EP1258786B1 - Self-compensating spring for a mechanical oscillator of balance-spring type - Google Patents

Self-compensating spring for a mechanical oscillator of balance-spring type Download PDF

Info

Publication number
EP1258786B1
EP1258786B1 EP01810497A EP01810497A EP1258786B1 EP 1258786 B1 EP1258786 B1 EP 1258786B1 EP 01810497 A EP01810497 A EP 01810497A EP 01810497 A EP01810497 A EP 01810497A EP 1258786 B1 EP1258786 B1 EP 1258786B1
Authority
EP
European Patent Office
Prior art keywords
cte
oscillator
balance
spring
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01810497A
Other languages
German (de)
French (fr)
Other versions
EP1258786A1 (en
Inventor
Jacques Baur
Francois Paschoud
Patrick Sol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolex SA filed Critical Rolex SA
Priority to DE1258786T priority Critical patent/DE1258786T1/en
Priority to DE60132878T priority patent/DE60132878T2/en
Priority to EP01810497A priority patent/EP1258786B1/en
Priority to US10/139,526 priority patent/US6705601B2/en
Priority to JP2002142837A priority patent/JP4813742B2/en
Publication of EP1258786A1 publication Critical patent/EP1258786A1/en
Application granted granted Critical
Publication of EP1258786B1 publication Critical patent/EP1258786B1/en
Priority to JP2009254944A priority patent/JP2010044090A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Definitions

  • Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of spirals have an abnormally positive CTE in a range of about 30 ° C around the ambient temperature, due to the proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, leading to an increase in the modulus. In addition to the fact that this temperature range is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of the spirals irreversibly and thus change the natural frequency of the mechanical oscillator. In addition, the elastic properties of the ferromagnetic alloys vary with the rate of cold work hardening, which requires to control exactly this parameter during the manufacture of the spiral.
  • the CTE values sought for the spirals made with this family of alloys are adjusted by a thermal precipitation treatment which also fixes the final shape of the spiral by relaxation.
  • Hf is in solid solution in Nb over a very wide concentration range (up to 30% at.).
  • the spiral alloy Nb-Hf may further contain one or more additional elements such as Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation occurs during the form fixing operation of the spiral.

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Springs (AREA)

Description

La présente invention se rapporte à un spiral auto-compensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier.The present invention relates to a self-compensating hairspring for a mechanical pendulum oscillator-spiral watch movement or other precision instrument, paramagnetic alloy Nb-Hf having a positive Young's modulus thermal coefficient (CTE), able to compensate the thermal expansion of the balance spring and the balance.

Toutes les méthodes proposées pour compenser ces variations de fréquence sont basées sur la considération que cette fréquence propre dépend exclusivement du rapport entre la constante du couple de rappel exercé par le spiral sur le balancier et le moment d'inertie de ce dernier, comme indiqué dans la relation suivante: F = 1 2 π C I

Figure imgb0001

  • F = fréquence propre de l'oscillateur avec
  • C = constante du couple de rappel exercé par le spiral de l'oscillateur
  • I = moment d'inertie du balancier de l'oscillateur
All the methods proposed to compensate for these frequency variations are based on the consideration that this natural frequency depends exclusively on the ratio between the constant of the restoring moment exerted by the spiral on the balance and the moment of inertia of the latter, as indicated in the following relation: F = 1 2 π VS I
Figure imgb0001
  • F = natural frequency of the oscillator with
  • C = constant of the restoring torque exerted by the spiral of the oscillator
  • I = moment of inertia of the pendulum of the oscillator

Depuis la découverte des alliages à base de Fe-Ni possédant un coefficient thermique du module de Young (ci-après CTE) positif, la compensation thermique de l'oscillateur mécanique est obtenue en ajustant le CTE du spiral en fonction des coefficients de dilatation thermique du spiral et du balancier. En effet, en exprimant le couple et l'inertie à partir des caractéristiques du spiral et du balancier, puis en dérivant l'équation (1) par rapport à la température, on obtient la variation thermique relative de la fréquence propre: 1 F / dT dF = 1 2 1 E E T + 3 α s - 2 α b

Figure imgb0002
avec:

  • E: module de Young du spiral de l'oscillateur 1 E E T = CTE = coefficient thermique du module de Young du spiral de l oscillateur
    Figure imgb0003
  • αs : coefficient de dilatation thermique du spiral de l'oscillateur
  • αb : coefficient de dilatation thermique du balancier de l'oscillateur
Since the discovery of Fe-Ni-based alloys having a positive Young's modulus (hereinafter CTE) thermal coefficient, the mechanical oscillator thermal compensation is obtained by adjusting the spiral CTE as a function of thermal expansion coefficients. spiral and balance. Indeed, by expressing the torque and the inertia from the spiral and the pendulum characteristics, then by deriving the equation (1) with respect to the temperature, one obtains the relative thermal variation of the natural frequency: 1 F / dT dF = 1 2 1 E E T + 3 α s - 2 α b
Figure imgb0002
with:
  • E: Young modulus of the spiral of the oscillator 1 E E T = CTE = thermal coefficient of Young's modulus of the spiral of l ' oscillator
    Figure imgb0003
  • α s : coefficient of thermal expansion of the spiral of the oscillator
  • α b : coefficient of thermal expansion of the pendulum of the oscillator

En ajustant le terme d'autocompensation A = ½(CTE+3αs ) à la valeur du coefficient de dilatation thermique du balancier, il est possible d'annuler l'équation (2). Ainsi, la variation thermique de la fréquence propre de l'oscillateur mécanique peut être éliminée.By adjusting the autocompensation term A = ½ ( CTE +3 α s ) to the value of the pendulum thermal expansion coefficient, it is possible to cancel equation (2). Thus, the thermal variation of the natural frequency of the mechanical oscillator can be eliminated.

Les coefficients de dilatation thermique αb des matériaux pour balanciers les plus utilisés, comme les alliages de cuivre, d'argent, d'or, de platine ou d'acier se situent dans un domaine de l'ordre de 10 à 20 ppm/°C. Pour compenser les effets des variations de température sur la fréquence propre des oscillateurs dues à leur dilatation, les alliages pour spiraux doivent donc avoir un terme d'auto-compensation correspondant. La précision désirée pour les montres exige de pouvoir ajuster en fabrication, de manière contrôlée, le terme d'auto-compensation avec une tolérance de quelques ppm/°C autour de la valeur recherchée.The coefficients of thermal expansion α b of the most used balance materials, such as alloys of copper, silver, gold, platinum or steel are in the range of 10 to 20 ppm / ° C. To compensate for the effects of temperature variations on the natural frequency of the oscillators due to their expansion, the spiral alloys must therefore have a corresponding self-compensation term. The desired precision for the watches requires to adjust in manufacture, in a controlled manner, the term of self-compensation with a tolerance of a few ppm / ° C around the desired value.

Les alliages ferromagnétiques à base de fer, nickel ou cobalt utilisés actuellement pour la fabrication des spiraux possèdent un CTE anormalement positif dans une plage d'environ 30°C autour de la température ambiante, dû à la proximité de leur température de Curie. Au voisinage de cette température, les effets magnétostrictifs qui diminuent le module de Young de ces alliages disparaissent, entraînant une augmentation du module. Outre le fait que cette plage de température est relativement étroite, ces alliages sont sensibles aux effets des champs magnétiques. Ceux-ci modifient les propriétés élastiques des spiraux de manière irréversible et changent de ce fait la fréquence propre de l'oscillateur mécanique. En outre, les propriétés élastiques des alliages ferromagnétiques varient avec le taux d'écrouissage à froid, ce qui nécessite de contrôler exactement ce paramètre lors de la fabrication du spiral.Ferromagnetic alloys based on iron, nickel or cobalt currently used for the production of spirals have an abnormally positive CTE in a range of about 30 ° C around the ambient temperature, due to the proximity of their Curie temperature. In the vicinity of this temperature, the magnetostrictive effects which decrease the Young's modulus of these alloys disappear, leading to an increase in the modulus. In addition to the fact that this temperature range is relatively narrow, these alloys are sensitive to the effects of magnetic fields. These modify the elastic properties of the spirals irreversibly and thus change the natural frequency of the mechanical oscillator. In addition, the elastic properties of the ferromagnetic alloys vary with the rate of cold work hardening, which requires to control exactly this parameter during the manufacture of the spiral.

Les valeurs de CTE recherchées pour les spiraux réalisés avec cette famille d'alliages sont ajustées par un traitement thermique de précipitation qui fixe également la forme définitive du spiral par relaxation.The CTE values sought for the spirals made with this family of alloys are adjusted by a thermal precipitation treatment which also fixes the final shape of the spiral by relaxation.

On a déjà proposé dans le CH-551 032 (D1), dans le CH-557 557 (D2) et dans le DE-C3-15 58 816 (D3) des alliages paramagnétiques à forte susceptibilité magnétique et coefficient thermique de la susceptibilité négatif, comme alternative aux alliages ferromagnétiques pour la fabrication de spiraux autocompensateurs et de ressorts de précision. Ces alliages possèdent un CTE anormalement positif et ont l'avantage d'avoir des propriétés élastiques insensibles aux champs magnétiques. Leurs propriétés élastiques dépendent de la texture créée lors du tréfilage du spiral, mais peu du taux d'écrouissage, au contraire des alliages ferromagnétiques. De plus, comme mentionné dans le document D3, ces alliages offrent un domaine de compensation thermique des oscillateurs mécaniques qui s'étend sur plus de 100°C autour de la température ambiante.We have already proposed in the CH-551 032 (D1), in the CH-557,557 (D2) and in the DE-C3-15 58 816 (D3) paramagnetic alloys with high magnetic susceptibility and thermal coefficient of negative susceptibility, as an alternative to ferromagnetic alloys for the manufacture of self-compensating spirals and precision springs. These alloys have an abnormally positive CTE and have the advantage of having elastic properties insensitive to magnetic fields. Their elastic properties depend on the texture created during drawing of the hairspring, but little on the rate of hardening, unlike ferromagnetic alloys. In addition, as mentioned in D3, these alloys provide a thermal compensation range of mechanical oscillators that extends over more than 100 ° C around the ambient temperature.

Les causes physiques qui créent le CTE anormalement positif de ces alliages paramagnétiques sont expliquées dans les documents susmentionnés. Selon eux, ces alliages possèdent une forte densité d'états électronique au niveau de Fermi, ainsi qu'un fort couplage électron-phonon, ce qui engendre ce comportement anormal du CTE.The physical causes that create the abnormally positive CTE of these paramagnetic alloys are explained in the aforementioned documents. According to them, these alloys have a high density of electronic states at the Fermi level, as well as a strong electron-phonon coupling, which generates this abnormal behavior of the CTE.

Le document D3 cite en particulier comme étant susceptibles de convenir à la fabrication de spiraux pour oscillateurs de mouvements d'horlogerie, des alliages dans lesquels le Nb ou le Ta est allié au Zr, au Ti ou à l'Hf qui se trouvent dans ces alliages dans des proportions telles qu'ils sont capables de précipiter en deux phases.Document D3 cites in particular that it may be suitable for the manufacture of spirals for watch movement oscillators, alloys in which the Nb or Ta is alloyed with the Zr, Ti or Hf found in these alloys in such proportions that they are able to precipitate in two phases.

On a encore proposé dans le EP 0 886 195 (D4) un alliage Nb-Zr contenant entre 5% et 25% en poids de Zr et au moins 500 ppm en poids d'un agent dopant formé au moins en partie d'oxygène. Avec cet alliage, le CTE est contrôlé par la texture. La précipitation qui se produit au cours du processus de fixage induit une recristallisation qui modifie la texture et permet d'ajuster le CTE. L'oxygène influence la précipitation et la recristallisation et donc le CTE.It was further proposed in the EP 0 886 195 (D4) an Nb-Zr alloy containing between 5% and 25% by weight of Zr and at least 500 ppm by weight of a doping agent formed at least in part of oxygen. With this alloy, the CTE is controlled by the texture. The precipitation that occurs during the fixing process induces a recrystallization that modifies the texture and makes it possible to adjust the CTE. Oxygen influences precipitation and recrystallization and therefore CTE.

L'ajustement du CTE lors de l'opération de fixage est difficile à maîtriser. En effet, la texture qui contrôle le CTE est modifiée au cours du fixage par la recristallisation. Or, dans les alliages de Nb-Zr-O, le déclenchement de la recristallisation et son déroulement dépendent de la concentration d'oxygène, du taux d'écrouissage et de la température. On a constaté qu'avec ces alliages, la plage de température sur laquelle se déroule la recristallisation est très étroite (environ 50°C). De plus, la variation de CTE induite est grande, de l'ordre de 150 ppm/°C entre le début et la fin de recristallisation. L'étroit intervalle de température dans lequel se déroule la recristallisation et cette forte variation du CTE rendent l'ajustement du CTE des alliages Nb-Zr-O difficilement reproductible. L'étroitesse de cet intervalle de température est due au fait que cette réaction est déclenchée par la précipitation des phases riches en Zr à partir de la solution solide.The adjustment of the CTE during the fixing operation is difficult to control. Indeed, the texture that controls the CTE is changed during fixing by recrystallization. However, in the Nb-Zr-O alloys, the initiation of the recrystallization and its progress depend on the oxygen concentration, the rate of work hardening and the temperature. It was found that with these alloys, the temperature range on which the recrystallization takes place is very narrow (about 50 ° C). In addition, the variation of CTE induced is large, of the order of 150 ppm / ° C between the beginning and the end of recrystallization. The narrow temperature range in which recrystallization occurs and this large variation in CTE make the CTE adjustment of alloys Nb-Zr-O difficult to reproduce. The narrowness of this temperature range is due to the fact that this reaction is triggered by the precipitation of the Zr-rich phases from the solid solution.

Alors que le document D3 se fonde sur la capacité des composants de l'alliage de précipiter en deux phases, le ressort avec CTE anormalement positif est fabriqué à partir de l'alliage recuit à haute température puis refroidi rapidement de manière à obtenir une solution solide sursaturée. Dans cet état, l'alliage est ensuite déformé à froid à plus de 85%. Cette forte déformation induit une texture favorable à un CTE positif. Pour ajuster le CTE à la valeur désirée, l'alliage est finalement traité thermiquement dans un intervalle de température qui permet la précipitation de la solution solide sursaturée. Les phases qui précipitent à partir de la solution solide ont des CTE plus faibles, ce qui entraîne une diminution du CTE global et permet son ajustement à la valeur désirée. La recristallisation après la précipitation en deux phases est relativement difficile à maîtriser. En outre, dans le cas du Hf, la proportion de Hf doit être supérieure à 30% at., puisque jusqu'à cette concentration, cet élément est en solution solide dans le Nb. La capacité de déformation en est donc réduite.While the D3 document is based on the ability of the components of the alloy to precipitate in two phases, the spring with abnormally positive CTE is made from the annealed alloy at high temperature and then rapidly cooled to obtain a solid solution supersaturated. In this state, the alloy is then cold deformed to more than 85%. This strong deformation induces a texture favorable to a positive CTE. To adjust the CTE to the desired value, the alloy is finally heat-treated in a temperature range that allows precipitation of the supersaturated solid solution. The phases precipitating from the solid solution have lower CTEs, which results in a decrease in the overall CTE and allows its adjustment to the desired value. Recrystallization after two-phase precipitation is relatively difficult to control. Moreover, in the case of Hf, the proportion of Hf must be greater than 30 at%, since up to this concentration, this element is in solid solution in Nb. The capacity of deformation is thus reduced.

Le but de la présente invention est un alliage qui permette de remédier, au moins en partie, aux inconvénients des alliages susmentionnés.The object of the present invention is an alloy which makes it possible to remedy, at least in part, the disadvantages of the abovementioned alloys.

On a découvert, de façon surprenante, que des alliages Nb-Hf avec de très faibles proportions de Hf, c'est-à-dire, des proportions qui se situent bien au-dessous de la limite à partir de laquelle le Hf précipite, permettaient d'obtenir un CTE positif, cette limite s'abaissant jusqu'à 2% at.It has surprisingly been found that Nb-Hf alloys with very small proportions of Hf, i.e., proportions that are well below the limit from which Hf precipitates, allowed to obtain a positive CTE, this limit falling to 2% at.

L'invention a par conséquent pour objet un spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie ou autre instrument de précision, en alliage paramagnétique Nb-Hf possédant un coefficient thermique du module de Young (CTE) positif, apte à compenser les dilatations thermiques du spiral et du balancier, selon la revendication 1.The subject of the invention is therefore a self-compensating hairspring for a mechanical balance-spring oscillator. watch movement or other precision instrument, of paramagnetic alloy Nb-Hf having a positive Young's modulus (CTE) thermal coefficient, able to compensate for the thermal expansion of the balance spring and the balance, according to claim 1.

L'alliage à partir duquel le spiral objet de l'invention est réalisé présente plusieurs avantages.The alloy from which the spiral object of the invention is made has several advantages.

Le Hf est en solution solide dans le Nb sur une très large gamme de concentration (jusqu'à 30% at.).Hf is in solid solution in Nb over a very wide concentration range (up to 30% at.).

La contribution du Hf au CTE positif est très forte, de sorte que de faibles proportions de Hf sont nécessaires. C'est ainsi qu'environ 2% at. de Hf suffisent à rendre le CTE positif. Il s'est avéré, après essais, qu'un alliage Nb-Hf 4% at. possède un CTE de 13 ppm/°C après recristallisation partielle, ce qui correspond tout à fait aux valeurs requises dans le cas d'un système balancier-spiral.The contribution of Hf to the positive CTE is very strong, so that small proportions of Hf are needed. That's how about 2% at. of Hf suffice to make the CTE positive. It turned out, after tests, that a Nb-Hf alloy 4% at. has a CTE of 13 ppm / ° C after partial recrystallization, which corresponds quite to the values required in the case of a balance spring system.

Avec cet alliage Nb-Hf 4% at., l'ajustement du CTE est plus facile à maîtriser parce que:

  1. 1. La variation de CTE au cours de la recristallisation n'est que de 50 ppm/°C, soit trois fois moins que pour un alliage Nb-Zr.
  2. 2. La recristallisation n'étant pas déclenchée par une précipitation, elle est plus lente et a lieu sur une très large plage de température (env. 400°C) comme le montre la figure annexée.
With this Nb-Hf 4% at. Alloy, CTE adjustment is easier to control because:
  1. 1. The variation of CTE during recrystallization is only 50 ppm / ° C, which is three times less than for an Nb-Zr alloy.
  2. 2. Since recrystallization is not triggered by precipitation, it is slower and takes place over a very wide temperature range (about 400 ° C) as shown in the attached figure.

Enfin, la faible concentration de Hf nécessaire pour avoir le CTE requis de 13 ppm/°C améliore la capacité de déformation du spiral et facilite les opérations de tréfilage.Finally, the low concentration of Hf required to have the required CTE of 13 ppm / ° C improves the deformability of the hairspring and facilitates the drawing operations.

Le spiral en alliage de Nb-Hf peut encore contenir un ou plusieurs éléments additionnels comme Ti, Ta, Zr, V, Mo, W, Cr en concentrations telles qu'aucune précipitation n'ait lieu durant l'opération de fixage de la forme du spiral.The spiral alloy Nb-Hf may further contain one or more additional elements such as Ti, Ta, Zr, V, Mo, W, Cr in concentrations such that no precipitation occurs during the form fixing operation of the spiral.

L'effet de l'oxygène sur le spiral Nb-Hf s'est révélé faible, voire nul.The effect of oxygen on the spiral Nb-Hf was found to be weak or even nil.

Claims (2)

  1. A self-compensating spiral spring for a mechanical balance-spiral spring oscillator for a watch or clock movement or other precision instrument, made of an Nb-Hf paramagnetic alloy possessing a thermal coefficient of Young's modulus (TCE), such that it enables the following expression to be substantially equal to zero: 1 E dE dT + 3 α s - 2 α b
    Figure imgb0006

    where:
    E:Young's modulus of the spiral spring of the oscillator;
    1 E dE dT = CTE = thermique coefficient of Youngʹs modulus of the spriral spring the oscillator ;
    Figure imgb0007
    αs : thermal expansion coefficient of the spiral spring of the oscillator;
    αb : thermal expansion coefficient of the balance the oscillator,
    characterized in that it contains between 2 at% and 30 at% Hf.
  2. The spiral spring as claimed in claim 1, wherein the alloy contains less than 10 at% Hf.
EP01810497A 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type Expired - Lifetime EP1258786B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE1258786T DE1258786T1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of the balance spring type
DE60132878T DE60132878T2 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of the balance spring type
EP01810497A EP1258786B1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type
US10/139,526 US6705601B2 (en) 2001-05-18 2002-05-06 Self-compensating spiral spring for a mechanical balance-spiral spring oscillator
JP2002142837A JP4813742B2 (en) 2001-05-18 2002-05-17 Self-compensating spiral spring for mechanical balance spiral spring vibrator
JP2009254944A JP2010044090A (en) 2001-05-18 2009-11-06 Self-compensating spiral spring for mechanical oscillator of balance-spring type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810497A EP1258786B1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type

Publications (2)

Publication Number Publication Date
EP1258786A1 EP1258786A1 (en) 2002-11-20
EP1258786B1 true EP1258786B1 (en) 2008-02-20

Family

ID=8183922

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01810497A Expired - Lifetime EP1258786B1 (en) 2001-05-18 2001-05-18 Self-compensating spring for a mechanical oscillator of balance-spring type

Country Status (4)

Country Link
US (1) US6705601B2 (en)
EP (1) EP1258786B1 (en)
JP (2) JP4813742B2 (en)
DE (2) DE1258786T1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252542A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
EP3252541A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
US11650543B2 (en) 2018-12-21 2023-05-16 Nivarox-Far S.A. Titanium-based spiral timepiece spring

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258786B1 (en) * 2001-05-18 2008-02-20 Rolex Sa Self-compensating spring for a mechanical oscillator of balance-spring type
FR2842313B1 (en) * 2002-07-12 2004-10-22 Gideon Levingston MECHANICAL OSCILLATOR (BALANCING SYSTEM AND SPIRAL SPRING) IN MATERIALS FOR REACHING A HIGHER LEVEL OF PRECISION, APPLIED TO A WATCHMAKING MOVEMENT OR OTHER PRECISION INSTRUMENT
GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
JP5606675B2 (en) * 2005-05-14 2014-10-15 カーボンタイム・リミテッド Balance spring and method for forming the same
WO2008029158A2 (en) * 2006-09-08 2008-03-13 Gideon Levingston Thermally compensating balance wheel
US7487805B2 (en) * 2007-01-31 2009-02-10 Weavexx Corporation Papermaker's forming fabric with cross-direction yarn stitching and ratio of top machined direction yarns to bottom machine direction yarns of less than 1
EP2196825A1 (en) 2007-09-21 2010-06-16 National Institute of Radiological Sciences Beta ray detector and beta ray rebuilding method
ATE474250T1 (en) * 2008-03-20 2010-07-15 Nivarox Sa MONOBLOCK DOUBLE SPIRAL AND ITS PRODUCTION PROCESS
GB201001897D0 (en) * 2010-02-05 2010-03-24 Levingston Gideon Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments
EP2607969B1 (en) * 2011-12-19 2014-09-17 Nivarox-FAR S.A. Clock movement with low magnetic sensitivity
US10372083B2 (en) 2012-07-06 2019-08-06 Rolex Sa Method for treating a surface of a timepiece component, and timepiece component obtained from such a method
EP3159746B1 (en) 2015-10-19 2018-06-06 Rolex Sa Heavily doped silicon hairspring for timepiece
US10338259B2 (en) 2015-12-14 2019-07-02 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units
EP3422115B1 (en) * 2017-06-26 2021-08-04 Nivarox-FAR S.A. Timepiece spiral spring
EP3422116B1 (en) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3502785B1 (en) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3502787B1 (en) 2017-12-22 2020-11-18 The Swatch Group Research and Development Ltd Method for manufacturing a balance for a timepiece
EP3663867A1 (en) * 2018-12-05 2020-06-10 Cartier International AG Niobium-molybdenum alloy compensating balance spring for a watch or clock movement
EP3736639B1 (en) 2019-05-07 2024-07-03 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
EP3796101A1 (en) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Hairspring for clock movement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB892327A (en) * 1958-12-22 1962-03-28 Union Carbide Corp Improvements in columbium alloys
US3183085A (en) * 1961-09-15 1965-05-11 Westinghouse Electric Corp Tantalum base alloys
CH536362A (en) 1966-04-22 1973-04-30 Straumann Inst Ag Paramagnetic metal/semiconductor alloys - for oscillating and spring elements with particular elastic properties
CH587866A4 (en) 1966-04-22 1970-02-13
FR1521206A (en) * 1966-06-08 1968-04-12 Vacuumschmelze Gmbh Process for the preparation of non-ferromagnetic alloys with adjustable temperature coefficient of modulus of elasticity, as well as products conforming to those obtained by the present process or similar process
CH551302A (en) 1973-03-01 1974-07-15 Flury Arthur Ag HEIGHT-ADJUSTABLE DEVICE FOR HANGING A Catenary On A ROPE.
EP0886195B1 (en) 1997-06-20 2002-02-13 Montres Rolex Sa Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
US6329066B1 (en) * 2000-03-24 2001-12-11 Montres Rolex S.A. Self-compensating spiral for a spiral balance-wheel in watchwork and process for treating this spiral
EP1258786B1 (en) * 2001-05-18 2008-02-20 Rolex Sa Self-compensating spring for a mechanical oscillator of balance-spring type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252542A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
EP3252541A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
US11650543B2 (en) 2018-12-21 2023-05-16 Nivarox-Far S.A. Titanium-based spiral timepiece spring

Also Published As

Publication number Publication date
DE60132878T2 (en) 2009-03-26
US20020180130A1 (en) 2002-12-05
US6705601B2 (en) 2004-03-16
JP2003004866A (en) 2003-01-08
EP1258786A1 (en) 2002-11-20
DE1258786T1 (en) 2003-08-14
JP4813742B2 (en) 2011-11-09
DE60132878D1 (en) 2008-04-03
JP2010044090A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
EP1258786B1 (en) Self-compensating spring for a mechanical oscillator of balance-spring type
EP0886195B1 (en) Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
EP3422116B1 (en) Timepiece hairspring
EP3601628B1 (en) Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication
EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
US8100579B2 (en) Thermally compensating balance wheel
EP3502289A1 (en) Hairspring for clock movement and method for manufacturing same
EP1519250A1 (en) Thermally compensated balance-hairspring resonator
CH706020B1 (en) Motor spring for watch movement barrel with increased running time.
CN106597828B (en) Hairspring made of heavily doped silicon for a timepiece
EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
CN111801627B (en) Method for manufacturing silicon-based clock spring
EP3422115B1 (en) Timepiece spiral spring
EP2447387B1 (en) Barrel spring of a timepiece
CH714494A2 (en) Spiral clock spring, in particular a mainspring or a spiral spring.
EP3535425B1 (en) Resonator for a clock piece
EP3176651B1 (en) Method for manufacturing a timepiece hairspring
US20190271946A1 (en) Process for producing a thermo-compensated oscillator
EP4212966A1 (en) Method for limiting the deformation of a silicon timepiece
EP3663867A1 (en) Niobium-molybdenum alloy compensating balance spring for a watch or clock movement
EP1815031A1 (en) Gold alloy
CH719361A2 (en) Process for limiting the deformation of a silicon timepiece during thermal oxidation.
CH719498A2 (en) Hairspring, timepiece movement and timepiece.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROLEX SA

GBC Gb: translation of claims filed (gb section 78(7)/1977)
17P Request for examination filed

Effective date: 20030123

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

DET De: translation of patent claims
17Q First examination report despatched

Effective date: 20061227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS & SAVOYE SA

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60132878

Country of ref document: DE

Date of ref document: 20080403

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140520

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140509

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140602

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60132878

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150518

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150518

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ROLEX SA, CH

Free format text: FORMER OWNER: ROLEX SA, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200528

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL