsgemäß sind die Behandlungsstationen, vorzugweise alle Behandlungsstationen als Behandlungsmodule ausgebildet und austauschbar in wenigstens einem sich horizontal und vertikal erstreckenden Tragrahmen der Behandlungsanlage gehalten. Die neben-und übereinander angeordneten Behandlungsmodule sind somit in einem Tragrahmen angeordnet, in welchem die Behandlungsmodule vorzugsweise eine standardisierte Größe und standardisierte Medienanschlüsse bzw. Interfaces wie Fluidzuführungen und dergleichen als auch Elektroanschlüsse aufweisen. Auf diese Weise kann jederzeit an jeder Stelle des Tragrahmens ein existierendes Behandlungsmodul durch ein anderes ersetzt werden, zum Beispiel bei Ausfall eines Moduls.
  • Zudem ist an dem Tragrahmen an jeder Betriebsposition eines Behandlungsmoduls jeweils ein mit zentralen Fluidleitungen der Behälterbehandlungsanlage verbundenes Fluidinterface mit wenigstens einem Kopplungsflansch angeordnet, der mit einem mit den Fluidleitungen des Behandlungsmoduls verbundenen komplementären Kopplungsflansch des Behandlungsmoduls zusammenwirkt. Auf diese Weise wird ein standardisiertes Interface geschaffen, das eine problemlose Ankopplung jedes Behandlungsmoduls an jeder Stelle des Tragrahmens erlaubt, ohne darüber nachdenken zu müssen, welche Fluidleitung für welches Behandlungsmodul erforderlich ist. Das an dem Tragrahmen vorgesehene Fluidinterface bietet für jedes Behandlungsmodul alle notwendigen Medien an wie zum Beispiel Hydraulikwasser, Hydrauliköl, Druckluft, Schmieröl. Ebenfalls kann das Fluidinterface auch das abzufüllende Produkt zur Verfügung stellen.
  • Besonders vorteilhaft, aber nicht zwingend ist vorgesehen, dass Behälterstationen beiderseits des mindestens einen Transporteurs vorgesehen sind, wobei die auf derselben Seite des Transporteurs angeordneten Behandlungsstationen auch wieder sowohl nebeneinander, als auch übereinander angeordnet werden können.
  • Letztlich ist die gesamte Anlage kompakter, die Transportwege sind kürzer und durch die dreidimensionale Erstreckung der Anlage können auf kompaktem Raum viele unterschiedliche Behandlungsaufgaben wie Vorspülen, Außenreinigung, Füllen, Sterilisieren durchgeführt werden.
  • Einige der Behandlungsstationen können darüber hinaus lediglich als Pufferspeicher dienen, um zwischenzeitlich Behälter aufzunehmen, falls sich an einer
  • Behälterstation Verzögerungen ergeben sollten oder um für eine Pause oder dergleichen eine ausreichende Zahl an Behältern vorzuhalten.
  • Die neuartige Konstellation der funktionalen Einheiten eliminiert die bekannten Nachteile, wie starre Zykluszeiten, hoher Platzbedarf, viele Transporteure und erlaubt gleichzeitig, alle bekannten linearen und rotativen Systeme modular zu ersetzen.
  • Vorzugsweise sind die Behälterbehandlungsstationen in Stockwerken übereinander angeordnet, wobei vorzugsweise alle auf einem Stockwerk befindlichen Behandlungsstationen auf demselben Höhenniveau angeordnet sind, d.h. in derselben horizontalen Ebene. Dadurch können, verglichen mit einem System, bei dem die Behandlungsstationen nicht auf definierten Stockwerken angeordnet sind, die Förderwege leichter reduziert und die gesamte Logistik der Zu-und Abfuhr der Behälter beschleunigt und auch leichter automatisiert werden. Zudem sind die Behandlungsstationen vorzugsweise in wenigstens zwei zueinander parallelen vertikalen Ebenen angeordnet, wobei sich diese parallelen vertikalen Ebenen beiderseits des mindestens einen Transporteurs befinden. Innerhalb einer parallelen vertikalen Ebene wiederum sind die Behandlungsstationen neben-und übereinander angeordnet. Auf diese Weise haben alle beidseitig des Transporteurs angeordneten Behandlungsstationen denselben Abstand zum Transporteur. Dadurch lassen sich die Transportwege als Kombination von Geraden abbilden, was die entsprechende Programmierung erheblich vereinfacht. Weiterhin erreicht der Transporteur alle nebeneinander und übereinander angeordneten Behälterbehandlungsstationen mit nur sehr kurzen Verfahrwegen.
