EP3671359B1 - Manufacturing method of a timepiece spiral spring made of titanium - Google Patents
Manufacturing method of a timepiece spiral spring made of titanium Download PDFInfo
- Publication number
- EP3671359B1 EP3671359B1 EP18215265.2A EP18215265A EP3671359B1 EP 3671359 B1 EP3671359 B1 EP 3671359B1 EP 18215265 A EP18215265 A EP 18215265A EP 3671359 B1 EP3671359 B1 EP 3671359B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- deformation
- manufacturing
- spiral spring
- heat treatment
- spring according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 46
- 239000010936 titanium Substances 0.000 title claims description 41
- 229910052719 titanium Inorganic materials 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 40
- 229910045601 alloy Inorganic materials 0.000 claims description 35
- 239000000956 alloy Substances 0.000 claims description 35
- 239000010955 niobium Substances 0.000 claims description 29
- 229910052758 niobium Inorganic materials 0.000 claims description 28
- 238000001556 precipitation Methods 0.000 claims description 28
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 239000006104 solid solution Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 238000003490 calendering Methods 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 238000010791 quenching Methods 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 8
- 239000000243 solution Substances 0.000 claims description 8
- 230000000171 quenching effect Effects 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 239000002344 surface layer Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims description 4
- 229910000570 Cupronickel Inorganic materials 0.000 claims description 2
- 229910018104 Ni-P Inorganic materials 0.000 claims description 2
- 229910018536 Ni—P Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims description 2
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000005491 wire drawing Methods 0.000 claims 5
- 238000003780 insertion Methods 0.000 claims 4
- 230000037431 insertion Effects 0.000 claims 4
- 229910002056 binary alloy Inorganic materials 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 229910001275 Niobium-titanium Inorganic materials 0.000 description 5
- RJSRQTFBFAJJIL-UHFFFAOYSA-N niobium titanium Chemical compound [Ti].[Nb] RJSRQTFBFAJJIL-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910000942 Elinvar Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B1/00—Driving mechanisms
- G04B1/10—Driving mechanisms with mainspring
- G04B1/14—Mainsprings; Bridles therefor
- G04B1/145—Composition and manufacture of the springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C1/00—Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
- B21C1/02—Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Definitions
- the invention relates to the field of the manufacture of watch springs, in particular energy storage springs, such as barrel springs or driving or striking hairsprings, or oscillator springs, such as hairsprings.
- the invention proposes to define and develop the appropriate manufacturing process for the manufacture of spiral clock springs.
- the invention relates to a method of manufacturing such a clockwork spiral spring, according to independent claim 1.
- Preferred embodiments are defined in the dependent claims.
- the invention is aimed at the manufacture of a clockwork spiral spring with a two-phase structure.
- the material of this spiral spring is an alloy of the titanium-based binary type, comprising niobium.
- this alloy comprises a titanium mass proportion greater than or equal to 65.0% of the total and less than or equal to 85.0% of the total.
- this alloy comprises a titanium mass proportion greater than or equal to 70.0% of the total and less than or equal to 85.0% of the total.
- this alloy comprises a proportion by weight of titanium greater than or equal to 70.0% of the total and less than or equal to 75.0% of the total.
- this alloy comprises a proportion by mass of titanium strictly greater than 76.0% of the total and less than or equal to 85.0% of the total.
- this alloy comprises a titanium mass proportion of less than or equal to 80.0% of the total.
- this alloy comprises a proportion by weight of titanium strictly greater than 76.0% of the total and less than or equal to 78.0% of the total.
- this spiral spring has a two-phase microstructure comprising centered cubic beta niobium and compact hexagonal alpha titanium. More particularly, this spiral spring has a two-phase microstructure comprising a solid solution of niobium with titanium in the ⁇ phase (centered cubic structure) and a solid solution of niobium with titanium in the ⁇ phase (compact hexagonal structure), the titanium content in ⁇ phase being greater than 10% by volume.
- the total of the proportions by mass of titanium and niobium is between 99.7% and 100% of the total.
- the proportion by mass of oxygen is less than or equal to 0.10% of the total, or even less than or equal to 0.085% of the total.
- the proportion by mass of tantalum is less than or equal to 0.10% of the total.
- the proportion by mass of carbon is less than or equal to 0.04% of the total, in particular less than or equal to 0.020% of the total, or even even less than or equal to 0.0175% of the total.
- the proportion by mass of iron is less than or equal to 0.03% of the total, in particular less than or equal to 0.025% of the total, or even even less than or equal to 0.020% of the total.
- the mass proportion of nitrogen is less than or equal to 0.02% of the total, in particular less than or equal to 0.015% of the total, or even even less than or equal to 0.0075% of the total.
- the proportion by mass of hydrogen is less than or equal to 0.01% of the total, in particular less than or equal to 0.0035% of the total, or even even less than or equal to 0.0005% of the total.
- the proportion by mass of nickel is less than or equal to 0.01% of the total.
- the mass proportion of silicon is less than or equal to 0.01% of the total.
- the proportion by mass of nickel is less than or equal to 0.01% of the total, in particular less than or equal to 0.16% of the total.
- the proportion by mass of ductile material or copper is less than or equal to 0.01% of the total, in particular less than or equal to 0.005% of the total.
- the proportion by mass of aluminum is less than or equal to 0.01% of the total.
- This spiral spring has an elastic limit greater than or equal to 1000 MPa. More particularly, the spiral spring has an elastic limit greater than or equal to 1500 MPa.
- the spiral spring has an elastic limit greater than or equal to 2000 MPa.
- this spiral spring has a modulus of elasticity greater than 60 GPa and less than or equal to 80 GPa.
- the alloy thus determined allows, depending on the treatment applied during development, the manufacture of spiral springs which are spiral springs with an elastic limit greater than or equal to 1000 MPa, or barrel springs, in particular when the elastic limit greater than or equal to 1500 MPa.
- the application to a hairspring requires properties capable of guaranteeing the maintenance of chronometric performance despite the variation in the temperatures of use of a watch incorporating such a hairspring.
- the thermoelastic coefficient, also called CTE of the alloy is then of great importance.
- the work-hardened beta-phase alloy has a strongly positive CTE, and the precipitation of the alpha phase, which has a strongly negative CTE, makes it possible to bring the two-phase alloy back to a CTE close to zero, which is particularly favorable.
- a CTE of +/- 10 ppm/°C must be achieved.
- E is the Young's modulus of the hairspring, and, in this formula, E, ⁇ and ⁇ are expressed in °C -1 .
- CT is the thermal coefficient of the oscillator
- (1/E. dE/dT) is the CTE of the hairspring alloy
- ⁇ is the expansion coefficient of the balance and ⁇ that of the hairspring.
