EP2447387B1 - Barrel spring of a timepiece - Google Patents

Barrel spring of a timepiece Download PDF

Info

Publication number
EP2447387B1
EP2447387B1 EP20110186578 EP11186578A EP2447387B1 EP 2447387 B1 EP2447387 B1 EP 2447387B1 EP 20110186578 EP20110186578 EP 20110186578 EP 11186578 A EP11186578 A EP 11186578A EP 2447387 B1 EP2447387 B1 EP 2447387B1
Authority
EP
European Patent Office
Prior art keywords
barrel
spring
nivaflex
alloy
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20110186578
Other languages
German (de)
French (fr)
Other versions
EP2447387A1 (en
Inventor
Maurizio Tucci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Generale Ressorts SA
Original Assignee
Generale Ressorts SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH17992010A external-priority patent/CH703796B1/en
Priority claimed from CH00263/11A external-priority patent/CH704471B1/en
Application filed by Generale Ressorts SA filed Critical Generale Ressorts SA
Publication of EP2447387A1 publication Critical patent/EP2447387A1/en
Application granted granted Critical
Publication of EP2447387B1 publication Critical patent/EP2447387B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs

Definitions

  • the present invention relates to the field of mechanical watchmaking and relates to the field of barrel springs used particularly in watches.
  • the energy required for its operation is generally stored in a spring, housed in a barrel and, in fact, called the mainspring.
  • the force supplied is distributed by the escapement and regulated by an oscillator, which is generally a balance-spring.
  • the force to be transmitted by the spring is determined by the characteristics of the movement from which the spring is sized.
  • the diameter of the barrel conditions the number of turns that can comprise the spring, this number of turn being the essential parameter determining the power reserve of the movement, that is to say the maximum duration during which the barrel can operate the movement in correct conditions.
  • Nivaflex® the barrel springs are made almost exclusively in Nivaflex®. Indeed, a barrel spring must meet several fundamental qualities. It must be stainless, non-magnetic, indefatigable, and have a very high coefficient of elasticity. At the moment, Nivaflex® has all these qualities and offers remarkable performances. We note that they occupy a quasi-monopoly position in the market.
  • the present invention aims to allow a significant improvement in the power reserve of a movement, without changing the dimensions of the barrel, nor the elements of the regulating organ.
  • the invention relates to a timepiece cylinder spring as defined in the claims.
  • the invention also relates to a barrel comprising such a spring and a timepiece equipped with such a barrel.
  • This kind of alloy is known as steel 1.4452. It is generally used in medical applications, for prostheses, and even in the watch industry for clothing parts, such as bracelets or watch cases. Indeed, this alloy does not contain nickel and is, in fact, well tolerated in allergies. To the knowledge of the applicant, this alloy is not used for its elasticity qualities.
  • the alloy comprises at least iron, in a proportion generally greater than 50% by weight, but without this threshold being mandatory.
  • the alloy also comprises, at least nitrogen, in a proportion ranging from 0.1% to 5%, but at most in a proportion corresponding to the limit of its solubility in the alloy. Depending on the other metals composing the alloy, this solubility limit may vary, so that a numerical value is not relevant.
  • the alloy may contain less than 0.15% of carbon. It may also contain, more particularly, between 0.75% and 1% of nitrogen. In addition, the alloy may also contain between 12 and 16% manganese.
  • barrel springs were made to the dimensions of a standard barrel spring, in Nivaflex®.
  • the springs tested have the following dimensions: 1.18x0.115x455 (mm).
  • these dimensions are, respectively, the height, the thickness and the length of the leaf spring.
  • Nivaflex® spring To make a Nivaflex® spring with the required dimensions, one must have a 0.55mm diameter wire. To achieve this dimension, an annealed blank wire with a diameter of 1.1 mm is drawn, which corresponds to an optimal work hardening rate of 65% to 75% and a tensile strength of 2000 MPa at 2200 MPa. Optimal hardening means hardening to obtain an optimum in the ratio between the elasticity and fragility of the material. Thus, with Nivaflex®, it is known that the drawing must not be maximum, because the material becomes too fragile.
  • the optimum work hardening rate is greater than 98%.
  • the steel as used in the context of the invention is available on the market in the form of 1.29mm diameter wire, which corresponds to a work hardening rate of 82%. The following tests have therefore been carried out using such a wire, which points to possible additional improvements starting from a wire which has been hardened.
  • Nivaflex® and 1.4452 steel wires are then laminated and thermally treated at a temperature of 380 ° for 4 hours.
  • Rm means the tensile strength of the spring, the force applied to break it.
  • the value A is the relative elongation of the spring during this rupture.
  • the values M0.5 and M4.8 are the torques provided by the cylinder integrating said spring, respectively when, after having been fully armed, the springs are discharged by 0.5 or 4.8 rounds of barrel. Naturally, when it comes to watchmaking, we want the torque provided by the spring is as constant as possible during disarming of the spring, and that the values M0.5 and M4.8 are as close as possible to one another.
  • the alloy used to make a spring according to the invention can be further drawn. It was thus drawn to a diameter of 0.18mm. The theoretical values which would be obtained with a cylinder spring of the required dimensions, obtained from a 0.18mm wire drawn, were calculated.
  • Steel 1.4452 Theoretical properties calculated for treatment at 380 ° C Wire ⁇ 0.18mm M0.5 M4.8 Rm 3010MPa to 5.9% 8.73mNm (+ 11%) 7.44mNm (+ 17%)
  • this wire still has an elongation at break of 5.9%, so it is likely that it can be drawn further, thus further improving its breaking strength.
  • the figure 1 represents the curves of applied tensile force (in MPa) as a function of relative elongation.
  • the sudden drop in force applied corresponds to the rupture of the blade.
  • Curve a corresponds to a 0.55mm diameter wire Nivaflex® (75% work-hardening)
  • the curve b corresponds to a 1.4452 steel wire of 0.55mm diameter (82% of hardening)
  • curve c corresponds to a steel wire 1.4452 of diameter 0.18mm (98% of work hardening).
  • the shelling consists in producing the shell, that is to say the inner end of the mainspring, bent in the form of a ring, which is intended to be attached to the barrel shaft.
  • This ratio is in principle greater than or equal to 20.
  • the ring formed by the shell must not be too small relative to the thickness of the leaf spring.
  • the current limit is based on the ductility of Nivaflex®, since the quasi-exclusivity of the barrel springs is made in this material. Thanks to better ductility, 1.4452 steel makes it possible to reduce this ratio.
  • Tests were carried out with a ratio of 12 times, between the diameter of the barrel shaft and the thickness of the blade forming the spring. In the case tested, the reduction of this ratio is concretely translated by a reduction in the diameter of the barrel shaft from 2.40mm to 1.35mm.
  • the Figures 3a and 3b show respectively Nivaflex® and 1.4452 steel springs with a shell made with a ratio of 12 between the diameter of the barrel shaft on which the spring is to be mounted (this diameter corresponds substantially to the inside diameter of the ring formed by the shell), and the thickness of the leaf spring.
  • this diameter corresponds substantially to the inside diameter of the ring formed by the shell
  • the thickness of the leaf spring we can see on the figure 3a that the ductility of Nivaflex® does not allow to obtain a perfectly circular shell to this dimension.
  • the elliptical shape promotes the rupture of the blade at the level of the shell.
  • figure 3b illustrates the possibility of obtaining a shell having a satisfactory circular shape.
  • the figure 2 illustrates torque measurements provided at M0.5 and M4.8. They were made with springs obtained by heat treatments at different temperatures.
  • the curves a and b obtained with Nivaflex® respectively at M0.5 and M4.8 pairs, are relatively steeper than the curves c and d obtained with steel 1.4452, respectively at pairs M0.5 and M4. .8.
  • the decrease in the M0.5-M4.8 deviation is 5% compared to Nivaflex®, resulting in a 25% slope differential.
  • Tests carried out at different temperatures show that, beyond a certain area shown in the graph, the springs obtained are unsatisfactory, either because they are too brittle or because they are not elastic enough. It can be seen that 1.4452 steel offers a much larger working temperature range than Nivaflex®.
  • 1.4452 steel can be worked at lower temperatures, which reduces the energy consumed for its treatment.
  • the temperature range and the slope of the curves obtained with 1.4452 steel allow a simpler definition of the desired torque. Indeed, we see that, for the same tolerance, the control of the temperature is less strict to obtain a precise torque.

Description

Domaine techniqueTechnical area

La présente invention se rapporte au domaine de l'horlogerie mécanique et concerne le domaine des ressorts de barillet utilisés particulièrement dans les montres.The present invention relates to the field of mechanical watchmaking and relates to the field of barrel springs used particularly in watches.

Etat de la techniqueState of the art

Dans un mouvement de montre mécanique, l'énergie nécessaire à son fonctionnement est généralement emmagasinée dans un ressort, logé dans un barillet et, de fait, appelé ressort de barillet. La force fournie est distribuée par l'échappement et régulée par un oscillateur, qui est généralement un balancier-spiral.In a mechanical watch movement, the energy required for its operation is generally stored in a spring, housed in a barrel and, in fact, called the mainspring. The force supplied is distributed by the escapement and regulated by an oscillator, which is generally a balance-spring.

La force que doit transmettre le ressort est déterminée par les caractéristiques du mouvement, à partir desquelles le ressort est dimensionné. Le diamètre du barillet conditionne le nombre de tour que peut comporter le ressort, ce nombre de tour étant le paramètre essentiel déterminant la réserve de marche du mouvement, c'est-à-dire la durée maximale pendant laquelle le barillet peut faire fonctionner le mouvement dans des conditions correctes.The force to be transmitted by the spring is determined by the characteristics of the movement from which the spring is sized. The diameter of the barrel conditions the number of turns that can comprise the spring, this number of turn being the essential parameter determining the power reserve of the movement, that is to say the maximum duration during which the barrel can operate the movement in correct conditions.

A l'heure actuelle, les ressorts de barillet sont réalisés de manière quasi exclusive, en Nivaflex®. En effet, un ressort de barillet doit réunir plusieurs qualités fondamentales. Il doit être inoxydable, amagnétique, infatigable, et présenter un coefficient d'élasticité très élevé. A l'heure actuelle, le Nivaflex® présente toutes ces qualités et offrent des performances remarquables. On constate qu'ils occupent une situation de quasi monopole sur le marché.At present, the barrel springs are made almost exclusively in Nivaflex®. Indeed, a barrel spring must meet several fundamental qualities. It must be stainless, non-magnetic, indefatigable, and have a very high coefficient of elasticity. At the moment, Nivaflex® has all these qualities and offers remarkable performances. We note that they occupy a quasi-monopoly position in the market.

D'un point de vue pratique, si on met en oeuvre un ressort de barillet en Nivaflex® dans un mouvement existant, la dimension disponible pour le barillet et la force que le ressort doit fournir étant déterminées, il n'y a pas de possibilité de modifier le ressort de barillet pour améliorer significativement la réserve de marche du mouvement, puisqu'on ne peut modifier le nombre de tour d'enroulement sans redimensionner la place occupée par le barillet et donc modifier le mouvement.From a practical point of view, if a Nivaflex® barrel spring is used in an existing movement, the dimension available for the barrel and the force that the spring must provide are determined, there is no possibility to modify the mainspring spring to significantly improve the power reserve of the movement, since the number of winding tower without resizing the place occupied by the barrel and thus change the movement.

La présente invention a pour but de permettre une amélioration significative de la réserve de marche d'un mouvement, sans modifier les dimensions du barillet, ni les éléments de l'organe réglant.The present invention aims to allow a significant improvement in the power reserve of a movement, without changing the dimensions of the barrel, nor the elements of the regulating organ.

Divulgation de l'inventionDisclosure of the invention

Pour atteindre ces buts, l'invention concerne un ressort de barillet de pièce d'horlogerie tel que défini dans les revendications. L'invention concerne également un barillet comportant un tel ressort et une pièce d'horlogerie équipée d'un tel barillet.To achieve these objects, the invention relates to a timepiece cylinder spring as defined in the claims. The invention also relates to a barrel comprising such a spring and a timepiece equipped with such a barrel.

Brève description des dessinsBrief description of the drawings

D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence au dessin annexé dans lequel :

  • les figures 1 et 2 sont des graphiques illustrant les avantages de l'invention dans le cadre de son application à un ressort de barillet, et
  • les figures 3a et 3b montrent un autre exemple comparatif d'un avantage de l'invention dans cette même application.
Other details of the invention will emerge more clearly on reading the description which follows, made with reference to the appended drawing in which:
  • the figures 1 and 2 are graphs illustrating the advantages of the invention in the context of its application to a mainspring, and
  • the Figures 3a and 3b show another comparative example of an advantage of the invention in this same application.

Mode(s) de réalisation de l'inventionMode (s) of realization of the invention

La présente invention repose sur l'utilisation pour la réalisation d'un ressort de barillet de pièce d'horlogerie, montre, pendule ou autre, d'un alliage métallique de composition massique suivante :

  • carbone : de 0.1 à 1%,
  • manganèse : de 5 à 25%,
  • chrome : de 16 à 20%,
  • azote : de 0.1 à 5%, mais au plus dans une proportion correspondant à la limite de sa solubilité dans l'alliage,
  • niobium : ≤0.25%,
  • molybdène : de 2.5 à 4.2%,
  • fer : le solde.
The present invention is based on the use for the production of a clock spring of a timepiece, watch, pendulum or the like, of a metal alloy of the following mass composition:
  • carbon: from 0.1 to 1%,
  • manganese: from 5 to 25%,
  • chrome: from 16 to 20%,
  • nitrogen: from 0.1 to 5%, but at most in a proportion corresponding to the limit of its solubility in the alloy,
  • niobium: ≤0.25%,
  • molybdenum: 2.5 to 4.2%,
  • iron: the balance.

Ce genre d'alliage est connu sous la référence acier 1.4452. Il est généralement utilisé dans des applications médicales, pour des prothèses, voire dans l'horlogerie pour des pièces d'habillage, tel que des bracelets ou des boites de montre. En effet, cet alliage ne contient pas de nickel et est, de fait, bien toléré au niveau des allergies. A la connaissance de la demanderesse, cet alliage n'est pas utilisé pour ses qualités d'élasticité.This kind of alloy is known as steel 1.4452. It is generally used in medical applications, for prostheses, and even in the watch industry for clothing parts, such as bracelets or watch cases. Indeed, this alloy does not contain nickel and is, in fact, well tolerated in allergies. To the knowledge of the applicant, this alloy is not used for its elasticity qualities.

Or, comme nous allons le montrer ci-après, la demanderesse a remarqué l'extrême intérêt à utiliser cet alliage pour en faire des ressorts de barillet de pièce d'horlogerie, aux propriétés remarquables.However, as will be shown below, the Applicant has noted the extreme interest in using this alloy to make watch cylinder springs with remarkable properties.

Comme mentionné ci-dessus, l'alliage comporte au moins du fer, dans une proportion en général supérieur à 50% en masse, mais sans que ce seuil soit obligatoire. L'alliage comporte également, au moins de l'azote, dans une proportion allant de 0,1% à 5%, mais au plus dans une proportion correspondant à la limite de sa solubilité dans l'alliage. Selon les autres métaux composant l'alliage, cette limite de solubilité peut varier, de sorte qu'une valeur chiffrée n'est pas pertinente.As mentioned above, the alloy comprises at least iron, in a proportion generally greater than 50% by weight, but without this threshold being mandatory. The alloy also comprises, at least nitrogen, in a proportion ranging from 0.1% to 5%, but at most in a proportion corresponding to the limit of its solubility in the alloy. Depending on the other metals composing the alloy, this solubility limit may vary, so that a numerical value is not relevant.

A titre d'illustration non limitative, l'alliage peut contenir moins de 0.15% de carbone. Il peut également contenir, plus particulièrement, entre 0.75% et 1 % d'azote. De plus, l'alliage peut également contenir entre 12 et 16% de manganèse.By way of non-limiting illustration, the alloy may contain less than 0.15% of carbon. It may also contain, more particularly, between 0.75% and 1% of nitrogen. In addition, the alloy may also contain between 12 and 16% manganese.

Afin de souligner les avantages de l'alliage proposé dans une utilisation dans un ressort de barillet de pièce d'horlogerie, nous allons ci-après montrer ses performances par rapport au matériau considéré, actuellement, comme le meilleur, le Nivaflex®.In order to underline the advantages of the alloy proposed for use in a timepiece cylinder spring, we will now show its performance with respect to the material currently considered as the best, the Nivaflex®.

Ainsi, pour tester de manière comparative les performances d'un ressort de barillet réalisé dans un tel alliage, on a réalisé des ressorts de barillet aux dimensions d'un ressort de barillet étalon, en Nivaflex®. Dans les exemples ci-après, les ressorts testés ont les dimensions suivantes : 1.18x0.115x455 (mm). Par souci de clarté, on précisera que ces dimensions sont, respectivement, la hauteur, l'épaisseur et la longueur de la lame ressort.Thus, to test in a comparative manner the performance of a barrel spring made in such an alloy, barrel springs were made to the dimensions of a standard barrel spring, in Nivaflex®. In the examples below, the springs tested have the following dimensions: 1.18x0.115x455 (mm). For the sake of clarity, it will be specified that these dimensions are, respectively, the height, the thickness and the length of the leaf spring.

Pour la fabrication, les premiers essais ont été réalisés en utilisant une méthode de fabrication habituellement utilisée avec du Nivaflex®, ceci afin de pouvoir effectuer une comparaison rigoureuse. Cette méthode étant connue, elle ne sera pas décrite en détail.For the manufacturing, the first tests were carried out using a manufacturing method usually used with Nivaflex®, this in order to be able to make a rigorous comparison. This method being known, it will not be described in detail.

Pour réaliser un ressort en Nivaflex® aux dimensions requises, on doit avoir un fil de diamètre de 0.55mm. Pour atteindre cette dimension, on tréfile un fil ébauche recuit de 1.1mm de diamètre, ce qui correspond à un taux d'écrouissage optimal de 65% à 75% et une résistance à la rupture en traction de 2000MPa à 2200MPa. On entend par écrouissage optimal un écrouissage permettant d'obtenir un optimal au niveau du rapport entre l'élasticité et la fragilité du matériau. Ainsi, avec du Nivaflex®, on sait que le tréfilage ne doit pas être maximum, car le matériau devient trop fragile.To make a Nivaflex® spring with the required dimensions, one must have a 0.55mm diameter wire. To achieve this dimension, an annealed blank wire with a diameter of 1.1 mm is drawn, which corresponds to an optimal work hardening rate of 65% to 75% and a tensile strength of 2000 MPa at 2200 MPa. Optimal hardening means hardening to obtain an optimum in the ratio between the elasticity and fragility of the material. Thus, with Nivaflex®, it is known that the drawing must not be maximum, because the material becomes too fragile.

Pour l'acier 1.4452, le taux d'écrouissage optimal est supérieur à 98%. Or, à ce jour, l'acier tel qu'utilisé dans le cadre de l'invention est disponible sur le marché sous la forme de fil de diamètre de 1.29mm, ce qui correspond à un taux d'écrouissage de 82%. Les tests ci-après ont donc été effectués à partir d'un tel fil, ce qui laisse augurer d'améliorations supplémentaires possibles en partant d'un fil davantage écroui.For 1.4452 steel, the optimum work hardening rate is greater than 98%. However, to date, the steel as used in the context of the invention is available on the market in the form of 1.29mm diameter wire, which corresponds to a work hardening rate of 82%. The following tests have therefore been carried out using such a wire, which points to possible additional improvements starting from a wire which has been hardened.

Les fils de Nivaflex® et d'acier 1.4452 sont ensuite laminés et traités thermiquement à une température de 380° pendant 4h.The Nivaflex® and 1.4452 steel wires are then laminated and thermally treated at a temperature of 380 ° for 4 hours.

Les ressorts obtenus, ayant donc les mêmes dimensions et ayant été obtenus selon le même procédé pour le ressort en Nivaflex® et le ressort en acier 1.4452, présentent les résultats suivants: Nivaflex® Acier 1.4452 Fil Ressorts 1.18 x 0.115 x 455 traité 380°C Fil Ressorts 1.18 x 0.115 x 455 traité 380°C ∅0.55mm M0.5 M4.8 ∅0.55mm M0.5 M4.8 Rm 2018MPa A 6.3% 7.88mNm 6.35mNm Rm 2480MPa A 5.9% 8.25mNm (+5%) 6.88mNm (+8%) The springs obtained, therefore having the same dimensions and having been obtained according to the same method for the Nivaflex® spring and the 1.4452 steel spring, have the following results: Nivaflex ® Steel 1.4452 wire Springs 1.18 x 0.115 x 455 treated 380 ° C wire Springs 1.18 x 0.115 x 455 treated 380 ° C ∅0.55mm M0.5 M4.8 ∅0.55mm M0.5 M4.8 Rm 2018MPa at 6.3% 7.88mNm 6.35mNm Rm 2480MPa to 5.9% 8.25mNm (+ 5%) 6.88mNm (+ 8%)

Dans ce tableau, Rm signifie la résistance mécanique en traction du ressort, soit la force appliquée pour le rompre. La valeur A est l'allongement relatif du ressort lors de cette rupture. Les valeurs M0.5 et M4.8 sont les couples fournis par le barillet intégrant ledit ressort, respectivement lorsque, après avoir été armés au maximum, les ressorts sont déchargés de 0.5 ou de 4.8 tours de barillet. Naturellement, en matière d'horlogerie, on souhaite que le couple fourni par le ressort soit aussi constant que possible au cours du désarmage du ressort, et que les valeurs M0.5 et M4.8 soient aussi proches que possible l'une de l'autre.In this table, Rm means the tensile strength of the spring, the force applied to break it. The value A is the relative elongation of the spring during this rupture. The values M0.5 and M4.8 are the torques provided by the cylinder integrating said spring, respectively when, after having been fully armed, the springs are discharged by 0.5 or 4.8 rounds of barrel. Naturally, when it comes to watchmaking, we want the torque provided by the spring is as constant as possible during disarming of the spring, and that the values M0.5 and M4.8 are as close as possible to one another.

On peut déjà constater une amélioration nette des caractéristiques mécaniques d'un ressort en alliage selon l'invention par rapport à un ressort en Nivaflex®. On peut relever que la rupture se fait à un allongement comparable, mais que le ressort en acier 1.4452 supporte une traction beaucoup plus importante (+22.9%). De plus, pour un ressort de mêmes dimensions, le couple transmis est plus important (+5% ou +8%, respectivement à M0.5 et M4.8), notamment avec une meilleure stabilité au cours du désarmage.We can already see a clear improvement in the mechanical characteristics of an alloy spring according to the invention compared to a Nivaflex® spring. It can be noted that the break is at a comparable elongation, but that the 1.4452 steel spring withstands much more traction (+ 22.9%). In addition, for a spring of the same dimensions, the transmitted torque is larger (+ 5% or + 8%, respectively at M0.5 and M4.8), especially with better stability during disarming.

En outre, comme mentionné ci-dessus, l'alliage utilisé pour réaliser un ressort selon l'invention peut être davantage tréfilé. On l'a ainsi tréfilé jusqu'à un diamètre de 0.18mm. On a calculé les valeurs théoriques qui seraient obtenues avec un ressort de barillet aux dimensions requises, obtenu à partir d'un fil tréfilé de 0.18mm. Acier 1.4452 Propriétés théoriques calculées pour traitement à 380°C Fil ∅0.18mm M0.5 M4.8 Rm 3010MPa A 5.9% 8.73mNm (+11%) 7.44mNm (+17%) In addition, as mentioned above, the alloy used to make a spring according to the invention can be further drawn. It was thus drawn to a diameter of 0.18mm. The theoretical values which would be obtained with a cylinder spring of the required dimensions, obtained from a 0.18mm wire drawn, were calculated. Steel 1.4452 Theoretical properties calculated for treatment at 380 ° C Wire ∅0.18mm M0.5 M4.8 Rm 3010MPa to 5.9% 8.73mNm (+ 11%) 7.44mNm (+ 17%)

On peut constater qu'un ressort en acier 1.4452 ayant ces dimensions permet d'obtenir une résistance à la rupture supérieure de 49% par rapport au ressort de référence en Nivaflex®. On rappellera qu'un ressort en Nivaflex® autant tréfilé donnerait des résultats encore moins bons que le ressort de référence. De plus, le couple fourni (valeurs théoriques, calculées par modélisation) est encore meilleur que lors des tests obtenus avec un fil de diamètre 0.55mm, avec une plus grande stabilité lors du désarmage.It can be seen that a 1.4452 steel spring with these dimensions makes it possible to obtain a 49% greater breaking strength than the Nivaflex® reference spring. It will be recalled that a drawn Nivaflex® spring would give even worse results than the reference spring. In addition, the torque supplied (theoretical values, calculated by modeling) is even better than during tests obtained with a 0.55mm diameter wire, with greater stability during disarming.

En outre, ce fil présente encore un allongement à la rupture de 5.9%, il est donc probable qu'il puisse être tréfilé davantage, améliorant ainsi encore sa résistance à la rupture.In addition, this wire still has an elongation at break of 5.9%, so it is likely that it can be drawn further, thus further improving its breaking strength.

La figure 1 représente les courbes de la force de traction appliquée (en MPa) en fonction de l'allongement relatif. La chute brutale de la force appliquée correspond à la rupture de la lame. La courbe a correspond à un fil de Nivaflex® de diamètre 0.55mm (75% d'écrouissage), la courbe b correspond à un fil d'acier 1.4452 de diamètre 0.55mm (82% d'écrouissage) et la courbe c correspond à un fil d'acier 1.4452 de diamètre 0.18mm (98% d'écrouissage).The figure 1 represents the curves of applied tensile force (in MPa) as a function of relative elongation. The sudden drop in force applied corresponds to the rupture of the blade. Curve a corresponds to a 0.55mm diameter wire Nivaflex® (75% work-hardening), the curve b corresponds to a 1.4452 steel wire of 0.55mm diameter (82% of hardening), and curve c corresponds to a steel wire 1.4452 of diameter 0.18mm (98% of work hardening).

Avec les ressorts obtenus, il a également été procédé à des tests de fatigue. Pour ce faire, on arme et désarme successivement le ressort entre10% et 90% de sa réserve de marche, jusqu'à la rupture du ressort. Les résultats suivants ont été obtenus. Nivaflex M0.5 à 8.40mNm Acier 1.4452 M0.5 à 8.25mNm Coquillons ∅2.40mm 1269 cycles 2047 cycles (+61%) With the springs obtained, it was also carried out fatigue tests. To do this, the spring is armed and disarmed successively between 10% and 90% of its power reserve, until the spring break. The following results were obtained. Nivaflex M0.5 to 8.40mNm Steel 1.4452 M0.5 to 8.25mNm Shells ∅2.40mm 1269 cycles 2047 cycles (+ 61%)

On peut donc constater une très importante amélioration de la résistance à la fatigue des ressorts à la répétition des armages et des désarmages.One can thus see a very important improvement of the resistance to the fatigue of the springs with the repetition of the armings and disarmages.

Des essais de coquillonnage ont été réalisés afin d'améliorer ce point. Le coquillonnage consiste à réaliser le coquillon, c'est-à-dire l'extrémité intérieure du ressort moteur, pliée en forme d'anneau, qui est destinée à être accrochée à l'arbre de barillet. Aujourd'hui, toute la littérature et l'expérience impose une limite au niveau du rapport entre le diamètre de l'arbre de barillet et l'épaisseur de la lame formant le ressort. Ce rapport est en principe supérieur ou égal à 20. En d'autres termes, l'anneau formé par le coquillon ne doit pas être trop petit par rapport à l'épaisseur de la lame ressort. La limite retenue actuellement est basée sur la ductilité du Nivaflex®, étant donné que la quasi exclusivité des ressorts de barillet sont réalisés dans ce matériau. Grâce à une meilleure ductilité, l'acier 1.4452 permet de réduire ce rapport.Shells tests were carried out to improve this point. The shelling consists in producing the shell, that is to say the inner end of the mainspring, bent in the form of a ring, which is intended to be attached to the barrel shaft. Today, all literature and experience impose a limit on the ratio between the diameter of the barrel shaft and the thickness of the blade forming the spring. This ratio is in principle greater than or equal to 20. In other words, the ring formed by the shell must not be too small relative to the thickness of the leaf spring. The current limit is based on the ductility of Nivaflex®, since the quasi-exclusivity of the barrel springs is made in this material. Thanks to better ductility, 1.4452 steel makes it possible to reduce this ratio.

Des essais ont été réalisés avec un rapport de 12 fois, entre le diamètre de l'arbre de barillet et l'épaisseur de la lame formant le ressort. Dans le cas testé, la diminution de ce rapport se traduit concrètement par une diminution du diamètre de l'arbre de barillet de 2.40mm à 1.35mm.Tests were carried out with a ratio of 12 times, between the diameter of the barrel shaft and the thickness of the blade forming the spring. In the case tested, the reduction of this ratio is concretely translated by a reduction in the diameter of the barrel shaft from 2.40mm to 1.35mm.

Les figures 3a et 3b montrent respectivement des ressorts en Nivaflex® et en acier 1.4452 avec un coquillon réalisé avec un rapport de 12 entre le diamètre de l'arbre de barillet sur lequel le ressort est destiné à être monté (ce diamètre correspond sensiblement au diamètre intérieur de l'anneau formé par le coquillon), et l'épaisseur de la lame ressort. On peut voir sur la figure 3a que la ductilité du Nivaflex® ne permet pas d'obtenir un coquillon parfaitement circulaire à cette dimension. La forme elliptique favorise la rupture de la lame au niveau du coquillon. Au contraire, la figure 3b illustre la possibilité d'obtenir un coquillon présentant une forme circulaire satisfaisante. Ainsi, malgré le rapport entre le diamètre de l'arbre et l'épaisseur de la lame ressort, le risque de casse n'est pas accru.The Figures 3a and 3b show respectively Nivaflex® and 1.4452 steel springs with a shell made with a ratio of 12 between the diameter of the barrel shaft on which the spring is to be mounted (this diameter corresponds substantially to the inside diameter of the ring formed by the shell), and the thickness of the leaf spring. We can see on the figure 3a that the ductility of Nivaflex® does not allow to obtain a perfectly circular shell to this dimension. The elliptical shape promotes the rupture of the blade at the level of the shell. On the contrary, figure 3b illustrates the possibility of obtaining a shell having a satisfactory circular shape. Thus, despite the relationship between the diameter of the shaft and the thickness of the spring blade, the risk of breakage is not increased.

Des tests supplémentaires ont été réalisés. La figure 2 illustre des mesures du couple fourni à M0.5 et M4.8. Elles ont été réalisées avec des ressorts obtenus par des traitements thermiques à des températures différentes. Les courbes a et b, obtenues avec du Nivaflex® respectivement à des couples M0.5 et M4.8, sont relativement plus pentues que les courbes c et d obtenues avec de l'acier 1.4452, respectivement à des couples M0.5 et M4.8.La diminution de l'écart M0.5-M4.8 est de 5% par rapport au Nivaflex®, ceci entraînant un différentiel de pente de 25%. Les essais effectués à des températures différentes permettent de constater que, au-delà d'un certain domaine illustré sur le graphique, les ressorts obtenus ne sont pas satisfaisants, soit parce que trop cassants ou parce que pas assez élastiques. On peut donc voir que l'acier 1.4452 offre une plage de température de travail beaucoup plus grande que celle offerte par le Nivaflex®. En outre, l'acier 1.4452 peut être travaillé à des températures inférieures, ce qui permet de diminuer l'énergie consommée pour son traitement. En outre, la gamme de température et la pente des courbes obtenues avec l'acier 1.4452 permet une définition plus simple du couple recherché. En effet, on constate que, pour une même tolérance, la maitrise de la température est moins stricte pour obtenir un couple précis.Additional tests were performed. The figure 2 illustrates torque measurements provided at M0.5 and M4.8. They were made with springs obtained by heat treatments at different temperatures. The curves a and b , obtained with Nivaflex® respectively at M0.5 and M4.8 pairs, are relatively steeper than the curves c and d obtained with steel 1.4452, respectively at pairs M0.5 and M4. .8.The decrease in the M0.5-M4.8 deviation is 5% compared to Nivaflex®, resulting in a 25% slope differential. Tests carried out at different temperatures show that, beyond a certain area shown in the graph, the springs obtained are unsatisfactory, either because they are too brittle or because they are not elastic enough. It can be seen that 1.4452 steel offers a much larger working temperature range than Nivaflex®. In addition, 1.4452 steel can be worked at lower temperatures, which reduces the energy consumed for its treatment. In addition, the temperature range and the slope of the curves obtained with 1.4452 steel allow a simpler definition of the desired torque. Indeed, we see that, for the same tolerance, the control of the temperature is less strict to obtain a precise torque.

Concrètement, toutes ces améliorations donnent la possibilité, pour un barillet de 11.50mm de diamètre avec une lame de 1.18x0.115x455mm, selon l'exemple testé, de passer d'une réserve de marche de 48heures pour un mouvement donné, à une réserve de marche de 66.3heures pour le même mouvement, soit une augmentation de 38%.Concretely, all these improvements give the possibility, for a barrel of 11.50mm of diameter with a blade of 1.18x0.115x455mm, according to the example tested, to go from a power reserve of 48 hours for a given movement, to a reserve of 66.3 hours for the same movement, an increase of 38%.

Ainsi, les essais effectués montrent un très net avantage à réaliser des ressorts de barillet en acier 1.4452. Les valeurs de tests données ci-dessus ne sont que des illustrations non limitatives. Ainsi, grâce aux qualités élastiques du matériau, qui viennent s'ajouter à ses qualités de résistance à l'oxydation et d'amagnétisme, l'amélioration apportée à des ressorts de barillet est notable. En remplaçant des barillets avec des ressorts en Nivaflex® dans des mouvement existants, par des barillets avec des ressorts en acier 1.4452 avec un arbre adapté aux nouvelle géométrie du coquillon, on peut attendre une augmentation de la réserve de marche supérieure à 30%, ce qui est considérable, d'autant que seul le changement du barillet est à envisager, sans autre modification sur le mouvement, étant donné que cette amélioration se fait à couple constant et à dimension externe de barillet constante. On pourrait également envisager de conserver une réserve de marche similaire à celle obtenue avec les ressorts de l'état de la technique, mais en diminuant la taille du barillet.Thus, the tests carried out show a very clear advantage in making steel barrel springs 1.4452. The test values given above are only non-limiting illustrations. Thus, thanks to the elastic qualities of the material, which are added to its qualities of resistance to oxidation and amagnetism, the improvement made to the barrel springs is notable. By replacing barrels with Nivaflex® springs in existing movements, by barrels with steel springs 1.4452 with a shaft adapted to the new geometry of the shell, we can expect an increase in the power reserve of more than 30%, which is considerable, especially since only the change of the barrel is to be envisaged, without any other modification on the movement, since this improvement is done with constant torque and with constant external cylinder dimension. One could also consider keeping a power reserve similar to that obtained with the springs of the state of the art, but by decreasing the size of the barrel.

On pourra ajouter que l'intérêt suscité par ces améliorations est encore renforcé par la facilité de mise en oeuvre de cet alliage, qui permet une optimisation des coûts de fabrication.It can be added that the interest aroused by these improvements is further reinforced by the ease of implementation of this alloy, which allows optimization of manufacturing costs.

Claims (8)

  1. A timepiece barrel spring made from a metal alloy, characterized in that the metal alloy has the following weight composition:
    - carbon: from 0.1 to 1 %,
    - manganese: from 5 to 25%,
    - chromium: from 16 to 20%,
    - nitrogen: from 0.1 to 5%, but at most in a proportion corresponding to the limit of its solubility in the metal alloy,
    - niobium: ≤ 0.25%,
    - molybdenum: from 2.5 to 4.2%,
    - iron: the rest.
  2. The barrel spring according to claim 1, characterized in that the alloy contains less than 0.15% carbon.
  3. The barrel spring according to one of the preceding claims, characterized in that the alloy contains between 0.75% and 1% nitrogen.
  4. The barrel spring according to one of claims 1 to 3, characterized in that the alloy contains between 12 and 16% manganese.
  5. The barrel spring according to one of the preceding claims, characterized in that it has an inner eye diameter / blade thickness ratio of less than 20.
  6. The barrel spring according to claim 5, characterized in that it has an inner eye diameter / blade thickness ratio of less than 12.
  7. A barrel provided with a spring according to one of claims 1 to 6.
  8. A timepiece provided with a barrel according to claim 7.
EP20110186578 2010-10-28 2011-10-25 Barrel spring of a timepiece Active EP2447387B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH17992010A CH703796B1 (en) 2010-10-28 2010-10-28 Spring barrel for a timepiece, a watch or a clock, where the spring is made of a metal alloy including nitrogen, iron, carbon, manganese, chromium, niobium and niobium
CH00263/11A CH704471B1 (en) 2011-02-15 2011-02-15 Clock spring of timepiece.

Publications (2)

Publication Number Publication Date
EP2447387A1 EP2447387A1 (en) 2012-05-02
EP2447387B1 true EP2447387B1 (en) 2013-11-13

Family

ID=45065657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110186578 Active EP2447387B1 (en) 2010-10-28 2011-10-25 Barrel spring of a timepiece

Country Status (2)

Country Link
EP (1) EP2447387B1 (en)
HK (1) HK1166357A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH708231B1 (en) * 2013-06-27 2017-03-15 Nivarox Far Sa Clock spring made of austenitic stainless steel.
DE102015002430A1 (en) 2015-02-26 2016-09-01 Gernot Hausch CoNiCrMo alloy for elevator springs in a mechanical movement
EP3176281B1 (en) * 2015-12-02 2019-03-27 Nivarox-FAR S.A. Method for improving an iron-nickel-chromium-manganese alloy for clockmaking uses
EP3176653B1 (en) * 2015-12-03 2018-09-26 Cartier International AG Clock component having a magnetic shielding function and comprising a steel alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH551492A (en) * 1967-05-13 1974-07-15 Straumann Reinhard Inst Dr Ing Frequency controlling element
DE19813459A1 (en) * 1998-03-26 1999-09-30 Mettler Toledo Gmbh Elastic deformable component and method for its production
JP2004308827A (en) * 2003-04-09 2004-11-04 Sii Micro Parts Ltd Method of manufacturing spring
EP2351864B1 (en) * 2008-11-17 2016-08-10 Research Institute for Electromagnetic Materials Process for producing a high-hardness constant-modulus alloy insensitive to magnetism, hair spring, mechanical driving device and watch

Also Published As

Publication number Publication date
EP2447387A1 (en) 2012-05-02
HK1166357A1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
EP3422116B1 (en) Timepiece hairspring
EP0886195B1 (en) Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
EP3502289B1 (en) Manufacturing method of a hairspring for a timepiece movement
EP3601628B1 (en) Beta metastable titanium alloy, watch spring based on the said alloy and its method of fabrication
EP2447387B1 (en) Barrel spring of a timepiece
EP3502288B1 (en) Method for manufacturing a hairspring for clock movement
FR3007853B1 (en) AUSTENITIC STAINLESS STEEL WATCH WATCH SPRING
CH703796B1 (en) Spring barrel for a timepiece, a watch or a clock, where the spring is made of a metal alloy including nitrogen, iron, carbon, manganese, chromium, niobium and niobium
CH706020B1 (en) Motor spring for watch movement barrel with increased running time.
EP3315620B1 (en) Non-magnetic precious alloy for clockmaking applications
EP3671359B1 (en) Manufacturing method of a timepiece spiral spring made of titanium
CH704471B1 (en) Clock spring of timepiece.
EP3422115B1 (en) Timepiece spiral spring
EP2924514B1 (en) Clockwork spring made of austenitic stainless steel
EP3889691A1 (en) Horological hairspring made of a ni-hf alloy
CH714492A2 (en) Spiral spring for clockwork and its manufacturing process.
CH714494B1 (en) Spiral clockwork spring, in particular a barrel spring or a spiral spring.
FR3118064A1 (en) Non-magnetic timepieces and thermomechanical treatment process for obtaining such parts.
EP4019459A1 (en) Method for manufacturing a thermocompensated hairspring
CH719741A2 (en) Processes for manufacturing and hardening a watch or jewelry component comprising an at least binary alloy based on gold and copper.
CH718550A2 (en) Watchmaking pivot pin and method of manufacturing such a watchmaking pivot pin.
CH718217A2 (en) Process for manufacturing a heat-compensated spiral spring.
CH716664A2 (en) Non-magnetic and hard watch component, in particular the pivot axis of a regulating organ.
CH716974A2 (en) Spiral spring for watchmaking sprung balance oscillator and its manufacturing process.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120620

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1166357

Country of ref document: HK

17Q First examination report despatched

Effective date: 20121001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130729

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GLN S.A., CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 640617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011003686

Country of ref document: DE

Effective date: 20140109

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131113

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1166357

Country of ref document: HK

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 640617

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011003686

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

26N No opposition filed

Effective date: 20140814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011003686

Country of ref document: DE

Effective date: 20140814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141025

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111025

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GENERALE RESSORTS SA, CH

Free format text: FORMER OWNER: GENERALE RESSORTS SA, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231019

Year of fee payment: 13

Ref country code: FR

Payment date: 20231024

Year of fee payment: 13

Ref country code: DE

Payment date: 20231020

Year of fee payment: 13

Ref country code: CH

Payment date: 20231102

Year of fee payment: 13