  • Auf diese Weise kann der Transporteur Behälter von einer Behandlungsstation in der einen parallelen vertikalen Ebene direkt horizontal zu einer Behälterbehandlungsstation in der anderen parallelen vertikalen Ebene horizontal hinüber gefahren, ohne dabei nach oben oder nach unten verfahren zu müssen. Die in denselben "Stockwerken" angeordneten Behälterbehandlungsstationen sind daher vorzugsweise nicht vertikal zueinander versetzt.
  • Vorzugsweise ist der Transporteur in der Art eines verfahrbaren Hubwagens ausgebildet, der sich zwischen den beiden parallelen vertikalen Ebenen von Behälterbehandlungsstationen bewegt, wobei durch das horizontale Verfahren des Wagens der horizontale Transportweg und durch die Hubfunktionalität der vertikale Transportweg abgedeckt wird. Vorzugsweise ist die horizontale und vertikale Transportfunktion gleichzeitig realisiert, was die Transportwege zusätzlich verkürzt. Der Wagen ist vorzugsweise schienengeführt.
  • Der Transporteur kann auch einen Handhabungsroboter oder auch anderen bekannte Handhabungsgeräte beinhalten.
  • Vorzugsweise sind die Behandlungsmodule mittels einer Steckverbindung in oder an dem Tragrahmen gehalten und/oder gesichert. Eine derartige Verbindung ist schnell herstellbar und erlaubt eine reproduzierbare festgelegte Montagestellung des Behandlungsmoduls. Eine derartige Technologie ist z.B. in dem EP 2 059 446 B1 beschrieben.
  • Vorzugsweise ist die Betriebsposition jedes Behandlungsmoduls im Tragrahmen mittels einer Rasteinrichtung gesichert. Dies führt dazu, dass eine definierte Betriebsposition des Behandlungsmoduls erreicht wird, was wichtig ist, weil die Stellen, an welchen die Behälter, wie zum Beispiel KEGs, in den Behandlungsmodulen behandelt werden, in der Regel genau definiert sind und eine ungenaue Betriebsposition eines Behandlungsmoduls zu Störungen im Betriebsablauf führen könnte.
  • Vorzugsweise ist je Behandlungsmodul ein Tragrahmen vorgesehen. Es können jedoch auch zwei oder mehr Behandlungsmodule in einem Tragrahmen angeordnet sein oder ein Behandlungsmodul in wenigstens zwei Tragrahmen.
  • Hierbei sind vorzugsweise der Kopplungsflansch und der komplementäre Kopplungsflansch derart angeordnet, dass sie beim Bewegen des Behandlungsmoduls in die Betriebsposition selbsttätig fluid-dicht miteinander koppeln. Auf diese Weise wird die Montage des Behandlungsmoduls wesentlich vereinfacht, weil die mechanische Ankopplung des Behandlungsmoduls in die Betriebsposition an dem Tragrahmen gekoppelt ist mit der gleichzeitigen Ankopplung der Kopplungsflansche. Ein Austausch eines Behandlungsmoduls erfolgt daher sehr schnell und ohne großen Montageaufwand.
  • In einer vorteilhaften Weiterbildung der Erfindung ist an jeder Betriebsposition eines Behandlungsmoduls in oder an dem Tragrahmen eine mit elektrischen Leitungen der Behälterbehandlungsanlage verbundene elektrische Schnittstelle vorhanden. An dem Behandlungsmodul ist eine komplementäre Schnittstelle für elektrische Leitungen des Behandlungsmoduls angeordnet, die mit der Schnittstelle der Behälterbehandlungsanlage verbindbar ist. Diese elektrische Schnittstelle ist vorzugsweise derart ausgebildet, dass sie beim Einschieben des Behandlungsmoduls in die Betriebsposition selbsttätig koppelt. Somit wird bei der Bewegung des Behandlungsmoduls in die Betriebsposition im Tragrahmen nicht nur das Fluidinterface angekoppelt, sondern auch des elektrische Interface, womit unterschiedlichste Behandlungsmodule nach dem Einsetzen in die Betriebsposition sofort betriebsbereit sind.
  • Vorzugsweise ist jedes Behandlungsmodul über ein elektrisches Bussystem mit einer Steuerung der Behälterbehandlungsanlage verbunden und an dem Tragrahmen ist in örtlich festgelegter Stelle zur Betriebsposition jedes Behandlungsmoduls ein erstes Anschlusselement angeordnet, welches mit einem an dem Behandlungsmodul angeordneten komplementären zweiten Anschlusselement derart zusammenwirkt, dass beim Einschieben/-koppeln des Behandlungsmoduls in den Tragrahmen das erste und zweite Anschlusselement miteinander kontaktieren, spätestens wenn das Behandlungsmodul seine Betriebsposition im Tragrahmen erreicht hat. Auf diese Weise wird auch ein elektrisches Steuerungssystem des Behandlungsmoduls selbsttätig beim Bewegen des Behandlungsmoduls in die Betriebsposition am Tragrahmen an eine elektrische Steuerung der Behandlungsanlage angekoppelt.
  • In einer vorteilhaften Weiterbildung der Erfindung sind die Rahmen der Behandlungsstationen in der Betriebsposition der Behandlungsstationen mit am Tragrahmen ausgebildeten Tragstrukturen zusammensteckbar. Auf diese Weise wird eine stabile Halterung der Bauelemente an dem Tragrahmen der Behälterbehandlungsanlage sichergestellt.
  • In einer vorteilhaften Weiterbildung der Erfindung fungiert mindestens ein Teil der Behandlungsstationen als Zwischenspeicher, so dass unterschiedliche Bearbeitungszeiten in vor-und/oder nachgeschalteten Behälterbehandlungsanlagen oder aber auch Störungen im Produktionsablauf durch den Zwischenspeicher ausgeglichen werden können, wobei dieser als Puffer agiert.
  • Vorzugsweise hat mindestens ein Teil der Behandlungsstationen eine eigene Steuerelektronik, die es wahlweise erlaubt, die Tätigkeit der Behandlungsstationen weitgehend unabhängig von den anderen Behandlungsstationen durchzuführen.
  • Vorzugsweise sind mindestens eine der Behandlungsstationen als Reinigungsstation und mindestens eine als Füllstation ausgebildet, was die üblichen Behandlungsstationen im Rahmen einer Behälterbefüllung darstellt.
  • Kern der Erfindung ist eine etagenweise Anordnung der funktionalen Bearbeitungsstationen (auch Reinigungs-und Füllköpfe genannt) übereinander, mit einem zentralliegenden Mehrrichtungs-Fördersystem zur Bestückung der Behandlungsstationen.
  • Im Vergleich zu einem konventionellen Zu-und Ablauftransporteur einer konventionellen Behandlungsanlage werden durch die erfindungsgemäße Behandlungsanlage mit einem Mehrrichtungsfördersystem bis zu 200 m Transporteur eingespart. Die Belegfläche reduziert sich entsprechend um ca. 80%, die Anzahl der Antriebe reduziert sich beispielsweise um ca. 60%.
  • Die Anzahl der Freiheitsgrade in der Anordnung der Behandlungsstationen, um einen möglichst reibungslosen Ablauf der aufeinanderfolgenden Arbeitszyklen zu gewährleisten, wird durch die Erfindung beträchtlich erhöht. Zudem kann die Anlage mehreren, z.B. zwei bis fünf Etagen übereinander gebaut werden, wobei eine höhere Anzahl an Etagen die Einspareffekte noch einmal zusätzlich optimiert.
  • Die Anlage ist geeignet für geringe Durchsätze von 30 Behältern/Stunde bis zu 1.300 Behältern/Stunde. Auf der erfindungsgemäßen Behandlungsanlage können Mehrwergbehälter und/oder Einwegbehälter, sogar gleichzeitig gefahren werden.
  • In einer vorteilhaften Weiterbildung der Erfindung ist ein Kern der Anlage die intelligente Steuerung des Transporteurs. Deshalb verfügt die Behandlungsanlage vorzugsweise über ein intelligentes Mehrwegetransportsystem, das den kompletten Behältertransport innerhalb der Anlage zwischen einer Behälterzu-und -abfuhr und den Behandlungsmodulen übernimmt. Eine derartige intelligente Behälterzuführung zu den Behandlungsmodulen nach dem Prinzip von Hochregallagern erlaubt alle nötigen Freiheitsgrade in der Behälterzu-und -abfuhr bei höchster Leistung. Das neuartige Behälterreinigungs und Füllanlagenkonzept der erfindungsgemäßen Behandlungsanlage nutzt, neben dem modularen Aufbau der Behandlungsstationen die Grundprinzipien eines automatischen Be-und Entladesystems eines Hochregallagers. Durch die Erfindung wird die Realisierung einer flexiblen, d.h. jederzeit abänderbaren Behandlungsabfolge von Behandlungsstationen in kürzester Zeit möglich. Die Modularität der Behandlungsanlage reicht vorzugsweise über Behandlungsfunktionen bis hin zu den Behältertypen.
  • Jede noch so kleine Behandlungsanlage kann jederzeit hoch gerüstet werden und zwar ohne bereits erworbene Behandlungsmodule verwerfen zu müssen und/oder ohne neue Steuerprogramme zu erfordern.
  • Wie oben bereits beschrieben erlaubt die Konstellation der Behandlungsmodule eine ebenso modulare Verrohrung für die Medien, Sterilluft, CO2, Lauge, Säure, Heißwasser, Kaltwasser, Sterilisationsmedien vorzugsweise auf einer dem Transporteur abgewandten Außenseite oder Rückseite der Behandlungsmodule.
  • In einer vorteilhaften Weiterbildung der Erfindung haben die Behandlungsmodule einen Rahmen, der mit dem Rahmen anderer Behandlungsmodule verbindbar ist, wobei die verbundenen Rahmen der Behandlungsmodule den Tragrahmen der Behandlungsanlage bilden. Auf diese Weise ist kein separater Tragrahmen erforderlich und der durch die Rahmen der Behandlungsmodule gebildete Tragrahmen ist immer exakt so groß wie die Gesamtheit der montierten Behandlungsmodule der Anlage dieses erfordert. Vorzugsweise ist hierbei einer Behandlungsstation ein Tragrahmen zugeordnet. Auch hier können jedoch zwei oder mehr Behandlungsstationen einen Tragrahmen teilen oder eine Behandlungsstation mehrere Tragrahmen aufweisen.
  • Die Anlage kann theoretisch jede beliebige Leistung zwischen 10 und 2000 Behältern pro Stunde verarbeiten, bezogen auf ein 50 Liter Fass, was durch die modulare Anordnung verständlich wird. Wird eine Laufschiene des Transporteurs bei Beauftragung einer Anlage auf die zukünftig zu erwartende Leistung ausgelegt, so kann ein Kunde jederzeit einzelne Behandlungsmodule nachrüsten, um die Anlagenleistung zu erhöhen.
  • Der Transporteur kann beliebig ausgebildet sein, beispielsweise als ein auf Schienen geführtes Flurförderfahrzeug für einen oder mehrere Behälter. Der Transporteur kann darüber hinaus separate Fördersysteme für den horizontalen und vertikalen Transport der Behälter aufweisen. Die Fördersysteme können dabei einen unterschiedlichen Automationsgrad aufweisen, vom Handförderer bis zum vollautomatischen Förderroboter.
  • Die Versorgungsanschlüsse der Behandlungsstationen umfassen Fluid- und Medienanschlüsse, insbesondere standardisierte Interfaces, elektrische Anschlüsse als auch elektrische Steuerungsanschlüsse, z.B. Bussysteme, die vorzugsweise, wie oben beschrieben standardisiert und selbsttätig koppelbar sind. Diese sind vorzugsweise an einer dem Transporteur abgewandten Seite der Behandlungsstationen, insb. Behandlungsmodule angeordnet.
  • In der vorliegenden Anmeldung werden folgende Begriffe synonym verwendet: Behandlungsstation - Behälterbehandlungsstation - Behandlungsmodul - Behälterbehandlungsmodul -Behandlungskopf; Behandlungsanlage - Behälterbehandlungsanlage -Anlage -Behälterbehandlungsmaschine - Behandlungsmaschine; Verfahrwagen -Hubwagen;
  • Die Erfindung wird nachfolgend beispielweise anhand der schematischen Zeichnung beschrieben.
  • Fig. 1
    eine perspektivische Ansicht einer Behälterbehandlungsstation in Form eines Behandlungsmoduls,
    Fig. 2
    eine perspektivische schematische Ansicht von drei unterschiedlichen Behandlungsmodulen,
    Fig. 3
    der Aufbau einer horizontalen Ebene der Behälterbehandlungsanlage mit unterschiedlichen Behandlungsmodulen,
    Fig. 4
    die horizontale Ebene aus Fig. 3 in perspektivischer Ansicht; und
    Fig. 5
    eine Behälterbehandlungsanlage mit zwei übereinander angeordneten horizontalen Ebenen von Behandlungsmodulen, welche zwei zueinander parallele vertikale Ebenen von Behandlungsmodulen bilden, zwischen denen ein Transporteur verfahrbar ist.
  • Fig. 1 zeigt ein Behandlungsmodul 11 in einem realistischen Aufbau. Das Behandlungsmodul 11 hat einen Rahmen 12 und eine Behandlungsbaugruppe 14, die zum Beispiel zum Befüllen oder zum Reinigen oder Sterilisieren eines Behälters dient je nach Aufgabe. Die Rahmen 12 mehrerer nebeneinander und übereinander angeordneter Behandlungsmodule 11 sind zu einem gemeinsamen Tragrahmen verbindbar, wie es in den Figuren 4 und 5 gezeigt ist. Deshalb muss kein separater Tragrahmen der Anlage montiert werden. Zudem wächst der Tragrahmen mit der Anzahl der montierten Behandlungsmodule
  • In einem derartigen Behandlungsmodul 11 können vorzugsweise unterschiedliche Arten von Behältern gehandhabt werden, wie z.B. Flaschen, Dosen, Kegs und Fässer. Das Behandlungsmodul 11 enthält ein standardisiertes Interface für unterschiedliche Medien, ein elektrisches Interface und ein Steuerungsinterface. Diese Interfaces sind standardisiert. Somit kann ein derartiges Behandlungsmodul in einer Behälterbehandlungsanlage an beliebiger Stelle angeschlossen werden, ohne zusätzlichen Infrastrukturaufwand, wie neue Verrohrungen, Anschlüsse etc.. Die Anschlüsse sind vorzugsweise fluid-dicht selbstkoppelnd, beim Montieren eines Behandlungsmoduls in seine Betriebsstellung.
  • Unterschiedliche Arten eines derartigen Behandlungsmoduls sind in Fig. 2 sehr schematisch dargestellt. Das linke Behandlungsmodul 16 ist eine Vorreinigungsstation, während das mittlere Behandlungsmodul 18 eine Hauptreinigungsstation ist. Das rechte Behandlungsmodul 20 ist eine Füllstation.
  • Eine Behälterbehandlungsanlage 10 mit einer Anordnung dieser Behandlungsmodule 16, 18, 20 ist in Fig. 3 bis 5 dargestellt. In den Figuren 3 und 4 ist nur eine untere horizontale Ebene der Behandlungsanlage dargestellt. In Wirklichkeit können mehrere dieser Ebenen übereinander angeordnet sein, wie es in Fig. 5 gezeigt ist.
  • Die Rahmen 12 der Behandlungsmodule 11, 16, 18, 20 sind miteinander verbunden und bilden so einen gemeinsamen Tragrahmen, der mit der Anzahl der montierten Behandlungsmodule 11, 16, 18, 20 wächst. Alternativ können die Behandlungsmodule aber aucin einem separaten Tragrahmen der Anlage 10 eingesetzt sein.
  • Die Behandlungsmodule 16, 18, 20 sind in dem in Fig. 5 dargestellten Beispiel in zwei Stockwerken übereinander angeordnet. Die Anzahl der Stockwerke kann natürlich je nach Bedarf größer sein. Zudem sind die in den unterschiedlichen Stockwerken angeordneten Behandlungsmodule 16, 18, 20 entlang von zwei zueinander parallelen vertikalen Ebenen E1, E2 ausgerichtet. Zwischen den beiden vertikalen Ebenen E1, E2 ist ein Transporteur 22 angeordnet, der wenigstens einen vorzugsweise auf Schienen 24 geführten Verfahrwagen 26 aufweist, welcher zum Transport der Behälter 28 zwischen den unterschiedlichen Behandlungsmodule 16, 18, 20 dient. Durch die Ausrichtung entsprechend den vertikalen Ebenen haben die beidseitig des Transporteurs angeordneten Behandlungsmodule 16, 18, 20 denselben Abstand zum Transporteur, was die Transportlogistik, d.h. die Zu-und Abfuhr von Behältern zu den Behandlungsstationen vereinfacht.
  • Für den Fall, dass Behandlungsstationen in mindestens zwei Ebenen übereinander angeordnet sind, ist für eine besonders vorteilhafte Ausführungsform vorgesehen, dass der Transporteur in einer vertikalen Höhenebene angeordnet ist bzw. verläuft, die etwa in der Mitte der vertikalen Erstreckung der übereinander angeordneten Behandlungsstationen entspricht. Durch diese Vorgehensweise wird die Summe der Verfahrwege bei Vertikalbewegungen des Transporteurs reduziert. Diese Anordnung des Transporteurs kann unabhängig davon gewählt werden, ob Behandlungsstationen einseitig oder beidseitig des Transporteurs angeordnet sind.
  • In Fig. 3 ist das untere Stockwerk der Behälterbehandlungsanlage 10 dargestellt. Die vertikalen Ebenen stehen senkrecht aus der Zeicheneben heraus. Am linken Rand der Ebene E2 ist eine Beladestation 30 für leere Behälter angeordnet, die mit einem Zufuhrförderer 32 verbunden ist. Gegenüber ist in der vertikalen Ebene E1 eine Abgabestation 34 für die Annahme voller Behälter 28 angeordnet, welche mit einem Abfuhrförderer 36 verbunden ist. Durch den Verfahrwagen 26 können jeweils zwei Behälter 28 gleichzeitig
    aufgenommen werden, wodurch eine simultane Behandlung von zwei Behältern möglich ist. In entsprechender Weise können die Beladestation und die Abgabestation und auch der Verfahrwagen 26 länger ausgebildet sein, so dass auch drei oder vier Behälter gleichzeitig durch den Verfahrwagen 26 aufgenommen werden können.
  • Der Verfahrwagen 26 hat auch eine Hubfunktionalität, so dass, wie es in Fig. 5 gezeigt ist, auch Behandlungsmodule in mehreren übereinander liegenden Stockwerken beladen und entladen werden können. Durch die Tatsache, dass die Behandlungsmodule 16, 18, 20 nebeneinander als auch übereinander angeordnet sind, ergibt sich eine sehr viel kompaktere Bauweise, was auch kürzere Transportwege ermöglicht. Darüber hinaus sind die Behandlungsmodule 16, 18, 20 mit ihrem Rahmen 12 in der Behälterbehandlungsanlage 0 austauschbar, das heißt entnehmbar, angeordnet. Vorzugsweise sind alle Versorgungsanschlüsse der Behandlungsmodule 11, 16, 18, 20 auf der dem Transporteur 22 abgewandten Seite der Behandlungsmodule angeordnet und stören damit nicht den Be-und Entladezugang des Verfahrwagens 26. Sie sind auch von der einander abgewandten Außenseite der vertikalen Ebenen gut zugänglich für Wartungsarbeiten.
  • In einer alternativen Ausführungsform erfolgt eine Verbindung der Rahmen 12 der Behandlungsmodule 11 mit einem separaten nicht dargestellten Tragrahmen vorzugsweise über Steckverbindungen mit einer Rasteinrichtung zur Definition der Betriebsposition jedes Behandlungsmoduls.
  • Medienanschlüsse wie abzufüllendes Produkt, Wasser, Hydrauliköl, Druckluft als auch elektrische oder steuerungselektrische Anschlüsse sind vorzugsweise über standardisierte Interfaces gebildet, die miteinander beim Einschieben in das Behandlungsmodul in die Betriebsposition automatisch fluiddicht koppeln, so dass jede Art von Behandlungsmodul automatisch an alle notwendigen Anschlüsse angekoppelt wird.
  • Die Behälter 28 werden in der benötigten Behandlungsabfolge den verschiedenen Behandlungsmodulen 16, 18, 20 zugeführt. Ist die Behandlungszeit eines Behälters in einem Behandlungsmodul abgelaufen, transportiert der Verfahrwagen 26 den Behälter 28 zu dem in der Behandlungsabfolge folgenden Behandlungsmodul. Neben den oben beschriebenen Behandlungsmodulen gibt es vorzugsweise auch Verweil-, Dämpf-, Sterilisation-und Wiegemodule. Ein Bearbeitungsvorgang ist das Befüllen mit Produkt in der Füllstation
  • 20. Ebenfalls werden die Behälter verschlossen, und zwar entweder automatisch durch das Abkoppeln oder Entfernen von einer Behandlungsstation, oder durch ein aktives Verschließen auf einer separaten Verschließstation, beispielsweise durch das Einpressen eines Fittings oder durch das Aufschrauben eines Schraubverschlusses. Nach dem Verschließen wird der Behälter vom Verfahrwagen der Abgabestation 34 zugeführt und über den Abfuhrförderer 36 ausgeschleust. Behälter 28, die die integrierte Qualitätskontrolle nicht bestehen, werden über den Verfahrwagen 26 am Ende der Laufschiene 24 ausgeschleust. Es ist klar, dass über den beiden horizontalen Ebenen der Fig. 5 noch eine dritte oder weitere horizontale Ebenen von Behandlungsmodulen angeordnet werden kann, so dass sich die vertikalen Ebenen E1, E2 weiter nach oben erstrecken. Statt eines Verfahrwagens können auch mehrere Verfahrwagen gleichzeitig zwischen den beiden vertikalen Ebenen E1, E2 angeordnet sein. Die Ebenen können auch mit zwei Transporteuren von ihrer einander abgewandten Außenseite bedient werden. In diesem Fall sind vorzugsweise die Medienanschlüsse der Behandlungsmodule in den zwei vertikalen Ebenen einander zugewandt.
  • Es können selbstverständlich mehr als zwei vertikale Ebenen E1, E2 nebeneinander angeordnet sein, wobei dann vorzugsweise zwischen jeweils zwei vertikalen Ebenen wenigstens ein Transporteur angeordnet ist.
  • Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt, sondern kann innerhalb des Schutzbereichs der nachfolgenden Ansprüche beliebig variiert werden.
  • Bezugszeichenliste
  • 10
    Behälterbehandlungsanlage
    11
    Behandlungsmodul
    12
    Rahmen
    14
    Behandlungsbaugruppe eines Behandlungsmoduls
    16
    Vorreinigungsstation
    10 18
    Hauptreinigungsstation
    20
    Füllstation
    22
    Transporteur
    24
    Schienen
    26
    Verfahrwagen
    15 28
    Behälter
    30
    Beladestation
    32
    Zufuhrförderer
    34
    Abgabestation
    36
    Abfuhrförderer

Claims (17)

  1. Behälterbehandlungsanlage (10), umfassend mehrere Behandlungsstationen (11, 16, 18, 20) für Behälter (28), wobei die Behandlungsstationen (11, 16, 18, 20) nebeneinander als auch übereinander angeordnet sind, und die Behälterbehandlungsanlage (10) wenigstens einen Transporteur (22) für die Behälter (28) aufweist, der eine horizontale als auch vertikale Transportrichtung aufweist, und konzipiert ist, die Behandlungsstationen (11, 16, 18, 20) mit Behältern (28) zu bestücken und/oder die Behälter (28) von den Behandlungsstationen (11, 16, 18, 20) abzuführen, dadurch gekennzeichnet, dass die Behandlungsstationen (11, 16, 18, 20) als Behandlungsmodule modulartig aufgebaut und austauschbar in wenigstens einem sich vertikal erstreckenden Tragrahmen gehalten sind, und dass an dem Tragrahmen an jeder Betriebsposition eines Behandlungsmoduls ein mit zentralen Fluidleitungen der Behälterbehandlungsanlage (10) verbundenes Fluidinterface mit wenigstens einem Kopplungsflansch angeordnet ist, der mit einem mit den Fluidleitungen des Behandlungsmoduls verbundenen komplementären Kopplungsflansch des Behandlungsmoduls zusammenwirkt.
  2. Behälterbehandlungsanlage (10) nach Anspruch 1, dadurch gekennzeichnet, sie wenigstens einen ersten Zufuhrtransporteur (22) zur Bestückung der Behälterbehandlungsstationen (11, 16, 18, 20) und wenigstens einen Abfuhrtransporteur (22) zum Abführen der Behälter (28) von den Behandlungsstationen (11, 16, 18, 20) aufweist.
  3. Behälterbehandlungsanlage (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Behälterbehandlungsstationen (11, 16, 18, 20) in mehreren übereinander liegenden Stockwerken angeordnet sind.
  4. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die neben und übereinander angeordneten Behälterbehandlungsstationen in zwei zueinander parallelen vertikalen Ebenen (E1, E2) angeordnet sind, und dass der Transporteur (22) insbesondere mittig zwischen den beiden vertikalen Ebenen (E1, E2) angeordnet ist.
  5. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Transporteur (22) eine Transportrichtung parallel als auch senkrecht zu den vertikalen Ebenen (E1, E2) der Behälterbehandlungsstationen aufweist.
  6. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Behandlungsmodule (11, 16, 18, 20) mittels einer Steckverbindung in oder an dem Tragrahmen gehalten und/oder gesichert sind.
  7. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Betriebsposition jedes Behandlungsmoduls in dem Tragrahmen mittels einer Rasteinrichtung gesichert ist.
  8. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Kopplungsflansch und der komplementäre Kopplungsflansch derart angeordnet sind, dass sie beim Bewegen des Behandlungsmoduls in die Betriebsposition miteinander koppeln.
  9. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass an jeder Betriebsposition eines Behandlungsmoduls in oder an dem Tragrahmen eine mit elektrischen Leitungen der Behälterbehandlungsanlage (10) verbundene elektrische Schnittstelle vorhanden ist, und dass an dem Behandlungsmodul (11, 16, 18, 20) eine komplementäre Schnittstelle für elektrische Leitungen des Behandlungsmoduls angeordnet ist, die mit der Schnittstelle der Behälterbehandlungsanlage (10) verbindbar ist.
  10. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jedes Behandlungsmodul (11, 16, 18, 20) über ein elektrisches Bussystem mit einer Steuerung der Behälterbehandlungsanlage (10) verbunden ist, und dass am Tragrahmen in örtlich festgelegter Stellung zur Betriebsposition jedes Behandlungsmoduls ein erstes Anschlusselement angeordnet ist, welches mit einem an dem Behandlungsmodul (11, 16, 18, 20) angeordneten komplementären zweiten Anschlusselement derart zusammenwirkt, dass beim Einschieben/-koppeln des Behandlungsmoduls in den Tragrahmen das erste und zweite Anschlusselement miteinander kontaktieren, spätestens wenn das Behandlungsmodul (11, 16, 18, 20) seine Betriebsposition im Tragrahmen erreicht hat.
  11. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Rahmen der Behandlungsmodule (11, 16, 18, 20) in der Betriebsposition der Behandlungsmodule (11, 16, 18, 20) mit am Tragrahmen ausgebildeten Tragstrukturen zusammensteckbar sind.
  12. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Rahmen der Behandlungsmodule (11, 16, 18, 20) miteinander zu einem Tragrahmen der Behälterbehandlungsanlage (10) verbindbar sind.
  13. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens ein Teil der Behandlungsstationen (11, 16, 18, 20) mindestens eine mit einem Ventil oder Ventilauslass verbundene Fluidrück-oder -ableitung aufweisen.
  14. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens ein Teil der Behandlungsstationen (11, 16, 18, 20) als Zwischenspeicher fungieren.
  15. Behälterbehandlungsanlage (10) nach Anspruch 13, dadurch gekennzeichnet, dass mindestens ein Teil der Behandlungsstationen (11, 16, 18, 20) elektrische und/oder pneumatische Leitungen umfassen welche mit vorgesehenen Aktuatoren zur Steuerung des Ventils oder Ventilauslasses verbunden sind.
  16. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass jede Art von Versorgungsanschlüssen auf einer dem Transporteur (22) abgewandten Seite der Behandlungsstationen (11, 16, 18, 20) angeordnet sind.
  17. Behälterbehandlungsanlage (10) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens eine der Behandlungsstationen (11, 16, 18, 20) als Reinigungsstation (16, 18) und mindestens eine als Füllstation (20) ausgebildet ist.
EP17734710.1A 2016-09-27 2017-06-28 Behälterbehandlungsanlage Active EP3519346B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016118230.3A DE102016118230A1 (de) 2016-09-27 2016-09-27 Behälterbehandlungsanlage
PCT/EP2017/065988 WO2018059753A1 (de) 2016-09-27 2017-06-28 Behälterbehandlungsanlage

Publications (2)

Publication Number Publication Date
EP3519346A1 EP3519346A1 (de) 2019-08-07
EP3519346B1 true EP3519346B1 (de) 2022-03-02

Family

ID=59270018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17734710.1A Active EP3519346B1 (de) 2016-09-27 2017-06-28 Behälterbehandlungsanlage

Country Status (5)

Country Link
EP (1) EP3519346B1 (de)
DE (1) DE102016118230A1 (de)
ES (1) ES2908439T3 (de)
PT (1) PT3519346T (de)
WO (1) WO2018059753A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122452A1 (de) * 2021-08-31 2023-03-02 Khs Gmbh Behandlungssystem für KEGs
DE102021122433A1 (de) 2021-08-31 2023-03-02 Khs Gmbh Behandlungsanlage für KEGs
DE102021122440A1 (de) 2021-08-31 2023-03-02 Khs Gmbh Behandlungsanlage für KEGs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237968B (de) * 1963-03-11 1967-04-06 Adolf Fritz Heinemann Grossgefaess-Reinigungsmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517074A1 (de) 1985-05-11 1986-11-13 Seitz Enzinger Noll Maschinenbau Ag, 6800 Mannheim Abfuellanlage
GB2261213A (en) * 1991-09-10 1993-05-12 C M Microdat Ltd Apparatus for aligning a container
DE102006038707A1 (de) 2006-08-18 2008-02-21 Khs Ag Vorrichtung zur Behandlung von flexiblen, schlauchartigen Gebilden
DE202007015871U1 (de) * 2007-11-12 2008-03-13 Malek Brautech Gmbh Behandlungsvorrichtung für Behälter
DE102010032143A1 (de) 2010-07-24 2012-01-26 Eisenmann Ag Anlage zur Oberflächenbehandlung von Gegenständen
HU230618B1 (hu) * 2014-04-07 2017-04-28 Antal Zombori Raktári árukezelő rendszer és rakodó-berendezés raktári árukezelő rendszerhez

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237968B (de) * 1963-03-11 1967-04-06 Adolf Fritz Heinemann Grossgefaess-Reinigungsmaschine

Also Published As

Publication number Publication date
WO2018059753A1 (de) 2018-04-05
DE102016118230A1 (de) 2018-03-29
ES2908439T3 (es) 2022-04-29
PT3519346T (pt) 2022-03-28
EP3519346A1 (de) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3519346B1 (de) Behälterbehandlungsanlage
EP2952297A2 (de) Vorrichtung zum automatisierten entnehmen von in einem behälter angeordneten werkstücken
EP3003879B1 (de) Verfahren zur behandlung von behältern sowie behälterbehandlungsmaschine
WO2018082749A1 (de) Flexibles und kompaktes kommissioniersystem
EP2177473B1 (de) Vorrichtung zum Transportieren von Behältnissen
EP2154088A2 (de) Verfahren und System zur Kommissionierung von in einem Palettenlager gelagerten Waren
DE102016205255A1 (de) Modulsystem zum Umgang mit Getränkebehältnissen und entsprechendes Verfahren hierfür
EP3429954A1 (de) Behälterbehandlungsmaschine
EP2616383B1 (de) Behälterbehandlungsvorrichtung mit multifunktionalem reinigungsroboter
DE10012579A1 (de) Prozeßmodul für eine Bearbeitungsstation, Bearbeitungsstation und Verfahren zur Inbetriebnahme einer Bearbeitungsstation
DE3911781A1 (de) Vorrichtung zum fuellen und reinigen von behaeltern
DE102012011534A1 (de) Mehrstufiges Verteilsystem
EP3459879A1 (de) Roboterbasiertes lagersystem
EP4058395A1 (de) Lineare füllmaschine zum befüllen von behältern mit füllgut
EP2746172B1 (de) Verfahren und Vorrichtung zum Wiegen von Gebinden auf einer Transportvorrichtung
DE10308680A1 (de) Anlage zur Entsorgung von taktweise anfallenden Werkstücken
DE102018116488A1 (de) Verfahren zum Zwischenlagern von Karosserien sowie Produktionsanlage
DE102017108903B4 (de) Behandlungsvorrichtung sowie Behälterbehandlungsmaschine
DE102013202847A1 (de) Verfahren zum Reinigen eines Transportsegments
EP0365829B1 (de) Umsetzer-Anlage für Reiningungs-und Galvanoprozesse
DE3051184C2 (de) Einrichtung zur Steuerung oder Überwachung von Maschinen
DE102022103429B3 (de) Be- und Entladeeinrichtung für einen Gefriertrockner, Verfahren und Gefriertrocknungsanlage
EP3743216B1 (de) Mehrfarbenpulverzentrum zum bedarfsweisen versorgen von mindestens einer pulversprüheinrichtung mit beschichtungspulver unterschiedlicher art
DE102020213540A1 (de) Fertigungsanlage zur Serienfertigung von Kraftfahrzeugen und Verfahren zum Fertigen eines Kraftfahrzeugs
DE102020004260A1 (de) Vorrichtung zum Bereitstellen von vorgefertigten Bauteilen zwischen zwei Produktionsanlagebereichen während eines Produktionsprozesses, vorzugsweise bei einer Rohbaufertigung eines Kraftfahrzeuges

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KHS GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200519

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1472124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012697

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3519346

Country of ref document: PT

Date of ref document: 20220328

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220322

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2908439

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220603

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220702

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012697

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20221205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220628

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230615

Year of fee payment: 7

Ref country code: NL

Payment date: 20230620

Year of fee payment: 7

Ref country code: IE

Payment date: 20230620

Year of fee payment: 7

Ref country code: DE

Payment date: 20230620

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230619

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230621

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 7

Ref country code: GB

Payment date: 20230622

Year of fee payment: 7

Ref country code: ES

Payment date: 20230830

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170628

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220302