- this alloy of coupled sequences 20 of deformation-precipitation heat treatment comprising the application of deformations (21) alternated with heat treatments (22), until obtaining a two-phase microstructure comprising a solid solution of niobium with titanium in the ⁇ phase and a solid solution of niobium with titanium in the ⁇ phase, the titanium content in the ⁇ phase being greater than 10% by volume, with an elastic limit greater than or equal to 2000 MPa.
- the treatment cycle then comprises beforehand a beta quenching (15) to a given diameter, so that the entire structure of the alloy is beta, then a succession of these coupled sequences of deformation-precipitation heat treatment .
- each deformation is carried out with a given deformation rate between 1 and 5, this deformation rate corresponding to the classical formula 2ln(d0/d), where d0 is the diameter of the last beta temper, and where d is the diameter of the work-hardened wire.
- the overall accumulation of the deformations over the whole of this succession of phases leads to a total deformation rate of between 1 and 14.
- Each sequence coupled with deformation-heat treatment of precipitation comprises, each time, a heat treatment of precipitation of the phase alpha Ti (300-700°C, 1h-30h).
- This process variant comprising beta quenching is particularly suited to the manufacture of barrel springs. More particularly, this beta quenching is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature of between 700° C. and 1000° C., under vacuum, followed by cooling under gas.
- this beta quenching is a solution treatment, with 1 hour at 800° C. under vacuum, followed by cooling under gas.
- each coupled sequence of deformation-precipitation heat treatment comprises a precipitation treatment lasting between 1 hour and 80 hours at a temperature between 350° C. and 700°C. More particularly, the duration is between 1 hour and 10 hours at a temperature between 380°C and 650°C. More particularly still, the duration is from 1 hour to 12 hours, at a temperature of 380°C.
- long heat treatments are applied, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350° C. and 500° C. For example, heat treatments are applied for 75h to 400h at 350°C, 25h at 400°C or 18h at 480°C.
- the method comprises between one and five, preferably three to five, coupled deformation-precipitation heat treatment sequences.
- the first coupled deformation-precipitation heat treatment sequence comprises a first deformation with at least 30% reduction in section.
- each coupled deformation-precipitation heat treatment sequence comprises a deformation between two precipitation heat treatments with at least 25% reduction in section.
- a surface layer of ductile material taken from copper, nickel, cupro-nickel, cupro -manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, or the like, to facilitate wire forming by drawing and drawing and rolling.
- the wire is stripped of its layer of ductile material , in particular by chemical attack, in a step 50.
- the barrel spring it is indeed possible to carry out the manufacture by setting in ring and thermal treatment, where the setting in ring replaces the calendering.
- the barrel spring is still generally heat-treated after ringing or after calendering.
- a spiral spring is generally still heat treated after strapping.
- the last phase of deformation is carried out in the form of flat rolling, and the last heat treatment is carried out on the calendered or ring-formed or strapped spring. More particularly, after drawing, the wire is rolled flat, before the manufacture of the actual spring by calendering or strapping or setting in a ring.
- the surface layer of ductile material is deposited so as to constitute a spiral spring whose pitch is not a multiple of the thickness of the blade.
- the surface layer of ductile material is deposited so as to form a spring whose pitch is variable.
- ductile material or copper is thus added at a given moment to facilitate the shaping of the wire by drawing and drawing, so that a thickness of 10 to 500 micrometers remains on the wire with a final diameter of 0.3 to 1 mm.
- the wire is stripped of its layer of ductile material or copper in particular by chemical attack, then is rolled flat before the manufacture of the actual spring.
- ductile material or copper can be galvanic, or mechanical, it is then a shirt or a tube of ductile material or copper which is fitted on a bar of niobium-titanium alloy to a large diameter, then which is thinned during the stages of deformation of the composite bar.
- the layer can be removed in particular by chemical attack, with a solution based on cyanides or based on acids, for example nitric acid.
- the invention thus makes it possible in particular to produce a spiral barrel spring made of an alloy of the niobium-titanium type, typically containing more than 60% by mass of titanium.
- a very fine lamellar bi-phase microstructure in particular nanometric, comprising a solid solution of niobium with titanium in the ⁇ phase and a solid solution of niobium with ⁇ -phase titanium, the ⁇ -phase titanium content being greater than 10% by volume.
- This alloy combines a very high elastic limit, greater than at least 1000 MPa, or greater than 1500 MPa, or even 2000 MPa on wire, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a mainspring or hairspring.
- This niobium-titanium type alloy can easily be covered with ductile material or copper, which greatly facilitates its deformation by drawing.
- Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging devices, or particle accelerators), but is not used in watchmaking. Its fine, two-phase microstructure is sought after in the case of superconductors for physical reasons and has the welcome side effect of improving the mechanical properties of the alloy.
- Such an alloy is particularly suitable for the production of a mainspring, and also for the production of spiral springs.
- a binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, is also capable of being used as a spiral wire, it has an effect similar to that of " Elinvar", with a practically zero thermo-elastic coefficient in the range of temperatures of usual use of watches, and suitable for the manufacture of self-compensating hairsprings, in particular for niobium-titanium alloys with a higher proportion by mass of titanium at 60% and up to 85%.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Springs (AREA)
Description
L'invention concerne le domaine de la fabrication des ressorts d'horlogerie, en particulier des ressorts de stockage d'énergie, tels que ressorts de barillet ou ressorts-spiraux moteur ou de sonnerie, ou des ressorts d'oscillateur, tels que spiraux.The invention relates to the field of the manufacture of watch springs, in particular energy storage springs, such as barrel springs or driving or striking hairsprings, or oscillator springs, such as hairsprings.
La fabrication de ressorts de stockage d'énergie pour l'horlogerie doit faire face à des contraintes souvent à première vue incompatibles :
- nécessité d'obtention d'une limite élastique très élevée,
- nécessité d'obtention d'un module d'élasticité bas,
- facilité d'élaboration, notamment de tréfilage,
- excellente tenue en fatigue,
- tenue dans le temps,
- faibles sections,
- agencement des extrémités : crochet de bonde et bride glissante, avec des fragilités locales et une difficulté d'élaboration.
- need to obtain a very high elastic limit,
- need to obtain a low modulus of elasticity,
- ease of production, in particular drawing,
- excellent fatigue resistance,
- held over time,
- weak sections,
- arrangement of the ends: plug hook and sliding flange, with local fragility and difficulty in elaboration.
La réalisation de ressorts-spiraux est quant à elle centrée sur le souci de la compensation thermique, de façon à garantir des performances chronométriques régulières. Il faut pour cela obtenir un coefficient thermoélastique proche de zéro.The production of hairsprings is centered on the concern for thermal compensation, so as to guarantee regular chronometric performances. This requires a thermoelastic coefficient close to zero.
Toute amélioration sur au moins l'un des points, et en particulier sur la tenue mécanique de l'alliage utilisé, représente donc une avancée significative.Any improvement on at least one of the points, and in particular on the mechanical strength of the alloy used, therefore represents a significant advance.
Le document
- formation d'un fil de l'alliage, ce fil étant en phase beta métastable;
- chauffage du fil à 350 °C et trempe dans une solution aqueuse comportant du graphite en suspension;
- séchage du fil;
- tréfilage du fil, par plusieurs passages dans une filière à 400 °C;
- laminage à plat, effectué à froid;
- estrapadage;
- traitement thermique à 475 °C pendant 10 minutes.
- formation of a wire of the alloy, this wire being in the metastable beta phase;
- heating the wire to 350°C and quenching it in an aqueous solution comprising graphite in suspension;
- yarn drying;
- drawing the wire, by several passages in a die at 400°C;
- flat rolling, carried out cold;
- strapping;
- heat treatment at 475°C for 10 minutes.
L'invention se propose de définir et de mettre au point le procédé de fabrication adéquat pour la fabrication de ressorts spiralés d'horlogerie.The invention proposes to define and develop the appropriate manufacturing process for the manufacture of spiral clock springs.
À cet effet, l'invention concerne un procédé de fabrication d'un tel ressort spiralé d'horlogerie, selon la revendication indépendante 1. Des réalisations préférées sont définies dans les revendications dépendantes.To this end, the invention relates to a method of manufacturing such a clockwork spiral spring, according to independent claim 1. Preferred embodiments are defined in the dependent claims.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :
- la
figure 1 représente, de façon schématisée et en vue en plan avant son premier armage, un ressort de barillet qui est un ressort spiralé selon l'invention ; - la
figure 2 représente, de façon schématisée, un ressort-spiral qui est un ressort spiralé selon l'invention ; - la
figure 3 représente la séquence des opérations principales du procédé selon l'invention.
- there
figure 1 shows, schematically and in plan view before its first winding, a barrel spring which is a spiral spring according to the invention; - there
figure 2 represents, schematically, a spiral spring which is a spiral spring according to the invention; - there
picture 3 represents the sequence of the main operations of the method according to the invention.
L'invention vise à la fabrication d'un ressort spiralé d'horlogerie à structure bi-phasée.The invention is aimed at the manufacture of a clockwork spiral spring with a two-phase structure.
Selon l'invention, le matériau de ce ressort spiralé est un alliage de type binaire à base titane, comportant du niobium.According to the invention, the material of this spiral spring is an alloy of the titanium-based binary type, comprising niobium.
Dans une variante avantageuse de réalisation, cet alliage comporte :
- niobium : balance à 100% ;
- une proportion en masse de titane strictement supérieure à 60.0% du total et inférieure ou égale à 85.0% du total,
- des traces d'autres composants parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, AI, chacun desdits composants de traces étant compris entre 0 et 1600 ppm du total en masse, et la somme de ces traces étant inférieure ou égale à 0.3% en masse.
- niobium: 100% balance;
- a mass proportion of titanium strictly greater than 60.0% of the total and less than or equal to 85.0% of the total,
- traces of other components among O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said trace components being between 0 and 1600 ppm of the total by mass, and the sum of these traces being less than or equal to 0.3% by mass.
Plus particulièrement, cet alliage comporte une proportion en masse de titane supérieure ou égale à 65.0% du total et inférieure ou égale à 85.0% du total.More particularly, this alloy comprises a titanium mass proportion greater than or equal to 65.0% of the total and less than or equal to 85.0% of the total.
Plus particulièrement, cet alliage comporte une proportion en masse de titane supérieure ou égale à 70.0% du total et inférieure ou égale à 85.0% du total.More particularly, this alloy comprises a titanium mass proportion greater than or equal to 70.0% of the total and less than or equal to 85.0% of the total.
Plus particulièrement encore, dans une alternative, cet alliage comporte une proportion en masse de titane supérieure ou égale à 70.0% du total et inférieure ou égale à 75.0% du total.More particularly still, in an alternative, this alloy comprises a proportion by weight of titanium greater than or equal to 70.0% of the total and less than or equal to 75.0% of the total.
Plus particulièrement encore, dans une autre alternative, cet alliage comporte une proportion en masse de titane strictement supérieure à 76.0% du total et inférieure ou égale à 85.0% du total.More particularly still, in another alternative, this alloy comprises a proportion by mass of titanium strictly greater than 76.0% of the total and less than or equal to 85.0% of the total.
Plus particulièrement, cet alliage comporte une proportion en masse de titane inférieure ou égale à 80.0% du total.More particularly, this alloy comprises a titanium mass proportion of less than or equal to 80.0% of the total.
Plus particulièrement encore, cet alliage comporte une proportion en masse de titane strictement supérieure à 76.0% du total et inférieure ou égale à 78.0% du total.More particularly still, this alloy comprises a proportion by weight of titanium strictly greater than 76.0% of the total and less than or equal to 78.0% of the total.
De façon avantageuse, ce ressort spiralé a une microstructure bi-phasée comportant du niobium bêta cubique centré et du titane alpha hexagonal compact. Plus particulièrement, ce ressort spiralé a une microstructure biphasée comprenant une solution solide de niobium avec du titane en phase β (structure cubique centrée) et une solution solide de niobium avec du titane en phase α (structure hexagonale compacte), la teneur en titane en phase α étant supérieure à 10% en volume.Advantageously, this spiral spring has a two-phase microstructure comprising centered cubic beta niobium and compact hexagonal alpha titanium. More particularly, this spiral spring has a two-phase microstructure comprising a solid solution of niobium with titanium in the β phase (centered cubic structure) and a solid solution of niobium with titanium in the α phase (compact hexagonal structure), the titanium content in α phase being greater than 10% by volume.
Pour obtenir une telle structure, et convenant à l'élaboration d'un ressort, il est nécessaire de précipiter une partie de la phase alpha par traitement thermique.To obtain such a structure, and suitable for the development of a spring, it is necessary to precipitate part of the alpha phase by heat treatment.
Plus le taux de titane est élevé, plus la proportion maximale de phase alpha qui peut être précipitée par traitement thermique est élevée, ce qui incite à rechercher une forte proportion de titane.The higher the titanium content, the higher the maximum proportion of alpha phase that can be precipitated by heat treatment, which encourages the search for a high proportion of titanium.
Plus particulièrement, le total des proportions en masse du titane et du niobium est compris entre 99.7% et 100% du total.More particularly, the total of the proportions by mass of titanium and niobium is between 99.7% and 100% of the total.
Plus particulièrement, la proportion en masse d'oxygène est inférieure ou égale à 0.10% du total, voire encore inférieure ou égale à 0.085% du total.More particularly, the proportion by mass of oxygen is less than or equal to 0.10% of the total, or even less than or equal to 0.085% of the total.
Plus particulièrement, la proportion en masse de tantale est inférieure ou égale à 0.10% du total.More particularly, the proportion by mass of tantalum is less than or equal to 0.10% of the total.
Plus particulièrement, la proportion en masse de carbone est inférieure ou égale à 0.04% du total, notamment inférieure ou égale à 0.020% du total, voire encore inférieure ou égale à 0.0175% du total.More particularly, the proportion by mass of carbon is less than or equal to 0.04% of the total, in particular less than or equal to 0.020% of the total, or even even less than or equal to 0.0175% of the total.
Plus particulièrement, la proportion en masse de fer est inférieure ou égale à 0.03% du total, notamment inférieure ou égale à 0.025% du total, voire encore inférieure ou égale à 0.020% du total.More particularly, the proportion by mass of iron is less than or equal to 0.03% of the total, in particular less than or equal to 0.025% of the total, or even even less than or equal to 0.020% of the total.
Plus particulièrement, la proportion en masse d'azote est inférieure ou égale à 0.02% du total, notamment inférieure ou égale à 0.015% du total, voire encore inférieure ou égale à 0.0075% du total.More particularly, the mass proportion of nitrogen is less than or equal to 0.02% of the total, in particular less than or equal to 0.015% of the total, or even even less than or equal to 0.0075% of the total.
Plus particulièrement, la proportion en masse d'hydrogène est inférieure ou égale à 0.01% du total, notamment inférieure ou égale à 0.0035% du total, voire encore inférieure ou égale à 0.0005% du total.More particularly, the proportion by mass of hydrogen is less than or equal to 0.01% of the total, in particular less than or equal to 0.0035% of the total, or even even less than or equal to 0.0005% of the total.
Plus particulièrement, la proportion en masse de nickel est inférieure ou égale à 0.01% du total.More particularly, the proportion by mass of nickel is less than or equal to 0.01% of the total.
Plus particulièrement, la proportion en masse de silicium est inférieure ou égale à 0.01% du total.More particularly, the mass proportion of silicon is less than or equal to 0.01% of the total.
Plus particulièrement, la proportion en masse de nickel est inférieure ou égale à 0.01% du total, notamment inférieure ou égale à 0.16% du total.More particularly, the proportion by mass of nickel is less than or equal to 0.01% of the total, in particular less than or equal to 0.16% of the total.
Plus particulièrement, la proportion en masse de matériau ductile ou cuivre est inférieure ou égale à 0.01% du total, notamment inférieure ou égale à 0.005% du total.More particularly, the proportion by mass of ductile material or copper is less than or equal to 0.01% of the total, in particular less than or equal to 0.005% of the total.
Plus particulièrement, la proportion en masse d'aluminium est inférieure ou égale à 0.01% du total.More particularly, the proportion by mass of aluminum is less than or equal to 0.01% of the total.
Ce ressort spiralé a une limite élastique supérieure ou égale à 1000 MPa. Plus particulièrement, le ressort spiralé a une limite élastique supérieure ou égale à 1500 MPa.This spiral spring has an elastic limit greater than or equal to 1000 MPa. More particularly, the spiral spring has an elastic limit greater than or equal to 1500 MPa.
Plus particulièrement encore, le ressort spiralé a une limite élastique supérieure ou égale à 2000 MPa.More particularly still, the spiral spring has an elastic limit greater than or equal to 2000 MPa.
De façon avantageuse, ce ressort spiralé a un module d'élasticité supérieur à 60 GPa et inférieur ou égal à 80 GPa.Advantageously, this spiral spring has a modulus of elasticity greater than 60 GPa and less than or equal to 80 GPa.
L'alliage ainsi déterminé permet, selon le traitement appliqué en cours d'élaboration, la confection de ressorts spiralés qui sont des ressorts-spiraux avec une limite élastique supérieure ou égale à 1000 MPa, ou des ressorts de barillet, notamment lorsque la limite élastique supérieure ou égale à 1500 MPa.The alloy thus determined allows, depending on the treatment applied during development, the manufacture of spiral springs which are spiral springs with an elastic limit greater than or equal to 1000 MPa, or barrel springs, in particular when the elastic limit greater than or equal to 1500 MPa.
L'application à un ressort-spiral nécessite des propriétés aptes à garantir le maintien des performances chronométriques malgré la variation des températures d'utilisation d'une montre incorporant un tel ressort-spiral. Le coefficient thermoélastique, dit aussi CTE de l'alliage, a alors une grande importance. L'alliage en phase bêta écroui présente un CTE fortement positif, et la précipitation de la phase alpha qui possède un CTE fortement négatif, permet de ramener l'alliage biphasé à un CTE proche de zéro, ce qui est particulièrement favorable. Pour former un oscillateur chronométrique avec un balancier en CuBe ou en maillechort, un CTE de +/- 10 ppm/°C doit être atteint. La formule qui lie le CTE de l'alliage et les coefficients de dilatation du spiral est du balancier est la suivante :
Les variables M et T sont respectivement la marche et la température. E est le module de Young du ressort-spiral, et, dans cette formule, E, β et α s'expriment en °C-1.The variables M and T are the rate and the temperature respectively. E is the Young's modulus of the hairspring, and, in this formula, E, β and α are expressed in °C -1 .
CT est le coefficient thermique de l'oscillateur, (1/E. dE/dT) est le CTE de l'alliage spiral, β est le coefficient de dilatation du balancier et α celui du spiral.CT is the thermal coefficient of the oscillator, (1/E. dE/dT) is the CTE of the hairspring alloy, β is the expansion coefficient of the balance and α that of the hairspring.
L'invention concerne en particulier un procédé de fabrication d'un ressort spiralé d'horlogerie, dans lequel on met en oeuvre successivement les étapes suivantes :
- (10) élaboration d'une ébauche dans un alliage comportant du niobium et du titane, qui est un alliage de type binaire à base titane et comportant du niobium, et qui comporte :
- niobium : balance à 100% ;
- une proportion en masse de titane strictement supérieure ou égale à 60.0% du total et inférieure ou égale à 85.0% du total,
- des traces d'autres composants parmi O, H, C, Fe, Ta, N, Ni, Si, Cu, AI, chacun desdits composants de traces étant compris entre 0 et 1600 ppm du total en masse, et la somme desdites traces étant inférieure ou égale à 0.3% en masse;
- (20) application audit alliage de séquences couplées de déformation-traitement thermique de précipitation, comportant l'application de déformations alternées à des traitements thermiques, jusqu'à l'obtention d'une microstructure biphasée comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase α, la teneur en titane en phase α étant supérieure à 10% en volume, avec une limite élastique supérieure ou égale à 1000 MPa, et un module d'élasticité supérieur à 60 GPa et inférieur ou égal à 80 GPa ;
- (30) tréfilage jusqu'à l'obtention d'un fil de section ronde, et laminage à plat compatible avec la section d'entrée d'une calandre ou d'une broche d'estrapadage ou avec une mise en bague dans le cas d'un ressort de barillet;
- (40) calandrage en clé de sol des spires pour former un ressort de barillet avant son premier armage, ou estrapadage pour former un ressort-spiral, ou mise en bague et traitement thermique pour un ressort de barillet.
- (10) preparation of a blank in an alloy comprising niobium and titanium, which is an alloy of the binary type based on titanium and comprising niobium, and which comprises:
- niobium: 100% balance;
- a mass proportion of titanium strictly greater than or equal to 60.0% of the total and less than or equal to 85.0% of the total,
- traces of other components among O, H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said trace components being between 0 and 1600 ppm of the total by mass, and the sum of said traces being less than or equal to 0.3% by mass;
- (20) application to said alloy of coupled deformation-precipitation heat treatment sequences, comprising the application of alternating deformations to heat treatments, until a two-phase microstructure is obtained comprising a solid solution of niobium with titanium in β phase and a solid solution of niobium with titanium in the α phase, the titanium content in the α phase being greater than 10% by volume, with an elastic limit greater than or equal to 1000 MPa, and a modulus of elasticity greater than 60 GPa and less than or equal to 80 GPa;
- (30) drawing until a wire of round section is obtained, and flat rolling compatible with the entry section of a calender or of a strapping pin or with a setting in a ring in the case a mainspring;
- (40) calendering in treble clef of the coils to form a mainspring before its first winding, or strapping to form a hairspring, or setting in a ring and heat treatment for a mainspring.
De façon particulière, on effectue l'application à cet alliage de séquences couplées 20 de déformation-traitement thermique de précipitation, comportant l'application de déformations (21) alternées à des traitements thermiques (22), jusqu'à l'obtention d'une microstructure biphasée comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase α, la teneur en titane en phase α étant supérieure à 10% en volume, avec une limite élastique supérieure ou égale à 2000 MPa. Plus particulièrement, le cycle de traitement comporte alors préalablement une trempe bêta (15) à un diamètre donné, de façon à ce que toute la structure de l'alliage soit bêta, puis une succession de ces séquences couplées de déformation-traitement thermique de précipitation.In particular, the application to this alloy of coupled
Dans ces séquences couplées de déformation-traitement thermique de précipitation, chaque déformation est effectuée avec un taux de déformation donné compris entre 1 et 5, ce taux de déformation répondant à la formule classique 2ln(d0/d), où d0 est le diamètre de la dernière trempe bêta, et où d est le diamètre du fil écroui. Le cumul global des déformations sur l'ensemble de cette succession de phases amène un taux total de déformation compris entre 1 et 14. Chaque séquence couplée de déformation-traitement thermique de précipitation comporte, à chaque fois, un traitement thermique de précipitation de la phase alpha Ti (300-700 °C, 1h-30h).In these coupled deformation-precipitation heat treatment sequences, each deformation is carried out with a given deformation rate between 1 and 5, this deformation rate corresponding to the classical formula 2ln(d0/d), where d0 is the diameter of the last beta temper, and where d is the diameter of the work-hardened wire. The overall accumulation of the deformations over the whole of this succession of phases leads to a total deformation rate of between 1 and 14. Each sequence coupled with deformation-heat treatment of precipitation comprises, each time, a heat treatment of precipitation of the phase alpha Ti (300-700°C, 1h-30h).
Cette variante de procédé comportant une trempe bêta est particulièrement adaptée à la fabrication de ressorts de barillet. Plus particulièrement, cette trempe bêta est un traitement de mise en solution, avec une durée comprise entre 5 minutes et 2 heures à une température comprise entre 700°C et 1000°C, sous vide, suivie d'un refroidissement sous gaz.This process variant comprising beta quenching is particularly suited to the manufacture of barrel springs. More particularly, this beta quenching is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature of between 700° C. and 1000° C., under vacuum, followed by cooling under gas.
Plus particulièrement encore, cette trempe bêta est un traitement de mise en solution, avec 1 heure à 800°C sous vide, suivie d'un refroidissement sous gaz.More particularly still, this beta quenching is a solution treatment, with 1 hour at 800° C. under vacuum, followed by cooling under gas.
Pour revenir aux séquences couplées de déformation-traitement thermique de précipitation, plus particulièrement chaque séquence couplée de déformation-traitement thermique de précipitation comporte un traitement de précipitation d'une durée comprise entre 1 heure et 80 heures à une température comprise entre 350°C et 700°C. Plus particulièrement, la durée est comprise entre 1 heure et 10 heures à une température comprise entre 380°C et 650°C. Plus particulièrement encore, la durée est de 1 heure à 12 heures, à une température de 380°C. De préférence, on applique des traitements thermiques longs, par exemple des traitements thermiques réalisés pendant une durée comprise entre 15 heures et 75 heures à une température comprise entre 350°C et 500°C. Par exemple on applique des traitements thermiques de 75h à 400h à 350°C, de 25h à 400°C ou de 18h à 480°C.To return to the coupled deformation-precipitation heat treatment sequences, more particularly each coupled sequence of deformation-precipitation heat treatment comprises a precipitation treatment lasting between 1 hour and 80 hours at a temperature between 350° C. and 700°C. More particularly, the duration is between 1 hour and 10 hours at a temperature between 380°C and 650°C. More particularly still, the duration is from 1 hour to 12 hours, at a temperature of 380°C. Preferably, long heat treatments are applied, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350° C. and 500° C. For example, heat treatments are applied for 75h to 400h at 350°C, 25h at 400°C or 18h at 480°C.
Plus particulièrement, le procédé comporte entre une et cinq, de préférence de trois à cinq, séquences couplées de déformation-traitement thermique de précipitation.More particularly, the method comprises between one and five, preferably three to five, coupled deformation-precipitation heat treatment sequences.
Plus particulièrement, la première séquence couplée de déformation-traitement thermique de précipitation comporte une première déformation avec au moins 30 % de réduction de section.More particularly, the first coupled deformation-precipitation heat treatment sequence comprises a first deformation with at least 30% reduction in section.
Plus particulièrement, chaque séquence couplée de déformation-traitement thermique de précipitation, autre que la première, comporte une déformation entre deux traitements thermiques de précipitation avec au moins 25 % de réduction de section.More particularly, each coupled deformation-precipitation heat treatment sequence, other than the first, comprises a deformation between two precipitation heat treatments with at least 25% reduction in section.
