EP3502288B1 - Method for manufacturing a hairspring for clock movement - Google Patents

Method for manufacturing a hairspring for clock movement Download PDF

Info

Publication number
EP3502288B1
EP3502288B1 EP17209686.9A EP17209686A EP3502288B1 EP 3502288 B1 EP3502288 B1 EP 3502288B1 EP 17209686 A EP17209686 A EP 17209686A EP 3502288 B1 EP3502288 B1 EP 3502288B1
Authority
EP
European Patent Office
Prior art keywords
alloy
niobium
titanium
deformation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17209686.9A
Other languages
German (de)
French (fr)
Other versions
EP3502288A1 (en
Inventor
Christian Charbon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60811848&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3502288(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP17209686.9A priority Critical patent/EP3502288B1/en
Priority to US16/211,289 priority patent/US20190196406A1/en
Priority to JP2018234274A priority patent/JP6751749B2/en
Priority to CN201811562272.5A priority patent/CN110007582B/en
Priority to RU2018145229A priority patent/RU2696809C1/en
Publication of EP3502288A1 publication Critical patent/EP3502288A1/en
Application granted granted Critical
Publication of EP3502288B1 publication Critical patent/EP3502288B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • B21F35/04Making flat springs, e.g. sinus springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/007Antimagnetic alloys

Definitions

  • the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a clockwork movement.
  • spiral springs are also centered on the concern for thermal compensation, so as to guarantee regular chronometric performance. This requires obtaining a thermoelastic coefficient close to zero. We are also looking to produce spiral springs with limited sensitivity to magnetic fields.
  • New balance springs have been developed from alloys of niobium and titanium.
  • these alloys pose problems of sticking and seizing in the drawing or drawing dies (diamond or hard metal) and against the rolling rolls (hard metal or steel), which makes them almost impossible to transform into wires. purposes by standard processes used eg for steel.
  • An object of the present invention is to provide a method of manufacturing a spiral spring intended to equip a balance with a clockwork movement making it possible to facilitate deformation, and more particularly to obtain easy rolling.
  • the method comprises, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material chosen from the group comprising copper, nickel, cupro-nickel, cupro-manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate the shaping in the form of wire, the thickness of the layer of ductile material deposited being chosen so that the ratio of ductile material area / area of the NbTi alloy for a given wire section is less than 1, preferably less to 0.5, and more preferably between 0.01 and 0.4.
  • Such a manufacturing process makes it possible to facilitate the shaping in wire form of the NbTi alloy blank, and more specifically to facilitate the drawing, drawing and rolling.
  • the document WO 2005/045532 in the name of Seiko describes a clockwork spring for ensuring high precision and stable operation of precision mechanisms such as clocks, which may be a clockwork spring, a mainspring, or a hairspring.
  • This spring is formed of a special titanium alloy and has an S-shape when it is freely deployed, in which the inflection point at which the direction of curvature of the freely deployed form changes is formed more inside than the middle of an inner end to the winding side end and an outer end to the opposite end to the inner end.
  • the titanium alloy has a high tensile stress and a low average Young's modulus, making it possible to increase the mechanical energy stored in the mainspring.
  • This alloy may be a titanium alloy with an element from the vanadium group, with in particular a proportion by weight of element from the vanadium group of 20 to 80%, and more particularly of 30 to 60%.
  • the proportion by mass of constituents other than titanium can exceed 50%.
  • no more precise composition of the alloy is disclosed for the spring described.
  • the document WO2015 / 189278 in the name of Cartier describes a spiral spring in a titanium alloy containing: a titanium base, from 10 to 40 atomic% of at least one element among Nb, Ta or V, from 0 to 3 atomic% of oxygen, of 0 to 6 atomic% zirconium; and from 0 to 5 atomic% hafnium.
  • This hairspring is less sensitive to temperature, and has a lower density than a conventional hairspring.
  • the document WO2018 / 172164 in the name of united de Lorraine describes a metastable ⁇ titanium alloy comprising, in percentage by mass, between 24 and 45% niobium, between 0 and 20% of zirconium, between 0 and 10% of tantalum and / or between 0 and 1.5% silicon and / or less than 2% oxygen.
  • This alloy has a crystallographic structure which comprises a mixture of austenitic phase and alpha phase, and the presence of omega phase precipitates, the volume fraction of which is less than 10%.
  • This document also describes a clockwork spring made on the basis of such an alloy, and a method of manufacturing such a spring.
  • the document EP2993531 in the name of Précision Engineering AG describes a method of shaping a mechanical spring, in particular a spiral spring, comprising the steps of preparing a spring, in particular a spiral spring, comprising at least one curved section intended for reshaping with at least one deformable section, then performing a local heating step of at least the deformable section to a first temperature, which is within a semi-hot formation temperature range of the material of the deformable section , then in imparting a movement of the deformable section to obtain a predetermined shape of curve in the deformable section, this movement being carried out, either after or during the heating step and in a semi-hot state, or well before the heating step.
  • a press bulletin H. Moser & Cie and Précision Engineering of 22.11.2016 describes a hairspring for a watch regulating member made of niobium-titanium alloy, the composition of which is not disclosed.
  • the document EP 1 083 243 describes a beta titanium alloy wire and a process for its manufacture.
  • the document JP 04279212 discloses a process for manufacturing fine wire of titanium alloys comprising the steps of coating titanium wire with copper and repeated drawing and annealing.
  • the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a clockwork movement and made of a binary type alloy comprising niobium and titanium.
  • the titanium content in ⁇ form in the alloy of the blank is preferably less than or equal to 2.5% by volume, or even close to or equal to 0.
  • the alloy used in the present invention comprises between 40 and 49% by weight of titanium, preferably between 44 and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium , and preferably said alloy comprises more than 46.5% by weight of titanium and said alloy comprises less than 47.5% by weight of titanium.
  • the titanium content is greater than or equal to 46.5% by weight relative to the total of the composition.
  • the titanium content is less than or equal to 47.5% by weight relative to the total of the composition.
  • the NbTi alloy used in the present invention does not comprise other elements except for possible and inevitable traces. This prevents the formation of fragile phases.
  • the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.
  • the tantalum content is less than or equal to 0.10% by weight of the total.
  • the carbon content is less than or equal to 0.04% by weight of the total, in particular less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.
  • the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.
  • the nitrogen content is less than or equal to 0.02% by weight of the total, in particular less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.
  • the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.
  • the silicon content is less than or equal to 0.01% by weight of the total.
  • the nickel content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.16% by weight of the total.
  • the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.005% by weight of the total.
  • the aluminum content is less than or equal to 0.01% by weight of the total.
  • the spiral spring produced according to the invention has an elastic limit greater than or equal to 600 MPa.
  • this spiral spring has a modulus of elasticity less than or equal to 100 GPa, and preferably between 60 GPa and 80 GPa.
  • the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, allowing it to guarantee the maintenance of chronometric performance despite the variation in the temperatures of use of a watch incorporating such a spiral spring.
  • the CTE of the alloy must be close to zero ( ⁇ 10 ppm / ° C) to obtain a thermal coefficient of the oscillator equal to ⁇ 0.6 s / d / ° C.
  • E is the Young's modulus of the hairspring, and, in this formula, E, ⁇ and ⁇ are expressed in ° C -1 .
  • CT is the thermal coefficient of the oscillator
  • (1 / E. DE / dT) is the CTE of the balance spring alloy
  • is the expansion coefficient of the balance and ⁇ that of the balance spring.
  • Such a thickness of ductile material, and in particular copper, makes it possible to easily stretch, draw and roll the Cu / NbTi composite material.
  • the ductile material preferably copper, is thus deposited at a given time to facilitate the shaping of the wire by drawing and drawing, so that a thickness thereof remains preferably between 1 and 500 micrometers on the wire has a total diameter of 0.2 to 1 millimeter.
  • the supply of ductile material in particular copper, can be galvanic, PVD or CVD, or else mechanical, it is then a jacket or a tube of ductile material such as copper which is fitted to a bar of niobium alloy. titanium to a large diameter, then which is thinned during the step (s) of deformation of the composite bar.
  • the method of the invention can comprise, after the deformation step, a step of eliminating said surface layer of ductile material.
  • the ductile material is removed once all the deformation treatment operations have been carried out, that is to say after the last rolling, before the stretching.
  • the wire is freed from its layer of ductile material, such as copper, in particular by chemical attack, with a solution based on cyanides or based on acids, for example nitric acid.
  • the surface layer of ductile material is retained on the spiral spring, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly so as to compensate for the effect of the ductile material.
  • the thermoelastic coefficient of the niobium titanium alloy can be easily adjusted by choosing the appropriate strain rate and heat treatments.
  • the surface layer of ductile material retained makes it possible to obtain a perfectly regular final wire section.
  • the ductile material can here be copper or gold, deposited by galvanic route, PVD or CVD.
  • the method of the invention may further comprise a step of depositing, on the surface layer of retained ductile material, a final layer of a material chosen from the group comprising Al 2 O 3 , TiO 2 , SiO 2 and AIO , by PVD or CVD. It is also possible to provide a final layer of gold deposited by galvanic gold flash if the gold has not already been used as a ductile material for the surface layer. You can also use copper, nickel, cupro-nickel, cupro-manganese, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B for the final layer, provided that the material of the final layer is different from the ductile material of the surface layer.
  • This final layer has a thickness of 0.1 ⁇ m to 1 ⁇ m and makes it possible to color the hairspring or to obtain insensitivity to climatic aging (temperature and humidity).
  • the ⁇ quenching step is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C, under vacuum, followed by gas cooling.
  • this beta quenching is a solution treatment, between 5 minutes and 1 hour at 800 ° C. under vacuum, followed by cooling under gas.
  • the heat treatment is carried out for a period of between 1 hour and 80 hours, or even more, preferably between 1 hour and 15 hours at a temperature of between 350 ° C and 700 ° C. More preferably, the heat treatment is carried out for a period of between 5 hours and 10 hours at a temperature of between 350 ° C and 600 ° C. Even more preferably, the heat treatment is carried out for a period of between 3 hours and 6 hours at a temperature of between 400 ° C and 500 ° C.
  • a deformation step generally designates one or more deformation treatments, which may include wire drawing and / or rolling.
  • Wire drawing may require the use of one or more dies during the same deformation step or during different deformation steps if necessary.
  • Wire drawing is carried out until a wire of round section is obtained.
  • Rolling can be done in the same deformation step as wire drawing or in another subsequent deformation step.
  • the last deformation treatment applied to the alloy is rolling, preferably with a rectangular profile compatible with the entry section of a stranding spindle.
  • the total deformation rate, the number of heat treatments as well as the heat treatment parameters are chosen to obtain a spiral spring having a thermoelastic coefficient as close as possible to 0. Moreover, depending on the rate of total deformation, the number of heat treatments and the heat treatment parameters, a single-phase or two-phase NbTi alloy is obtained.
  • the number of heat treatment and deformation steps is limited so that the alloy of niobium and titanium of the spiral spring obtained retains a structure in which the titanium of said alloy is essentially in the form of solid solution with niobium in ⁇ phase (centered cubic structure), the titanium content in ⁇ phase being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% in volume.
  • the total deformation rate is between 1 and 5, preferably between 2 and 5.
  • a blank is used, the dimensions of which are as close as possible to the desired final dimensions so as to limit the number of heat treatment and deformation steps and to maintain an essentially single-phase structure ⁇ of the NbTi alloy.
  • the final structure of the NbTi alloy of the spiral spring may be different from the initial structure of the blank, for example the titanium content in ⁇ form may have varied, the main thing being that the final structure of the NbTi alloy of the spiral spring is essentially single-phase, the titanium of said alloy being essentially in the form of a solid solution with niobium in ⁇ phase, the titanium content in ⁇ phase being less than or equal to 10% by volume, preferably less than or equal to 5% in volume, more preferably less than or equal to 2.5% by volume.
  • the titanium content in the ⁇ phase is preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume, or even close to or equal to 0.
  • a spiral spring is obtained made of an NbTi alloy having an essentially single-phase structure in the form of a solid ⁇ -Nb-Ti solution, the titanium content in the ⁇ form being less than or equal to 10% by volume.
  • the method comprises a single deformation step with a deformation rate of between 1 and 5, preferably between 2 and 5.
  • a particularly preferred method of the invention comprises, after the quenching step ⁇ , the step of depositing, on the alloy blank, the surface layer of ductile material, a deformation step including drawing by means of several dies followed by rolling, a stretching step then a final heat treatment step (called fixing).
  • the method of the invention may further comprise at least one intermediate heat treatment step, so that the method comprises for example after the hardening step ⁇ , the step of depositing, on the alloy blank, the surface layer of ductile material, a first deformation step, an intermediate heat treatment step, a second deformation step, the slitting step then a last heat treatment step.
  • a succession of sequences of a deformation step alternating with a heat treatment step is applied, until an alloy of niobium and titanium with a two-phase structure comprising a solid solution of niobium with titanium in ⁇ phase (centered cubic structure) and a solid solution of niobium with titanium in ⁇ phase (compact hexagonal structure), the content of titanium in ⁇ phase being greater than 10% by volume.
  • heat treatments it is necessary to precipitate part of the ⁇ phase by heat treatments, according to the parameters indicated above, with a strong deformation between the heat treatments.
  • heat treatments longer than those used to obtain a single-phase spring alloy are applied, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350 ° C and 500 ° C. .
  • heat treatments are applied from 75h to 400h at 350 ° C, from 25h to 400 ° C or from 18h to 480 ° C.
  • a blank is used which has, after hardening ⁇ , a much larger diameter than that of the blank prepared for the first “single-phase” variant.
  • a blank with a diameter of 30 mm is used, for example, after the hardening ⁇
  • a blank with a diameter of 0.2 to 2.0 mm is used after the hardening ⁇ .
  • each strain is carried out with a strain rate of between 1 and 5, the global accumulation of strains over the whole of said succession of sequences bringing a total strain rate of between 1 and 14.
  • the strain rate corresponds to the classic formula 2ln (d0 / d), where d0 is the diameter of the last beta hardening or that of a deformation step, and d is the diameter of the hardened wire obtained in the step of next deformation.
  • the method comprises in this second variant between three and five coupled sequences of deformation-heat treatment.
  • the first coupled strain-heat treatment sequence comprises a first strain with at least 30% reduction in section.
  • each coupled sequence of heat-treatment-strain comprises a strain between two heat treatments with at least 25% reduction in section.
  • the hardened ⁇ phase alloy exhibits a strongly positive CT, and the precipitation of the ⁇ phase which has a strongly negative CT, makes it possible to bring the two-phase alloy to a CTE close to zero, which is particularly important. favorable.
  • the method of the invention allows the production, and more particularly the shaping, of a balance spring for a balance in a niobium-titanium type alloy, typically containing 47% by weight of titanium (40-60%), exhibiting a Substantially single-phase microstructure of ⁇ -Nb-Ti in which the titanium is in the form of a solid solution with the niobium in the ⁇ phase or a very fine two-phase lamellar microstructure comprising a solid solution of niobium with titanium in the ⁇ phase and a solid solution of niobium with titanium in phase a.
  • This alloy has high mechanical properties, by combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring.
  • Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging devices, or particle accelerators, but is not used in watchmaking.
  • a binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention also exhibits an effect similar to that of “Elinvar”, with a thermoelastic coefficient practically zero. within the temperature range of usual use of watches, and suitable for the manufacture of self-compensating balance springs.
  • such an alloy is paramagnetic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie.The invention relates to a method of manufacturing a spiral spring intended to equip a balance of a clockwork movement.

Arrière-plan de l'inventionBackground of the invention

La fabrication de ressorts spiraux pour l'horlogerie doit faire face à des contraintes souvent à première vue incompatibles :

  • nécessité d'obtention d'une limite élastique élevée,
  • facilité d'élaboration, notamment de tréfilage et de laminage,
  • excellente tenue en fatigue,
  • stabilité des performances dans le temps,
  • faibles sections.
The manufacture of spiral springs for watchmaking must face constraints that are often incompatible at first sight:
  • need to obtain a high elastic limit,
  • ease of production, especially wire drawing and rolling,
  • excellent fatigue resistance,
  • performance stability over time,
  • low sections.

La réalisation de ressorts spiraux est en outre centrée sur le souci de la compensation thermique, de façon à garantir des performances chronométriques régulières. Il faut pour cela obtenir un coefficient thermoélastique proche de zéro. On recherche également à réaliser des ressorts spiraux présentant une sensibilité aux champs magnétiques limitée.The production of spiral springs is also centered on the concern for thermal compensation, so as to guarantee regular chronometric performance. This requires obtaining a thermoelastic coefficient close to zero. We are also looking to produce spiral springs with limited sensitivity to magnetic fields.

De nouveaux spiraux ont été développés à partir d'alliages de niobium et de titane. Toutefois, ces alliages posent des problèmes de collement et de grippage dans les filières d'étirage ou de tréfilage (diamant ou métal dur) et contre les rouleaux de laminage (métal dur ou acier), ce qui les rend quasiment impossibles à transformer en fils fins par les procédés standard utilisés par exemple pour l'acier.New balance springs have been developed from alloys of niobium and titanium. However, these alloys pose problems of sticking and seizing in the drawing or drawing dies (diamond or hard metal) and against the rolling rolls (hard metal or steel), which makes them almost impossible to transform into wires. purposes by standard processes used eg for steel.

Toute amélioration sur au moins l'un de ces points, et en particulier sur la facilité d'élaboration, notamment de tréfilage et de laminage, représente donc une avancée significative.Any improvement on at least one of these points, and in particular on the ease of production, in particular of drawing and rolling, therefore represents a significant advance.

Un objet de la présente invention est de proposer un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie permettant de faciliter les déformations, et plus particulièrement d'obtenir un laminage aisé.An object of the present invention is to provide a method of manufacturing a spiral spring intended to equip a balance with a clockwork movement making it possible to facilitate deformation, and more particularly to obtain easy rolling.

A cet effet, l'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie qui comprend :

  • une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué de :
    • niobium : balance à 100% en poids,
    • titane: entre 40 et 60% en poids,
    • traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids,
  • une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β (structure cubique centrée), la teneur en titane en phase α (structure hexagonale compacte) étant inférieure ou égale à 5% en volume,
  • au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l'alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d'élasticité inférieur ou égal à 100 GPa, une étape d'estrapadage pour former le ressort-spiral étant effectuée avant une dernière étape de traitement thermique.
To this end, the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a timepiece movement which comprises:
  • a step of producing a blank in an alloy of niobium and titanium consisting of:
    • niobium: balance at 100% by weight,
    • titanium: between 40 and 60% by weight,
    • traces of elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount consisting of all of said elements being between 0% and 0.3% by weight,
  • a β-type quenching step of said blank to a given diameter, so that the titanium of said alloy is essentially in the form of a solid solution with niobium in β phase (centered cubic structure), the titanium content in α phase (compact hexagonal structure) being less than or equal to 5% by volume,
  • at least one deformation step of said alloy alternating with at least one heat treatment step so that the niobium and titanium alloy obtained has an elastic limit greater than or equal to 600 MPa and a modulus of elasticity less than or equal to 100 GPa, a step of slipping to form the spiral spring being carried out before a last step of heat treatment.

Selon l'invention, le procédé comprend avant l'étape de déformation, une étape de dépôt, sur l'ébauche en alliage, d'une couche superficielle d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage NbTi pour une section de fil donnée est inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4.According to the invention, the method comprises, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material chosen from the group comprising copper, nickel, cupro-nickel, cupro-manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate the shaping in the form of wire, the thickness of the layer of ductile material deposited being chosen so that the ratio of ductile material area / area of the NbTi alloy for a given wire section is less than 1, preferably less to 0.5, and more preferably between 0.01 and 0.4.

Un tel procédé de fabrication permet de faciliter la mise en forme sous forme de fil de l'ébauche en alliage NbTi, et plus spécifiquement de faciliter l'étirage, le tréfilage et le laminage.Such a manufacturing process makes it possible to facilitate the shaping in wire form of the NbTi alloy blank, and more specifically to facilitate the drawing, drawing and rolling.

Le document WO 2005/045532 au nom de Seiko décrit un ressort d'horlogerie permettant d'assurer une précision élevée et un fonctionnement stable de mécanismes de précision tels que des horloges, qui peut être un ressort d'horlogerie, un ressort moteur, ou un spiral. Ce ressort est formé d'un alliage spécial de titane et a une forme en S lorsqu'il est librement déployé, dans lequel le point d'inflexion auquel la direction de courbure de la forme librement déployée change est formé plus à l'intérieur que le milieu d'une extrémité intérieure à l'extrémité du côté d'enroulement et d'une extrémité extérieure à l'extrémité opposée à l'extrémité intérieure. L'alliage de titane présente une contrainte de traction élevée et un module d'Young moyen faible, permettant d'augmenter l'énergie mécanique accumulée dans le ressort moteur. Cet alliage peut être un alliage de titane avec un élément du groupe vanadium, avec notamment une proportion massique d'élément du groupe vanadium de 20 à 80%, et plus particulièrement de 30 à 60%. La proportion massique des constituants autres que le titane peut dépasser 50%. Aucune composition plus précise de l'alliage n'est pour autant divulguée pour le ressort décrit.The document WO 2005/045532 in the name of Seiko describes a clockwork spring for ensuring high precision and stable operation of precision mechanisms such as clocks, which may be a clockwork spring, a mainspring, or a hairspring. This spring is formed of a special titanium alloy and has an S-shape when it is freely deployed, in which the inflection point at which the direction of curvature of the freely deployed form changes is formed more inside than the middle of an inner end to the winding side end and an outer end to the opposite end to the inner end. The titanium alloy has a high tensile stress and a low average Young's modulus, making it possible to increase the mechanical energy stored in the mainspring. This alloy may be a titanium alloy with an element from the vanadium group, with in particular a proportion by weight of element from the vanadium group of 20 to 80%, and more particularly of 30 to 60%. The proportion by mass of constituents other than titanium can exceed 50%. However, no more precise composition of the alloy is disclosed for the spring described.

Le document WO2015/189278 au nom de Cartier décrit un ressort-spiral en alliage de titane contenant: une base en titane, de 10 à 40 % atomiques d'au moins un élément parmi Nb, Ta ou V, de 0 à 3% atomiques d'oxygène, de 0 à 6% atomiques de zirconium; et de 0 à 5 % atomiques de hafnium. Ce spiral est moins sensible à la température, et a une densité plus faible qu'un spiral classique.The document WO2015 / 189278 in the name of Cartier describes a spiral spring in a titanium alloy containing: a titanium base, from 10 to 40 atomic% of at least one element among Nb, Ta or V, from 0 to 3 atomic% of oxygen, of 0 to 6 atomic% zirconium; and from 0 to 5 atomic% hafnium. This hairspring is less sensitive to temperature, and has a lower density than a conventional hairspring.

Le document WO2018/172164 au nom de Université de Lorraine décrit un alliage de titane β métastable comprenant, en pourcentage massique, entre 24 et 45% de niobium, entre 0 et 20% de zirconium, entre 0 et 10% de tantale et/ou entre 0 et 1.5% de silicium et/ou moins de 2% d'oxygène. Cet alliage présente une structure cristallographique qui comprend un mélange de phase austénitique et de phase alpha, et une présence de précipités de phase oméga dont la fraction volumique est inférieure à 10%. Ce document décrit encore un ressort d'horlogerie réalisé à base d'un tel alliage, et un procédé de fabrication d'un tel ressort.The document WO2018 / 172164 in the name of Université de Lorraine describes a metastable β titanium alloy comprising, in percentage by mass, between 24 and 45% niobium, between 0 and 20% of zirconium, between 0 and 10% of tantalum and / or between 0 and 1.5% silicon and / or less than 2% oxygen. This alloy has a crystallographic structure which comprises a mixture of austenitic phase and alpha phase, and the presence of omega phase precipitates, the volume fraction of which is less than 10%. This document also describes a clockwork spring made on the basis of such an alloy, and a method of manufacturing such a spring.

Le document EP2993531 au nom de Précision Engineering AG décrit un procédé de mise en forme d'un ressort mécanique, en particulier un ressort-spiral,comprenant les étapes consistant à préparer un ressort, en particulier un ressort-spiral, comprenant au moins une section courbe prévue pour une remise en forme avec au moins une section déformable, puis à effectuer une étape de chauffe locale d'au moins la section déformable à une première température, qui se situe dans une plage de températures de formation semi-chaude du matériau de la section déformable, puis à imprimer un mouvement de la section déformable pour obtenir une forme de courbe prédéterminée dans la section déformable, ce mouvement étant effectué, ou bien après ou pendant l'étape de chauffe et dans un état semi-chaud, ou bien avant l'étape de chauffe.The document EP2993531 in the name of Précision Engineering AG describes a method of shaping a mechanical spring, in particular a spiral spring, comprising the steps of preparing a spring, in particular a spiral spring, comprising at least one curved section intended for reshaping with at least one deformable section, then performing a local heating step of at least the deformable section to a first temperature, which is within a semi-hot formation temperature range of the material of the deformable section , then in imparting a movement of the deformable section to obtain a predetermined shape of curve in the deformable section, this movement being carried out, either after or during the heating step and in a semi-hot state, or well before the heating step.

Un bulletin de presse H. Moser & Cie et Précision Engineering du 22.11.2016 décrit un ressort-spiral pour organe réglant horloger en alliage niobium-titane, dont la composition n'est pas divulguée.A press bulletin H. Moser & Cie and Précision Engineering of 22.11.2016 describes a hairspring for a watch regulating member made of niobium-titanium alloy, the composition of which is not disclosed.

Le document EP 1 083 243 décrit un fil en alliage de titane bêta et un procédé pour sa fabrication.The document EP 1 083 243 describes a beta titanium alloy wire and a process for its manufacture.

Le document EP 2 696 381 décrit un câble supraconducteur à base de niobium-titane.The document EP 2,696,381 describes a superconducting cable based on niobium-titanium.

Le document JP 04279212 décrit un procédé de fabrication de fil fin d'alliages de titane comprenant les étapes de revêtement de fil de titane avec du cuivre et d'étirage et de recuit répétés.The document JP 04279212 discloses a process for manufacturing fine wire of titanium alloys comprising the steps of coating titanium wire with copper and repeated drawing and annealing.

Description détaillée des modes de réalisation préférésDetailed description of the preferred embodiments

L'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie et réalisé dans un alliage de type binaire comportant du niobium et du titane.The invention relates to a method of manufacturing a spiral spring intended to equip a balance of a clockwork movement and made of a binary type alloy comprising niobium and titanium.

Pour réaliser ce ressort spiral, on utilise une ébauche dans un alliage de niobium et de titane constitué de :

  • niobium : balance à 100% en poids,
  • titane : entre 40 et 60% en poids,
  • traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids, et dans lequel le titane est essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume.
To make this spiral spring, a blank is used in an alloy of niobium and titanium consisting of:
  • niobium: balance at 100% by weight,
  • titanium: between 40 and 60% by weight,
  • traces of elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount consisting of all of said elements being between 0% and 0.3% by weight, and in which the titanium is essentially in the form of a solid solution with the niobium in the β phase, the titanium in the α phase content being less than or equal to 5% by volume.

La teneur en titane sous forme α dans l'alliage de l'ébauche est de préférence inférieure ou égale à 2.5% en volume, voire voisine ou égale à 0.The titanium content in α form in the alloy of the blank is preferably less than or equal to 2.5% by volume, or even close to or equal to 0.

D'une manière avantageuse, l'alliage utilisé dans la présente invention comprend entre 40 et 49% en poids de titane, de préférence entre 44 et 49% en poids de titane, et plus préférentiellement entre 46% et 48% en poids de titane, et de préférence ledit alliage comprend plus de 46.5% en poids de titane et ledit alliage comprend moins de 47.5% en poids de titane.Advantageously, the alloy used in the present invention comprises between 40 and 49% by weight of titanium, preferably between 44 and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium , and preferably said alloy comprises more than 46.5% by weight of titanium and said alloy comprises less than 47.5% by weight of titanium.

Si le taux de titane est trop élevé, il apparait une phase martensitique entrainant des problèmes de fragilité de l'alliage lors de sa mise en œuvre. Si le taux de niobium est trop élevé, l'alliage sera trop mou. La mise au point de l'invention a permis de déterminer un compromis, avec un optimum entre ces deux caractéristiques voisin de 47 % en poids de titane.If the titanium content is too high, a martensitic phase appears causing problems of fragility of the alloy during its implementation. If the niobium level is too high, the alloy will be too soft. The development of the invention made it possible to determine a compromise, with an optimum between these two characteristics close to 47% by weight of titanium.

Aussi, plus particulièrement, la teneur en titane est supérieure ou égale à 46.5% en poids par rapport au total de la composition.Also, more particularly, the titanium content is greater than or equal to 46.5% by weight relative to the total of the composition.

Plus particulièrement, la teneur en titane est inférieure ou égale à 47.5% en poids par rapport au total de la composition.More particularly, the titanium content is less than or equal to 47.5% by weight relative to the total of the composition.

D'une manière particulièrement avantageuse, l'alliage NbTi utilisé dans la présente invention ne comprend pas d'autres éléments à l'exception d'éventuelles et inévitables traces. Cela permet d'éviter la formation de phases fragiles.In a particularly advantageous manner, the NbTi alloy used in the present invention does not comprise other elements except for possible and inevitable traces. This prevents the formation of fragile phases.

Plus particulièrement, la teneur en oxygène est inférieure ou égale à 0.10% en poids du total, voire encore inférieure ou égale à 0.085% en poids du total.More particularly, the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.

Plus particulièrement, la teneur en tantale est inférieure ou égale à 0.10% en poids du total.More particularly, the tantalum content is less than or equal to 0.10% by weight of the total.

Plus particulièrement, la teneur en carbone est inférieure ou égale à 0.04% en poids du total, notamment inférieure ou égale à 0.020% en poids du total, voire encore inférieure ou égale à 0.0175% en poids du total.More particularly, the carbon content is less than or equal to 0.04% by weight of the total, in particular less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.

Plus particulièrement, la teneur en fer est inférieure ou égale à 0.03% en poids du total, notamment inférieure ou égale à 0.025% en poids du total, voire encore inférieure ou égale à 0.020% en poids du total.More particularly, the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.

Plus particulièrement, la teneur en azote est inférieure ou égale à 0.02% en poids du total, notamment inférieure ou égale à 0.015% en poids du total, voire encore inférieure ou égale à 0.0075% en poids du total.More particularly, the nitrogen content is less than or equal to 0.02% by weight of the total, in particular less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.

Plus particulièrement, la teneur en hydrogène est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.0035% en poids du total, voire encore inférieure ou égale à 0.0005% en poids du total.More particularly, the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.

Plus particulièrement, la teneur en silicium est inférieure ou égale à 0.01% en poids du total.More particularly, the silicon content is less than or equal to 0.01% by weight of the total.

Plus particulièrement, la teneur en nickel est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.16% en poids du total.More particularly, the nickel content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.16% by weight of the total.

Plus particulièrement, la teneur en matériau ductile, tel que le cuivre, dans l'alliage, est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.005% en poids du total.More particularly, the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.005% by weight of the total.

Plus particulièrement, la teneur en aluminium est inférieure ou égale à 0.01% en poids du total.More particularly, the aluminum content is less than or equal to 0.01% by weight of the total.

Le ressort spiral réalisé selon l'invention a une limite élastique supérieure ou égale à 600 MPa.The spiral spring produced according to the invention has an elastic limit greater than or equal to 600 MPa.

De manière avantageuse, ce ressort spiral a un module d'élasticité inférieur ou égal à 100 GPa, et de préférence compris entre 60 GPa et 80 GPa.Advantageously, this spiral spring has a modulus of elasticity less than or equal to 100 GPa, and preferably between 60 GPa and 80 GPa.

En outre le ressort spiral réalisé selon l'invention présente un coefficient thermoélastique, dit aussi CTE, lui permettant de garantir le maintien des performances chronométriques malgré la variation des températures d'utilisation d'une montre incorporant un tel ressort spiral.In addition, the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, allowing it to guarantee the maintenance of chronometric performance despite the variation in the temperatures of use of a watch incorporating such a spiral spring.

Pour former un oscillateur chronométrique répondant aux conditions COSC, le CTE de l'alliage doit être proche de zéro (± 10 ppm/°C) pour obtenir un coefficient thermique de l'oscillateur égal à ± 0.6 s/j/°C.To form a chronometric oscillator meeting COSC conditions, the CTE of the alloy must be close to zero (± 10 ppm / ° C) to obtain a thermal coefficient of the oscillator equal to ± 0.6 s / d / ° C.

La formule qui lie le CTE de l'alliage et les coefficients de dilatation du spiral et du balancier est la suivante : CT = dM dT = 1 2 E dE dT β + 3 2 α × 86400 s j ° C

Figure imgb0001
The formula which links the CTE of the alloy and the coefficients of expansion of the hairspring and the balance is as follows: CT = dM dT = 1 2 E of dT - β + 3 2 α × 86400 s j ° VS
Figure imgb0001

Les variables M et T sont respectivement la marche et la température. E est le module de Young du ressort-spiral, et, dans cette formule, E, β et α s'expriment en °C-1.The variables M and T are respectively the rate and the temperature. E is the Young's modulus of the hairspring, and, in this formula, E, β and α are expressed in ° C -1 .

CT est le coefficient thermique de l'oscillateur, (1/E. dE/dT) est le CTE de l'alliage spiral, β est le coefficient de dilatation du balancier et α celui du spiral.CT is the thermal coefficient of the oscillator, (1 / E. DE / dT) is the CTE of the balance spring alloy, β is the expansion coefficient of the balance and α that of the balance spring.

Un CTE et donc un CT adéquats sont facilement obtenus lors de la mise en œuvre des différentes étapes du procédé de l'invention comme on le verra ci-dessous.An adequate CTE and therefore a CT are easily obtained during the implementation of the various steps of the method of the invention as will be seen below.

Conformément à la présente invention, le procédé de fabrication d'un ressort spiral en alliage de type binaire NbTi tel que défini ci-dessus, comprend:

  • une étape d'élaboration d'une ébauche dans un alliage de niobium et de titane constitué de :
    • niobium : balance à 100% en poids,
    • titane: entre 40 et 60% en poids,
    • traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids,
  • une étape de trempe de type β de ladite ébauche à un diamètre donné, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 5% en volume,
  • au moins une étape de déformation dudit alliage alternée avec au moins une étape de traitement thermique de sorte que l'alliage de niobium et de titane obtenu présente une limite élastique supérieure ou égale à 600 MPa et un module d'élasticité inférieur ou égal à 100 GPa, une étape d'estrapadage pour former le ressort-spiral étant effectuée avant la dernière étape de traitement thermique, cette dernière étape permettant de fixer la forme du spiral et d'ajuster le coefficient thermoélastique,
  • et, avant l'étape de déformation, une étape de dépôt, sur l'ébauche en alliage, d'une couche superficielle d'un matériau ductile choisi parmi le groupe comprenant le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, pour faciliter la mise en forme sous forme de fil, l'épaisseur de la couche de matériau ductile déposée étant choisie de sorte que le rapport surface de matériau ductile/surface de l'alliage NbTi pour une section de fil donnée est inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4.
In accordance with the present invention, the method of manufacturing a spiral spring made of an NbTi binary type alloy as defined above, comprises:
  • a step of producing a blank in an alloy of niobium and titanium consisting of:
    • niobium: balance at 100% by weight,
    • titanium: between 40 and 60% by weight,
    • traces of elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount consisting of all of said elements being between 0% and 0.3% by weight,
  • a β-type quenching step of said blank to a given diameter, so that the titanium of said alloy is essentially in the form of a solid solution with the niobium in the β phase, the titanium content in the α phase being less than or equal to 5% by volume,
  • at least one deformation step of said alloy alternating with at least one heat treatment step so that the niobium and titanium alloy obtained has an elastic limit greater than or equal to 600 MPa and a modulus of elasticity less than or equal to 100 GPa, a step of slipping to form the hairspring being carried out before the last heat treatment step, this last step making it possible to fix the shape of the hairspring and to adjust the thermoelastic coefficient,
  • and, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material chosen from the group comprising copper, nickel, cupro-nickel, cupro. manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate shaping in wire form, the thickness of the layer of ductile material deposited being chosen from so that the surface area of ductile material / surface area of the NbTi alloy for a given wire section is less than 1, preferably less than 0.5, and more preferably between 0.01 and 0.4.

Une telle épaisseur de matériau ductile, et notamment de cuivre, permet d'étirer, de tréfiler et de laminer aisément le matériau composite Cu/NbTi.Such a thickness of ductile material, and in particular copper, makes it possible to easily stretch, draw and roll the Cu / NbTi composite material.

Le matériau ductile, de préférence du cuivre, est ainsi déposé à un moment donné pour faciliter la mise en forme du fil par étirage et tréfilage, de telle manière à ce qu'il en reste une épaisseur de préférence comprise entre 1 et 500 micromètres sur le fil au diamètre total de 0.2 à 1 millimètre.The ductile material, preferably copper, is thus deposited at a given time to facilitate the shaping of the wire by drawing and drawing, so that a thickness thereof remains preferably between 1 and 500 micrometers on the wire has a total diameter of 0.2 to 1 millimeter.

L'apport de matériau ductile, notamment du cuivre, peut être galvanique, PVD ou CVD, ou bien mécanique, c'est alors une chemise ou un tube de matériau ductile tel que le cuivre qui est ajusté sur une barre d'alliage niobium-titane à un gros diamètre, puis qui est amincie au cours de la ou des étapes de déformation du barreau composite.The supply of ductile material, in particular copper, can be galvanic, PVD or CVD, or else mechanical, it is then a jacket or a tube of ductile material such as copper which is fitted to a bar of niobium alloy. titanium to a large diameter, then which is thinned during the step (s) of deformation of the composite bar.

Selon une première variante, le procédé de l'invention peut comprendre, après l'étape de déformation, une étape d'élimination de ladite couche superficielle de matériau ductile. De préférence, le matériau ductile est éliminé une fois toutes les opérations de traitement de déformation effectuées, c'est-à-dire après le dernier laminage, avant l'estrapadage.According to a first variant, the method of the invention can comprise, after the deformation step, a step of eliminating said surface layer of ductile material. Preferably, the ductile material is removed once all the deformation treatment operations have been carried out, that is to say after the last rolling, before the stretching.

De préférence, le fil est débarrassé de sa couche de matériau ductile, tel que le cuivre, notamment par attaque chimique, avec une solution à base de cyanures ou à base d'acides, par exemple d'acide nitrique.Preferably, the wire is freed from its layer of ductile material, such as copper, in particular by chemical attack, with a solution based on cyanides or based on acids, for example nitric acid.

Selon une autre variante du procédé de l'invention, la couche superficielle de matériau ductile est conservée sur le ressort spiral, le coefficient thermoélastique de l'alliage de niobium et de titane étant adapté en conséquence de manière à compenser l'effet du matériau ductile. Comme on le verra ci-dessous, le coefficient thermoélastique de l'alliage de niobium et de titane peut être ajusté facilement en choisissant le taux de déformation et les traitements thermiques appropriés. La couche superficielle de matériau ductile conservée permet d'obtenir une section finale de fil parfaitement régulière. Le matériau ductile peut être ici du cuivre ou de l'or, déposé par voie galvanique, PVD ou CVD.According to another variant of the process of the invention, the surface layer of ductile material is retained on the spiral spring, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly so as to compensate for the effect of the ductile material. . As will be seen below, the thermoelastic coefficient of the niobium titanium alloy can be easily adjusted by choosing the appropriate strain rate and heat treatments. The surface layer of ductile material retained makes it possible to obtain a perfectly regular final wire section. The ductile material can here be copper or gold, deposited by galvanic route, PVD or CVD.

Le procédé de l'invention peut en outre comprendre une étape de dépôt, sur la couche superficielle de matériau ductile conservée, d'une couche finale d'un matériau choisi parmi le groupe comprenant Al2O3, TiO2, SiO2 et AIO, par PVD ou CVD. On peut également prévoir une couche finale d'or déposée par flash d'or galvanique si l'or n'a pas déjà été utilisé comme matériau ductile de la couche superficielle. On peut aussi utiliser le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B pour la couche finale, pour autant que le matériau de la couche finale soit différent du matériau ductile de la couche superficielle.The method of the invention may further comprise a step of depositing, on the surface layer of retained ductile material, a final layer of a material chosen from the group comprising Al 2 O 3 , TiO 2 , SiO 2 and AIO , by PVD or CVD. It is also possible to provide a final layer of gold deposited by galvanic gold flash if the gold has not already been used as a ductile material for the surface layer. You can also use copper, nickel, cupro-nickel, cupro-manganese, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B for the final layer, provided that the material of the final layer is different from the ductile material of the surface layer.

Cette couche finale présente une épaisseur de 0.1 µm à 1 µm et permet de colorer le spiral ou d'obtenir une insensibilité au vieillissement climatique (température et humidité).This final layer has a thickness of 0.1 µm to 1 µm and makes it possible to color the hairspring or to obtain insensitivity to climatic aging (temperature and humidity).

De préférence, l'étape de trempe β est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.Preferably, the β quenching step is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C, under vacuum, followed by gas cooling.

Plus particulièrement encore, cette trempe bêta est un traitement de mise en solution, entre 5 minutes et 1 heure à 800°C sous vide, suivie d'un refroidissement sous gaz.More particularly still, this beta quenching is a solution treatment, between 5 minutes and 1 hour at 800 ° C. under vacuum, followed by cooling under gas.

De préférence, le traitement thermique est réalisé pendant une durée comprise entre 1 heure et 80 heures, voire plus, de préférence entre 1 heure et 15 heures à une température comprise entre 350°C et 700°C. Plus préférentiellement, le traitement thermique est réalisé pendant une durée comprise entre 5 heures et 10 heures à une température comprise entre 350°C et 600°C. Encore plus préférentiellement, le traitement thermique est réalisé pendant une durée comprise entre 3 heures et 6 heures à une température comprise entre 400°C et 500°C.Preferably, the heat treatment is carried out for a period of between 1 hour and 80 hours, or even more, preferably between 1 hour and 15 hours at a temperature of between 350 ° C and 700 ° C. More preferably, the heat treatment is carried out for a period of between 5 hours and 10 hours at a temperature of between 350 ° C and 600 ° C. Even more preferably, the heat treatment is carried out for a period of between 3 hours and 6 hours at a temperature of between 400 ° C and 500 ° C.

Une étape de déformation désigne d'une manière globale un ou plusieurs traitements de déformation, qui peuvent comprendre le tréfilage et/ou le laminage. Le tréfilage peut nécessiter l'utilisation d'une ou plusieurs filières lors de la même étape de déformation ou lors de différentes étapes de déformation si nécessaire. Le tréfilage est réalisé jusqu'à l'obtention d'un fil de section ronde. Le laminage peut être effectué lors de la même étape de déformation que le tréfilage ou dans une autre étape de déformation ultérieure. Avantageusement, le dernier traitement de déformation appliqué à l'alliage est un laminage, de préférence à profil rectangulaire compatible avec la section d'entrée d'une broche d'estrapadage.A deformation step generally designates one or more deformation treatments, which may include wire drawing and / or rolling. Wire drawing may require the use of one or more dies during the same deformation step or during different deformation steps if necessary. Wire drawing is carried out until a wire of round section is obtained. Rolling can be done in the same deformation step as wire drawing or in another subsequent deformation step. Advantageously, the last deformation treatment applied to the alloy is rolling, preferably with a rectangular profile compatible with the entry section of a stranding spindle.

D'une manière particulièrement avantageuse, le taux de déformation total, le nombre de traitements thermiques ainsi que les paramètres des traitements thermiques sont choisis pour obtenir un ressort spiral présentant un coefficient thermoélastique le plus proche possible de 0. Par ailleurs, en fonction du taux de déformation total, du nombre de traitement thermique et des paramètres des traitements thermiques, on obtient un alliage NbTi monophasé ou biphasé.In a particularly advantageous manner, the total deformation rate, the number of heat treatments as well as the heat treatment parameters are chosen to obtain a spiral spring having a thermoelastic coefficient as close as possible to 0. Moreover, depending on the rate of total deformation, the number of heat treatments and the heat treatment parameters, a single-phase or two-phase NbTi alloy is obtained.

Plus particulièrement, selon une première variante, le nombre d'étapes de traitement thermique et de déformation est limité de sorte que l'alliage de niobium et de titane du ressort spiral obtenu conserve une structure dans laquelle le titane dudit alliage est essentiellement sous forme de solution solide avec le niobium en phase β (structure cubique centrée), la teneur en titane en phase α étant inférieure ou égale à 10% en volume, de préférence inférieure ou égale à 5% en volume, plus préférentiellement inférieure ou égale à 2.5% en volume.More particularly, according to a first variant, the number of heat treatment and deformation steps is limited so that the alloy of niobium and titanium of the spiral spring obtained retains a structure in which the titanium of said alloy is essentially in the form of solid solution with niobium in β phase (centered cubic structure), the titanium content in α phase being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% in volume.

De préférence, le taux de déformation total est compris entre 1 et 5, de préférence entre 2 et 5.Preferably, the total deformation rate is between 1 and 5, preferably between 2 and 5.

D'une manière particulièrement avantageuse, on utilise une ébauche dont les dimensions sont au plus proche des dimensions finales recherchées de manière à limiter le nombre d'étapes de traitement thermique et de déformation et conserver une structure essentiellement monophasée β de l'alliage NbTi. La structure finale de l'alliage NbTi du ressort spiral peut être différente de la structure initiale de l'ébauche, par exemple la teneur en titane sous forme α peut avoir varié, l'essentiel étant que la structure finale de l'alliage NbTi du ressort spiral soit essentiellement monophasée, le titane dudit alliage étant essentiellement sous forme de solution solide avec le niobium en phase β, la teneur en titane en phase α étant inférieure ou égale à 10% en volume, de préférence inférieure ou égale à 5% en volume, plus préférentiellement inférieure ou égale à 2.5% en volume. Dans l'alliage de l'ébauche après la trempe β, la teneur en titane en phase α est de préférence inférieure ou égale à 5% en volume, plus préférentiellement inférieure ou égale à 2.5% en volume, voire voisine ou égale à 0.In a particularly advantageous manner, a blank is used, the dimensions of which are as close as possible to the desired final dimensions so as to limit the number of heat treatment and deformation steps and to maintain an essentially single-phase structure β of the NbTi alloy. The final structure of the NbTi alloy of the spiral spring may be different from the initial structure of the blank, for example the titanium content in α form may have varied, the main thing being that the final structure of the NbTi alloy of the spiral spring is essentially single-phase, the titanium of said alloy being essentially in the form of a solid solution with niobium in β phase, the titanium content in α phase being less than or equal to 10% by volume, preferably less than or equal to 5% in volume, more preferably less than or equal to 2.5% by volume. In the alloy of the blank after β quenching, the titanium content in the α phase is preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume, or even close to or equal to 0.

Ainsi, selon cette variante, on obtient un ressort spiral réalisé dans un alliage NbTi présentant une structure essentiellement monophasée sous forme de solution solide β-Nb-Ti, la teneur en titane sous forme α étant inférieure ou égale à 10% en volume.Thus, according to this variant, a spiral spring is obtained made of an NbTi alloy having an essentially single-phase structure in the form of a solid β-Nb-Ti solution, the titanium content in the α form being less than or equal to 10% by volume.

De préférence, le procédé comprend une seule étape de déformation avec un taux de déformation compris entre 1 et 5, de préférence entre 2 et 5.Preferably, the method comprises a single deformation step with a deformation rate of between 1 and 5, preferably between 2 and 5.

Ainsi, un procédé particulièrement préféré de l'invention comprend, après l'étape de trempe β, l'étape de dépôt, sur l'ébauche en alliage, de la couche superficielle de matériau ductile, une étape de déformation incluant un tréfilage au moyen de plusieurs filières puis un laminage, une étape d'estrapadage puis une dernière étape de traitement thermique (appelée fixage).Thus, a particularly preferred method of the invention comprises, after the quenching step β, the step of depositing, on the alloy blank, the surface layer of ductile material, a deformation step including drawing by means of several dies followed by rolling, a stretching step then a final heat treatment step (called fixing).

Le procédé de l'invention peut en outre comprendre au moins une étape de traitement thermique intermédiaire, de sorte que le procédé comprend par exemple après l'étape de trempe β, l'étape de dépôt, sur l'ébauche en alliage, de la couche superficielle de matériau ductile, une première étape de déformation, une étape de traitement thermique intermédiaire, une seconde étape de déformation, l'étape d'estrapadage puis une dernière étape de traitement thermique.The method of the invention may further comprise at least one intermediate heat treatment step, so that the method comprises for example after the hardening step β, the step of depositing, on the alloy blank, the surface layer of ductile material, a first deformation step, an intermediate heat treatment step, a second deformation step, the slitting step then a last heat treatment step.

Plus le taux de déformation après la trempe β est élevé, plus le coefficient thermique CT est positif. Plus le matériau est recuit après la trempe β, dans la gamme de température adéquate, par les différents traitements thermiques, plus le coefficient thermique CT devient négatif. Un choix approprié du taux de déformation et des paramètres des traitements thermiques permet de ramener l'alliage NbTi monophasé à un CTE proche de zéro, ce qui est particulièrement favorable.The higher the deformation rate after quenching β, the more positive the thermal coefficient CT. The more the material is annealed after the β hardening, in the appropriate temperature range, by the various heat treatments, the more the thermal coefficient CT becomes negative. An appropriate choice of the deformation rate and of the heat treatment parameters makes it possible to bring the single-phase NbTi alloy to a CTE close to zero, which is particularly favorable.

Selon une seconde variante, on applique une succession de séquences d'une étape de déformation alternée avec une étape de traitement thermique, jusqu'à l'obtention d'un alliage de niobium et de titane de structure biphasée comprenant une solution solide de niobium avec du titane en phase β (structure cubique centrée) et une solution solide de niobium avec du titane en phase α (structure hexagonale compacte), la teneur en titane en phase α étant supérieure à 10% en volume.According to a second variant, a succession of sequences of a deformation step alternating with a heat treatment step is applied, until an alloy of niobium and titanium with a two-phase structure comprising a solid solution of niobium with titanium in β phase (centered cubic structure) and a solid solution of niobium with titanium in α phase (compact hexagonal structure), the content of titanium in α phase being greater than 10% by volume.

Pour obtenir une telle structure biphasée, il est nécessaire de précipiter une partie de la phase α par des traitements thermiques, selon les paramètres indiqués ci-dessus, avec une forte déformation entre les traitements thermiques. De préférence, on applique toutefois des traitements thermiques plus longs que ceux utilisés pour obtenir un alliage de ressort monophasé, par exemple des traitements thermiques réalisés pendant une durée comprise entre 15 heures et 75 heures à une température comprise entre 350°C et 500°C. Par exemple on applique des traitements thermiques de 75h à 400h à 350°C, de 25h à 400°C ou de 18h à 480°C.To obtain such a two-phase structure, it is necessary to precipitate part of the α phase by heat treatments, according to the parameters indicated above, with a strong deformation between the heat treatments. Preferably, however, heat treatments longer than those used to obtain a single-phase spring alloy are applied, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350 ° C and 500 ° C. . For example, heat treatments are applied from 75h to 400h at 350 ° C, from 25h to 400 ° C or from 18h to 480 ° C.

Dans cette seconde variante « biphasée », on utilise une ébauche qui présente, après la trempe β un diamètre beaucoup plus grand que celui de l'ébauche préparée pour la première variante « monophasée ». Ainsi, dans la seconde variante, on utilise par exemple une ébauche de 30 mm de diamètre après la trempe β, alors qu'on utilise, pour la première variante, une ébauche de 0.2 à 2.0 mm de diamètre après la trempe β.In this second “two-phase” variant, a blank is used which has, after hardening β, a much larger diameter than that of the blank prepared for the first “single-phase” variant. Thus, in the second variant, a blank with a diameter of 30 mm is used, for example, after the hardening β, whereas, for the first variant, a blank with a diameter of 0.2 to 2.0 mm is used after the hardening β.

De préférence, dans ces séquences couplées de déformation-traitement thermique, chaque déformation est effectuée avec un taux de déformation compris entre 1 et 5, le cumul global des déformations sur l'ensemble de ladite succession de séquences amenant un taux total de déformation compris entre 1 et 14.Preferably, in these coupled sequences of strain-heat treatment, each strain is carried out with a strain rate of between 1 and 5, the global accumulation of strains over the whole of said succession of sequences bringing a total strain rate of between 1 and 14.

Le taux de déformation répond à la formule classique 2ln(d0/d), où d0 est le diamètre de la dernière trempe bêta ou de celui d'une étape de déformation, et d est le diamètre du fil écroui obtenu à l'étape de déformation suivante.The strain rate corresponds to the classic formula 2ln (d0 / d), where d0 is the diameter of the last beta hardening or that of a deformation step, and d is the diameter of the hardened wire obtained in the step of next deformation.

D'une manière avantageuse, le procédé comporte dans cette seconde variante entre trois et cinq séquences couplées de déformation-traitement thermique.Advantageously, the method comprises in this second variant between three and five coupled sequences of deformation-heat treatment.

Plus particulièrement, la première séquence couplée de déformation-traitement thermique comporte une première déformation avec au moins 30 % de réduction de section.More particularly, the first coupled strain-heat treatment sequence comprises a first strain with at least 30% reduction in section.

Plus particulièrement, chaque séquence couplée de déformation-traitement thermique, autre que la première, comporte une déformation entre deux traitements thermiques avec au moins 25 % de réduction de section.More particularly, each coupled sequence of heat-treatment-strain, other than the first, comprises a strain between two heat treatments with at least 25% reduction in section.

Dans cette seconde variante, l'alliage en phase β écroui présente un CT fortement positif, et la précipitation de la phase α qui possède un CT fortement négatif, permet de ramener l'alliage biphasé à un CTE proche de zéro, ce qui est particulièrement favorable.In this second variant, the hardened β phase alloy exhibits a strongly positive CT, and the precipitation of the α phase which has a strongly negative CT, makes it possible to bring the two-phase alloy to a CTE close to zero, which is particularly important. favorable.

Le procédé de l'invention permet la réalisation, et plus particulièrement la mise en forme, d'un ressort spiral pour balancier en alliage de type niobium-titane, typiquement à 47 % en poids de titane (40-60%), présentant une microstructure essentiellement monophasée de β-Nb-Ti dans laquelle le titane est sous forme de solution solide avec le niobium en phase β ou une microstructure biphasée lamellaire très fine comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase a. Cet alliage présente des propriétés mécaniques élevées, en combinant une limite élastique très élevée, supérieure à 600 MPa, et un module d'élasticité très bas, de l'ordre de 60 Gpa à 80 GPa. Cette combinaison de propriétés convient bien pour un ressort spiral.The method of the invention allows the production, and more particularly the shaping, of a balance spring for a balance in a niobium-titanium type alloy, typically containing 47% by weight of titanium (40-60%), exhibiting a Substantially single-phase microstructure of β-Nb-Ti in which the titanium is in the form of a solid solution with the niobium in the β phase or a very fine two-phase lamellar microstructure comprising a solid solution of niobium with titanium in the β phase and a solid solution of niobium with titanium in phase a. This alloy has high mechanical properties, by combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring.

Un tel alliage est connu et utilisé pour la fabrication de supraconducteurs, tels qu'appareils d'imagerie par résonance magnétique, ou accélérateurs de particules, mais n'est pas utilisé en horlogerie.Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging devices, or particle accelerators, but is not used in watchmaking.

Un alliage de type binaire comportant du niobium et du titane, du type sélectionné ci-dessus pour la mise en œuvre de l'invention, présente également un effet similaire à celui de l' « Elinvar », avec un coefficient thermo-élastique pratiquement nul dans la plage de températures d'utilisation usuelle de montres, et apte à la fabrication de spiraux auto-compensateurs.A binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, also exhibits an effect similar to that of “Elinvar”, with a thermoelastic coefficient practically zero. within the temperature range of usual use of watches, and suitable for the manufacture of self-compensating balance springs.

De plus, un tel alliage est paramagnétique.In addition, such an alloy is paramagnetic.

La présente invention sera maintenant illustrée plus en détails par les exemples non limitatifs qui suivent.The present invention will now be illustrated in more detail by the non-limiting examples which follow.

Différents spiraux ont été fabriqués selon le procédé de l'invention à partir de différents fils de diamètre donné en alliage à base de niobium constitué de 53% en poids de niobium et de 47% en poids de titane monophasé (exemples 1 à 3) et biphasé (exemple 4) et recouverts d'une couche superficielle de cuivre de différentes épaisseurs, avant le tréfilage.Different spirals were manufactured according to the process of the invention from different wires of a given diameter made of niobium-based alloy consisting of 53% by weight of niobium and 47% by weight of single-phase titanium (examples 1 to 3) and two-phase (example 4) and covered with a surface layer of copper of different thicknesses, before drawing.

Puis les fils sont laminés à plat.Then the wires are rolled flat.

Les résultats sont indiqués dans le tableau ci-dessous : Ex. Diamètre total du fil (mm) Diamètre section en NbTi (mm) Epaisseur Cu (µm) Surface NbTi (mm2) Surface cuivre (mm2) rapport surface Cu /surface NbTi Laminage 1 0.1 0.086 7 0.0058 0.0020 0.35 Possible 2 0.232 0.2 16 0.0314 0.0108 0.34 Possible 3 0.312 0.2 56 0.0314 0.0450 1.4 Impossible 4 0.212 0.2 6 0.0314 0.0039 0.12 Possible The results are shown in the table below: Ex. Total wire diameter (mm) Section diameter in NbTi (mm) Cu thickness (µm) Surface NbTi (mm 2 ) Copper surface (mm 2 ) Cu surface / NbTi surface ratio Lamination 1 0.1 0.086 7 0.0058 0.0020 0.35 Possible 2 0.232 0.2 16 0.0314 0.0108 0.34 Possible 3 0.312 0.2 56 0.0314 0.0450 1.4 Impossible 4 0.212 0.2 6 0.0314 0.0039 0.12 Possible

Ces exemples démontrent que seul un rapport surface de cuivre/surface de l'alliage NbTi pour une section de fil donnée inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4 permet de pouvoir laminer aisément le composite Cu/NbTi. L'épaisseur de cuivre est optimisée pour que la pointe, créée par limage ou par étirage à chaud) nécessaire à l'introduction du fil dans la filière lors de l'étirage ou du tréfilage soit recouverte de cuivre.These examples demonstrate that only a copper surface / surface ratio of the NbTi alloy for a given wire section of less than 1, preferably less than 0.5, and more preferably between 0.01 and 0.4, makes it possible to easily roll the Cu / composite. NbTi. The copper thickness is optimized so that the tip, created by filing or by hot drawing) necessary for the introduction of the wire into the die during the drawing or drawing is covered with copper.

Claims (18)

  1. Method for manufacturing a balance spring intended to be fitted to a balance of a timepiece movement, including:
    - a step of creating a blank from a niobium and titanium alloy containing:
    - niobium: the remainder to 100wt%,
    - titanium: between 40 and 60wt%,
    - traces of elements selected from the group formed of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount comprised between 0 and 1600 ppm by weight, the total amount formed by all of said elements being comprised between 0 and 0.3wt%,
    - a step of β-quenching said blank with a given diameter, such that the titanium of said alloy is essentially in solid solution form with β-phase niobium, the α-phase titanium content being less than or equal to 5% by volume,
    - at least one deformation step of said alloy alternated with at least one heat treatment step such that the niobium and titanium alloy obtained has an elastic limit higher than or equal to 600 MPa and a modulus of elasticity lower than or equal to 100 GPa, a winding step to form the balance spring being performed prior to the final heat treatment step,
    the method including, prior to the deformation step, the method includes a step of depositing, on the alloy blank, a surface layer of a ductile material chosen from the group including copper, nickel, cupronickel, cupro manganese, gold, silver, nickel phosphorus NiP and nickel boron NiB, to facilitate the wire shaping process, the thickness of the deposited ductile material layer is chosen such that the ratio of the area of ductile material to the area of NbTi alloy for a given cross-section of wire is less than 1, preferably less than 0.5, and more preferably comprised between 0.01 and 0.4.
  2. Manufacturing method according to claim 1, characterized in that the method includes, after the deformation step, a step of eliminating said surface layer of ductile material.
  3. Manufacturing method according to claim 1, characterized in that the surface layer of ductile material is retained, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly.
  4. Manufacturing method according to claim 3, characterized in that the method includes a step of depositing, on the retained surface layer of ductile material, a final layer of a material chosen from the group containing copper, nickel, cupronickel, cupro manganese, silver, nickel phosphorus NiP, nickel-boron NiB, gold, chosen to be different from the ductile material of the surface layer, Al2O3, TiO2, SiO2 and AlO.
  5. Method according to any of the preceding claims, characterized in that the deformation step includes a wire drawing and/or a rolling process.
  6. Method according to claim 5, characterized in that the last deformation treatment applied to the alloy is a rolling process.
  7. Method according to any of the preceding claims, characterized in that the total deformation rate, the number of heat treatments and the heat treatment parameters are chosen to obtain a balance spring having a thermoelastic coefficient as close as possible to 0.
  8. Manufacturing method according to any of the preceding claims, characterized in that said β-quenching step is a solution treatment, with a duration comprised between 5 minutes and 2 hours at a temperature comprised between 700°C and 1000°C, under vacuum, followed by gas cooling.
  9. Manufacturing method according to any of the preceding claims, characterized in that the heat treatment is performed for a duration of between 1 hour and 80 hours at a temperature comprised between 350°C and 700°C.
  10. Manufacturing method according to any of the preceding claims, characterized in that the number of heat treatment and deformation steps is limited such that the niobium and titanium alloy of the balance spring obtained retains a structure in which the titanium of said alloy is essentially in solid solution form with β-phase niobium, the α-phase titanium content being less than or equal to 10% by volume.
  11. Method according to claim 10 characterized in that the method includes a single deformation step with a deformation rate comprised between 1 and 5, preferably between 2 and 5.
  12. Method according to any of claims 10 to 11, characterized in that after the β quenching step, the method includes a deformation step, a winding step and a heat treatment step.
  13. Method according to claim 12, characterized in that the method includes an intermediate heat treatment step.
  14. Manufacturing method according to any of claims 10 to 13, characterized in that the heat treatment is performed for a duration of between 5 hours and 10 hours at a temperature comprised between 350°C and 600°C.
  15. Manufacturing method according to claim 14, characterized in that the heat treatment is performed for a duration of between 3 hours and 6 hours at a temperature comprised between 400°C and 500°C.
  16. Manufacturing method according to any of claims 1 to 9, characterized in that there is applied a succession of sequences of a deformation step alternated with a heat treatment step, until a niobium and titanium alloy of two-phase microstructure is obtained comprising a solid solution of niobium with β-phase titanium and a solid solution of niobium with α-phase titanium, the α-phase titanium content being greater than 10% by volume.
  17. Manufacturing method according to claim 16, characterized in that each deformation is performed with a deformation rate comprised between 1 and 5, the cumulative total of deformations over all of said succession of sequences leading to a total deformation rate comprised between 1 and 14.
  18. Manufacturing method according to any of claims 16 to 17, characterized in that the heat treatment is performed for a duration of between 15 hours and 75 hours at a temperature comprised between 350°C and 500°C.
EP17209686.9A 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement Active EP3502288B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17209686.9A EP3502288B1 (en) 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement
US16/211,289 US20190196406A1 (en) 2017-12-21 2018-12-06 Method for manufacturing a balance spring for a timepiece movement
JP2018234274A JP6751749B2 (en) 2017-12-21 2018-12-14 How to make a balance spring for a watch movement
CN201811562272.5A CN110007582B (en) 2017-12-21 2018-12-20 Method for manufacturing a balance spring for a timepiece movement
RU2018145229A RU2696809C1 (en) 2017-12-21 2018-12-20 Method of making a hair for a clock mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17209686.9A EP3502288B1 (en) 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement

Publications (2)

Publication Number Publication Date
EP3502288A1 EP3502288A1 (en) 2019-06-26
EP3502288B1 true EP3502288B1 (en) 2020-10-14

Family

ID=60811848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17209686.9A Active EP3502288B1 (en) 2017-12-21 2017-12-21 Method for manufacturing a hairspring for clock movement

Country Status (5)

Country Link
US (1) US20190196406A1 (en)
EP (1) EP3502288B1 (en)
JP (1) JP6751749B2 (en)
CN (1) CN110007582B (en)
RU (1) RU2696809C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801078C1 (en) * 2021-07-23 2023-08-01 Ниварокс-Фар С.А. Balance spring for mechanism related to time measurement

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422116B1 (en) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3796101A1 (en) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Hairspring for clock movement
EP3828642A1 (en) * 2019-11-29 2021-06-02 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP4009114A1 (en) * 2019-12-31 2022-06-08 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3885842B1 (en) 2020-03-26 2024-03-20 Nivarox-FAR S.A. Non-magnetic timepiece component with improved wear resistance
EP4060425A1 (en) 2021-03-16 2022-09-21 Nivarox-FAR S.A. Hairspring for timepiece movement
EP4060424A1 (en) * 2021-03-16 2022-09-21 Nivarox-FAR S.A. Hairspring for timepiece movement

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1166701A (en) 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
US3682719A (en) 1969-03-11 1972-08-08 Takuya Suzuki Process for producing nb-ti super conducting material
US3974001A (en) 1966-04-22 1976-08-10 Institut Dr. Ing. Reinhard Straumann, A.G. Paramagnetic alloy
JPH04279212A (en) 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk Manufacture of fine wire of titanium or its alloys
EP0886195A1 (en) 1997-06-20 1998-12-23 Montres Rolex Sa Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
US20070133355A1 (en) 2003-11-07 2007-06-14 Seik Epson Corporation Timepiece and spring thereof
WO2015189278A2 (en) 2014-06-11 2015-12-17 Cartier Création Studio Sa Oscillator for a timepiece balance spring assembly
EP2993531A1 (en) * 2014-09-08 2016-03-09 Precision Engineering AG Method for shaping a spring
EP3002638A2 (en) 2014-09-08 2016-04-06 Richemont International S.A. Method for manufacturing a thermocompensated hairspring
CH711913A2 (en) 2015-12-02 2017-06-15 Nivarox Far Sa Process for manufacturing a clockwork spiral spring
WO2018172164A1 (en) * 2017-03-24 2018-09-27 Universite De Lorraine METASTABLE β TITANIUM ALLOY, TIMEPIECE SPRING MADE FROM SUCH AN ALLOY AND METHOD FOR PRODUCTION THEREOF
EP3502785B1 (en) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3422116B1 (en) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB503070A (en) * 1937-10-19 1939-03-30 British Thomson Houston Co Ltd Improvements in and relating to the manufacture of wire
JPS5246889B2 (en) * 1971-09-30 1977-11-29
JPS62270754A (en) * 1986-05-16 1987-11-25 Hitachi Cable Ltd Manufacture of nb-ti alloy superconducting wire rod and nb-ti alloy superconducting wire rod
DE69128692T2 (en) * 1990-11-09 1998-06-18 Toyoda Chuo Kenkyusho Kk Titanium alloy made of sintered powder and process for its production
DE69911913T2 (en) * 1999-03-26 2004-09-09 Rolex Sa Self-compensating coil spring for clockwork coil spring balance and method for treating the same
US6402859B1 (en) * 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
US7275301B2 (en) * 2001-01-30 2007-10-02 Shahin Pourrahimi Method for reinforcing superconducting coils with high-strength materials
US6918974B2 (en) * 2002-08-26 2005-07-19 General Electric Company Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
JP2010187524A (en) * 2009-01-14 2010-08-26 Seiko Epson Corp Piezoelectric drive device and electronic apparatus
EP2264553B1 (en) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Thermocompensated spring and manufacturing method thereof
CH703414A2 (en) * 2010-07-09 2012-01-13 Montres Breguet Sa Balance spring for forming sprung balance resonator of mechanical watch, has hair springs whose curves correspond to specific relation so as to reduce displacements of center of mass of balance spring during contraction and expansion
US20120076686A1 (en) * 2010-09-23 2012-03-29 Ati Properties, Inc. High strength alpha/beta titanium alloy
JP6247813B2 (en) * 2012-08-08 2017-12-13 株式会社神戸製鋼所 NbTi superconducting wire
CH708231B1 (en) * 2013-06-27 2017-03-15 Nivarox Far Sa Clock spring made of austenitic stainless steel.
RU2525003C1 (en) * 2013-08-07 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "МАТИ-Российский государственный технологический университет имени К.Э. Циолковского" (МАТИ) Titanium aluminide alloy and method for processing blanks thereof
EP2952972B1 (en) * 2014-06-03 2017-01-25 The Swatch Group Research and Development Ltd. Method for manufacturing a composite compensator spiral
CN104538543B (en) * 2014-12-11 2017-06-20 西部超导材料科技股份有限公司 A kind of low-temperature superconducting wire preparation method of NbTi rods

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974001A (en) 1966-04-22 1976-08-10 Institut Dr. Ing. Reinhard Straumann, A.G. Paramagnetic alloy
GB1166701A (en) 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
US3682719A (en) 1969-03-11 1972-08-08 Takuya Suzuki Process for producing nb-ti super conducting material
JPH04279212A (en) 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk Manufacture of fine wire of titanium or its alloys
EP0886195A1 (en) 1997-06-20 1998-12-23 Montres Rolex Sa Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
US20070133355A1 (en) 2003-11-07 2007-06-14 Seik Epson Corporation Timepiece and spring thereof
WO2015189278A2 (en) 2014-06-11 2015-12-17 Cartier Création Studio Sa Oscillator for a timepiece balance spring assembly
EP2993531A1 (en) * 2014-09-08 2016-03-09 Precision Engineering AG Method for shaping a spring
EP3002638A2 (en) 2014-09-08 2016-04-06 Richemont International S.A. Method for manufacturing a thermocompensated hairspring
CH711913A2 (en) 2015-12-02 2017-06-15 Nivarox Far Sa Process for manufacturing a clockwork spiral spring
WO2018172164A1 (en) * 2017-03-24 2018-09-27 Universite De Lorraine METASTABLE β TITANIUM ALLOY, TIMEPIECE SPRING MADE FROM SUCH AN ALLOY AND METHOD FOR PRODUCTION THEREOF
EP3422116B1 (en) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3502785B1 (en) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ALBERT HELMUT, IRMTRAUD PFEIFFER: "Über die Temperatureabhängigkeit des Elastizitätsmodulus von Niob-Titan- Legierungen", Z. METALLKDE, vol. 63, 1 January 1972 (1972-01-01), pages 126 - 131, XP055810627
ANONYMOUS: "7.1.5.4 Nb or Pb-based nonmagnetic Elinvar alloys", NUMERICAL DATA AND FUNCTIONAL RELATIONSHIP IN SCIENCE AND TECHNOLOGY, 1 January 1994 (1994-01-01), pages 231 - 234, XP055936577, [retrieved on 20220629]
ANONYMOUS: "IIIa. Nb-Ti Phase Diagram Phase Diagram", INTERNET ARCHIVE WAYBACK MACHINE, 18 December 2015 (2015-12-18), pages 1 - 13, XP055631656, Retrieved from the Internet <URL:https://web.archive.org/web/20151218115535if_/http://boulderschool.yale.edu/sites/default/files/files/larbalestier3.pdf> [retrieved on 20191014]
ANONYMOUS: "Precision Engineering and H.Moser & Cie. Present their Paramagnetic Hairspring", PRECISION ENGINEERING AG PRESS RELEASE, 22 November 2016 (2016-11-22), pages 1 - 3, XP055631693, Retrieved from the Internet <URL:http://media.h-moser.com/files/5015/0220/2389/peag_2016_press_release_venturer_small_seconds_xl_paramagnetic_20161122_english.pdf> [retrieved on 20191014]
ANONYMOUS: "Visite de la manufacture H.MOSER & CIE (1/2)", FAM - FORUM A MONTRES, 11 September 2015 (2015-09-11), XP055922964, Retrieved from the Internet <URL:http://forumamontres.forumactif.com/t184821-visite-de-la- manufacture-h-moser-cie-1-2> [retrieved on 20220519]
ANONYMOUS: "Wire drawing", WIKIPEDIA, THE FREE ENCYCLOPEDIA, 7 December 2016 (2016-12-07), XP055922967, Retrieved from the Internet <URL:https://en.wikipedia.org/wiki/Wire_drawing> [retrieved on 20220519]
CHEVENARD PIERRE, VACHé, X. & VILLACHON, A.: "Nouveaux alliages du type élinvar pour spiraux de chronomètres", ANNALES FRANCAISES DE CHRONOMETRIE, vol. 7, 1 January 1937 (1937-01-01), pages 259 - 294, XP055810602
FEDOTOV S G: "PECULIARITIES OF CHANGES IN ELASTIC PROPERTIES OF TITANIUM MARTENSITE", ZZ-WCTP1973, vol. 2, 1 January 1973 (1973-01-01), pages 871 - 881, XP055810628
FEDOTOV S.G., P.K. BELOUSOV: "Elastic constants of alloys of the system titanium-niobium", THE PHYSICS OF METALS AND METALLOGRAPHY, vol. 17, no. 5, 1 January 1964 (1964-01-01), pages 83 - 86, XP055810614
HOCHSTUHL P: "Gitterinstabilität und metastabile Phasen in Niob-Titan-Supraleitern", DIPLOMARBEIT KFK 3931, 1 July 1985 (1985-07-01), pages 1 - 85, XP055810538
KOCH, C.C. ; EASTON, D.S.: "A review of mechanical behaviour and stress effects in hard superconductors", CRYOGENICS., ELSEVIER, KIDLINGTON., GB, vol. 17, no. 7, 1 July 1977 (1977-07-01), GB , pages 391 - 413, XP024050971, ISSN: 0011-2275, DOI: 10.1016/0011-2275(77)90288-0
LARBALESTIER D.C., LEE P.J.: "New developments in niobium titanium superconductors", PROCEEDINGS OF THE 1995 PARTICLE ACCELERATOR CONFERENCE : PAPERS FROM THE SIXTEENTH BIENNIAL PARTICLE ACCELERATOR CONFERENCE, AN INTERNATIONAL FORUM ON ACCELERATOR SCIENCE AND TECHNOLOGY HELD MAY 1 - 5, 1995 IN DALLAS, TEXAS, IEEE, NEW YORK, US, vol. 2, 1 May 1995 (1995-05-01) - 5 May 1995 (1995-05-05), New York, US , pages 1276 - 1281, XP010165875, ISBN: 978-0-7803-2934-8, DOI: 10.1109/PAC.1995.505199
LEE P. J., MCKINNELL, J.C., LARBALESTIER, D.C.: "Restricted Novel Heat Treatments for Obtaining High Jc in Nb- 46.5 WT.%Ti: II. Prestrain Dependence", ADVANCES IN CRYOGENIC ENGINEERING, vol. 36, 1 January 1990 (1990-01-01), pages 287 - 294, XP055922958
LEE PETER J.: "Nb-Ti from beginnings to perfection", PHYSICAL REVIEW, 1 January 2011 (2011-01-01), pages 1 - 23, XP055936572
LEE PETER J: "ABRIDGED METALLURGY OF DUCTILE ALLOY SUPERCONDUCTORS", 1 January 1999 (1999-01-01), pages 1 - 14, XP055810630, Retrieved from the Internet <URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7409&rep=rep1&type=pdf> [retrieved on 20210604]
OZAKI TOMOMICHI, MATSUMOTO HIROAKI, WATANABE SADAO, HANADA SHUJI: "Beta Ti Alloys with Low Young's Modulus", MATERIALS TRANSACTIONS, THE JAPANESE INSTITUTE OF METALS AND MATERIALS, JP, vol. 45, no. 8, 1 January 2004 (2004-01-01), JP , pages 2776 - 2779, XP055810610, ISSN: 1345-9678, DOI: 10.2320/matertrans.45.2776
PETER J LEE, LARBALESTIER DAVID C: "Niobium-Titanium Superconducting Wires: Nanostructures by Extrusion and Wire Drawing", WIRE JOURNAL INTERNATIONAL, 1 February 2003 (2003-02-01), pages 1 - 8, XP055631678, Retrieved from the Internet <URL:https://pdfs.semanticscholar.org/3b77/9b7295b2f5f6376fa1df8d741fe5cf49b894.pdf?_ga=2.11913649.408455947.1571043110-1369269946.1561712474> [retrieved on 20191014]
SCOTT KREILICK: "NIOBIUM-Titanium Superconductors", ASM HANDBOOK, vol. 2, 1 January 1990 (1990-01-01), pages 1 - 44, XP055936564

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801078C1 (en) * 2021-07-23 2023-08-01 Ниварокс-Фар С.А. Balance spring for mechanism related to time measurement

Also Published As

Publication number Publication date
JP6751749B2 (en) 2020-09-09
CN110007582A (en) 2019-07-12
RU2696809C1 (en) 2019-08-06
EP3502288A1 (en) 2019-06-26
US20190196406A1 (en) 2019-06-27
CN110007582B (en) 2021-03-09
JP2019113549A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
EP3502288B1 (en) Method for manufacturing a hairspring for clock movement
EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
EP3422116B1 (en) Timepiece hairspring
EP3502289B1 (en) Manufacturing method of a hairspring for a timepiece movement
EP3601628B1 (en) Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication
EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
CH714492A2 (en) Spiral spring for clockwork and its manufacturing process.
EP3889691B1 (en) Horological hairspring made of a nb-hf alloy
EP3422115B1 (en) Timepiece spiral spring
EP3796101A1 (en) Hairspring for clock movement
CH714493A2 (en) Method of manufacturing a spiral spring for a watch movement
EP3845971B1 (en) Method for manufacturing an hairspring for clock movement
EP4060424A1 (en) Hairspring for timepiece movement
CH714494A2 (en) Spiral clock spring, in particular a mainspring or a spiral spring.
CH716155A2 (en) Method of manufacturing a spiral spring for a clockwork movement.
EP4060425A1 (en) Hairspring for timepiece movement
EP3736638B1 (en) Method for manufacturing a hairspring for clock movement
CH716156A2 (en) Method of manufacturing a spiral spring for a clockwork movement.
CH717018A2 (en) Spiral spring for a watch movement and its manufacturing process.
EP3828642A1 (en) Hairspring for clock movement and method for manufacturing same
CH716853A2 (en) Spiral spring for a watch movement and its manufacturing process.
CH718454A2 (en) Spiral spring for a clock movement and process for manufacturing this spiral spring.
CH714491A2 (en) Spiral spring for clockwork and its manufacturing process.
CH718455A2 (en) Spiral spring for a clock movement and process for manufacturing this spiral spring.
EP4123393A1 (en) Hairspring for clock movement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1323628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017025363

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1323628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201014

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017025363

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

26 Opposition filed

Opponent name: E-PATENT S.A.

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602017025363

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20230117

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 7