EP3828642A1 - Hairspring for clock movement and method for manufacturing same - Google Patents

Hairspring for clock movement and method for manufacturing same Download PDF

Info

Publication number
EP3828642A1
EP3828642A1 EP19212457.6A EP19212457A EP3828642A1 EP 3828642 A1 EP3828642 A1 EP 3828642A1 EP 19212457 A EP19212457 A EP 19212457A EP 3828642 A1 EP3828642 A1 EP 3828642A1
Authority
EP
European Patent Office
Prior art keywords
layer
weight
manufacturing process
spiral spring
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19212457.6A
Other languages
German (de)
French (fr)
Inventor
Lionel MICHELET
M. Christian CHARBON
M. Marco VERARDO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP19212457.6A priority Critical patent/EP3828642A1/en
Priority to JP2022531415A priority patent/JP7475447B2/en
Priority to US17/779,659 priority patent/US20220413438A1/en
Priority to CN202080082129.5A priority patent/CN114730155A/en
Priority to PCT/EP2020/083622 priority patent/WO2021105352A1/en
Priority to EP20811381.1A priority patent/EP4066066A1/en
Publication of EP3828642A1 publication Critical patent/EP3828642A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a timepiece movement and the spiral spring resulting from the method.
  • spiral springs are also centered on the concern for thermal compensation, so as to guarantee regular chronometric performance. This requires obtaining a thermoelastic coefficient close to zero. We are also looking to produce spiral springs exhibiting limited sensitivity to magnetic fields.
  • New balance springs have been developed from alloys of niobium and titanium.
  • these alloys pose problems of sticking and seizing in the drawing or drawing dies and against the rolling rolls, which makes them almost impossible to transform into fine wires by the standard processes used for example for steel. .
  • This copper layer on the wire has a disadvantage. It does not allow fine control of the wire geometry during wire calibration and rolling. These dimensional variations of the Nb-Ti core of the wire result in significant variations in the torques of the balance springs.
  • the present invention provides a method of manufacturing a spiral spring which makes it possible to facilitate shaping by deformation while avoiding the drawbacks associated with copper.
  • the method of manufacturing the spiral spring according to the invention comprises a heat treatment step aimed at transforming part of the Cu layer coating the core in Nb-Ti into a layer of intermetallics Cu, Ti and remove the remaining Cu layer.
  • This intermetallic layer then forms the outer layer which is in contact with the dies and the rolling rolls. It is chemically inert and ductile and makes it easy to draw and roll the spiral wire. It has the other advantage of facilitating the separation between the hairsprings after the fixing step following the stretching.
  • the intermetallic layer is retained on the hairspring at the end of the manufacturing process. It is sufficiently thin with a thickness of between 20 nm and 10 microns, preferably between 300 nm and 1.5 ⁇ m, so as not to significantly modify the thermoelastic coefficient (CTE) of the hairspring. It is also perfectly adherent to the Nb-Ti core.
  • CTE thermoelastic coefficient
  • the invention is more specifically described for a Cu layer partially transformed into a Cu, Ti intermetallic layer.
  • the present invention is applicable for other elements such as Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co and Cr also capable of forming intermetallics with Ti. It is also applicable for an alloy of one of these elements.
  • the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a timepiece movement.
  • This spiral spring is made of a binary type alloy comprising niobium and titanium. It also relates to the spiral spring resulting from this process.
  • the blank of step a) comprises a layer around the Nb-Ti core of a material X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al , Au, Ni, Ag, Co and Cr or an alloy of these elements.
  • a material X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al , Au, Ni, Ag, Co and Cr or an alloy of these elements.
  • it can be Cu, Cu-Sn, Cu-Ni, etc.
  • the method comprises a step of supplying said material X around the core in Nb-Ti to form the layer in X, said step being carried out between step a) and step c) of deformation .
  • the manufacturing process also includes a heat treatment step to partially transform the X-shaped layer into an X, Ti intermetallic layer around the Nb-Ti core.
  • the heat treatment is carried out at a temperature between 200 and 900 ° C for 15 minutes to 100 hours.
  • the blank thus successively comprises the core in Nb-Ti, the layer of intermetallic X, Ti and the remaining part of the layer in X, said step being carried out between step b) and step c) or between two sequences of the deformation step c).
  • the manufacturing process then comprises a step of removing the remaining part of the layer in X. This step is carried out between step b) and step c), between two sequences of the deformation step c) or between step c) and step d).
  • the core is made from an Nb-Ti alloy comprising between 5 and 95% by weight of titanium.
  • the alloy used in the present invention comprises by weight between 40 and 60% titanium.
  • it comprises between 40% and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium.
  • the percentage of titanium is sufficient to obtain a maximum proportion of Ti precipitates in the form of alpha phase while being reduced to avoid the formation of a martensitic phase causing problems of fragility of the alloy during its use.
  • the Nb-Ti alloy used in the present invention does not comprise other elements except for possible and inevitable traces. This makes it possible to avoid the formation of fragile phases.
  • the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.
  • the tantalum content is less than or equal to 0.10% by weight of the total.
  • the carbon content is less than or equal to 0.04% by weight of the total, in particular less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.
  • the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.
  • the nitrogen content is less than or equal to 0.02% by weight of the total, in particular less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.
  • the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.
  • the silicon content is less than or equal to 0.01% by weight of the total.
  • the nickel content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.16% by weight of the total.
  • the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.005% by weight of the total.
  • the aluminum content is less than or equal to 0.01% by weight of the total.
  • the Nb-Ti core of the blank in step a) is coated with a layer of material X as listed above.
  • the addition of the X-shaped layer around the core can be achieved by galvanic means, by PVD, CVD or by mechanical means.
  • a tube of material X is fitted to a bar of the Nb-Ti alloy.
  • the assembly is deformed by hammering, stretching and / or wire drawing to thin the bar and form the blank made available in step a).
  • the present invention does not exclude providing the X-shaped layer during the method of manufacturing the spiral spring between step a) and step c) of deformation.
  • the thickness of the layer in X is chosen so that the ratio of material surface X / surface area of the Nb-Ti core for a given wire section is less than 1, preferably less than 0.5, and more preferably included between 0.01 and 0.4.
  • the thickness is preferably between 1 and 500 micrometers for a wire having a total diameter of 0.2 to 1 millimeter.
  • the beta-type quenching in step b) is a dissolving treatment. Preferably, it is carried out for a period of between 5 minutes and 2 hours at a temperature of between 700 ° C and 1000 ° C, under vacuum, followed by cooling under gas. More particularly, this beta quench is a dissolving treatment at 800 ° C. under vacuum for 5 minutes to 1 hour, followed by cooling under gas.
  • Deformation step c) is carried out in several sequences.
  • deformation is meant a deformation by wire drawing and / or rolling.
  • the deformation step comprises at least successively a first wire drawing sequence, a second calibration wire drawing sequence and a third rolling sequence, preferably with a rectangular profile compatible with the entry section of a stepping spindle. .
  • Each sequence is carried out with a given strain rate between 1 and 5, this strain rate corresponding to the classic formula 2ln (d0 / d), where d0 is the diameter of the last beta hardening, and where d is the diameter of the strain-hardened wire.
  • the global accumulation of deformations over the whole of this succession of sequences leads to a total rate of deformation between 1 and 14.
  • the manufacturing process comprises the step of heat treatment to partially transform the X-shaped layer into an X, Ti intermetallic layer around the Nb-Ti core.
  • This step is carried out for 15 minutes to 100 hours at a temperature between 200 and 900 ° C. Preferably, it is carried out for 5 to 20 hours between 400 and 500 ° C.
  • This heat treatment step can be used to precipitate the titanium in the alpha phase.
  • the layer of intermetallic has a thickness of between 20 nm and 10 ⁇ m, preferably between 300 nm and 1.5 ⁇ m, more preferably between 400 and 800 nm.
  • the remaining layer of X has a thickness between 1 and 25 ⁇ m.
  • the intermetallic layer comprises, for example, CU 4 Ti, Cu 2 Ti, CuTi, Cu 3 Ti 2 and CuTi 2 .
  • the microscopy at figure 1 shows the structure of the blank after heat treatment at 450 ° C of a niobium-titanium alloy with 47% by weight of titanium covered with a layer of copper.
  • the NbTi core 47 is successively observed, the Cu, Ti intermetallic layer having a thickness of the order of 700 nm and the remaining copper layer having a thickness of the order of 5 ⁇ m.
  • the figure 3 represents the XRD spectrum for this same alloy of the spiral spring according to the invention after removal of the Cu layer and after the slitting and fixing steps.
  • the XRD spectrum for this same alloy with the copper layer but in the absence of the heat treatment is shown on figure 2 .
  • This heat treatment aimed at forming intermetallics can be carried out before the deformation step c) or between two deformation sequences during step c).
  • it is carried out in step c) between the first wire drawing sequence and the second calibration wire drawing sequence.
  • the remaining X-layer is removed so as to have the intermetallic layer as the outer layer.
  • This step can be carried out by chemical attack in a solution based on cyanides or acids, for example nitric acid. It will be specified that the present invention does not exclude that certain intermetallics are also dissolved in the acid. This is for example the case with Cu 4 Ti in a nitric acid solution.
  • the X-layer can be removed at different times in the process depending on the desired effect. Preferably, it is removed in step c) before the calibration wire drawing so as to very finely control the dimensions. ends of the spiral wire.
  • the intermetallics present in the outer layer then prevent the sticking of the wire in the dies, against the rolling rolls and between the spirals during fixing. More preferably, it is removed between the first wire drawing sequence and the second calibration wire drawing sequence. According to a less advantageous variant, it is removed after the calibration wire drawing before the rolling, so as to prevent the wire sticking against the rolling rolls and between the spirals during fixing. According to a variant which is also less advantageous, it is removed at the end of the deformation step c) before the scaling step. In this case, the outer layer of intermetallics only makes it possible to avoid the sticking between the balance springs during fixing.
  • step e) of final heat treatment on the spiral spring is followed by step e) of final heat treatment on the spiral spring.
  • This final heat treatment is a precipitation treatment of Ti in the alpha phase lasting between 1 and 80 hours, preferably between 5 and 30 hours, at a temperature between 350 and 700 ° C, preferably between 400 and 600. ° C.
  • the process may include intermediate heat treatments between the deformation sequences in this same range of times and temperatures.
  • the spiral spring produced according to this process has an elastic limit greater than or equal to 500 MPa, preferably greater than 600 MPa, and more precisely between 500 and 1000 MPa.
  • it has a modulus of elasticity less than or equal to 120 GPa, and preferably less than or equal to 100 GPa.
  • the spiral spring comprises an Nb-Ti core coated with a layer of intermetallics X, Ti with X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co and Cr or an alloy of one of these elements, said intermetallic layer having a thickness between 20 nm and 10 ⁇ m, of preferably between 300 nm and 1.5 ⁇ m, more preferably between 400 nm and 800 nm.
  • the intermetallic layer is a Cu, Ti layer.
  • the spiral spring core has a two-phase microstructure comprising niobium in the beta phase and titanium in the alpha phase.
  • the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, allowing it to guarantee the maintenance of chronometric performance despite the variation in the temperatures of use of a watch incorporating such a spiral spring.
  • the method of the invention allows the production, and more particularly the shaping, of a balance spring for a balance made of a niobium-titanium type alloy, typically containing 47% by weight of titanium (40-60%).
  • This alloy has high mechanical properties, by combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring.
  • such an alloy is paramagnetic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un ressort spiral, comprenant :a) une étape de mise à disposition d'une ébauche avec une âme en Nb-Ti,b) une étape de trempe de type bêta de ladite ébauche,c) une étape de déformation en plusieurs séquences de l'ébauche,d) une étape d'estrapadage pour former le ressort spiral,e) une étape de traitement thermique final sur le ressort spiral,et étant caractérisé en ce que:- l'ébauche de l'étape a) comprend une couche en X avec un matériau X choisi parmi le Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co et le Cr ou un alliage d'un de ces éléments autour de l'âme en Nb-Ti,- il comprend une étape de traitement thermique pour transformer partiellement ladite couche en X en une couche d'intermétalliques X,Ti autour de l'âme en Nb-Ti, ladite étape étant effectuée entre l'étape b) et l'étape c) ou entre deux séquences de l'étape de déformation c),- une étape d'enlèvement de ladite partie de la couche en X, ladite étape étant effectuée entre l'étape b) et l'étape c), entre deux séquences de l'étape de déformation c) ou entre l'étape c) et l'étape d).The present invention relates to a method of manufacturing a spiral spring, comprising: a) a step of providing a blank with an Nb-Ti core, b) a beta-type hardening step of said blank, c ) a step of deformation in several sequences of the blank, d) a step of slitting to form the spiral spring, e) a step of final heat treatment on the spiral spring, and being characterized in that: - the blank of step a) comprises an X-shaped layer with a material X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co and Cr or an alloy of one of these elements around the Nb-Ti core, - it comprises a heat treatment step to partially transform said X-shaped layer into an X, Ti intermetallic layer around the Nb-Ti core, said step being carried out between step b) and step c) or between two sequences of the deformation step c), - a step of removing said part of the layer in X, said step being carried out between step b) and step c), between two sequences of deformation step c) or between step c) and step d).

Description

Domaine de l'inventionField of the invention

L'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie et le ressort spiral issu du procédé.The invention relates to a method of manufacturing a spiral spring intended to equip a balance of a timepiece movement and the spiral spring resulting from the method.

Arrière-plan de l'inventionBackground of the invention

La fabrication de ressorts spiraux pour l'horlogerie doit faire face à des contraintes souvent à première vue incompatibles :

  • nécessité d'obtention d'une limite élastique élevée,
  • facilité d'élaboration, notamment de tréfilage et de laminage,
  • excellente tenue en fatigue,
  • stabilité des performances dans le temps,
  • faibles sections.
The manufacture of spiral springs for watchmaking must face constraints that are often incompatible at first sight:
  • need to obtain a high elastic limit,
  • ease of production, especially wire drawing and rolling,
  • excellent resistance to fatigue,
  • performance stability over time,
  • low sections.

La réalisation de ressorts spiraux est en outre centrée sur le souci de la compensation thermique, de façon à garantir des performances chronométriques régulières. Il faut pour cela obtenir un coefficient thermoélastique proche de zéro. On recherche également à réaliser des ressorts spiraux présentant une sensibilité aux champs magnétiques limitée.The production of spiral springs is also centered on the concern for thermal compensation, so as to guarantee regular chronometric performance. This requires obtaining a thermoelastic coefficient close to zero. We are also looking to produce spiral springs exhibiting limited sensitivity to magnetic fields.

De nouveaux spiraux ont été développés à partir d'alliages de niobium et de titane. Toutefois, ces alliages posent des problèmes de collement et de grippage dans les filières d'étirage ou de tréfilage et contre les rouleaux de laminage, ce qui les rend quasiment impossibles à transformer en fils fins par les procédés standards utilisés par exemple pour l'acier.New balance springs have been developed from alloys of niobium and titanium. However, these alloys pose problems of sticking and seizing in the drawing or drawing dies and against the rolling rolls, which makes them almost impossible to transform into fine wires by the standard processes used for example for steel. .

Pour remédier à cet inconvénient, il a été proposé de déposer, avant la mise en forme dans les filières et le laminoir, une couche d'un matériau ductile, et en particulier de cuivre, sur l'ébauche en Nb-Ti.To remedy this drawback, it has been proposed to deposit, before shaping in the dies and the rolling mill, a layer of a ductile material, and in particular copper, on the Nb-Ti blank.

Cette couche de cuivre sur le fil présente un désavantage. Elle ne permet pas un contrôle fin de la géométrie du fil lors de la calibration et du laminage du fil. Ces variations dimensionnelles de l'âme en Nb-Ti du fil se traduisent par des variations importantes des couples des spiraux.This copper layer on the wire has a disadvantage. It does not allow fine control of the wire geometry during wire calibration and rolling. These dimensional variations of the Nb-Ti core of the wire result in significant variations in the torques of the balance springs.

Résumé de l'inventionSummary of the invention

Pour remédier aux inconvénients précités, la présente invention propose un procédé de fabrication d'un ressort spiral qui permette de faciliter la mise en forme par déformation tout en évitant les inconvénients liés au cuivre.To remedy the aforementioned drawbacks, the present invention provides a method of manufacturing a spiral spring which makes it possible to facilitate shaping by deformation while avoiding the drawbacks associated with copper.

A cet effet, le procédé de fabrication du ressort spiral selon l'invention comporte une étape de traitement thermique visant à transformer une partie de la couche en Cu enrobant l'âme en Nb-Ti en une couche d'intermétalliques Cu,Ti et à enlever la couche de Cu restante. Cette couche d'intermétalliques forme alors la couche externe qui est en contact avec les filières et les rouleaux de laminage. Elle est chimiquement inerte et ductile et permet aisément de tréfiler et laminer le fil spiral. Elle présente pour autre avantage de faciliter la séparation entre les spiraux après l'étape de fixage suivant l'estrapadage.To this end, the method of manufacturing the spiral spring according to the invention comprises a heat treatment step aimed at transforming part of the Cu layer coating the core in Nb-Ti into a layer of intermetallics Cu, Ti and remove the remaining Cu layer. This intermetallic layer then forms the outer layer which is in contact with the dies and the rolling rolls. It is chemically inert and ductile and makes it easy to draw and roll the spiral wire. It has the other advantage of facilitating the separation between the hairsprings after the fixing step following the stretching.

La couche d'intermétalliques est conservée sur le spiral à l'issue du procédé de fabrication. Elle est suffisamment fine avec une épaisseur comprise entre 20 nm et 10 microns, de préférence entre 300 nm et 1.5 µm, pour ne pas significativement modifier le coefficient thermoélastique (CTE) du spiral. Elle est par ailleurs parfaitement adhérente à l'âme en Nb-Ti.The intermetallic layer is retained on the hairspring at the end of the manufacturing process. It is sufficiently thin with a thickness of between 20 nm and 10 microns, preferably between 300 nm and 1.5 μm, so as not to significantly modify the thermoelastic coefficient (CTE) of the hairspring. It is also perfectly adherent to the Nb-Ti core.

L'invention est plus spécifiquement décrite pour une couche de Cu transformée partiellement en une couche d'intermétalliques Cu,Ti. Cependant, la présente invention est d'application pour d'autres éléments tels que le Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co et le Cr également aptes à former des intermétalliques avec le Ti. Elle est également d'application pour un alliage d'un de ces éléments.The invention is more specifically described for a Cu layer partially transformed into a Cu, Ti intermetallic layer. However, the present invention is applicable for other elements such as Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co and Cr also capable of forming intermetallics with Ti. It is also applicable for an alloy of one of these elements.

Brève description des figuresBrief description of the figures

  • La figure 1 représente une microscopie de l'ébauche avec une âme réalisée dans l'alliage NbTi47 enrobée d'une couche de Cu partiellement transformée en intermétalliques avec le traitement thermique du procédé selon l'invention.The figure 1 shows a microscopy of the blank with a core produced in the NbTi 47 alloy coated with a layer of Cu partially transformed into intermetallics with the heat treatment of the process according to the invention.
  • La figure 2 représente, selon l'art antérieur, le spectre XRD de cet alliage avec la couche de Cu en l'absence du traitement thermique selon le procédé de l'invention.The figure 2 represents, according to the prior art, the XRD spectrum of this alloy with the Cu layer in the absence of the heat treatment according to the process of the invention.
  • La figure 3 représente le spectre XRD de ce même alliage avec la couche de Cu en présence du traitement thermique selon le procédé de l'invention.The figure 3 represents the XRD spectrum of this same alloy with the Cu layer in the presence of the heat treatment according to the process of the invention.
  • La figure 4 est un agrandissement du spectre XRD de la figure 3 pour les pics relatifs aux intermétalliques.The figure 4 is an enlargement of the XRD spectrum of the figure 3 for the peaks relating to intermetallics.
Description détaillée de l'inventionDetailed description of the invention

L'invention concerne un procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie. Ce ressort spiral est réalisé dans un alliage de type binaire comportant du niobium et du titane. Elle se rapporte également au ressort spiral issu de ce procédé.The invention relates to a method of manufacturing a spiral spring intended to equip a balance of a timepiece movement. This spiral spring is made of a binary type alloy comprising niobium and titanium. It also relates to the spiral spring resulting from this process.

Selon l'invention, le procédé de fabrication comporte les étapes suivantes :

  1. a) une étape de mise à disposition d'une ébauche avec une âme en Nb-Ti réalisée dans un alliage constitué de :
    • niobium : balance à 100% en poids,
    • titane : entre 5 et 95% en poids,
    • traces d'un ou plusieurs éléments sélectionnés parmi le groupe constitué du O, H, C, Fe, Ta, N, Ni, Si, Cu et de l'Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids,
  2. b) une étape de trempe de type bêta de ladite ébauche, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase bêta,
  3. c) une étape de déformation en plusieurs séquences de l'ébauche,
  4. d) une étape d'estrapadage pour former le ressort spiral,
  5. e) une étape de traitement thermique final sur le ressort spiral.
According to the invention, the manufacturing process comprises the following steps:
  1. a) a step of providing a blank with an Nb-Ti core made of an alloy consisting of:
    • niobium: balance at 100% by weight,
    • titanium: between 5 and 95% by weight,
    • traces of one or more elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu and Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount consisting of all of said elements being between 0% and 0.3% by weight,
  2. b) a beta-type quenching step of said blank, so that the titanium of said alloy is essentially in the form of a solid solution with the niobium in the beta phase,
  3. c) a step of deformation in several sequences of the blank,
  4. d) a stepping step to form the spiral spring,
  5. e) a final heat treatment step on the spiral spring.

Selon une variante de l'invention, l'ébauche de l'étape a) comporte une couche autour de l'âme en Nb-Ti d'un matériau X choisi parmi le Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co et le Cr ou un alliage d'un ces éléments. Par exemple, il peut s'agir du Cu, Cu-Sn, Cu-Ni, etc. Selon une autre variante, le procédé comprend une étape d'apport dudit matériau X autour de l'âme en Nb-Ti pour former la couche en X, ladite étape étant effectuée entre l'étape a) et l'étape c) de déformation.According to a variant of the invention, the blank of step a) comprises a layer around the Nb-Ti core of a material X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al , Au, Ni, Ag, Co and Cr or an alloy of these elements. For example, it can be Cu, Cu-Sn, Cu-Ni, etc. According to another variant, the method comprises a step of supplying said material X around the core in Nb-Ti to form the layer in X, said step being carried out between step a) and step c) of deformation .

Le procédé de fabrication comporte également une étape de traitement thermique pour transformer partiellement la couche en X en une couche d'intermétalliques X,Ti autour de l'âme en Nb-Ti. Le traitement thermique est réalisé à une température comprise entre 200 et 900°C durant 15 minutes à 100 heures. L'ébauche comprend ainsi successivement l'âme en Nb-Ti, la couche d'intermétalliques X,Ti et la partie restante de la couche en X, ladite étape étant effectuée entre l'étape b) et l'étape c) ou entre deux séquences de l'étape de déformation c).The manufacturing process also includes a heat treatment step to partially transform the X-shaped layer into an X, Ti intermetallic layer around the Nb-Ti core. The heat treatment is carried out at a temperature between 200 and 900 ° C for 15 minutes to 100 hours. The blank thus successively comprises the core in Nb-Ti, the layer of intermetallic X, Ti and the remaining part of the layer in X, said step being carried out between step b) and step c) or between two sequences of the deformation step c).

Le procédé de fabrication comporte ensuite une étape d'enlèvement de la partie restante de la couche en X. Cette étape est effectuée entre l'étape b) et l'étape c), entre deux séquences de l'étape de déformation c) ou entre l'étape c) et l'étape d).The manufacturing process then comprises a step of removing the remaining part of the layer in X. This step is carried out between step b) and step c), between two sequences of the deformation step c) or between step c) and step d).

Le procédé est maintenant décrit plus en détail.The process is now described in more detail.

A l'étape a), l'âme est réalisée dans un alliage Nb-Ti comportant entre 5 et 95% en poids de titane. D'une manière avantageuse, l'alliage utilisé dans la présente invention comprend en poids entre 40 et 60% de titane. De préférence, il comporte entre 40 et 49% en poids de titane, et plus préférentiellement entre 46% et 48% en poids de titane. Le pourcentage de titane est suffisant pour obtenir une proportion maximale de précipités de Ti sous forme de phase alpha tout en étant minoré pour éviter la formation de phase martensitique entraînant des problèmes de fragilité de l'alliage lors de sa mise en œuvre. In step a) , the core is made from an Nb-Ti alloy comprising between 5 and 95% by weight of titanium. Advantageously, the alloy used in the present invention comprises by weight between 40 and 60% titanium. Preferably, it comprises between 40% and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium. The percentage of titanium is sufficient to obtain a maximum proportion of Ti precipitates in the form of alpha phase while being reduced to avoid the formation of a martensitic phase causing problems of fragility of the alloy during its use.

D'une manière particulièrement avantageuse, l'alliage Nb-Ti utilisé dans la présente invention ne comprend pas d'autres éléments à l'exception d'éventuelles et inévitables traces. Cela permet d'éviter la formation de phases fragiles.In a particularly advantageous manner, the Nb-Ti alloy used in the present invention does not comprise other elements except for possible and inevitable traces. This makes it possible to avoid the formation of fragile phases.

Plus particulièrement, la teneur en oxygène est inférieure ou égale à 0.10% en poids du total, voire encore inférieure ou égale à 0.085% en poids du total.More particularly, the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.

Plus particulièrement, la teneur en tantale est inférieure ou égale à 0.10% en poids du total.More particularly, the tantalum content is less than or equal to 0.10% by weight of the total.

Plus particulièrement, la teneur en carbone est inférieure ou égale à 0.04% en poids du total, notamment inférieure ou égale à 0.020% en poids du total, voire encore inférieure ou égale à 0.0175% en poids du total.More particularly, the carbon content is less than or equal to 0.04% by weight of the total, in particular less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.

Plus particulièrement, la teneur en fer est inférieure ou égale à 0.03% en poids du total, notamment inférieure ou égale à 0.025% en poids du total, voire encore inférieure ou égale à 0.020% en poids du total.More particularly, the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.

Plus particulièrement, la teneur en azote est inférieure ou égale à 0.02% en poids du total, notamment inférieure ou égale à 0.015% en poids du total, voire encore inférieure ou égale à 0.0075% en poids du total.More particularly, the nitrogen content is less than or equal to 0.02% by weight of the total, in particular less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.

Plus particulièrement, la teneur en hydrogène est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.0035% en poids du total, voire encore inférieure ou égale à 0.0005% en poids du total.More particularly, the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.

Plus particulièrement, la teneur en silicium est inférieure ou égale à 0.01% en poids du total.More particularly, the silicon content is less than or equal to 0.01% by weight of the total.

Plus particulièrement, la teneur en nickel est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.16% en poids du total.More particularly, the nickel content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.16% by weight of the total.

Plus particulièrement, la teneur en matériau ductile, tel que le cuivre, dans l'alliage, est inférieure ou égale à 0.01% en poids du total, notamment inférieure ou égale à 0.005% en poids du total.More particularly, the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.005% by weight of the total.

Plus particulièrement, la teneur en aluminium est inférieure ou égale à 0.01% en poids du total.More particularly, the aluminum content is less than or equal to 0.01% by weight of the total.

Selon l'invention, l'âme en Nb-Ti de l'ébauche à l'étape a) est enrobée d'une couche du matériau X tel que listé ci-avant. L'apport de la couche en X autour de l'âme peut être réalisé par voie galvanique, par PVD, CVD ou par voie mécanique. Dans ce dernier cas, un tube du matériau X est ajusté sur une barre de l'alliage en Nb-Ti. L'ensemble est déformé par martelage, étirage et/ou tréfilage pour amincir la barre et former l'ébauche mise à disposition à l'étape a). La présente invention n'exclut pas d'apporter la couche en X lors du procédé de fabrication du ressort spiral entre l'étape a) et l'étape c) de déformation. L'épaisseur de la couche en X est choisie de sorte que le rapport surface de matériau X/surface de l'âme en Nb-Ti pour une section de fil donnée est inférieur à 1, de préférence inférieur à 0.5, et plus préférentiellement compris entre 0.01 et 0.4. Par exemple, l'épaisseur est de préférence comprise entre 1 et 500 micromètres pour un fil ayant un diamètre total de 0.2 à 1 millimètre.According to the invention, the Nb-Ti core of the blank in step a) is coated with a layer of material X as listed above. The addition of the X-shaped layer around the core can be achieved by galvanic means, by PVD, CVD or by mechanical means. In the latter case, a tube of material X is fitted to a bar of the Nb-Ti alloy. The assembly is deformed by hammering, stretching and / or wire drawing to thin the bar and form the blank made available in step a). The present invention does not exclude providing the X-shaped layer during the method of manufacturing the spiral spring between step a) and step c) of deformation. The thickness of the layer in X is chosen so that the ratio of material surface X / surface area of the Nb-Ti core for a given wire section is less than 1, preferably less than 0.5, and more preferably included between 0.01 and 0.4. For example, the thickness is preferably between 1 and 500 micrometers for a wire having a total diameter of 0.2 to 1 millimeter.

La trempe de type bêta à l'étape b) est un traitement de mise en solution. De préférence, il est effectué pendant une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivi d'un refroidissement sous gaz. Plus particulièrement, cette trempe bêta est un traitement de mise en solution à 800°C sous vide pendant 5 minutes à 1 heure, suivi d'un refroidissement sous gaz.The beta-type quenching in step b) is a dissolving treatment. Preferably, it is carried out for a period of between 5 minutes and 2 hours at a temperature of between 700 ° C and 1000 ° C, under vacuum, followed by cooling under gas. More particularly, this beta quench is a dissolving treatment at 800 ° C. under vacuum for 5 minutes to 1 hour, followed by cooling under gas.

L'étape c) de déformation est réalisée en plusieurs séquences. On entend par déformation une déformation par tréfilage et/ou laminage. Avantageusement, l'étape de déformation comporte au moins successivement une première séquence de tréfilage, une deuxième séquence de tréfilage de calibration et une troisième séquence de laminage, de préférence à profil rectangulaire compatible avec la section d'entrée d'une broche d'estrapadage. Chaque séquence est effectuée avec un taux de déformation donné compris entre 1 et 5, ce taux de déformation répondant à la formule classique 2ln(d0/d), où d0 est le diamètre de la dernière trempe bêta, et où d est le diamètre du fil écroui. Le cumul global des déformations sur l'ensemble de cette succession de séquences amène un taux total de déformation compris entre 1 et 14. Deformation step c) is carried out in several sequences. By deformation is meant a deformation by wire drawing and / or rolling. Advantageously, the deformation step comprises at least successively a first wire drawing sequence, a second calibration wire drawing sequence and a third rolling sequence, preferably with a rectangular profile compatible with the entry section of a stepping spindle. . Each sequence is carried out with a given strain rate between 1 and 5, this strain rate corresponding to the classic formula 2ln (d0 / d), where d0 is the diameter of the last beta hardening, and where d is the diameter of the strain-hardened wire. The global accumulation of deformations over the whole of this succession of sequences leads to a total rate of deformation between 1 and 14.

Selon l'invention, le procédé de fabrication comporte l'étape de traitement thermique pour transformer partiellement la couche en X en une couche d'intermétalliques X,Ti autour de l'âme en Nb-Ti. Cette étape est réalisée durant 15 minutes à 100 heures à une température comprise entre 200 et 900°C. De préférence, elle est réalisée durant 5 à 20 heures entre 400 et 500°C. Cette étape de traitement thermique peut être mise à profit pour précipiter le titane en phase alpha.According to the invention, the manufacturing process comprises the step of heat treatment to partially transform the X-shaped layer into an X, Ti intermetallic layer around the Nb-Ti core. This step is carried out for 15 minutes to 100 hours at a temperature between 200 and 900 ° C. Preferably, it is carried out for 5 to 20 hours between 400 and 500 ° C. This heat treatment step can be used to precipitate the titanium in the alpha phase.

A l'issue de cette étape, la couche d'intermétalliques à une épaisseur comprise entre 20 nm et 10 µm, de préférence entre 300 nm et 1.5 µm, plus préférentiellement entre 400 et 800 nm. La couche restante de X a une épaisseur comprise entre 1 et 25 µm. Dans le cas du Cu, la couche d'intermétalliques comporte, par exemple, du CU4Ti, Cu2Ti, CuTi, Cu3Ti2 et du CuTi2. A titre illustratif, la microscopie à la figure 1 représente la structure de l'ébauche après le traitement thermique à 450°C d'un alliage niobium-titane avec 47% en poids de titane recouvert d'une couche de cuivre. On observe successivement l'âme en NbTi47, la couche d'intermétalliques Cu,Ti ayant une épaisseur de l'ordre de 700 nm et la couche de cuivre restante ayant une épaisseur de l'ordre de 5 µm. La figure 3 représente le spectre XRD pour ce même alliage du ressort spiral selon l'invention après enlèvement de la couche de Cu et après les étapes d'estrapadage et de fixage. A titre comparatif, le spectre XRD pour ce même alliage avec la couche de cuivre mais en l'absence du traitement thermique est représenté à la figure 2. On observe une série de petits pics à côte du pic de Nb qui sont représentés en agrandissement à la figure 4. Il y a des pics pour le Cu4Ti, Cu2Ti, CuTi, Cu3Ti2 et le CuTi2.At the end of this step, the layer of intermetallic has a thickness of between 20 nm and 10 μm, preferably between 300 nm and 1.5 μm, more preferably between 400 and 800 nm. The remaining layer of X has a thickness between 1 and 25 µm. In the case of Cu, the intermetallic layer comprises, for example, CU 4 Ti, Cu 2 Ti, CuTi, Cu 3 Ti 2 and CuTi 2 . By way of illustration, the microscopy at figure 1 shows the structure of the blank after heat treatment at 450 ° C of a niobium-titanium alloy with 47% by weight of titanium covered with a layer of copper. The NbTi core 47 is successively observed, the Cu, Ti intermetallic layer having a thickness of the order of 700 nm and the remaining copper layer having a thickness of the order of 5 μm. The figure 3 represents the XRD spectrum for this same alloy of the spiral spring according to the invention after removal of the Cu layer and after the slitting and fixing steps. For comparison, the XRD spectrum for this same alloy with the copper layer but in the absence of the heat treatment is shown on figure 2 . We observe a series of small peaks next to the peak of Nb which are shown in magnification at the figure 4 . There are peaks for Cu 4 Ti, Cu 2 Ti, CuTi, Cu 3 Ti 2 and CuTi 2 .

Ce traitement thermique visant à former des intermétalliques peut être réalisé avant l'étape de déformation c) ou entre deux séquences de déformation lors de l'étape c). Avantageusement, il est réalisé à l'étape c) entre la première séquence de tréfilage et la deuxième séquence de tréfilage de calibration.This heat treatment aimed at forming intermetallics can be carried out before the deformation step c) or between two deformation sequences during step c). Advantageously, it is carried out in step c) between the first wire drawing sequence and the second calibration wire drawing sequence.

Ensuite, la couche en X restante est enlevée de manière à avoir comme couche externe la couche d'intermétalliques. Cette étape peut être réalisée par attaque chimique dans une solution à base de cyanures ou d'acides, par exemple d'acide nitrique. On précisera que la présente invention n'exclut pas que certains intermétalliques soient également dissous dans l'acide. C'est par exemple le cas du Cu4Ti dans une solution d'acide nitrique.Then the remaining X-layer is removed so as to have the intermetallic layer as the outer layer. This step can be carried out by chemical attack in a solution based on cyanides or acids, for example nitric acid. It will be specified that the present invention does not exclude that certain intermetallics are also dissolved in the acid. This is for example the case with Cu 4 Ti in a nitric acid solution.

La couche en X peut être enlevée à différents moments du procédé selon l'effet recherché. De préférence, elle est retirée à l'étape c) avant le tréfilage de calibration de manière à contrôler très finement les dimensions finales du fil spiral. Les intermétalliques présents en couche externe empêchent alors le collement du fil dans les filières, contre les rouleaux de laminage et entre les spiraux lors du fixage. Plus préférentiellement, elle est enlevée entre la première séquence de tréfilage et la deuxième séquence de tréfilage de calibration. Selon une variante moins avantageuse, elle est retirée après le tréfilage de calibration avant le laminage, de manière à empêcher le collement du fil contre les rouleaux de laminage et entre les spiraux lors du fixage. Selon une variante également moins avantageuse, elle est retirée à la fin de l'étape de déformation c) avant l'étape d'estrapadage. Dans ce cas, la couche externe d'intermétalliques permet seulement d'éviter le collement entre les spiraux lors du fixage.The X-layer can be removed at different times in the process depending on the desired effect. Preferably, it is removed in step c) before the calibration wire drawing so as to very finely control the dimensions. ends of the spiral wire. The intermetallics present in the outer layer then prevent the sticking of the wire in the dies, against the rolling rolls and between the spirals during fixing. More preferably, it is removed between the first wire drawing sequence and the second calibration wire drawing sequence. According to a less advantageous variant, it is removed after the calibration wire drawing before the rolling, so as to prevent the wire sticking against the rolling rolls and between the spirals during fixing. According to a variant which is also less advantageous, it is removed at the end of the deformation step c) before the scaling step. In this case, the outer layer of intermetallics only makes it possible to avoid the sticking between the balance springs during fixing.

L'étape d'estrapadage d) pour former le ressort spiral est suivie de l'étape e) de traitement thermique final sur le ressort spiral. Ce traitement thermique final est un traitement de précipitation du Ti en phase alpha d'une durée comprise entre 1 et 80 heures, de préférence entre 5 et 30 heures, à une température comprise entre 350 et 700°C, de préférence entre 400 et 600°C.The step of slipping d) to form the spiral spring is followed by step e) of final heat treatment on the spiral spring. This final heat treatment is a precipitation treatment of Ti in the alpha phase lasting between 1 and 80 hours, preferably between 5 and 30 hours, at a temperature between 350 and 700 ° C, preferably between 400 and 600. ° C.

Pour finir, on précisera que le procédé peut comporter des traitements thermiques intermédiaires entre les séquences de déformation dans cette même gamme de temps et températures.Finally, it will be specified that the process may include intermediate heat treatments between the deformation sequences in this same range of times and temperatures.

Le ressort spiral réalisé selon ce procédé a une limite élastique supérieure ou égale à 500 MPa, de préférence supérieure à 600 MPa, et plus précisément comprise entre 500 et 1000 MPa. De manière avantageuse, il a un module d'élasticité inférieur ou égal à 120 GPa, et de préférence inférieur ou égal à 100 GPa.The spiral spring produced according to this process has an elastic limit greater than or equal to 500 MPa, preferably greater than 600 MPa, and more precisely between 500 and 1000 MPa. Advantageously, it has a modulus of elasticity less than or equal to 120 GPa, and preferably less than or equal to 100 GPa.

Le ressort spiral comporte une âme en Nb-Ti enrobée d'une couche d'intermétalliques X,Ti avec X choisi parmi le Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co et le Cr ou un alliage d'un de ces éléments, ladite couche d'intermétallique ayant une épaisseur comprise entre 20 nm et 10 µm, de préférence entre 300 nm et 1.5 µm, plus préférentiellement entre 400 nm et 800 nm. De préférence, la couche d'intermétalliques est une couche Cu,Ti.The spiral spring comprises an Nb-Ti core coated with a layer of intermetallics X, Ti with X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co and Cr or an alloy of one of these elements, said intermetallic layer having a thickness between 20 nm and 10 µm, of preferably between 300 nm and 1.5 μm, more preferably between 400 nm and 800 nm. Preferably, the intermetallic layer is a Cu, Ti layer.

L'âme du ressort spiral a une microstructure bi-phasée comportant du niobium en phase bêta et du titane en phase alpha.The spiral spring core has a two-phase microstructure comprising niobium in the beta phase and titanium in the alpha phase.

En outre le ressort spiral réalisé selon l'invention présente un coefficient thermoélastique, dit aussi CTE, lui permettant de garantir le maintien des performances chronométriques malgré la variation des températures d'utilisation d'une montre incorporant un tel ressort spiral.In addition, the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, allowing it to guarantee the maintenance of chronometric performance despite the variation in the temperatures of use of a watch incorporating such a spiral spring.

Le procédé de l'invention permet la réalisation, et plus particulièrement la mise en forme, d'un ressort spiral pour balancier en alliage de type niobium-titane, typiquement à 47 % en poids de titane (40-60%). Cet alliage présente des propriétés mécaniques élevées, en combinant une limite élastique très élevée, supérieure à 600 MPa, et un module d'élasticité très bas, de l'ordre de 60 Gpa à 80 GPa. Cette combinaison de propriétés convient bien pour un ressort spiral. De plus, un tel alliage est paramagnétique.The method of the invention allows the production, and more particularly the shaping, of a balance spring for a balance made of a niobium-titanium type alloy, typically containing 47% by weight of titanium (40-60%). This alloy has high mechanical properties, by combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring. In addition, such an alloy is paramagnetic.

Claims (21)

Procédé de fabrication d'un ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, comprenant : a) une étape de mise à disposition d'une ébauche avec une âme en Nb-Ti réalisée dans un alliage constitué de : - niobium : balance à 100% en poids, - titane : entre 5 et 95% en poids, - traces d'un ou plusieurs éléments sélectionnés parmi le groupe constitué du O, H, C, Fe, Ta, N, Ni, Si, Cu et de l'Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids, b) une étape de trempe de type bêta de ladite ébauche, de façon à ce que le titane dudit alliage soit essentiellement sous forme de solution solide avec le niobium en phase bêta, c) une étape de déformation en plusieurs séquences de l'ébauche, d) une étape d'estrapadage pour former le ressort spiral, e) une étape de traitement thermique final sur le ressort spiral,
ledit procédé étant caractérisé en ce que: - l'ébauche de l'étape a) comprend, autour de l'âme en Nb-Ti, une couche en X avec un matériau X choisi parmi le Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co, et le Cr ou un alliage d'un de ces éléments, ou le procédé comprend une étape d'apport dudit matériau X autour de l'âme en Nb-Ti pour former la couche en X, ladite étape étant effectuée entre l'étape a) et l'étape c), - il comprend une étape de traitement thermique durant 15 minutes à 100 heures à une température comprise entre 200°C et 900°C pour transformer partiellement ladite couche en X en une couche d'intermétalliques X,Ti autour de l'âme en Nb-Ti, l'ébauche comprenant ainsi successivement l'âme en Nb-Ti, la couche d'intermétalliques X,Ti et une partie de la couche en X, ladite étape étant effectuée entre l'étape b) et l'étape c) ou entre deux séquences de l'étape de déformation c), - il comprend une étape d'enlèvement de ladite partie de la couche en X, ladite étape étant effectuée entre l'étape b) et l'étape c), entre deux séquences de l'étape de déformation c) ou entre l'étape c) et l'étape d).
A method of manufacturing a spiral spring intended to equip a balance of a timepiece movement, comprising: a) a step of providing a blank with an Nb-Ti core made of an alloy consisting of: - niobium: balance at 100% by weight, - titanium: between 5 and 95% by weight, - traces of one or more elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu and Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the total amount consisting of all of said elements being between 0% and 0.3% by weight, b) a beta-type quenching step of said blank, so that the titanium of said alloy is essentially in the form of a solid solution with the niobium in the beta phase, c) a step of deformation in several sequences of the blank, d) a stepping step to form the spiral spring, e) a final heat treatment step on the spiral spring,
said method being characterized in that : - the blank of step a) comprises, around the Nb-Ti core, an X-shaped layer with a material X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni , Ag, Co, and Cr or an alloy of one of these elements, or the method comprises a step of supplying said material X around the Nb-Ti core to form the X-shaped layer, said step being carried out between step a) and step c), - it comprises a heat treatment step for 15 minutes to 100 hours at a temperature between 200 ° C and 900 ° C to partially transform said X layer into an X, Ti intermetallic layer around the Nb core - Ti, the blank thus comprising successively the core in Nb-Ti, the layer of intermetallics X, Ti and part of the layer in X, said step being carried out between step b) and step c) or between two sequences of the deformation step c), - it comprises a step of removing said part of the layer in X, said step being carried out between step b) and step c), between two sequences of deformation step c) or between step c) and step d).
Procédé de fabrication selon la revendication 1, caractérisé en ce que l'étape de déformation c) comporte au moins successivement une première séquence de tréfilage, une deuxième séquence de tréfilage de calibration et une troisième séquence de laminage.Manufacturing process according to Claim 1, characterized in that the deformation step c) comprises at least successively a first drawing sequence, a second calibration drawing sequence and a third rolling sequence. Procédé de fabrication selon la revendication 1 ou 2, caractérisé en ce que l'étape de traitement thermique est effectuée entre deux séquences de l'étape de déformation c).Manufacturing process according to Claim 1 or 2, characterized in that the heat treatment step is carried out between two sequences of the deformation step c). Procédé de fabrication selon la revendication précédente, caractérisé en ce que l'étape de traitement thermique est réalisée entre la première séquence et la deuxième séquence.Manufacturing process according to the preceding claim, characterized in that the heat treatment step is carried out between the first sequence and the second sequence. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l'étape d'enlèvement de ladite partie de la couche en X est réalisée entre la première séquence et la deuxième séquence.Manufacturing process according to the preceding claim, characterized in that the step of removing said part of the X-shaped layer is carried out between the first sequence and the second sequence. Procédé de fabrication selon l'une des revendications 2 à 4, caractérisé en ce que l'étape d'enlèvement de ladite partie de la couche en X est effectuée entre la deuxième séquence et la troisième séquence.Manufacturing process according to one of claims 2 to 4, characterized in that the step of removing said part of the X-shaped layer is carried out between the second sequence and the third sequence. Procédé de fabrication selon l'une des revendications 2 à 4, caractérisé en ce que l'étape d'enlèvement de ladite partie de la couche en X est effectuée entre l'étape c) et l'étape d).Manufacturing process according to one of claims 2 to 4, characterized in that the step of removing said part of the X-shaped layer is carried out between step c) and step d). Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'étape d'enlèvement de ladite partie de la couche en X est effectuée par attaque chimique dans une solution à base de cyanures ou d'acides.Manufacturing process according to one of the preceding claims, characterized in that the step of removing said part of the X-layer is carried out by chemical attack in a solution based on cyanides or acids. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que ladite étape de trempe β est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivi d'un refroidissement sous gaz.Manufacturing process according to one of the preceding claims, characterized in that said β quenching step is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature of between 700 ° C and 1000 ° C , under vacuum, followed by gas cooling. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que le traitement thermique final de l'étape e) est un traitement de précipitation du titane en phase alpha d'une durée comprise entre 1 heure et 80 heures à une température comprise entre 350°C et 700°C, de préférence entre 5 heures et 30 heures entre 400°C et 600°C.Manufacturing process according to one of the preceding claims, characterized in that the final heat treatment of step e) is a treatment of precipitation of titanium in the alpha phase for a duration of between 1 hour and 80 hours at a temperature of between 350 ° C and 700 ° C, preferably between 5 hours and 30 hours between 400 ° C and 600 ° C. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce qu'il comporte entre chaque séquence ou entre certaines séquences de l'étape de déformation c) un traitement thermique intermédiaire de précipitation du titane en phase alpha d'une durée comprise entre 1 heure et 80 heures à une température comprise entre 350°C et 700°C, de préférence entre 5 heures et 30 heures entre 400°C et 600°C.Manufacturing process according to one of the preceding claims, characterized in that it comprises between each sequence or between certain sequences of the deformation step c) an intermediate heat treatment for precipitation of titanium in the alpha phase for a duration of between 1 hour and 80 hours at a temperature between 350 ° C and 700 ° C, preferably between 5 hours and 30 hours between 400 ° C and 600 ° C. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que la couche X a une épaisseur comprise entre 1 et 500 µm.Manufacturing process according to one of the preceding claims, characterized in that the layer X has a thickness of between 1 and 500 µm. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que la couche d'intermétalliques a une épaisseur comprise entre 20 nm et 10 µm.Manufacturing process according to one of the preceding claims, characterized in that the layer of intermetallic has a thickness of between 20 nm and 10 µm. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que chaque séquence est effectuée avec un taux de déformation compris entre 1 et 5, le cumul global des déformations sur l'ensemble des séquences amenant un taux total de déformation compris entre 1 et 14.Manufacturing process according to one of the preceding claims, characterized in that each sequence is carried out with a strain rate of between 1 and 5, the global accumulation of strains over all the sequences bringing a total strain rate of between 1 and 14. Ressort spiral destiné à équiper un balancier d'un mouvement d'horlogerie, comprenant une âme en Nb-Ti réalisée dans un alliage constitué de : - niobium : balance à 100% en poids, - titane : entre 5 et 95% en poids, - traces d'éléments sélectionnés parmi le groupe constitué de O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, chacun desdits éléments étant présent dans une quantité comprise entre 0 et 1600 ppm en poids, la quantité totale constituée par l'ensemble desdits éléments étant comprise entre 0% et 0.3% en poids, caractérisé en ce que l'âme en Nb-Ti est enrobée d'une couche d'intermétalliques X,Ti avec X choisi parmi le Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co et le Cr ou un alliage d'un de ces éléments, ladite couche d'intermétalliques ayant une épaisseur comprise entre 20 nm et 10 µm.Spiral spring intended to equip a balance of a timepiece movement, comprising an Nb-Ti core made of an alloy consisting of: - niobium: balance at 100% by weight, - titanium: between 5 and 95% by weight, - traces of elements selected from the group consisting of O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said elements being present in an amount between 0 and 1600 ppm by weight, the amount total consisting of all of said elements being between 0% and 0.3% by weight, characterized in that the Nb-Ti core is coated with a layer of intermetallics X, Ti with X chosen from Cu, Sn, Fe, Pt, Pd, Rh, Al, Au, Ni, Ag, Co and Cr or an alloy of one of these elements, said layer of intermetallic having a thickness between 20 nm and 10 μm. Ressort spiral selon la revendication 15, caractérisé en ce que la couche d'intermétalliques a une épaisseur comprise entre 300 nm et 1.5 µm.Spiral spring according to Claim 15, characterized in that the layer of intermetallic has a thickness of between 300 nm and 1.5 µm. Ressort spiral selon la revendication 15 ou 16, caractérisé en ce que la couche d'intermétalliques a une épaisseur comprise entre 400 nm et 800 nm.Spiral spring according to Claim 15 or 16, characterized in that the layer of intermetallics has a thickness of between 400 nm and 800 nm. Ressort spiral selon l'une des revendications 15 à 17, caractérisé en ce que X est du Cu et en ce que la couche d'intermétalliques comporte du Cu2Ti, CuTi, Cu3Ti2 et du CuTi2.Spiral spring according to one of claims 15 to 17, characterized in that X is Cu and in that the intermetallic layer comprises Cu 2 Ti, CuTi, Cu 3 Ti 2 and CuTi 2 . Ressort spiral selon l'une des revendications 15 à 18, caractérisé en ce que la teneur en Ti est comprise entre 40 et 55% en poids, de préférence entre 45 et 49% en poids.Spiral spring according to one of claims 15 to 18, characterized in that the Ti content is between 40 and 55% by weight, preferably between 45 and 49% by weight. Ressort spiral selon l'une des revendications 15 à 19, caractérisé en ce que l'âme en Nb-Ti a une microstructure bi-phasée comportant du niobium en phase bêta et du titane en phase alpha.Spiral spring according to one of Claims 15 to 19, characterized in that the Nb-Ti core has a two-phase microstructure comprising niobium in the beta phase and titanium in the alpha phase. Ressort spiral selon l'une des revendications 15 à 20, caractérisé en ce qu'il a une limite élastique supérieure ou égale à 500 MPa, de préférence à 600 MPa, et un module d'élasticité inférieur ou égal à 120 GPa, de préférence inférieur ou égal à 100 GPa.Spiral spring according to one of claims 15 to 20, characterized in that it has an elastic limit greater than or equal to 500 MPa, preferably 600 MPa, and a modulus of elasticity less than or equal to 120 GPa, preferably less than or equal to 100 GPa.
EP19212457.6A 2019-11-29 2019-11-29 Hairspring for clock movement and method for manufacturing same Withdrawn EP3828642A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19212457.6A EP3828642A1 (en) 2019-11-29 2019-11-29 Hairspring for clock movement and method for manufacturing same
JP2022531415A JP7475447B2 (en) 2019-11-29 2020-11-27 Spring for watch movement and manufacturing method thereof
US17/779,659 US20220413438A1 (en) 2019-11-29 2020-11-27 Spiral spring for a horological movement and manufacturing method thereof
CN202080082129.5A CN114730155A (en) 2019-11-29 2020-11-27 Coil spring for a timepiece movement and method for manufacturing same
PCT/EP2020/083622 WO2021105352A1 (en) 2019-11-29 2020-11-27 Spiral spring for a timepiece movement, and manufacturing method thereof
EP20811381.1A EP4066066A1 (en) 2019-11-29 2020-11-27 Spiral spring for a timepiece movement, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19212457.6A EP3828642A1 (en) 2019-11-29 2019-11-29 Hairspring for clock movement and method for manufacturing same

Publications (1)

Publication Number Publication Date
EP3828642A1 true EP3828642A1 (en) 2021-06-02

Family

ID=68732872

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19212457.6A Withdrawn EP3828642A1 (en) 2019-11-29 2019-11-29 Hairspring for clock movement and method for manufacturing same
EP20811381.1A Pending EP4066066A1 (en) 2019-11-29 2020-11-27 Spiral spring for a timepiece movement, and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20811381.1A Pending EP4066066A1 (en) 2019-11-29 2020-11-27 Spiral spring for a timepiece movement, and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20220413438A1 (en)
EP (2) EP3828642A1 (en)
JP (1) JP7475447B2 (en)
CN (1) CN114730155A (en)
WO (1) WO2021105352A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502289A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3502288A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550233B2 (en) * 1995-10-09 2004-08-04 同和鉱業株式会社 Manufacturing method of high strength and high conductivity copper base alloy
ES2171872T3 (en) * 1997-06-20 2002-09-16 Rolex Montres SELF-COMPENSING SPIRAL FOR MECHANICAL ROCKER-SPIRAL OSCILLATOR FOR WATCH MOVEMENT DEVICE AND SPIRAL MANUFACTURING PROCEDURE.
JP5214899B2 (en) * 2007-03-23 2013-06-19 古河スカイ株式会社 High corrosion resistance aluminum alloy composite for heat exchanger and method for producing the same
JP2015176808A (en) * 2014-03-17 2015-10-05 日立金属株式会社 composite conductor
KR102016384B1 (en) * 2016-10-24 2019-08-30 다이도 토쿠슈코 카부시키가이샤 PRECIPITATION HARDENED HIGH Ni HEAT-RESISTANT ALLOY
EP3422116B1 (en) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3502785B1 (en) * 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
CH714493A2 (en) * 2017-12-21 2019-06-28 Nivarox Sa Method of manufacturing a spiral spring for a watch movement
CH714492A2 (en) * 2017-12-21 2019-06-28 Nivarox Sa Spiral spring for clockwork and its manufacturing process.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502289A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3502288A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTIN N WILSON: "Advances in low-loss Nb-Ti strand cable", 1 January 2009 (2009-01-01), pages 8 - 12, XP009139537, ISBN: 978-92-9083-325-3, Retrieved from the Internet <URL:http://cdsweb.cern.ch/record/1163708/files/p8.pdf> *
WARNES W H ET AL: "Critical current distributions in superconducting composites", CRYOGENICS, ELSEVIER, KIDLINGTON, GB, vol. 26, no. 12, 1 December 1986 (1986-12-01), pages 643 - 653, XP024048697, ISSN: 0011-2275, [retrieved on 19861201], DOI: 10.1016/0011-2275(86)90162-1 *

Also Published As

Publication number Publication date
EP4066066A1 (en) 2022-10-05
JP2023504079A (en) 2023-02-01
US20220413438A1 (en) 2022-12-29
CN114730155A (en) 2022-07-08
JP7475447B2 (en) 2024-04-26
WO2021105352A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
EP3422116B1 (en) Timepiece hairspring
EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
EP3502288B1 (en) Method for manufacturing a hairspring for clock movement
EP3502289B1 (en) Manufacturing method of a hairspring for a timepiece movement
EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
EP3889691B1 (en) Horological hairspring made of a nb-hf alloy
CH714492A2 (en) Spiral spring for clockwork and its manufacturing process.
EP4009114B1 (en) Hairspring for clock movement and method for manufacturing same
EP3796101A1 (en) Hairspring for clock movement
CH714493A2 (en) Method of manufacturing a spiral spring for a watch movement
EP3422115B1 (en) Timepiece spiral spring
EP4060425B1 (en) Hairspring for timepiece movement
EP3828642A1 (en) Hairspring for clock movement and method for manufacturing same
EP4060424A1 (en) Hairspring for timepiece movement
CH716853A2 (en) Spiral spring for a watch movement and its manufacturing process.
CH716155A2 (en) Method of manufacturing a spiral spring for a clockwork movement.
EP3736638B1 (en) Method for manufacturing a hairspring for clock movement
CH714494B1 (en) Spiral clockwork spring, in particular a barrel spring or a spiral spring.
CH717018A2 (en) Spiral spring for a watch movement and its manufacturing process.
CH716156A2 (en) Method of manufacturing a spiral spring for a clockwork movement.
CH714491A2 (en) Spiral spring for clockwork and its manufacturing process.
CH718454A2 (en) Spiral spring for a clock movement and process for manufacturing this spiral spring.
CH718455A2 (en) Spiral spring for a clock movement and process for manufacturing this spiral spring.
CH718850A2 (en) Spiral spring for clockwork.
EP4123393A1 (en) Hairspring for clock movement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211203