Plus particulièrement, après cette élaboration de ladite ébauche en alliage, et avant le tréfilage, dans une étape supplémentaire 25, on ajoute à l'ébauche une couche superficielle de matériau ductile pris parmi le cuivre, le nickel, le cupro-nickel, le cupro-manganèse, l'or, l'argent, le nickel-phosphore Ni-P et le nickel-bore Ni-B, ou similaire, pour faciliter la mise en forme de fil par étirage et tréfilage et laminage. Et, après le tréfilage, ou après le laminage, ou après une opération ultérieure de calandrage ou estrapadage, ou encore de mise en bague et traitement thermique dans le cas d'un ressort de barillet, on débarrasse le fil de sa couche du matériau ductile, notamment par attaque chimique, dans une étape 50.More particularly, after this preparation of said alloy blank, and before drawing, in an additional step 25, a surface layer of ductile material taken from copper, nickel, cupro-nickel, cupro -manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, or the like, to facilitate wire forming by drawing and drawing and rolling. And, after drawing, or after rolling, or after a subsequent calendering or strapping operation, or even ringing and heat treatment in the case of a barrel spring, the wire is stripped of its layer of ductile material , in particular by chemical attack, in a step 50.
Pour le ressort de barillet, il est en effet possible d'effectuer la fabrication par mise en bague et traitement thermique, où la mise en bague remplace le calandrage. Le ressort de barillet est encore généralement traité thermiquement après mise en bague ou après calandrage.For the barrel spring, it is indeed possible to carry out the manufacture by setting in ring and thermal treatment, where the setting in ring replaces the calendering. The barrel spring is still generally heat-treated after ringing or after calendering.
Un ressort spiral est, quant à lui, généralement, encore traité thermiquement après estrapadage.A spiral spring is generally still heat treated after strapping.
Plus particulièrement, on effectue la dernière phase de déformation sous la forme d'un laminage à plat, et on pratique le dernier traitement thermique sur le ressort calandré ou mis en bague ou estrapadé. Plus particulièrement, après le tréfilage, on lamine le fil à plat, avant la fabrication du ressort proprement dit par calandrage ou estrapadage ou mise en bague.More particularly, the last phase of deformation is carried out in the form of flat rolling, and the last heat treatment is carried out on the calendered or ring-formed or strapped spring. More particularly, after drawing, the wire is rolled flat, before the manufacture of the actual spring by calendering or strapping or setting in a ring.
Dans une variante, on dépose la couche superficielle de matériau ductile de façon à constituer un ressort spiral dont le pas n'est pas un multiple de l'épaisseur de la lame. Dans une autre variante, on dépose la couche superficielle de matériau ductile de façon à constituer un ressort dont le pas est variable.In a variant, the surface layer of ductile material is deposited so as to constitute a spiral spring whose pitch is not a multiple of the thickness of the blade. In another variant, the surface layer of ductile material is deposited so as to form a spring whose pitch is variable.
Dans une application horlogère particulière, du matériau ductile ou cuivre est ainsi ajouté à un moment donné pour faciliter la mise en forme du fil par étirage et tréfilage, de telle manière à ce qu'il en reste une épaisseur de 10 à 500 micromètres sur le fil au diamètre final de 0.3 à 1 millimètres. Le fil est débarrassé de sa couche de matériau ductile ou cuivre notamment par attaque chimique, puis est laminé à plat avant la fabrication du ressort proprement dit.In a particular watchmaking application, ductile material or copper is thus added at a given moment to facilitate the shaping of the wire by drawing and drawing, so that a thickness of 10 to 500 micrometers remains on the wire with a final diameter of 0.3 to 1 mm. The wire is stripped of its layer of ductile material or copper in particular by chemical attack, then is rolled flat before the manufacture of the actual spring.
L'apport de matériau ductile ou cuivre peut être galvanique, ou bien mécanique, c'est alors une chemise ou un tube de matériau ductile ou cuivre qui est ajusté sur une barre d'alliage niobium-titane à un gros diamètre, puis qui est amincie au cours des étapes de déformation du barreau composite.The contribution of ductile material or copper can be galvanic, or mechanical, it is then a shirt or a tube of ductile material or copper which is fitted on a bar of niobium-titanium alloy to a large diameter, then which is thinned during the stages of deformation of the composite bar.
L'enlèvement de la couche est notamment réalisable par attaque chimique, avec une solution à base de cyanures ou à base d'acides, par exemple d'acide nitrique.The layer can be removed in particular by chemical attack, with a solution based on cyanides or based on acids, for example nitric acid.
L'invention permet, ainsi, notamment la réalisation d'un ressort spiralé de barillet en alliage de type niobium-titane, typiquement à plus de 60 % en masse de titane.The invention thus makes it possible in particular to produce a spiral barrel spring made of an alloy of the niobium-titanium type, typically containing more than 60% by mass of titanium.
Par une combinaison adéquate d'étapes de déformation et de traitement thermique, il est possible d'obtenir une microstructure bi-phasée lamellaire très fine, en particulier nanométrique, comprenant une solution solide de niobium avec du titane en phase β et une solution solide de niobium avec du titane en phase a, la teneur en titane en phase α étant supérieure à 10% en volume. Cet alliage combine une limite élastique très élevée, supérieure au moins à 1000 MPa, ou supérieure à 1500 MPa, voire à 2000 MPa sur du fil, et un module d'élasticité très bas, de l'ordre de 60 Gpa à 80 GPa. Cette combinaison de propriétés convient bien pour un ressort de barillet ou ressort-spiral. Cet alliage de type niobium-titane se laisse facilement recouvrir de matériau ductile ou cuivre, ce qui facilite grandement sa déformation par tréfilage.By a suitable combination of deformation and heat treatment steps, it is possible to obtain a very fine lamellar bi-phase microstructure, in particular nanometric, comprising a solid solution of niobium with titanium in the β phase and a solid solution of niobium with α-phase titanium, the α-phase titanium content being greater than 10% by volume. This alloy combines a very high elastic limit, greater than at least 1000 MPa, or greater than 1500 MPa, or even 2000 MPa on wire, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a mainspring or hairspring. This niobium-titanium type alloy can easily be covered with ductile material or copper, which greatly facilitates its deformation by drawing.
Un tel alliage est connu et utilisé pour la fabrication de supraconducteurs, tels qu'appareils d'imagerie par résonance magnétique, ou accélérateurs de particules), mais n'est pas utilisé en horlogerie. Sa microstructure fine et bi-phasée est recherchée dans le cas des supraconducteurs pour des raisons physiques et a comme effet collatéral bienvenu une amélioration des propriétés mécaniques de l'alliage.Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging devices, or particle accelerators), but is not used in watchmaking. Its fine, two-phase microstructure is sought after in the case of superconductors for physical reasons and has the welcome side effect of improving the mechanical properties of the alloy.
Un tel alliage convient particulièrement bien pour la réalisation d'un ressort de barillet, et aussi pour la réalisation de ressorts-spiraux.Such an alloy is particularly suitable for the production of a mainspring, and also for the production of spiral springs.
Un alliage de type binaire comportant du niobium et du titane, du type sélectionné ci-dessus pour la mise en oeuvre de l'invention, est également susceptible d'être utilisé comme fil spiral, il présente un effet similaire à celui de l' « Elinvar », avec un coefficient thermo-élastique pratiquement nul dans la plage de températures d'utilisation usuelle de montres, et apte à la fabrication de spiraux auto-compensateurs, en particulier pour des alliages niobium-titane avec une proportion en masse de titane supérieure à 60% et allant jusqu'à 85%.A binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention, is also capable of being used as a spiral wire, it has an effect similar to that of " Elinvar", with a practically zero thermo-elastic coefficient in the range of temperatures of usual use of watches, and suitable for the manufacture of self-compensating hairsprings, in particular for niobium-titanium alloys with a higher proportion by mass of titanium at 60% and up to 85%.
Claims (14)
- Method for manufacturing a spiral timepiece spring, characterized in that the following steps are implemented in succession:- producing a blank from a binary alloy containing niobium and titanium, and which contains:- niobium: the remainder to 100%;- a proportion by mass of titanium greater than or equal to 60.0% of the total and less than or equal to 85.0% of the total,- traces of other components from among O H, C, Fe, Ta, N, Ni, Si, Cu, Al, each of said trace components being comprised between 0 and 1600 ppm by mass of the total, and the sum of said traces being less than or equal to 0.3% by mass;- performing a treatment cycle including a prior beta quenching treatment at a given diameter, such that the entire structure of the alloy is beta, then applying to said alloy a succession of the pairs of deformation/precipitation heat treatment sequences, comprising the application of deformations alternating with heat treatments until a two-phase microstructure is obtained comprising a solid solution of niobium with β-phase titanium and a solid solution of niobium with α-phase titanium, the α-phase titanium content being greater than 10% by volume, with an elastic limit higher than or equal to 1000 MPa, and a modulus of elasticity higher than 60 GPa and less than or equal to 80 GPa;- wire drawing to obtain a wire of round cross-section, and flat rolling compatible with the entry cross-section of a roller press or of a winder arbor or with insertion in a ring;- forming coils in the shape of a treble clef to form a mainspring prior to its first winding, or winding to form a balance spring, or insertion in a ring and heat treatment to form a mainspring.
- Method for manufacturing a spiral spring according to claim 1, characterized in that a last heat treatment is performed on the spring that has been calendered or inserted in a ring or wound.
- Method for manufacturing a spiral spring according to claim 1 or 2, characterized in that said alloy is subjected to pairs of deformation/precipitation heat treatment sequences, comprising the application of deformations alternating with heat treatments, until a two-phase microstructure is obtained comprising a solid solution of niobium with β-phase titanium and a solid solution of niobium with α-phase titanium, the α-phase titanium content being greater than 10% by volume, with an elastic limit greater than or equal to 2000 MPa, the treatment cycle including a prior beta quenching treatment at a given diameter, such that the entire structure of the alloy is beta, then a succession of said pairs of deformation/precipitation heat treatment sequences, wherein each deformation is performed with a given deformation rate comprised between 1 and 5, the overall accumulation of deformations over the entire series of phases giving a total deformation rate comprised between 1 and 14, and which each time includes a precipitation heat treatment of the α-phase Ti.
- Method for manufacturing a spiral spring according to claim 3, characterized in that said beta-quenching is a solution treatment, with a duration comprised between 5 minutes and 2 hours at a temperature comprised between 700°C and 1000°C, under vacuum, followed by gas cooling.
- Method for manufacturing a spiral spring according to claim 4, characterized in that said beta-quenching is a solution treatment, with 1 hour at 800°C, under vacuum, followed by gas cooling.
- Method for manufacturing a spiral spring according to any of claims 1 to 5, characterized in that each pair of deformation/precipitation heat treatment sequences includes a precipitation treatment with a duration comprised between 1 hour and 80 hours at a temperature comprised between 350°C and 700°C.
- Method for manufacturing a spiral spring according to claim 6, characterized in that each pair of deformation/precipitation heat treatment sequences includes a precipitation treatment with a duration comprised between 1 hour and 10 hours at a temperature comprised between 380°C and 650°C.
- Method for manufacturing a spiral spring according to claim 7, characterized in that each pair of deformation/precipitation heat treatment sequences includes a precipitation treatment with a duration of between 1 hour and 12 hours at 450°C.
- Method for manufacturing a spiral spring according to any of claims 1 to 8, characterized in that said method includes between one and five of said pairs of deformation/precipitation heat treatment sequences.
- Method for manufacturing a spiral spring according to any of claims 1 to 9, characterized in that said first pair of deformation/precipitation heat treatment sequences includes a first deformation with an at least 30% reduction in cross-section.
- Method for manufacturing a spiral spring according to claim 10, characterized in that each said pair of deformation/precipitation heat treatment sequences, apart from the first, includes one deformation between two precipitation heat treatments with at least a 25% reduction in cross-section.
- Method for manufacturing a spiral spring according to any of claims 1 to 11, characterized in that, after producing said alloy blank, and prior to said wire drawing, a surface layer of ductile material is added to said blank, chosen from among copper, nickel, cupronickel, cupro manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, or similar, to facilitate shaping of the wire by drawing, wire drawing and unformed rolling, and in that, after said wire drawing, or after said unformed rolling, or after a subsequent calendering or winding or insertion in a ring operation, said layer of ductile material is removed from said wire by etching.
- Method for manufacturing a spiral spring according to claim 12, characterized in that, after said wire drawing, said wire is rolled flat, before the actual spring is produced by calendering or winding or insertion in a ring.
- Method for manufacturing a spiral spring according to claim 12 or 13, characterized in that said surface layer of ductile material is deposited to form a spring whose pitch is constant and is not a multiple of the thickness of the strip.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18215265.2A EP3671359B1 (en) | 2018-12-21 | 2018-12-21 | Manufacturing method of a timepiece spiral spring made of titanium |
US16/693,481 US11650543B2 (en) | 2018-12-21 | 2019-11-25 | Titanium-based spiral timepiece spring |
JP2019212905A JP6954978B2 (en) | 2018-12-21 | 2019-11-26 | Titanium-based spiral timekeeper |
KR1020190163654A KR102320621B1 (en) | 2018-12-21 | 2019-12-10 | Titanium-based spiral timepiece spring |
RU2019142569A RU2727354C1 (en) | 2018-12-21 | 2019-12-19 | Spiral titanium-based clock spring |
CN201911326726.3A CN111349814B (en) | 2018-12-21 | 2019-12-20 | Titanium base spiral clock spring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18215265.2A EP3671359B1 (en) | 2018-12-21 | 2018-12-21 | Manufacturing method of a timepiece spiral spring made of titanium |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3671359A1 EP3671359A1 (en) | 2020-06-24 |
EP3671359B1 true EP3671359B1 (en) | 2023-04-26 |
Family
ID=64900770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18215265.2A Active EP3671359B1 (en) | 2018-12-21 | 2018-12-21 | Manufacturing method of a timepiece spiral spring made of titanium |
Country Status (6)
Country | Link |
---|---|
US (1) | US11650543B2 (en) |
EP (1) | EP3671359B1 (en) |
JP (1) | JP6954978B2 (en) |
KR (1) | KR102320621B1 (en) |
CN (1) | CN111349814B (en) |
RU (1) | RU2727354C1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD959241S1 (en) * | 2020-12-21 | 2022-08-02 | Time4Machine Inc. | Spring for a construction toy |
EP4060425B1 (en) | 2021-03-16 | 2024-10-16 | Nivarox-FAR S.A. | Hairspring for timepiece movement |
EP4060424A1 (en) * | 2021-03-16 | 2022-09-21 | Nivarox-FAR S.A. | Hairspring for timepiece movement |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1521206A (en) * | 1966-06-08 | 1968-04-12 | Vacuumschmelze Gmbh | Process for the preparation of non-ferromagnetic alloys with adjustable temperature coefficient of modulus of elasticity, as well as products conforming to those obtained by the present process or similar process |
JPS52147511A (en) * | 1976-06-02 | 1977-12-08 | Furukawa Electric Co Ltd:The | Anticorrosive high strength neobium alloy and its production |
EP0484931B1 (en) * | 1990-11-09 | 1998-01-14 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Sintered powdered titanium alloy and method for producing the same |
JP2002332531A (en) * | 1999-06-11 | 2002-11-22 | Toyota Central Res & Dev Lab Inc | Titanium alloy and manufacturing method |
WO2000077267A1 (en) | 1999-06-11 | 2000-12-21 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy and method for producing the same |
US6402859B1 (en) | 1999-09-10 | 2002-06-11 | Terumo Corporation | β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire |
EP1258786B1 (en) * | 2001-05-18 | 2008-02-20 | Rolex Sa | Self-compensating spring for a mechanical oscillator of balance-spring type |
US6918974B2 (en) * | 2002-08-26 | 2005-07-19 | General Electric Company | Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability |
JP2005140674A (en) * | 2003-11-07 | 2005-06-02 | Seiko Epson Corp | Spring, spiral spring and hair spring for watch, and watch |
US8337750B2 (en) * | 2005-09-13 | 2012-12-25 | Ati Properties, Inc. | Titanium alloys including increased oxygen content and exhibiting improved mechanical properties |
EP2510405B1 (en) | 2009-12-09 | 2016-03-30 | Rolex S.A. | Method for the shaping of a spring for a timepiece |
US20120076686A1 (en) * | 2010-09-23 | 2012-03-29 | Ati Properties, Inc. | High strength alpha/beta titanium alloy |
JP6247813B2 (en) * | 2012-08-08 | 2017-12-13 | 株式会社神戸製鋼所 | NbTi superconducting wire |
WO2014034766A1 (en) | 2012-08-31 | 2014-03-06 | シチズンホールディングス株式会社 | Hair spring material for mechanical clock and hair spring using same |
RU2525003C1 (en) * | 2013-08-07 | 2014-08-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "МАТИ-Российский государственный технологический университет имени К.Э. Циолковского" (МАТИ) | Titanium aluminide alloy and method for processing blanks thereof |
WO2015189278A2 (en) * | 2014-06-11 | 2015-12-17 | Cartier Création Studio Sa | Oscillator for a timepiece balance spring assembly |
FR3064281B1 (en) * | 2017-03-24 | 2022-11-11 | Univ De Lorraine | METASTABLE BETA TITANIUM ALLOY, CLOCK SPRING BASED ON SUCH AN ALLOY AND METHOD FOR MANUFACTURING IT |
-
2018
- 2018-12-21 EP EP18215265.2A patent/EP3671359B1/en active Active
-
2019
- 2019-11-25 US US16/693,481 patent/US11650543B2/en active Active
- 2019-11-26 JP JP2019212905A patent/JP6954978B2/en active Active
- 2019-12-10 KR KR1020190163654A patent/KR102320621B1/en active IP Right Grant
- 2019-12-19 RU RU2019142569A patent/RU2727354C1/en active
- 2019-12-20 CN CN201911326726.3A patent/CN111349814B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111349814A (en) | 2020-06-30 |
EP3671359A1 (en) | 2020-06-24 |
RU2727354C1 (en) | 2020-07-21 |
CN111349814B (en) | 2022-05-24 |
KR102320621B1 (en) | 2021-11-02 |
KR20200079188A (en) | 2020-07-02 |
US20200201254A1 (en) | 2020-06-25 |
US11650543B2 (en) | 2023-05-16 |
JP2020101527A (en) | 2020-07-02 |
JP6954978B2 (en) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3422116B1 (en) | Timepiece hairspring | |
EP3502289B1 (en) | Manufacturing method of a hairspring for a timepiece movement | |
EP3502785B1 (en) | Hairspring for clock movement and method for manufacturing same | |
EP3502288B1 (en) | Method for manufacturing a hairspring for clock movement | |
EP3671359B1 (en) | Manufacturing method of a timepiece spiral spring made of titanium | |
EP3889691B1 (en) | Horological hairspring made of a nb-hf alloy | |
EP3422115B1 (en) | Timepiece spiral spring | |
CH714494A2 (en) | Spiral clock spring, in particular a mainspring or a spiral spring. | |
EP3796101A1 (en) | Hairspring for clock movement | |
EP4060425B1 (en) | Hairspring for timepiece movement | |
CH714492A2 (en) | Spiral spring for clockwork and its manufacturing process. | |
EP4060424A1 (en) | Hairspring for timepiece movement | |
CH716155A2 (en) | Method of manufacturing a spiral spring for a clockwork movement. | |
CH714493A2 (en) | Method of manufacturing a spiral spring for a watch movement | |
EP3845971A1 (en) | Hairspring for clock movement and method for manufacturing same | |
EP3736638B1 (en) | Method for manufacturing a hairspring for clock movement | |
CH715683A2 (en) | Titanium-based clockwork spiral spring. | |
CH718454A2 (en) | Spiral spring for a clock movement and process for manufacturing this spiral spring. | |
EP4123393A1 (en) | Hairspring for clock movement | |
CH716156A2 (en) | Method of manufacturing a spiral spring for a clockwork movement. | |
CH716622A2 (en) | Spiral spring for watch movement made of niobium and titanium alloy and process for its manufacture. | |
CH718455A2 (en) | Spiral spring for a clock movement and process for manufacturing this spiral spring. | |
CH718850A2 (en) | Spiral spring for clockwork. | |
CH714491A2 (en) | Spiral spring for clockwork and its manufacturing process. | |
EP3828642A1 (en) | Hairspring for clock movement and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210111 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210520 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230207 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018048848 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1563281 Country of ref document: AT Kind code of ref document: T Effective date: 20230515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230611 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230426 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1563281 Country of ref document: AT Kind code of ref document: T Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230828 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230826 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231121 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018048848 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 6 Ref country code: DE Payment date: 20231121 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240101 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230426 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231221 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |