WO2015189278A2 - Oscillator for a timepiece balance spring assembly - Google Patents

Oscillator for a timepiece balance spring assembly Download PDF

Info

Publication number
WO2015189278A2
WO2015189278A2 PCT/EP2015/062954 EP2015062954W WO2015189278A2 WO 2015189278 A2 WO2015189278 A2 WO 2015189278A2 EP 2015062954 W EP2015062954 W EP 2015062954W WO 2015189278 A2 WO2015189278 A2 WO 2015189278A2
Authority
WO
WIPO (PCT)
Prior art keywords
oscillator
alloy comprises
titanium
oxygen
alloy
Prior art date
Application number
PCT/EP2015/062954
Other languages
French (fr)
Other versions
WO2015189278A3 (en
Inventor
Frédéric DIOLOGENT
Gaël GUERLESQUIN
Romain MOYSE
Original Assignee
Cartier Création Studio Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cartier Création Studio Sa filed Critical Cartier Création Studio Sa
Publication of WO2015189278A2 publication Critical patent/WO2015189278A2/en
Publication of WO2015189278A3 publication Critical patent/WO2015189278A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to an oscillator such as a spiral spring for equipping a balance of a sprung-balance assembly of a mechanical timepiece.
  • the invention also relates to a regulating member comprising the spiral spring.
  • Mechanical watches generally comprise a regulator member composed of a flywheel called a balance wheel on the axis of which is fixed a spiral spring called spiral or spiral spring.
  • the balance-balance spiral around its equilibrium position at a frequency that depends in particular on the rigidity of the balance spring and the moment of inertia of the balance.
  • the diurnal gait of a mechanical movement depends essentially on the sprung balance whose oscillation frequency can be influenced by changes in external factors, such as a change in temperature or temperature. presence of a magnetic field.
  • the temperature variations are likely to cause thermal expansion of the balance and spiral which essentially cause a variation in the moment of inertia of the balance and a variation of the return torque of the balance spring.
  • Magnetic fields act essentially on the hairspring and are likely to disturb or cancel its action on the balance.
  • the amplitude variations of the oscillations of the balance are related to the weight and the inertia of the balance and are likely to cause a lack of isochronism of the sprung balance. Thus, all these parameters are capable of modifying the natural frequency of the sprung balance.
  • the present invention relates to an oscillator of a mechanical timepiece such as a tuning fork or especially a spiral spring for equipping a balance of a set of sprung balance.
  • the oscillator is made of a titanium alloy of
  • titanium base between 10 at.% and 40% of at least one of Nb, Ta or V; between 0% and 3% oxygen, between 0% and 6% zirconium; and between 0% and 5% of hafnium.
  • the alloy comprises between 55 at% and 80 at% titanium, at 20% at least 30% of at least one of Nb, Ta or V; between 0.1 at.% and 3 at.% oxygen, between 0 at.% and 6 at.% zirconium; and between 0% and 5% of hafnium.
  • the alloy may also comprise 0.3 to 3 at% oxygen.
  • the alloy further comprises between 0% and 5% aluminum.
  • the alloy comprises between 0.3 and 3 at% oxygen.
  • the alloy comprises between 23 and 27 at% of at least one of Nb, Ta or V, and preferably between 23 and 27 at. Nb.
  • the alloy comprises one of the following compositions: 23% of niobium, 2% of zirconium, 0.7% of tantalum, 12% of oxygen and, preferably, the rest of titanium; or 24% of niobium, 0.5% of oxygen and, preferably, the balance of titanium; or 26.32% niobium, 2% zirconium, 0.68% tantalum, 1.5% oxygen, and most preferably the titanium residue; or 25.1% niobium, 4.32% aluminum and, preferably, the rest of titanium.
  • the alloy comprises less than 0.1 at.% Of one of the following impurities: silicon, iron, carbon, and nitrogen.
  • the oscillator is a spiral spring, and the present invention also relates to a sprung-balance assembly comprising said spiral, and a watch movement comprising the sprung-balance assembly.
  • An advantage of the oscillator of the invention is its low thermoelastic coefficient (CTE) reducing the need for thermocompensation of the spiral spring.
  • CTE thermoelastic coefficient
  • Figure 1 shows a top view of a sprung-balance assembly for a watch movement, according to one embodiment
  • Figure 2 shows an axial sectional view of the sprung balance assembly, according to one embodiment
  • FIGS. 3, 4 and 5 show the evolution of the Young's modulus according to the temperature, as well as the CTE, on various samples of the titanium alloys concerned by the invention.
  • FIGS. 1 and 2 illustrate, by way of example, a sprung balance assembly 1 intended for a watch movement.
  • FIG. 1 shows a view from above of the sprung balance assembly 1 comprising a rocker 2 and a spiral (or spiral) spring 3.
  • the rocker 2 comprises a serge 4 and two radial arms 5 made in one piece with the serge 4.
  • the rocker 2 is mounted on a shaft 6 which can be manufactured conventionally steel or any other material.
  • Figure 2 which is an axial sectional view of the sprung balance assembly 1, is also shown a double exhaust plate 7 and an impulse pin 8, intended to cooperate with an anchor (not shown) .
  • the inner end of the hairspring 31 can be fixed to the shaft 6, for example, by means of a collar 9.
  • the outside of the hairspring 32 can be fixed on the balance 2, for example via a piton (not shown).
  • the other elements of the regulating organ are conventional and are not
  • the hairspring 3 is made of a titanium alloy, in particular of the ⁇ type, which has a very low Young's modulus (or modulus of elasticity) and a very high elastic deformation limit ⁇ . compared to those of a conventional metal. More particularly, the alloy comprises titanium, at least one of tantalum, niobium and vanadium, and oxygen. The alloy may also comprise zirconium and / or hafnium.
  • the titanium alloy has a
  • composition comprising (in atomic percentages) between 55 at.% and 80 at.% of titanium, between 20 at.% and 30% of at least one of Nb, Ta or V; between 0.1 at.% and 3 at.% oxygen, between 0 at.% and 6 at.% zirconium; and between 0% and 5% of hafnium.
  • the titanium alloy has a composition comprising (in atomic percentages):
  • niobium, vanadium or tantalum between 10% and 40% of at least one of niobium, vanadium or tantalum
  • the composition of the titanium alloy may also comprise impurities typically comprising less than 0.5% of silicon, less than 0.5% of iron, less than 0.5% of carbon, and less than 0.5% of nitrogen.
  • the titanium alloy comprises between 10% and 40% of at least one of niobium, vanadium or tantalum; between 0% and 3% oxygen; between 0% and 6% zirconium; between 0% and 5% hafnium; between 0% and 5% aluminum; less than 2% impurities; and the rest of titanium.
  • the composition of the titanium alloy comprises between 10% and 40% of at least one of niobium, vanadium or tantalum; between 0% and 3% oxygen; between 0% and 6% zirconium; between 0% and 5% hafnium; between 0% and 5% aluminum; less than 2% impurities; and the rest of titanium.
  • the alloy comprises between 23 at.% and 27 at.% of at least one of Nb, Ta or V, and more preferably the alloy comprises between 23 and 27 at.% Nb.
  • the alloy comprises between 0.6 and 0.7 at.% Of Ta.
  • the alloy comprises between 1.1 and 1.2 at.
  • the alloy comprises 2 at.% Zr.
  • the composition of the titanium alloy comprises one of the following compositions (in atomic percentages):
  • Composition 1 23% niobium, 2% zirconium, 0.7% tantalum, 12% oxygen and, preferably, the rest of titanium.
  • Composition 2 24% niobium, 0.5% oxygen and, preferably, the rest of titanium.
  • Composition 3 26.32% niobium, 2% zirconium, 0.68% tantalum, 1.5% oxygen, and most preferably the titanium residue.
  • Composition 4 25.1% niobium, 4.32% aluminum and, preferably, the rest of titanium.
  • the titanium alloy has advantageous properties compared to other materials including other types of titanium-based alloys.
  • Table 1 compares certain physical properties of the titanium alloy which is the subject of this invention with a grade 2 titanium alloy, a grade 5 titanium alloy and an elinvar type alloy. The data in Table 1 refer to composition 1: Ti-23% Nb-0.7% Ta-2% Zr-1 .2% 0 (% at). Other compositions may also comprise Ti-9% Nb-12% Ta-3% V-6% Zr-1 .5% 0 (% at.) Ref. [Saito et al. Science 300 (2003) 464-467], Ti-20% Nb-0.7% Ta-2% Zr-2% 0 (% at.) Ref.
  • the spiral 3 titanium alloy according to the present invention will likely be insensitive to temperature. Its frequency is very stable and varies very little depending on the temperature. In addition, this material is likely to be consistent with the margins established by the chronometric criteria of the Swiss watch industry.
  • the spiral 3 of the invention has the advantage of a lower displacement of its center of mass due to its gravity.
  • the spiral 3 sags therefore less under its own weight.
  • the lighter titanium alloy hairspring also makes it possible to have an oscillation frequency and therefore a resolution greater than a conventional hairspring. In other words it is possible to make a spiral spring which has the same high oscillation frequency as a known smaller spiral.
  • the low Young's modulus of the spiral 3 made in the titanium alloy concerned makes it possible to increase the thickness of the spiral 3, for example with respect to a spiral in élinvar, for the same stiffness.
  • the inaccuracies in the manufacture of the hairspring 3 resulting in a change in thickness of the hairspring will thus have less influence on the stiffness of the hairspring 3.
  • the spiral spring made of titanium alloy may have a greater height. that a spring élinvar conventional and therefore a lower collapse of the spiral spring 3 when the latter is arranged in the plane of a watch movement.
  • the hairspring 3 regulates the oscillation period of the pendulum 2.
  • the accuracy of a movement of a mechanical watch depends on the stability of the natural frequency of the oscillator formed by the hairspring 1.
  • the thermal expansions of the spiral 3 and the balance 2, as well as the variation of the Young's modulus of the spiral 3 modify the natural frequency of this oscillating assembly, disturbing the accuracy of the watch.
  • the spiral 3 made of titanium alloy which is the subject of this invention is diamagnetic and is not disturbed by a magnetic field.
  • the titanium alloy has a coefficient of thermal expansion whose amplitude is about ten times lower than that of grade 2 and 5 titanium alloys and élinvar (see Table 1).
  • the sensitivity of the spiral 3 to temperature variations is therefore very low and the natural frequency of the sprung balance 1 comprising the spiral 3 will therefore be very little influenced by these temperature variations.
  • the method of manufacturing the spiral 3 can therefore be simplified compared to that of a thermocompensated spiral, for example by the application of an additional coating on the surface of the spiral. It is however possible to compensate thermally 3 spiral.
  • the coefficient of thermal expansion whose amplitude is about ten times lower than that of grade 2 and 5 titanium alloys and élinvar (see Table 1).
  • thermoelastic ⁇ of the titanium alloy can be modified by a
  • FIGS. 3 and 4 show experimental measurements of Young's modulus (E) and CTE as a function of temperature for the titanium alloy according to composition 1 (FIG. 3) and composition 3 (FIG. 4).
  • FIG. 5 shows values of the evolution of the Young's modulus (E) and of the CTE according to the temperature in the for the titanium alloy according to the composition 4 measured by Matlakhova et al. in Revista Metéria 1 1 -1 (2007) 41 -47.
  • the rocker 2 is also made of the same titanium alloy as that used to manufacture the spiral 3.
  • the embodiment of the balance 2 and the spiral 3 from the same alloy avoids the compensating effect of the balance spring 3 with respect to the balance 2, which thus has an almost constant inertia. As a result, self-compensation between the balance and the balance spring becomes negligible.
  • the rocker 2 can also be made of other materials and having characteristics favorable to the manufacture of a rocker for use in a pendulum-balance assembly of a timepiece.
  • these materials for the balance 2 include, among others, silicon, quartz, glass, silicon carbide, or ceramic. These materials are appreciated for their lightness, their elasticity, their non-magnetic character, favoring their use in the aforementioned field.
  • the hairspring 3 (and the pendulum 2) can be produced using a laser cutting, wire cutting, machining, rolling, drawing or wire cutting process. an equivalent process.
  • the hairspring 3 can also be made using a rolling and deformation process, or any other suitable method. A surface treatment can also be applied to the spiral spring thus produced.
  • the oscillator of the present invention may have other shapes, such as in particular a tuning fork.

Abstract

The present invention relates to a hairspring (3) to be provided on a balance wheel (2) of a balance spring assembly (1) of a mechanical timepiece, characterized in that said hairspring is manufactured using a titanium alloy containing: a titanium base; 10 at.% to 40 at.% of at least one element among Nb, Ta, or V; 0 at.% to 3 at.% oxygen; 0 at.% to 6 at.% zirconium; and 0 at.% to 5 at.% hafnium. The hairspring of the invention is less temperature-sensitive and has lower density than a conventional hairspring.

Description

Oscillateur pour un ensemble de balancier-spiral d'une pièce  Oscillator for a sprung balance assembly of a part
d'horlogerie  watch
Domaine technique Technical area
[0001] La présente invention concerne un oscillateur tel qu'un ressort spiral destiné à équiper un balancier d'un ensemble de balancier-spiral d'une pièce d'horlogerie mécanique. L'invention concerne également un organe réglant comprenant le ressort spiral. The present invention relates to an oscillator such as a spiral spring for equipping a balance of a sprung-balance assembly of a mechanical timepiece. The invention also relates to a regulating member comprising the spiral spring.
Etat de la technique State of the art
[0002] Les montres mécaniques comportent généralement un organe régulateur composé d'un volant d'inertie appelé balancier sur l'axe duquel est fixe un ressort en spirale appelé ressort spiral ou spiral. Le balancier- spiral oscille autour de sa position d'équilibre à une fréquence qui dépend notamment de la rigidité du spiral et du moment d'inertie du balancier. [0002] Mechanical watches generally comprise a regulator member composed of a flywheel called a balance wheel on the axis of which is fixed a spiral spring called spiral or spiral spring. The balance-balance spiral around its equilibrium position at a frequency that depends in particular on the rigidity of the balance spring and the moment of inertia of the balance.
[0003] Il est bien connu que l'écart de marche diurne d'un mouvement mécanique dépend essentiellement du balancier-spiral dont la fréquence d'oscillation peut être influencée par des variations des facteurs extérieurs, tels qu'un changement de température ou la présence d'un champ magnétique. Les variations de température sont susceptibles de provoquer des dilatations thermiques du balancier et du spiral qui engendrent essentiellement une variation du moment d'inertie du balancier ainsi qu'une variation du couple de rappel du spiral. Les champs magnétiques agissent essentiellement sur le spiral et sont susceptibles de perturber voir annuler son action sur le balancier. Les variations d'amplitude des oscillations du balancier sont liées au poids et à l'inertie du balancier et sont susceptibles d'engendrer un défaut d'isochronisme du balancier-spiral. Ainsi, tous ces paramètres sont susceptibles de modifier la fréquence propre du balancier-spiral. [0004] En ce qui concerne les spiraux, on a déjà depuis longtemps, d'une façon encore considérée comme satisfaisante, minimisé les écarts de marche dus aux variations de température en les fabriquant dans des alliages dont l'élasticité reste pratiquement constante dans la gamme de températures usuelles d'utilisation. Il s'agit notamment d'alliages fer-nickel connus sous les dénominations telles que l'Invar ou l'élinvar et permettant, dans la meilleure qualité, d'obtenir un écart de marche de +/- 0,6 seconde par degré en 24h, mais pouvant encore être sensibles à l'effet d'un champ magnétique. Plus récemment, des spiraux fabriqués dans des matériaux amagnétiques tels que le silicium, le quartz, le verre ou le diamant ont été proposés. Pourtant, l'utilisation de ces matériaux en tant que spiral présente toujours certains désavantages, surtout à cause de leur sensibilité au magnétisme et/ou au changement de température. It is well known that the diurnal gait of a mechanical movement depends essentially on the sprung balance whose oscillation frequency can be influenced by changes in external factors, such as a change in temperature or temperature. presence of a magnetic field. The temperature variations are likely to cause thermal expansion of the balance and spiral which essentially cause a variation in the moment of inertia of the balance and a variation of the return torque of the balance spring. Magnetic fields act essentially on the hairspring and are likely to disturb or cancel its action on the balance. The amplitude variations of the oscillations of the balance are related to the weight and the inertia of the balance and are likely to cause a lack of isochronism of the sprung balance. Thus, all these parameters are capable of modifying the natural frequency of the sprung balance. As far as the spirals are concerned, we have already for a long time, in a manner still considered satisfactory, minimized the variations in the way due to temperature variations by manufacturing them in alloys whose elasticity remains practically constant in the usual temperature range of use. These include iron-nickel alloys known under the names such as invar or élinvar and allowing, in the best quality, to obtain a deviation of +/- 0.6 seconds per degree in 24h, but can still be sensitive to the effect of a magnetic field. More recently, spirals made of non-magnetic materials such as silicon, quartz, glass or diamond have been proposed. However, the use of these materials as spiral always has certain disadvantages, especially because of their sensitivity to magnetism and / or temperature change.
Bref résumé de l'invention Brief summary of the invention
[0005] La présente invention concerne un oscillateur d'une pièce d'horlogerie mécanique tel qu'un diapason ou surtout un ressort spiral destiné à équiper un balancier d'un ensemble de balancier-spiral. Selon l'invention, l'oscillateur est fabriqué dans un alliage de titane de The present invention relates to an oscillator of a mechanical timepiece such as a tuning fork or especially a spiral spring for equipping a balance of a set of sprung balance. According to the invention, the oscillator is made of a titanium alloy of
comprenant une base de titane, entre 10 at.% et 40% d'au moins l'un des éléments parmi Nb, Ta ou V; entre 0 at.% et 3 at.% d'oxygène, entre 0 at.% et 6 at.% de zirconium; et entre 0 at.% et 5 at.% de hafnium. comprising a titanium base, between 10 at.% and 40% of at least one of Nb, Ta or V; between 0% and 3% oxygen, between 0% and 6% zirconium; and between 0% and 5% of hafnium.
[0006] Dans un mode de réalisation, l'alliage comprend entre 55 at.% et 80 at.% de titane, entre 20 at.% et 30% d'au moins l'un des éléments parmi Nb, Ta ou V; entre 0.1 at.% et 3 at.% d'oxygène, entre 0 at.% et 6 at.% de zirconium; et entre 0 at.% et 5 at.% de hafnium. L'alliage peut comprendre également entre 0.3 et 3 at.% d'oxygène. [0006] In one embodiment, the alloy comprises between 55 at% and 80 at% titanium, at 20% at least 30% of at least one of Nb, Ta or V; between 0.1 at.% and 3 at.% oxygen, between 0 at.% and 6 at.% zirconium; and between 0% and 5% of hafnium. The alloy may also comprise 0.3 to 3 at% oxygen.
[0007] Encore dans un mode de réalisation, l'alliage comprend en outre entre 0 at.% et 5 at.% d'aluminium. [0008] Encore dans un autre mode de réalisation, l'alliage comprend entre 0.3 et 3 at.% d'oxygène. [0007] In another embodiment, the alloy further comprises between 0% and 5% aluminum. [0008] In yet another embodiment, the alloy comprises between 0.3 and 3 at% oxygen.
[0009] Encore dans un autre mode de réalisation, l'alliage comprend entre 23 et 27 at.% d'au moins l'un des éléments parmi Nb, Ta ou V, et de manière préférée entre 23 et 27 at.% de Nb. [0009] In yet another embodiment, the alloy comprises between 23 and 27 at% of at least one of Nb, Ta or V, and preferably between 23 and 27 at. Nb.
[0010] Encore dans d'autres modes de réalisation, l'alliage comprend l'une des compositions suivantes: 23% de niobium, 2% de zirconium, 0.7% de tantale, 1 .2% d'oxygène et, de préférence, le reste de titane; ou 24% de niobium, 0.5% d'oxygène et, de préférence le reste de titane; ou 26.32% de niobium, 2% de zirconium, 0.68% de tantale, 1 .1 5% d'oxygène et, de préférence, le reste de titane; ou 25.1 % de niobium, 4.32% d'aluminium et, de préférence, le reste de titane. In still other embodiments, the alloy comprises one of the following compositions: 23% of niobium, 2% of zirconium, 0.7% of tantalum, 12% of oxygen and, preferably, the rest of titanium; or 24% of niobium, 0.5% of oxygen and, preferably, the balance of titanium; or 26.32% niobium, 2% zirconium, 0.68% tantalum, 1.5% oxygen, and most preferably the titanium residue; or 25.1% niobium, 4.32% aluminum and, preferably, the rest of titanium.
[0011] Encore dans un mode de réalisation, l'alliage comprend moins de 0.1 at.% de l'une des impuretés suivantes: silicium, fer, carbone, et azote. [0012] De préférence, l'oscillateur est un ressort spiral, et la présente invention concerne également un ensemble balancier-spiral comprenant ledit spiral, ainsi qu'un mouvement horloger comprenant l'ensemble balancier-spiral. In one embodiment, the alloy comprises less than 0.1 at.% Of one of the following impurities: silicon, iron, carbon, and nitrogen. Preferably, the oscillator is a spiral spring, and the present invention also relates to a sprung-balance assembly comprising said spiral, and a watch movement comprising the sprung-balance assembly.
[0013] Un avantage de l'oscillateur de l'invention est son faible coefficient thermoélastique (CTE) réduisant la nécessité de thermocompensation du ressort spiral. La fréquence propre d'oscillation de l'ensemble balancier-spiral est donc plus stable en fonction de la An advantage of the oscillator of the invention is its low thermoelastic coefficient (CTE) reducing the need for thermocompensation of the spiral spring. The natural oscillation frequency of the sprung balance assembly is therefore more stable as a function of the
température. De plus, le ressort spiral de l'invention est pratiquement insensible aux champs magnétiques et la marche de l'ensemble balancier- spiral ne sera donc pas perturbé par de tels champs magnétiques. D'autres avantages de l'invention apparaîtront à la lecture de la description qui suit. Brève description des figures temperature. In addition, the spiral spring of the invention is practically insensitive to magnetic fields and the operation of the balance-spiral assembly will not be disturbed by such magnetic fields. Other advantages of the invention will appear on reading the description which follows. Brief description of the figures
[0014] Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles: Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
la figure 1 montre une vue du dessus d'un ensemble balancier- spiral destiné à un mouvement horloger, selon un mode de réalisation;  Figure 1 shows a top view of a sprung-balance assembly for a watch movement, according to one embodiment;
la figure 2 montre une vue en coupe axiale de l'ensemble balancier-spiral, selon un mode de réalisation; et  Figure 2 shows an axial sectional view of the sprung balance assembly, according to one embodiment; and
les figures 3, 4, et 5 montrent l'évolution du module de Young selon la température, ainsi que le CTE, sur différents échantillons des alliages de titane concernés par l'invention.  FIGS. 3, 4 and 5 show the evolution of the Young's modulus according to the temperature, as well as the CTE, on various samples of the titanium alloys concerned by the invention.
Exemple(s) de mode de réalisation de l'invention [0015] Les figures 1 et 2 illustrent à titre d'exemple un ensemble balancier-spiral 1 destiné à un mouvement horloger. La figure 1 montre une vue du dessus de l'ensemble balancier-spiral 1 comprenant un balancier 2 et un ressort spiral (ou spiral) 3. Le balancier 2 comprend une serge 4 et deux bras radiaux 5 faits d'une seule pièce avec la serge 4. Le balancier 2 est monté sur un arbre 6 qui peut être fabriqué de manière classique en acier ou dans tout autre matériau. Se référant à la figure 2 qui est une vue en coupe axiale de l'ensemble balancier-spiral 1 , est également représenté un double plateau d'échappement 7 et une cheville d'impulsion 8, destinés à coopérer avec une ancre (non représentée). L'extrémité intérieure du spiral 31 peut être fixée à l'arbre 6, par exemple, par l'intermédiaire d'une virole 9. L'extérieur du spiral 32 peut être fixé sur le balancier 2, par exemple par l'intermédiaire d'un piton (non représenté). Les autres éléments de l'organe réglant sont conventionnels et ne sont pas Example (s) of Embodiment of the Invention [0015] FIGS. 1 and 2 illustrate, by way of example, a sprung balance assembly 1 intended for a watch movement. FIG. 1 shows a view from above of the sprung balance assembly 1 comprising a rocker 2 and a spiral (or spiral) spring 3. The rocker 2 comprises a serge 4 and two radial arms 5 made in one piece with the serge 4. The rocker 2 is mounted on a shaft 6 which can be manufactured conventionally steel or any other material. Referring to Figure 2 which is an axial sectional view of the sprung balance assembly 1, is also shown a double exhaust plate 7 and an impulse pin 8, intended to cooperate with an anchor (not shown) . The inner end of the hairspring 31 can be fixed to the shaft 6, for example, by means of a collar 9. The outside of the hairspring 32 can be fixed on the balance 2, for example via a piton (not shown). The other elements of the regulating organ are conventional and are not
représentés dans les figures 1 et 2. Il est cependant admis que le balancier est mis en mouvement, par exemple, grâce à l'énergie apportée par une roue d'échappement et une ancre d'échappement. [0016] Dans un mode de réalisation, le spiral 3 est réalisé dans un alliage de titane, notamment de type β, qui possède un module de Young (ou module d'élasticité) très bas et une limite de déformation élastique σ très haute par rapport à ceux d'un métal conventionnel. Plus particulièrement, l'alliage comprend du titane, au moins l'un des éléments parmi le tantale, le niobium et le vanadium, et de l'oxygène. L'alliage peut également comprendre du zirconium et/ou du hafnium. However, it is admitted that the rocker is set in motion, for example, thanks to the energy provided by an escape wheel and an exhaust anchor. In one embodiment, the hairspring 3 is made of a titanium alloy, in particular of the β type, which has a very low Young's modulus (or modulus of elasticity) and a very high elastic deformation limit σ. compared to those of a conventional metal. More particularly, the alloy comprises titanium, at least one of tantalum, niobium and vanadium, and oxygen. The alloy may also comprise zirconium and / or hafnium.
[0017] Dans un mode de réalisation, l'alliage de titane a une In one embodiment, the titanium alloy has a
composition comprenant (en pourcentages atomiques) entre 55 at.% et 80 at.% de titane, entre 20 at.% et 30% d'au moins l'un des éléments parmi Nb, Ta ou V; entre 0.1 at.% et 3 at.% d'oxygène, entre 0 at.% et 6 at.% de zirconium; et entre 0 at.% et 5 at.% de hafnium. composition comprising (in atomic percentages) between 55 at.% and 80 at.% of titanium, between 20 at.% and 30% of at least one of Nb, Ta or V; between 0.1 at.% and 3 at.% oxygen, between 0 at.% and 6 at.% zirconium; and between 0% and 5% of hafnium.
[0018] Dans un mode de réalisation avantageux, l'alliage de titane a une composition comprenant (en pourcentages atomiques): In one advantageous embodiment, the titanium alloy has a composition comprising (in atomic percentages):
une base titane;  a titanium base;
entre 10% et 40% d'au moins l'un des éléments parmi le niobium, vanadium ou tantale;  between 10% and 40% of at least one of niobium, vanadium or tantalum;
entre 0% et 3% d'oxygène;  between 0% and 3% oxygen;
entre 0% et 6% de zirconium;  between 0% and 6% zirconium;
entre 0% et 5% de hafnium;  between 0% and 5% hafnium;
entre 0% et 5% d'aluminium.  between 0% and 5% aluminum.
[0019] La composition de l'alliage de titane peut également comprendre des impuretés comprenant typiquement moins de 0.5% de silicium, moins de 0.5% de fer, moins de 0.5% de carbone, et moins de 0.5% d'azote. [0020] En particulier, l'alliage de titane comprend entre 10% et 40% d'au moins l'un des éléments parmi le niobium, vanadium ou tantale; entre 0% et 3% d'oxygène; entre 0% et 6% de zirconium; entre 0% et 5% de hafnium; entre 0% et 5% d'aluminium; moins de 2% d'impuretés; et le reste de titane. [0021] De façon préférée, la composition de l'alliage de titane The composition of the titanium alloy may also comprise impurities typically comprising less than 0.5% of silicon, less than 0.5% of iron, less than 0.5% of carbon, and less than 0.5% of nitrogen. In particular, the titanium alloy comprises between 10% and 40% of at least one of niobium, vanadium or tantalum; between 0% and 3% oxygen; between 0% and 6% zirconium; between 0% and 5% hafnium; between 0% and 5% aluminum; less than 2% impurities; and the rest of titanium. [0021] Preferably, the composition of the titanium alloy
comprend entre 23 at.% et 27 at.% d'au moins l'un des éléments parmi Nb, Ta ou V, et de façon plus préférée l'alliage comprend entre 23 et 27 at.% de Nb. [0022] Dans une variante, l'alliage comprend entre 0.6 et 0.7 at.% de Ta. Encore dans une variante, l'alliage comprend entre 1 .1 et 1.2 at.% comprises between 23 at.% and 27 at.% of at least one of Nb, Ta or V, and more preferably the alloy comprises between 23 and 27 at.% Nb. In a variant, the alloy comprises between 0.6 and 0.7 at.% Of Ta. In another variant, the alloy comprises between 1.1 and 1.2 at.
d'oxygène. Encore dans une autre variante, l'alliage comprend 2 at.% de Zr. oxygen. In yet another embodiment, the alloy comprises 2 at.% Zr.
[0023] Encore de façon préférée, la composition de l'alliage de titane comprend l'une des compositions suivantes (en pourcentages atomiques): Still preferably, the composition of the titanium alloy comprises one of the following compositions (in atomic percentages):
Composition 1 : 23% de niobium, 2% de zirconium, 0.7% de tantale, 1 .2% d'oxygène et, de préférence, le reste de titane.  Composition 1: 23% niobium, 2% zirconium, 0.7% tantalum, 12% oxygen and, preferably, the rest of titanium.
Composition 2 : 24% de niobium, 0.5% d'oxygène et, de préférence, le reste de titane.  Composition 2: 24% niobium, 0.5% oxygen and, preferably, the rest of titanium.
Composition 3 : 26.32% de niobium, 2% de zirconium, 0.68% de tantale, 1 .1 5% d'oxygène et, de préférence, le reste de titane. Composition 3: 26.32% niobium, 2% zirconium, 0.68% tantalum, 1.5% oxygen, and most preferably the titanium residue.
Composition 4 : 25.1 % de niobium, 4.32% d'aluminium et, de préférence, le reste de titane. Composition 4: 25.1% niobium, 4.32% aluminum and, preferably, the rest of titanium.
[0024] Dans les gammes de température et aux tolérances spécifiques requises par l'industrie horlogère, l'alliage de titane a des propriétés avantageuses par rapport à d'autres matériaux incluant d'autres types d'alliages à base de titane. La table 1 compare certaines propriétés physiques de l'alliage de titane qui fait l'objet de cette invention avec un alliage de titane grade 2, un alliage de titane grade 5 et un alliage de type élinvar. Les données de la table 1 se réfèrent à la composition 1 : Ti- 23%Nb-0.7%Ta-2%Zr-1 .2 %0 (%at). D'autres compositions peuvent également comprendre Ti-9%Nb-12%Ta-3%V-6%Zr-1 .5 %0 (%at.) réf. [Saito et al. Science 300 (2003) 464-467], Ti-20%Nb-0.7%Ta-2%Zr-2 %0 (%at.) réf. [T. Furuta et al. Mater. Trans. (2007) 1 124-1 130] ou Ti-25.1 %Nb- 4.32%AI (%at.) réf. [Matlakhova et al. Revista Metéria 1 1 -1 (2007) 41 -47]. Ces résultats montrent que, en comparaison avec les autres alliages de titane et de l'élinvar, l'alliage de titane considéré a une densité inférieure, un module de Young inférieur et un coefficient thermoélastique (CTE) β inférieur. Tout comme les autres alliages de titane, et contrairement à l'élinvar, l'alliage de titane considéré est non ferromagnétique. L'alliage de titane considéré peut également avoir un taux d'écrouissage supérieur à 90%. (réf. [Saito et al. Science 300 (2003) 464-467], [S. Kuramoto et al. In the ranges of temperature and the specific tolerances required by the watch industry, the titanium alloy has advantageous properties compared to other materials including other types of titanium-based alloys. Table 1 compares certain physical properties of the titanium alloy which is the subject of this invention with a grade 2 titanium alloy, a grade 5 titanium alloy and an elinvar type alloy. The data in Table 1 refer to composition 1: Ti-23% Nb-0.7% Ta-2% Zr-1 .2% 0 (% at). Other compositions may also comprise Ti-9% Nb-12% Ta-3% V-6% Zr-1 .5% 0 (% at.) Ref. [Saito et al. Science 300 (2003) 464-467], Ti-20% Nb-0.7% Ta-2% Zr-2% 0 (% at.) Ref. [T. Furuta et al. Mater. Trans. (2007) 1 124-1 130] or Ti-25.1% Nb-4.32% Al (% at.) Ref. [Matlakhova et al. Revista Metéria 1 1 -1 (2007) 41 -47]. These results show that, in comparison with the other titanium and elinvar alloys, the titanium alloy considered has a lower density, a lower Young's modulus and a lower thermoelastic coefficient (CTE) β. Like the other titanium alloys, and unlike Elinvar, the titanium alloy considered is non-ferromagnetic. The titanium alloy considered may also have a degree of hardening greater than 90%. (ref [Saito et al., Science 300 (2003) 464-467], [Kuramoto, S. et al.
Mater. Se. Eng A442 (2006) 454-457], [M. Tane et al. Acta Mater. 61 (2013) 139-1 50]).  Mater. Se. Eng A442 (2006) 454-457], [M. Tane et al. Acta Mater. 61 (2013) 139-1 50]).
Figure imgf000009_0001
Figure imgf000009_0001
Table 1  Table 1
[0025] Le spiral 3 en alliage titane selon la présente invention sera susceptible d'être peu sensible à la température. Sa fréquence est très stable et varie très peu en fonction de la température. De plus, ce matériau est susceptible d'être conforme aux marges établies par les critères chronométriques de l'horlogerie Suisse. The spiral 3 titanium alloy according to the present invention will likely be insensitive to temperature. Its frequency is very stable and varies very little depending on the temperature. In addition, this material is likely to be consistent with the margins established by the chronometric criteria of the Swiss watch industry.
[0026] Par sa densité plus faible, le spiral 3 de l'invention a l'avantage d'un déplacement plus faible de son centre de masse dû à sa gravité. Le spiral 3 s'affaisse donc moins sous son propre poids. L'effet du By its lower density, the spiral 3 of the invention has the advantage of a lower displacement of its center of mass due to its gravity. The spiral 3 sags therefore less under its own weight. The effect of
déplacement du centre de masse sur la marche de la montre est également plus faible. En effet, le couple perturbant la marche de la montre à cause du déplacement du centre de masse est directement proportionnel à la masse du spiral. Dans le cas où le spiral a un grand diamètre, l'impact de l'inertie du spiral par rapport à l'inertie du balancier sera d'autant plus faible. Le spiral en alliage de titane plus léger permet également d'avoir une fréquence d'oscillation et donc une résolution plus grande qu'un spiral conventionnel. En d'autres termes il est possible de réaliser un ressort spiral qui a la même fréquence d'oscillation élevée qu'un spiral connu de plus petite taille. [0027] Le faible module de Young du spiral 3 fabriqué dans l'alliage de titane concerné permet d'augmenter l'épaisseur du spiral 3, par exemple par rapport à un spiral en élinvar, pour une même raideur. Les imprécisions dans la fabrication du spiral 3 résultant dans une variation d'épaisseur du spiral auront donc moins d'influence sur la raideur du spiral 3. Autrement dit, à épaisseur égale, le ressort spiral en alliage de titane pourra avoir une hauteur plus grande qu'un ressort en élinvar conventionnel et donc, un affaissement plus faible du ressort spiral 3 lorsque ce dernier est agencé dans le plan d'un mouvement horloger. movement of the center of mass on the watch is also weaker. Indeed, the torque disrupting the movement of the watch because of the displacement of the center of mass is directly proportional to the mass of the hairspring. In the case where the hairspring has a large diameter, the impact of the inertia of the hairspring relative to the inertia of the pendulum will be even lower. The lighter titanium alloy hairspring also makes it possible to have an oscillation frequency and therefore a resolution greater than a conventional hairspring. In other words it is possible to make a spiral spring which has the same high oscillation frequency as a known smaller spiral. The low Young's modulus of the spiral 3 made in the titanium alloy concerned makes it possible to increase the thickness of the spiral 3, for example with respect to a spiral in élinvar, for the same stiffness. The inaccuracies in the manufacture of the hairspring 3 resulting in a change in thickness of the hairspring will thus have less influence on the stiffness of the hairspring 3. In other words, at equal thickness, the spiral spring made of titanium alloy may have a greater height. that a spring élinvar conventional and therefore a lower collapse of the spiral spring 3 when the latter is arranged in the plane of a watch movement.
