EP1258786B1 - Self-compensating spring for a mechanical oscillator of balance-spring type - Google Patents
Self-compensating spring for a mechanical oscillator of balance-spring type Download PDFInfo
- Publication number
- EP1258786B1 EP1258786B1 EP01810497A EP01810497A EP1258786B1 EP 1258786 B1 EP1258786 B1 EP 1258786B1 EP 01810497 A EP01810497 A EP 01810497A EP 01810497 A EP01810497 A EP 01810497A EP 1258786 B1 EP1258786 B1 EP 1258786B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cte
- oscillator
- balance
- spring
- spiral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/227—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
Definitions
- Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of spirals have an abnormally positive CTE in a range of about 30 ° C around the ambient temperature, due to the proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, leading to an increase in the modulus. In addition to the fact that this temperature range is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of the spirals irreversibly and thus change the natural frequency of the mechanical oscillator. In addition, the elastic properties of the ferromagnetic alloys vary with the rate of cold work hardening, which requires to control exactly this parameter during the manufacture of the spiral.
- the CTE values sought for the spirals made with this family of alloys are adjusted by a thermal precipitation treatment which also fixes the final shape of the spiral by relaxation.
- Hf is in solid solution in Nb over a very wide concentration range (up to 30% at.).
- the spiral alloy Nb-Hf may further contain one or more additional elements such as Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation occurs during the form fixing operation of the spiral.
Landscapes
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Springs (AREA)
Description
La présente invention se rapporte à un spiral auto-compensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier.The present invention relates to a self-compensating hairspring for a mechanical pendulum oscillator-spiral watch movement or other precision instrument, paramagnetic alloy Nb-Hf having a positive Young's modulus thermal coefficient (CTE), able to compensate the thermal expansion of the balance spring and the balance.
Toutes les méthodes proposées pour compenser ces variations de fréquence sont basées sur la considération que cette fréquence propre dépend exclusivement du rapport entre la constante du couple de rappel exercé par le spiral sur le balancier et le moment d'inertie de ce dernier, comme indiqué dans la relation suivante:
- F = fréquence propre de l'oscillateur avec
- C = constante du couple de rappel exercé par le spiral de l'oscillateur
- I = moment d'inertie du balancier de l'oscillateur
- F = natural frequency of the oscillator with
- C = constant of the restoring torque exerted by the spiral of the oscillator
- I = moment of inertia of the pendulum of the oscillator
Depuis la découverte des alliages à base de Fe-Ni possédant un coefficient thermique du module de Young (ci-après CTE) positif, la compensation thermique de l'oscillateur mécanique est obtenue en ajustant le CTE du spiral en fonction des coefficients de dilatation thermique du spiral et du balancier. En effet, en exprimant le couple et l'inertie à partir des caractéristiques du spiral et du balancier, puis en dérivant l'équation (1) par rapport à la température, on obtient la variation thermique relative de la fréquence propre:
- E: module de Young du spiral de l'oscillateur
- αs : coefficient de dilatation thermique du spiral de l'oscillateur
- αb : coefficient de dilatation thermique du balancier de l'oscillateur
- E: Young modulus of the spiral of the oscillator
- α s : coefficient of thermal expansion of the spiral of the oscillator
- α b : coefficient of thermal expansion of the pendulum of the oscillator
En ajustant le terme d'autocompensation A = ½(CTE+3αs ) à la valeur du coefficient de dilatation thermique du balancier, il est possible d'annuler l'équation (2). Ainsi, la variation thermique de la fréquence propre de l'oscillateur mécanique peut être éliminée.By adjusting the autocompensation term A = ½ ( CTE +3 α s ) to the value of the pendulum thermal expansion coefficient, it is possible to cancel equation (2). Thus, the thermal variation of the natural frequency of the mechanical oscillator can be eliminated.
Les coefficients de dilatation thermique αb des matériaux pour balanciers les plus utilisés, comme les alliages de cuivre, d'argent, d'or, de platine ou d'acier se situent dans un domaine de l'ordre de 10 à 20 ppm/°C. Pour compenser les effets des variations de température sur la fréquence propre des oscillateurs dues à leur dilatation, les alliages pour spiraux doivent donc avoir un terme d'auto-compensation correspondant. La précision désirée pour les montres exige de pouvoir ajuster en fabrication, de manière contrôlée, le terme d'auto-compensation avec une tolérance de quelques ppm/°C autour de la valeur recherchée.The coefficients of thermal expansion α b of the most used balance materials, such as alloys of copper, silver, gold, platinum or steel are in the range of 10 to 20 ppm / ° C. To compensate for the effects of temperature variations on the natural frequency of the oscillators due to their expansion, the spiral alloys must therefore have a corresponding self-compensation term. The desired precision for the watches requires to adjust in manufacture, in a controlled manner, the term of self-compensation with a tolerance of a few ppm / ° C around the desired value.
Les alliages ferromagnétiques à base de fer, nickel ou cobalt utilisés actuellement pour la fabrication des spiraux possèdent un CTE anormalement positif dans une plage d'environ 30°C autour de la température ambiante, dû à la proximité de leur température de Curie. Au voisinage de cette température, les effets magnétostrictifs qui diminuent le module de Young de ces alliages disparaissent, entraînant une augmentation du module. Outre le fait que cette plage de température est relativement étroite, ces alliages sont sensibles aux effets des champs magnétiques. Ceux-ci modifient les propriétés élastiques des spiraux de manière irréversible et changent de ce fait la fréquence propre de l'oscillateur mécanique. En outre, les propriétés élastiques des alliages ferromagnétiques varient avec le taux d'écrouissage à froid, ce qui nécessite de contrôler exactement ce paramètre lors de la fabrication du spiral.Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of spirals have an abnormally positive CTE in a range of about 30 ° C around the ambient temperature, due to the proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, leading to an increase in the modulus. In addition to the fact that this temperature range is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of the spirals irreversibly and thus change the natural frequency of the mechanical oscillator. In addition, the elastic properties of the ferromagnetic alloys vary with the rate of cold work hardening, which requires to control exactly this parameter during the manufacture of the spiral.
Les valeurs de CTE recherchées pour les spiraux réalisés avec cette famille d'alliages sont ajustées par un traitement thermique de précipitation qui fixe également la forme définitive du spiral par relaxation.The CTE values sought for the spirals made with this family of alloys are adjusted by a thermal precipitation treatment which also fixes the final shape of the spiral by relaxation.
On a déjà proposé dans le
Les causes physiques qui créent le CTE anormalement positif de ces alliages paramagnétiques sont expliquées dans les documents susmentionnés. Selon eux, ces alliages possèdent une forte densité d'états électronique au niveau de Fermi, ainsi qu'un fort couplage électron-phonon, ce qui engendre ce comportement anormal du CTE.The physical causes that create the abnormally positive CTE of these paramagnetic alloys are explained in the aforementioned documents. According to them, these alloys have a high density of electronic states at the Fermi level, as well as a strong electron-phonon coupling, which generates this abnormal behavior of the CTE.
Le document D3 cite en particulier comme étant susceptibles de convenir à la fabrication de spiraux pour oscillateurs de mouvements d'horlogerie, des alliages dans lesquels le Nb ou le Ta est allié au Zr, au Ti ou à l'Hf qui se trouvent dans ces alliages dans des proportions telles qu'ils sont capables de précipiter en deux phases.Document D3 cites in particular that it may be suitable for the manufacture of spirals for watch movement oscillators, alloys in which the Nb or Ta is alloyed with the Zr, Ti or Hf found in these alloys in such proportions that they are able to precipitate in two phases.
On a encore proposé dans le
L'ajustement du CTE lors de l'opération de fixage est difficile à maîtriser. En effet, la texture qui contrôle le CTE est modifiée au cours du fixage par la recristallisation. Or, dans les alliages de Nb-Zr-O, le déclenchement de la recristallisation et son déroulement dépendent de la concentration d'oxygène, du taux d'écrouissage et de la température. On a constaté qu'avec ces alliages, la plage de température sur laquelle se déroule la recristallisation est très étroite (environ 50°C). De plus, la variation de CTE induite est grande, de l'ordre de 150 ppm/°C entre le début et la fin de recristallisation. L'étroit intervalle de température dans lequel se déroule la recristallisation et cette forte variation du CTE rendent l'ajustement du CTE des alliages Nb-Zr-O difficilement reproductible. L'étroitesse de cet intervalle de température est due au fait que cette réaction est déclenchée par la précipitation des phases riches en Zr à partir de la solution solide.The adjustment of the CTE during the fixing operation is difficult to control. Indeed, the texture that controls the CTE is changed during fixing by recrystallization. However, in the Nb-Zr-O alloys, the initiation of the recrystallization and its progress depend on the oxygen concentration, the rate of work hardening and the temperature. It was found that with these alloys, the temperature range on which the recrystallization takes place is very narrow (about 50 ° C). In addition, the variation of CTE induced is large, of the order of 150 ppm / ° C between the beginning and the end of recrystallization. The narrow temperature range in which recrystallization occurs and this large variation in CTE make the CTE adjustment of alloys Nb-Zr-O difficult to reproduce. The narrowness of this temperature range is due to the fact that this reaction is triggered by the precipitation of the Zr-rich phases from the solid solution.
Alors que le document D3 se fonde sur la capacité des composants de l'alliage de précipiter en deux phases, le ressort avec CTE anormalement positif est fabriqué à partir de l'alliage recuit à haute température puis refroidi rapidement de manière à obtenir une solution solide sursaturée. Dans cet état, l'alliage est ensuite déformé à froid à plus de 85%. Cette forte déformation induit une texture favorable à un CTE positif. Pour ajuster le CTE à la valeur désirée, l'alliage est finalement traité thermiquement dans un intervalle de température qui permet la précipitation de la solution solide sursaturée. Les phases qui précipitent à partir de la solution solide ont des CTE plus faibles, ce qui entraîne une diminution du CTE global et permet son ajustement à la valeur désirée. La recristallisation après la précipitation en deux phases est relativement difficile à maîtriser. En outre, dans le cas du Hf, la proportion de Hf doit être supérieure à 30% at., puisque jusqu'à cette concentration, cet élément est en solution solide dans le Nb. La capacité de déformation en est donc réduite.While the D3 document is based on the ability of the components of the alloy to precipitate in two phases, the spring with abnormally positive CTE is made from the annealed alloy at high temperature and then rapidly cooled to obtain a solid solution supersaturated. In this state, the alloy is then cold deformed to more than 85%. This strong deformation induces a texture favorable to a positive CTE. To adjust the CTE to the desired value, the alloy is finally heat-treated in a temperature range that allows precipitation of the supersaturated solid solution. The phases precipitating from the solid solution have lower CTEs, which results in a decrease in the overall CTE and allows its adjustment to the desired value. Recrystallization after two-phase precipitation is relatively difficult to control. Moreover, in the case of Hf, the proportion of Hf must be greater than 30 at%, since up to this concentration, this element is in solid solution in Nb. The capacity of deformation is thus reduced.
Le but de la présente invention est un alliage qui permette de remédier, au moins en partie, aux inconvénients des alliages susmentionnés.The object of the present invention is an alloy which makes it possible to remedy, at least in part, the disadvantages of the abovementioned alloys.
On a découvert, de façon surprenante, que des alliages Nb-Hf avec de très faibles proportions de Hf, c'est-à-dire, des proportions qui se situent bien au-dessous de la limite à partir de laquelle le Hf précipite, permettaient d'obtenir un CTE positif, cette limite s'abaissant jusqu'à 2% at.It has surprisingly been found that Nb-Hf alloys with very small proportions of Hf, i.e., proportions that are well below the limit from which Hf precipitates, allowed to obtain a positive CTE, this limit falling to 2% at.
L'invention a par conséquent pour objet un spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier, selon la revendication 1.The subject of the invention is therefore a self-compensating hairspring for a mechanical balance-spring oscillator. watch movement or other precision instrument, of paramagnetic alloy Nb-Hf having a positive Young's modulus (CTE) thermal coefficient, able to compensate for the thermal expansion of the balance spring and the balance, according to claim 1.
L'alliage à partir duquel le spiral objet de l'invention est réalisé présente plusieurs avantages.The alloy from which the spiral object of the invention is made has several advantages.
Le Hf est en solution solide dans le Nb sur une très large gamme de concentration (jusqu'à 30% at.).Hf is in solid solution in Nb over a very wide concentration range (up to 30% at.).