[0028] Le spiral 3 régule la période d'oscillation du balancier 2. La précision d'un mouvement d'une montre mécanique dépend de la stabilité de la fréquence propre de l'oscillateur formé du balancier-spiral 1 . Lorsque la température varie, les dilatations thermiques du spiral 3 et du balancier 2, ainsi que la variation du module de Young du spiral 3, modifient la fréquence propre de cet ensemble oscillant, perturbant la précision de la montre. The hairspring 3 regulates the oscillation period of the pendulum 2. The accuracy of a movement of a mechanical watch depends on the stability of the natural frequency of the oscillator formed by the hairspring 1. When the temperature varies, the thermal expansions of the spiral 3 and the balance 2, as well as the variation of the Young's modulus of the spiral 3, modify the natural frequency of this oscillating assembly, disturbing the accuracy of the watch.
[0029] Le spiral 3 en alliage de titane qui fait l'objet de cette invention est diamagnétique et n'est donc pas perturbé par un champ magnétique. The spiral 3 made of titanium alloy which is the subject of this invention is diamagnetic and is not disturbed by a magnetic field.
[0030] Par ailleurs, l'alliage de titane présente un coefficient de dilatation thermique dont l'amplitude est environ dix fois plus faible que celui des alliages de titane grade 2 et 5 et de l'élinvar (voir table 1). La sensibilité du spiral 3 aux variations de températures est donc très faible et la fréquence propre du balancier-spiral 1 comprenant le spiral 3 sera donc très peu influencée par ces variations de température. Le procédé de fabrication du spiral 3 peut donc être simplifiée par rapport à celle d'un spiral thermocompensé, par exemple par l'application d'un revêtement supplémentaire à la surface du spiral. Il est cependant possible de compenser thermiquement le spiral 3. Par exemple, le coefficient Furthermore, the titanium alloy has a coefficient of thermal expansion whose amplitude is about ten times lower than that of grade 2 and 5 titanium alloys and élinvar (see Table 1). The The sensitivity of the spiral 3 to temperature variations is therefore very low and the natural frequency of the sprung balance 1 comprising the spiral 3 will therefore be very little influenced by these temperature variations. The method of manufacturing the spiral 3 can therefore be simplified compared to that of a thermocompensated spiral, for example by the application of an additional coating on the surface of the spiral. It is however possible to compensate thermally 3 spiral. For example, the coefficient
thermoélastique β de l'alliage de titane peut être modifié par un thermoelastic β of the titanium alloy can be modified by a
traitement thermique de l'alliage ou par déformation à froid. [0031] les figures 3 et 4 reportent des mesures expérimentales du module de Young (E) et du CTE en fonction de la température pour l'alliage de titane selon la composition 1 (figure 3) et la composition 3 (figure 4). La figure 5 reporte des valeurs de l'évolution du module de Young (E) et du CTE selon la température dans le pour l'alliage de titane selon la composition 4 mesurées par Matlakhova et al. dans Revista Metéria 1 1 -1 (2007) 41 -47. heat treatment of the alloy or by cold deformation. FIGS. 3 and 4 show experimental measurements of Young's modulus (E) and CTE as a function of temperature for the titanium alloy according to composition 1 (FIG. 3) and composition 3 (FIG. 4). FIG. 5 shows values of the evolution of the Young's modulus (E) and of the CTE according to the temperature in the for the titanium alloy according to the composition 4 measured by Matlakhova et al. in Revista Metéria 1 1 -1 (2007) 41 -47.
[0032] Dans un mode de réalisation, le balancier 2 est également réalisé dans le même alliage de titane que celui utilisé pour fabriquer le spiral 3. La réalisation du balancier 2 et du spiral 3 à partir du même alliage permet d'éviter l'effet compensateur du spiral 3 par rapport au balancier 2, qui a ainsi une inertie presque constante. De ce fait, l'auto compensation entre le balancier et le spiral devient négligeable. In one embodiment, the rocker 2 is also made of the same titanium alloy as that used to manufacture the spiral 3. The embodiment of the balance 2 and the spiral 3 from the same alloy avoids the compensating effect of the balance spring 3 with respect to the balance 2, which thus has an almost constant inertia. As a result, self-compensation between the balance and the balance spring becomes negligible.
[0033] De façon alternative, le balancier 2 peut également être fabriqué dans d'autres matériaux et possédant des caractéristiques favorables à la fabrication d'un balancier destiné à être utilisé dans un ensemble balancier- spiral d'une pièce d'horlogerie. Des exemples de ces matériaux pour le balancier 2 comprennent, en autres, le silicium, le quartz, le verre, le carbure de silicium, ou la céramique. Ces matériaux sont appréciés pour leur légèreté, leur élasticité, leur caractère amagnétique, favorisant leur utilisation dans le domaine précité. [0034] Encore dans un mode de réalisation, le spiral 3 (et le balancier 2) peut être réalisé à l'aide d'un procédé de découpe laser, de découpe par fil, d'usinage, de laminage, de tréfilage ou d'un procédé équivalent. Le spiral 3 peut également être réalisé à l'aide d'un procédé de laminage et déformation, ou tout autre procédé approprié. Un traitement de surface peut également être appliqué au ressort spiral ainsi réalisé. Alternatively, the rocker 2 can also be made of other materials and having characteristics favorable to the manufacture of a rocker for use in a pendulum-balance assembly of a timepiece. Examples of these materials for the balance 2 include, among others, silicon, quartz, glass, silicon carbide, or ceramic. These materials are appreciated for their lightness, their elasticity, their non-magnetic character, favoring their use in the aforementioned field. In another embodiment, the hairspring 3 (and the pendulum 2) can be produced using a laser cutting, wire cutting, machining, rolling, drawing or wire cutting process. an equivalent process. The hairspring 3 can also be made using a rolling and deformation process, or any other suitable method. A surface treatment can also be applied to the spiral spring thus produced.
[0035] A la place d'un spiral 3, l'oscillateur de la présente invention peut avoir d'autres formes, tel que notamment un diapason. Instead of a hairspring 3, the oscillator of the present invention may have other shapes, such as in particular a tuning fork.
Numéros de référence employés sur les figures Reference numbers used in the figures
1 ensemble balancier-spiral 1 spiral balance assembly
2 balancier  2 pendulum
3 ressort spiral  3 spiral spring
4 serge 4 serge
5 bras radiaux  5 radial arms
6 arbre  6 tree
7 double plateau d'échappement  7 double exhaust tray
8 cheville d'impulsion  8 impulse ankle
9 virole 9 ferrule
31 extrémité intérieure du spiral  31 inner end of the hairspring
32 extérieur du spiral du spiral  32 outer spiral spiral

Claims

Revendications claims
1 . Oscillateur (3) destiné à équiper un balancier (2) d'un ensemble de balancier-spiral (1) d'une pièce d'horlogerie mécanique, caractérisé en ce que l'oscillateur est fabriqué dans un alliage de titane comprenant une base de titane et entre 10 et 40 at.% d'au moins l'un des éléments parmi Nb, Ta ou V; entre 0 at.% et 3 at.% d'oxygène, entre 0 at.% et 6 at.% de zirconium; et entre 0 at.% et 5 at.% de hafnium. 1. Oscillator (3) for equipping a balance (2) with a balance spring assembly (1) of a mechanical timepiece, characterized in that the oscillator is made of a titanium alloy comprising a base of titanium and between 10 and 40 at% of at least one of Nb, Ta or V; between 0% and 3% oxygen, between 0% and 6% zirconium; and between 0% and 5% of hafnium.
2. Oscillateur selon la revendication 1 , Oscillator according to claim 1,
dans lequel l'alliage comprend entre 55 at.% et 80 at.% de titane, entre 20 at.% et 30% d'au moins l'un des éléments parmi Nb, Ta ou V; et entre 0.1 at.% et 3 at.% d'oxygène ; entre 0 at.% et 6 at.% de zirconium; et entre 0 at.% et 5 at.% de hafnium. wherein the alloy comprises from 55 to 80% to 80% by weight of titanium, from 20 to 30% by weight of at least one of Nb, Ta or V; and between 0.1 at.% and 3 at.% oxygen; between 0% and 6% zirconium; and between 0% and 5% of hafnium.
3. Oscillateur selon la revendication 1 ou 2, Oscillator according to Claim 1 or 2,
dans lequel l'alliage comprend entre 0 at.% et 5at.% d'aluminium. wherein the alloy comprises between 0% and 5% aluminum.
4. Oscillateur selon l'une des revendications 1 à 3, Oscillator according to one of Claims 1 to 3,
dans lequel l'alliage comprend entre 0.3 et 3 at.% d'oxygène. wherein the alloy comprises between 0.3 and 3 at% oxygen.
5. Oscillateur selon l'une des revendications 1 à 4, Oscillator according to one of Claims 1 to 4,
dans lequel l'alliage comprend entre 23 et 27 at.% d'au moins l'un des éléments parmi Nb, Ta ou V. wherein the alloy comprises between 23 and 27 at% of at least one of Nb, Ta or V.
6. Oscillateur selon la revendication 5, Oscillator according to Claim 5,
dans lequel l'alliage comprend entre 23 et 27 at.% de Nb. wherein the alloy comprises from 23 to 27 at% Nb.
7. Oscillateur selon la revendication 5 ou 6, 7. Oscillator according to claim 5 or 6,
dans lequel l'alliage comprend entre 0.6 et 0.7 at.% de Ta. wherein the alloy comprises between 0.6 and 0.7 at.% Ta.
8. Oscillateur selon l'une des revendications 5 à 7, Oscillator according to one of Claims 5 to 7,
dans lequel l'alliage comprend entre 1 .1 et 1.2 at.% d'oxygène. wherein the alloy comprises between 1.1 and 1.2 at% oxygen.
9. Oscillateur selon l'une des revendications 5 à 8, Oscillator according to one of Claims 5 to 8,
dans lequel l'alliage comprend 2 at.% de Zr. wherein the alloy comprises 2 at.% Zr.
10. Oscillateur selon la revendication 9, 10. Oscillator according to claim 9,
dans lequel l'alliage comprend 23% de niobium, 2% de zirconium, 0.7% de tantale, et 1 .2% d'oxygène. wherein the alloy comprises 23% niobium, 2% zirconium, 0.7% tantalum, and 12% oxygen.
1 1 . Oscillateur selon la revendication 10, 1 1. Oscillator according to claim 10,
dans lequel le reste de l'alliage comprend le titane. wherein the remainder of the alloy comprises titanium.
12. Oscillateur selon la revendication 9, Oscillator according to Claim 9,
dans lequel l'alliage comprend 26.32% de niobium, 2% de zirconium, 0.68% de tantale, et 1 .1 5% d'oxygène. wherein the alloy comprises 26.32% niobium, 2% zirconium, 0.68% tantalum, and 1.5% oxygen.
13. Oscillateur selon la revendication 12, Oscillator according to Claim 12,
dans lequel le reste de l'alliage comprend le titane. wherein the remainder of the alloy comprises titanium.
14. Oscillateur selon la revendication 5 ou 6, Oscillator according to claim 5 or 6,
dans lequel l'alliage comprend 24% de niobium et 0.5% d'oxygène. wherein the alloy comprises 24% niobium and 0.5% oxygen.
1 5. Oscillateur selon la revendication 14, 5. The oscillator according to claim 14,
dans lequel le reste de l'alliage comprend le titane. wherein the remainder of the alloy comprises titanium.
16. Oscillateur selon la revendication 5 ou 6, Oscillator according to claim 5 or 6,
dans lequel l'alliage comprend 25.1 % de niobium et 4.32% d'aluminium. wherein the alloy comprises 25.1% niobium and 4.32% aluminum.
17. Oscillateur selon la revendication 16, 17. Oscillator according to claim 16,
dans lequel le reste de l'alliage comprend le titane. wherein the remainder of the alloy comprises titanium.
18. Oscillateur selon l'une des revendications 1 à 17, 18. Oscillator according to one of claims 1 to 17,
dans lequel l'alliage comprend en outre moins de 0.1 at.% de l'une des impuretés suivantes: silicium, fer, carbone, et azote. wherein the alloy further comprises less than 0.1 at.% of one of the following impurities: silicon, iron, carbon, and nitrogen.
19. Oscillateur (3) selon l'une des revendications 1 à 18, dans lequel l'oscillateur est un diapason. 19. Oscillator (3) according to one of claims 1 to 18, wherein the oscillator is a tuning fork.
20. Oscillateur (3) selon l'une des revendications 1 à 18, dans lequel l'oscillateur est un ressort spiral. 20. Oscillator (3) according to one of claims 1 to 18, wherein the oscillator is a spiral spring.
21 . Ressort spiral selon la revendication 20, 21. Spiral spring according to Claim 20,
réalisé à l'aide d'un procédé de découpe laser, de découpe par fil, d'usinage, de laminage ou de tréfilage. performed using a laser cutting, wire cutting, machining, rolling or drawing process.
22. Ensemble balancier-spiral (1 ) comprenant le spiral (3) selon la revendication 20 ou 21 . 22. Sprung balance assembly (1) comprising the hairspring (3) according to claim 20 or 21.
23. Ensemble balancier-spiral (1 ) selon la revendication 22, dans lequel le balancier (2) est fabriqué dans le même alliage de titane que celui utilisé pour fabriquer le spiral (3). 23. sprung balance assembly (1) according to claim 22, wherein the rocker (2) is made of the same titanium alloy that used to manufacture the spiral (3).
24. Mouvement horloger comprenant l'ensemble balancier-spiral (1 ) selon la revendication 23. 24. Watch movement comprising the sprung balance assembly (1) according to claim 23.
PCT/EP2015/062954 2014-06-11 2015-06-10 Oscillator for a timepiece balance spring assembly WO2015189278A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8822014 2014-06-11
CH00882/14 2014-06-11

Publications (2)

Publication Number Publication Date
WO2015189278A2 true WO2015189278A2 (en) 2015-12-17
WO2015189278A3 WO2015189278A3 (en) 2016-04-07

Family

ID=51302866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/062954 WO2015189278A2 (en) 2014-06-11 2015-06-10 Oscillator for a timepiece balance spring assembly

Country Status (1)

Country Link
WO (1) WO2015189278A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3252542A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
EP3252541A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
WO2018172164A1 (en) * 2017-03-24 2018-09-27 Universite De Lorraine METASTABLE β TITANIUM ALLOY, TIMEPIECE SPRING MADE FROM SUCH AN ALLOY AND METHOD FOR PRODUCTION THEREOF
EP3422116A1 (en) 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
EP3422115A1 (en) 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
EP3502785A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
JP2019113544A (en) * 2017-12-21 2019-07-11 ニヴァロックス−ファー ソシエテ アノニム Balance spring for timepiece movements and method for manufacturing the same
EP3671359A1 (en) * 2018-12-21 2020-06-24 Nivarox-FAR S.A. Timepiece spiral spring made of titanium
EP3502288B1 (en) 2017-12-21 2020-10-14 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
EP3736638A1 (en) * 2019-05-07 2020-11-11 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
CN112553501A (en) * 2020-11-27 2021-03-26 东南大学 Titanium-niobium shape memory alloy with adjustable negative thermal expansion and preparation method thereof
US11002872B2 (en) 2015-12-14 2021-05-11 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units
RU2756785C1 (en) * 2019-12-31 2021-10-05 Ниварокс-Фар С.А. Balance spring for a clockwork and the method for its manufacture
US11913094B2 (en) 2021-03-16 2024-02-27 Nivarox-Far S.A. Spiral spring for a horological movement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1275357A (en) * 1960-12-01 1961-11-03 Straumann Inst Ag Balance wheel for watches
CN1177947C (en) * 1999-06-11 2004-12-01 株式会社丰田中央研究所 Titanium alloy and method for producing same
EP1225237A4 (en) * 2000-05-02 2003-05-14 Toyoda Chuo Kenkyusho Kk Titanium alloy member
WO2005005677A1 (en) * 2003-07-15 2005-01-20 Minoru Fumoto Titanium alloy and eyeglass frame excelling in spring characteristic
JP2005140674A (en) * 2003-11-07 2005-06-02 Seiko Epson Corp Spring, spiral spring and hair spring for watch, and watch
EP2631721A1 (en) * 2012-02-23 2013-08-28 Richemont International S.A. Diamond-covered titanium clock components

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11002872B2 (en) 2015-12-14 2021-05-11 Covidien Lp Surgical adapter assemblies and wireless detection of surgical loading units
US10338529B2 (en) 2016-06-01 2019-07-02 Rolex Sa Fastening part for a hairspring
EP3252541A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
JP2018036249A (en) * 2016-06-01 2018-03-08 ロレックス・ソシエテ・アノニムRolex Sa Fastening part for hairspring
EP3252542A1 (en) 2016-06-01 2017-12-06 Rolex Sa Part for fastening a timepiece hairspring
US10409223B2 (en) 2016-06-01 2019-09-10 Rolex Sa Fastening part of a hairspring
JP7138415B2 (en) 2016-06-01 2022-09-16 ロレックス・ソシエテ・アノニム Fixed part for hairspring
WO2018172164A1 (en) * 2017-03-24 2018-09-27 Universite De Lorraine METASTABLE β TITANIUM ALLOY, TIMEPIECE SPRING MADE FROM SUCH AN ALLOY AND METHOD FOR PRODUCTION THEREOF
KR102488776B1 (en) * 2017-03-24 2023-01-13 에스에이에스 이노 테크 컨사일즈 Metastable β titanium alloys, watch springs based on these alloys and methods for their production
FR3126511A1 (en) * 2017-03-24 2023-03-03 Sas Inno Tech Conseils "Metastable β titanium alloy clock spring, and its manufacturing process"
RU2764070C2 (en) * 2017-03-24 2022-01-13 Сас Инно Тек Консей Metastable beta-titanium alloy, clock spring based on such an alloy and its manufacturing method
US11913106B2 (en) 2017-03-24 2024-02-27 Sas Inno Tech Conseils Metastable ß titanium alloy, timepiece spring made from such an alloy and method for production thereof
FR3064281A1 (en) * 2017-03-24 2018-09-28 Universite De Lorraine BETA METASTABLE TITANIUM ALLOY, WATCH-OUT SPRING BASED ON SUCH ALLOY AND PROCESS FOR PRODUCING THE SAME
KR20190131517A (en) * 2017-03-24 2019-11-26 유니버시테 드 로레인 Metastable β-titanium alloys, clock springs based on these alloys, and methods of manufacturing the same
EP3422116B1 (en) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Timepiece hairspring
EP3422115B1 (en) * 2017-06-26 2021-08-04 Nivarox-FAR S.A. Timepiece spiral spring
EP3422116A1 (en) 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
EP3422115A1 (en) 2017-06-26 2019-01-02 Nivarox-FAR S.A. Timepiece hairspring
JP2019113528A (en) * 2017-12-21 2019-07-11 ニヴァロックス−ファー ソシエテ アノニム Spiral spring for clock or watch movement and method for manufacturing the same
JP2019113544A (en) * 2017-12-21 2019-07-11 ニヴァロックス−ファー ソシエテ アノニム Balance spring for timepiece movements and method for manufacturing the same
US11966198B2 (en) 2017-12-21 2024-04-23 Nivarox-Far S.A. Spiral spring for clock or watch movement and method of manufacture thereof
JP2020187134A (en) * 2017-12-21 2020-11-19 ニヴァロックス−ファー ソシエテ アノニム Spiral spring for clock or watch movement and method for manufacturing the same
EP3502785B1 (en) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
RU2697060C1 (en) * 2017-12-21 2019-08-09 Ниварокс-Фар С.А. Clockwork hair and method of its manufacturing
EP3502288B1 (en) 2017-12-21 2020-10-14 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
US11137721B2 (en) 2017-12-21 2021-10-05 Nivarox-Far S.A. Balance spring for timepiece movements and method for manufacturing the same
US11586146B2 (en) 2017-12-21 2023-02-21 Nivarox-Far S.A. Spiral spring for clock or watch movement and method of manufacture thereof
EP3502785A1 (en) * 2017-12-21 2019-06-26 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3502289B1 (en) * 2017-12-21 2022-11-09 Nivarox-FAR S.A. Manufacturing method of a hairspring for a timepiece movement
EP3671359A1 (en) * 2018-12-21 2020-06-24 Nivarox-FAR S.A. Timepiece spiral spring made of titanium
JP2020101527A (en) * 2018-12-21 2020-07-02 ニヴァロックス−ファー ソシエテ アノニム Timepiece spiral spring made of titanium
US11650543B2 (en) 2018-12-21 2023-05-16 Nivarox-Far S.A. Titanium-based spiral timepiece spring
US11334028B2 (en) 2019-05-07 2022-05-17 Nivarox-Far S.A. Method for manufacturing a balance spring for a horological movement
EP3736638A1 (en) * 2019-05-07 2020-11-11 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
JP2020183941A (en) * 2019-05-07 2020-11-12 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing balance spring for horological movement
RU2756785C1 (en) * 2019-12-31 2021-10-05 Ниварокс-Фар С.А. Balance spring for a clockwork and the method for its manufacture
CN112553501B (en) * 2020-11-27 2022-03-25 东南大学 Titanium-niobium shape memory alloy with adjustable negative thermal expansion and preparation method thereof
CN112553501A (en) * 2020-11-27 2021-03-26 东南大学 Titanium-niobium shape memory alloy with adjustable negative thermal expansion and preparation method thereof
US11913094B2 (en) 2021-03-16 2024-02-27 Nivarox-Far S.A. Spiral spring for a horological movement

Also Published As

Publication number Publication date
WO2015189278A3 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2015189278A2 (en) Oscillator for a timepiece balance spring assembly
EP2102717B1 (en) Mechanical oscillator for timepiece
EP2215531B1 (en) Mechanical oscillator having an optimized thermoelastic coefficient
EP1605182B1 (en) Temperature compensated hairspring-balance oscillator
EP1519250B1 (en) Thermally compensated balance-hairspring resonator
EP2917787B1 (en) Clock movement having a balance and a hairspring
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
CH700260A2 (en) Regulating member for mechanical watch, has balance and hairspring forming balance-spiral assembly, where balance is machined using micro-fabrication process to allow machining dimensional tolerance in order of micron
EP3433680B1 (en) Spring balance oscillator for timepiece
EP3112951B1 (en) Manufacturing method comprising a modified machining step
EP2753985B1 (en) Clock movement having a balance-wheel and hairspring
EP2631721A1 (en) Diamond-covered titanium clock components
EP1654597B1 (en) Thermally-compensated balance wheel
CH716331B1 (en) Pivot clock shaft with reduced coefficient of friction.
EP3913441B1 (en) Oscillator for a timepiece
CH712726A2 (en) Pendulum oscillator-spiral clock with magnetic pivot.
CH701155B1 (en) Balance spiral type mechanical oscillator for e.g. wrist watch, has balance and spiral, which are made of non-magnetic material such as diamond, where material possesses very low thermal expansion coefficient
EP4179391A1 (en) Timepiece oscillator with flexible pivot
WO2023242756A1 (en) Timepiece movement with increased power reserve
CH719361A2 (en) Process for limiting the deformation of a silicon timepiece during thermal oxidation.
CH716974A2 (en) Spiral spring for watchmaking sprung balance oscillator and its manufacturing process.
EP3839652A1 (en) Hairspring for balance wheel-hairspring oscillator and method for manufacturing same
EP4212965A1 (en) Method for limiting the deformation of a silicon timepiece
CH712017B1 (en) Silicone spiral for a regulating organ or mechanical clockwork.
EP4111264A1 (en) Silicon timepiece component for a timepiece

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15727012

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15727012

Country of ref document: EP

Kind code of ref document: A2