La contribution du Hf au CTE positif est très forte, de sorte que de faibles proportions de Hf sont nécessaires. C'est ainsi qu'environ 2% at. de Hf suffisent à rendre le CTE positif. Il s'est avéré, après essais, qu'un alliage Nb-Hf 4% at. possède un CTE de 13 ppm/°C après recristallisation partielle, ce qui correspond tout à fait aux valeurs requises dans le cas d'un système balancier-spiral.The contribution of Hf to the positive CTE is very strong, so that small proportions of Hf are needed. That's how about 2% at. of Hf suffice to make the CTE positive. It turned out, after tests, that a Nb-Hf alloy 4% at. has a CTE of 13 ppm / ° C after partial recrystallization, which corresponds quite to the values required in the case of a balance spring system.
Avec cet alliage Nb-Hf 4% at., l'ajustement du CTE est plus facile à maîtriser parce que:
- 1. La variation de CTE au cours de la recristallisation n'est que de 50 ppm/°C, soit trois fois moins que pour un alliage Nb-Zr.
- 2. La recristallisation n'étant pas déclenchée par une précipitation, elle est plus lente et a lieu sur une très large plage de température (env. 400°C) comme le montre la figure annexée.
- 1. The variation of CTE during recrystallization is only 50 ppm / ° C, which is three times less than for an Nb-Zr alloy.
- 2. Since recrystallization is not triggered by precipitation, it is slower and takes place over a very wide temperature range (about 400 ° C) as shown in the attached figure.
Enfin, la faible concentration de Hf nécessaire pour avoir le CTE requis de 13 ppm/°C améliore la capacité de déformation du spiral et facilite les opérations de tréfilage.Finally, the low concentration of Hf required to have the required CTE of 13 ppm / ° C improves the deformability of the hairspring and facilitates the drawing operations.
Le spiral en alliage de Nb-Hf peut encore contenir un ou plusieurs éléments additionnels comme Ti, Ta, Zr, V, Mo, W, Cr en concentrations telles qu'aucune précipitation n'ait lieu durant l'opération de fixage de la forme du spiral.The spiral alloy Nb-Hf may further contain one or more additional elements such as Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation occurs during the form fixing operation of the spiral.
L'effet de l'oxygène sur le spiral Nb-Hf s'est révélé faible, voire nul.The effect of oxygen on the spiral Nb-Hf was found to be weak or even nil.
Claims (2)
- A self-compensating spiral spring for a mechanical balance-spiral spring oscillator for a watch or clock movement or other precision instrument, made of an Nb-Hf paramagnetic alloy possessing a thermal coefficient of Young's modulus (TCE), such that it enables the following expression to be substantially equal to zero:
where:E:Young's modulus of the spiral spring of the oscillator;αs : thermal expansion coefficient of the spiral spring of the oscillator;αb : thermal expansion coefficient of the balance the oscillator,characterized in that it contains between 2 at% and 30 at% Hf. - The spiral spring as claimed in claim 1, wherein the alloy contains less than 10 at% Hf.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1258786T DE1258786T1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of the balance spring type |
DE60132878T DE60132878T2 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of the balance spring type |
EP01810497A EP1258786B1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of balance-spring type |
US10/139,526 US6705601B2 (en) | 2001-05-18 | 2002-05-06 | Self-compensating spiral spring for a mechanical balance-spiral spring oscillator |
JP2002142837A JP4813742B2 (en) | 2001-05-18 | 2002-05-17 | Self-compensating spiral spring for mechanical balance spiral spring vibrator |
JP2009254944A JP2010044090A (en) | 2001-05-18 | 2009-11-06 | Self-compensating spiral spring for mechanical oscillator of balance-spring type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01810497A EP1258786B1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of balance-spring type |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1258786A1 EP1258786A1 (en) | 2002-11-20 |
EP1258786B1 true EP1258786B1 (en) | 2008-02-20 |
Family
ID=8183922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01810497A Expired - Lifetime EP1258786B1 (en) | 2001-05-18 | 2001-05-18 | Self-compensating spring for a mechanical oscillator of balance-spring type |
Country Status (4)
Country | Link |
---|---|
US (1) | US6705601B2 (en) |
EP (1) | EP1258786B1 (en) |
JP (2) | JP4813742B2 (en) |
DE (2) | DE1258786T1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3252542A1 (en) | 2016-06-01 | 2017-12-06 | Rolex Sa | Part for fastening a timepiece hairspring |
EP3252541A1 (en) | 2016-06-01 | 2017-12-06 | Rolex Sa | Part for fastening a timepiece hairspring |
US11650543B2 (en) | 2018-12-21 | 2023-05-16 | Nivarox-Far S.A. | Titanium-based spiral timepiece spring |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1258786B1 (en) * | 2001-05-18 | 2008-02-20 | Rolex Sa | Self-compensating spring for a mechanical oscillator of balance-spring type |
FR2842313B1 (en) * | 2002-07-12 | 2004-10-22 | Gideon Levingston | MECHANICAL OSCILLATOR (BALANCING SYSTEM AND SPIRAL SPRING) IN MATERIALS FOR REACHING A HIGHER LEVEL OF PRECISION, APPLIED TO A WATCHMAKING MOVEMENT OR OTHER PRECISION INSTRUMENT |
GB0324439D0 (en) * | 2003-10-20 | 2003-11-19 | Levingston Gideon R | Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs |
JP5606675B2 (en) * | 2005-05-14 | 2014-10-15 | カーボンタイム・リミテッド | Balance spring and method for forming the same |
WO2008029158A2 (en) * | 2006-09-08 | 2008-03-13 | Gideon Levingston | Thermally compensating balance wheel |
US7487805B2 (en) * | 2007-01-31 | 2009-02-10 | Weavexx Corporation | Papermaker's forming fabric with cross-direction yarn stitching and ratio of top machined direction yarns to bottom machine direction yarns of less than 1 |
EP2196825A1 (en) | 2007-09-21 | 2010-06-16 | National Institute of Radiological Sciences | Beta ray detector and beta ray rebuilding method |
ATE474250T1 (en) * | 2008-03-20 | 2010-07-15 | Nivarox Sa | MONOBLOCK DOUBLE SPIRAL AND ITS PRODUCTION PROCESS |
GB201001897D0 (en) * | 2010-02-05 | 2010-03-24 | Levingston Gideon | Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments |
EP2607969B1 (en) * | 2011-12-19 | 2014-09-17 | Nivarox-FAR S.A. | Clock movement with low magnetic sensitivity |
US10372083B2 (en) | 2012-07-06 | 2019-08-06 | Rolex Sa | Method for treating a surface of a timepiece component, and timepiece component obtained from such a method |
EP3159746B1 (en) | 2015-10-19 | 2018-06-06 | Rolex Sa | Heavily doped silicon hairspring for timepiece |
US10338259B2 (en) | 2015-12-14 | 2019-07-02 | Covidien Lp | Surgical adapter assemblies and wireless detection of surgical loading units |
EP3422115B1 (en) * | 2017-06-26 | 2021-08-04 | Nivarox-FAR S.A. | Timepiece spiral spring |
EP3422116B1 (en) | 2017-06-26 | 2020-11-04 | Nivarox-FAR S.A. | Timepiece hairspring |
EP3502785B1 (en) | 2017-12-21 | 2020-08-12 | Nivarox-FAR S.A. | Hairspring for clock movement and method for manufacturing same |
EP3502787B1 (en) | 2017-12-22 | 2020-11-18 | The Swatch Group Research and Development Ltd | Method for manufacturing a balance for a timepiece |
EP3663867A1 (en) * | 2018-12-05 | 2020-06-10 | Cartier International AG | Niobium-molybdenum alloy compensating balance spring for a watch or clock movement |
EP3736639B1 (en) | 2019-05-07 | 2024-07-03 | Nivarox-FAR S.A. | Method for manufacturing a hairspring for clock movement |
EP3796101A1 (en) * | 2019-09-20 | 2021-03-24 | Nivarox-FAR S.A. | Hairspring for clock movement |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB892327A (en) * | 1958-12-22 | 1962-03-28 | Union Carbide Corp | Improvements in columbium alloys |
US3183085A (en) * | 1961-09-15 | 1965-05-11 | Westinghouse Electric Corp | Tantalum base alloys |
CH536362A (en) | 1966-04-22 | 1973-04-30 | Straumann Inst Ag | Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties |
CH587866A4 (en) | 1966-04-22 | 1970-02-13 | ||
FR1521206A (en) * | 1966-06-08 | 1968-04-12 | Vacuumschmelze Gmbh | Process for the preparation of non-ferromagnetic alloys with adjustable temperature coefficient of modulus of elasticity, as well as products conforming to those obtained by the present process or similar process |
CH551302A (en) | 1973-03-01 | 1974-07-15 | Flury Arthur Ag | HEIGHT-ADJUSTABLE DEVICE FOR HANGING A Catenary On A ROPE. |
EP0886195B1 (en) | 1997-06-20 | 2002-02-13 | Montres Rolex Sa | Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same |
US6329066B1 (en) * | 2000-03-24 | 2001-12-11 | Montres Rolex S.A. | Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral |
EP1258786B1 (en) * | 2001-05-18 | 2008-02-20 | Rolex Sa | Self-compensating spring for a mechanical oscillator of balance-spring type |
-
2001
- 2001-05-18 EP EP01810497A patent/EP1258786B1/en not_active Expired - Lifetime
- 2001-05-18 DE DE1258786T patent/DE1258786T1/en active Pending
- 2001-05-18 DE DE60132878T patent/DE60132878T2/en not_active Expired - Lifetime
-
2002
- 2002-05-06 US US10/139,526 patent/US6705601B2/en not_active Expired - Fee Related
- 2002-05-17 JP JP2002142837A patent/JP4813742B2/en not_active Expired - Fee Related
-
2009
- 2009-11-06 JP JP2009254944A patent/JP2010044090A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3252542A1 (en) | 2016-06-01 | 2017-12-06 | Rolex Sa | Part for fastening a timepiece hairspring |
EP3252541A1 (en) | 2016-06-01 | 2017-12-06 | Rolex Sa | Part for fastening a timepiece hairspring |
US11650543B2 (en) | 2018-12-21 | 2023-05-16 | Nivarox-Far S.A. | Titanium-based spiral timepiece spring |
Also Published As
Publication number | Publication date |
---|---|
DE60132878T2 (en) | 2009-03-26 |
US20020180130A1 (en) | 2002-12-05 |
US6705601B2 (en) | 2004-03-16 |
JP2003004866A (en) | 2003-01-08 |
EP1258786A1 (en) | 2002-11-20 |
DE1258786T1 (en) | 2003-08-14 |
JP4813742B2 (en) | 2011-11-09 |
DE60132878D1 (en) | 2008-04-03 |
JP2010044090A (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1258786B1 (en) | Self-compensating spring for a mechanical oscillator of balance-spring type | |
EP0886195B1 (en) | Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same | |
EP3422116B1 (en) | Timepiece hairspring | |
EP3601628B1 (en) | Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication | |
EP3502785B1 (en) | Hairspring for clock movement and method for manufacturing same | |
US8100579B2 (en) | Thermally compensating balance wheel | |
EP3502289A1 (en) | Hairspring for clock movement and method for manufacturing same | |
EP1519250A1 (en) | Thermally compensated balance-hairspring resonator | |
CH706020B1 (en) | Motor spring for watch movement barrel with increased running time. | |
CN106597828B (en) | Hairspring made of heavily doped silicon for a timepiece | |
EP3671359B1 (en) | Manufacturing method of a timepiece spiral spring made of titanium | |
CN111801627B (en) | Method for manufacturing silicon-based clock spring | |
EP3422115B1 (en) | Timepiece spiral spring | |
EP2447387B1 (en) | Barrel spring of a timepiece | |
CH714494A2 (en) | Spiral clock spring, in particular a mainspring or a spiral spring. | |
EP3535425B1 (en) | Resonator for a clock piece | |
EP3176651B1 (en) | Method for manufacturing a timepiece hairspring | |
US20190271946A1 (en) | Process for producing a thermo-compensated oscillator | |
EP4212966A1 (en) | Method for limiting the deformation of a silicon timepiece | |
EP3663867A1 (en) | Niobium-molybdenum alloy compensating balance spring for a watch or clock movement | |
EP1815031A1 (en) | Gold alloy | |
CH719361A2 (en) | Process for limiting the deformation of a silicon timepiece during thermal oxidation. | |
CH719498A2 (en) | Hairspring, timepiece movement and timepiece. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ROLEX SA |
|
GBC | Gb: translation of claims filed (gb section 78(7)/1977) | ||
17P | Request for examination filed |
Effective date: 20030123 |
|
AKX | Designation fees paid |
Designated state(s): CH DE FR GB LI |
|
DET | De: translation of patent claims | ||
17Q | First examination report despatched |
Effective date: 20061227 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MOINAS & SAVOYE SA Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60132878 Country of ref document: DE Date of ref document: 20080403 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080421 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081121 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140520 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140509 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140602 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60132878 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150518 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150518 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: ROLEX SA, CH Free format text: FORMER OWNER: ROLEX SA, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20200528 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |